No One SATPlan Encoding To Rule Them All

1. What is Planning?
- World state: instantiation of multivalued state variables
- Actions:
 - require certain values of state variables to be used
 - change values of state variables by their effects
- Objective:
 - Given a set of actions
 - Given an initial state (start) and goal conditions
 - Find a plan (sequence of actions to get from start to goal)

2. Example: delivering 2 packages to Las Vegas

3. Finding Plans with Satisfiability Solvers
- If the formula F_k is satisfiable then a plan of size k exists
- Solve F_k... until a satisfiable formula F_k is reached
- Use the solution of F_k to construct a plan

4. Encoding Planning as SAT
- The key aspect for the performance
- Many encoding schemes in the last decades
- Various encodings work well for different problem kinds
- The aim is to be the best for all

 BUT is this the best approach?
 - We assemble a set of encodings
 - Select the best encoding for a given problem
 - Inspired by sequential portfolios
 - The set of encodings should be diverse
 - The selecting algorithm should be fast and smart (choose well)

5. Four Kinds of SATPlan Encodings
- Based on restrictions on actions in a single step:
 - Forall-Step – most strict
 - Exists-Step
 - Relaxed Exists-Step
 - Relaxed Relaxed Exists-Step

 $(R^2$ Exists-Step) – least strict

 To be diverse we choose a Forall-Step encoding (R^2 Exists-Step) – least strict

6. Guessing action ordering for R^2 Exists-Step
- We need to guess the order of actions in a resulting plan.
- We compared a few heuristics, the best are:
 - TSort – topological sorting of action interactions
 - Input – the order of actions in the problem definition

7. Encoding Selection Rule
- A transition = change of a state variable
- The set of transitions is defined by the actions
- The heuristic rule used in our approach

 $T = \#transitions / \#stateVariables$

 $IF \ T > 10 THEN$
 use the Reinforced encoding
 $ELSE IF$ makespan is even
 use R^2 Exists-Step with TSort ordering
 $ELSE$
 use R^2 Exists-Step with Input ordering

8. Experiments
- Compared:
 - Selective encoding and its components (R^2 Exists and R^2 Exists
 - State-of-the-art encodings of Rintanen and their optimal combination (R^*)
 - Benchmark problems: IPC 2011, each domain contains 20 problems
 - Sat Solver: Lingeling (version ats)
 - PC: Intel i7 920 cpu @2.67 Ghz and 6 GB of memory

9. Conclusion
- Combining diverse encodings works very well
- Just combining the best encodings (of Rintanen) is not the best approach
- Action ordering has huge impact on R^2 Exists encoding
- The presented method is very simple yet experimental results are great
- Future Work: More diverse set of encodings, smarter selection heuristics