

Roman Barták (bartak@ktiml.mff.cuni.cz) **Tomáš Balyo** (biotomas@gmail.com) Faculty of Mathematics and Physics, Institute of Theoretical Informatics, Charles University in Prague Karlsruhe Institute of Technology Czech Republic Germany

No One SATPlan Encoding To Rule Them All

1. What is Planning?

- World state: instantiation of multivalued state variables
- Actions:
- require certain values of state variables to be used
- change values of state variables by their effects
- Objective:
- Given a set of actions
- Given an initial state (start) and goal conditions
- Find a plan (sequence of actions to get from start to goal)

2. Example: delivering 2 packages to Las Vegas

State Variables and their domains:

- Truck location T, dom(T) = {LA, SF, LV}
- Package locations P and Q $dom(P) = dom(Q) = \{LA, SF, LV, Tr\}$
- **Actions**:
- move(x,y)=[prec: {T=x}, eff: {T=y}]
- loadP(x)=[prec: {T=x, P=x}, eff: {P=Tr}]

Las Vegas

loadQ(x)=[prec: {T=x, Q=x}, eff: {Q=Tr}]

3. Finding Plans with Satisfiability Solvers

- If the formula F_{ν} is satisfiable then a plan of size k exists
- Solve F_1, F_2, \dots until a satisfiable formula F_n is reached
- Use the solution of F_{p} to construct a plan

Initial State: T=LA, P=LA, Q=SF **Goal Conditions**: P=LV, Q=LV

• dropP(x)=[prec: {T=x, P=Tr}, eff: {P=x}] • dropQ(x)=[prec: {T=x, Q=Tr}, eff: {Q=x}] Where x,y are LA, SF, and LV

Plan: loadP(LA), move(LA,SF), loadQ(SF), move(SF,LV), dropP(LV), dropQ(LV)

BUT HOW? ... should F_{μ} be defined?

4. Enconding Planning as SAT

- The key aspect for the performance
- Many encoding schemes in the last decades
- Various encodings work well for different problem kinds
- The aim is to be the best for all

BUT is this the best approach?

- We assemble a set of encodings
- Then select the best encoding for a given problem
- Inspired by sequential portfolios
- The set of encodings should be diverse
- The selecting algorithm should be fast and smart (choose well)

5. Four Kinds of SATPlan Encodings

- Based on restrictions on actions in a single step:
 - Forall-Step most strict
 - Exists-Step
 - Relaxed Exists-Step
- Relaxed Relaxed Exists-Step (R² Exists-Step) – least strict

	$\Pi \exists$	$\Pi \ \exists$
	$\begin{array}{c} \vee \exists \\ \checkmark \\$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

• To be diverse we choose a Forall-Step encoding (**Reinforced**) and the **R² Exists-Step** encoding

Traditional

Approach

6. Guessing action ordering for R² Exists-Step

- We need to guess the order of actions in a resulting plan.
- We compared a few heuristics, the best are
- TSort topological sorting of action interactions
- Input the order of actions in the problem definition

	Domain	TSort	TSort ⁻¹	Input	Input ⁻¹	Random	ſ	Domain	Reinf	$R^2 \exists$	Sel	R∀	R∃	R
		#P/Mks	#P/Mks	#P/Mks	#P/Mks	#P/Mks	ſ	harman	4	8	9	8	4	
	barman	4/36	2/29	4 /60	2/28	1/11		elevators	20	20	20	20	20	2
	elevators	20/85	20 /99	20 /106	20 /79	20/75	floort	floortile	18	18	18	16	20	$\begin{vmatrix} 2\\ 2 \end{vmatrix}$
	floortile	17/158	18 /185	16/149	18 /178	18 /167		nomystery	20	6	20	20	20	$\begin{vmatrix} 2\\ 2 \end{vmatrix}$
	nomystery	3/14	4/20	3/13	6/33	3/14		oponetacles		15	20		20	
	openstacks	12/75	13/66	20/59	5/43	10/57		opensiacks		15	20	20	20	_ _
	parcprinter	20/ 30	20 /249	20/88	20 /186	20 /140		pareprinter		20	20		20	
	parking	0/0	0/0	0/0	0/0	0/0		parking		0	0		0	
	pegsol	19 /158	18/155	12/147	16/142	18/152		pegsol	10	19	19		12	
	scanalyzer	6/11	9 /16	7/12	6/13	6/12	ļ	scanalyzer	15	9	15	17	18	
	sokoban	1 /17	1 /19	1/18	1 /17	1 /19		sokoban	2	2	2	6	6	
	tidybot	1 /1	1 /1	1 /1	1 /1	1 /1		tidybot	2	2	2	13	15	1
	transport	5/20	6/40	8/44	9 /57	4/19		transport	18	13	19	18	18	1
	visitall	20 /34	12/113	9/55	9/49	12/80		visitall	10	20	20	11	11	1
	woodwork	20 /33	20 /57	20 /58	20 /30	20 /40		woodworking	20	20	20	20	20	2
	Total	148	144	141	133	134		Total	159	172	204	180	184	18

7. Encoding Selection Rule

- A transition = change of a state variable
- The set of transitions is defined by the actions
- The selection heuristic is based on
- The number of transitions (per variable)
- The number of parallel steps in the plan (makespan)
- The heuristic rule used in our (**Selective**) encoding:
 - T = #transitions / #stateVariables IF T > 10 THEN use the Reinforced encoding ELSE IF makespan is even THEN use R²Exists-Step with TSort ordering ELSE use R²Exists-Step with Input ordering

8. Experiments

- Compared:
- Selective encoding and its components (Reinforced and R² Exists) • State-of-the-art encodings of Rintanen and their optimal combination (R*) • Benchmark problems: IPC 2011, each domain contains 20 problems • Sat Solver: Lingeling (version ats) • PC: Intel i7 920 cpu @2.67 Ghz and 6 GB of memory

9. Conclusion

- Combining diverse encodings works very well
- Just combining the best encodings (of Rintanen) is not the best approach
- Action ordering has huge impact on R² Exists encoding
- The presented method is very simple yet experimental results are great
- Future Work: More diverse set of encodings, smarter selection heuristics

The 8th Annual Symposium on Combinatorial Search - SoCS 2015