No One SATPlan Encoding To Rule Them All

Tomáš Balyo Roman Barták | June 9, 2015
What is Planning?

- World state: instantiation of multivalued state variables
- Actions:
 - require certain values of state variables to be used (preconditions)
 - change values of state variables by their effects
- Objective:
 - Given a set of actions
 - Given an initial state (start) and goal conditions
 - Find a plan (sequence of actions to get from start to goal)
Planning by Satisfiability Solving

- If the formula F_k is satisfiable then a plan (of length k) exists
- Solve F_1, F_2, \ldots until a satisfiable formula F_n is reached
- From a satisfying assignment of F_n construct a plan

Encoding

- The encoding = How is F_k defined
- The key aspect for the performance
- Many encodings invented in the last decades
- Each aims to be better than the others on all problems
Automatic Encoding Selection

General Idea

- No one can encoding can rule them all
- Take a set of encodings
 - Diversify! Diversify! Diversify!
 - Taking the best existing encodings is not that good
- Create a (heuristic) rule to select the best encoding for a problem
 - Rule should be simple – fast to evaluate
 - Rule should be smart to select well

Implementation

- Used Encodings:
 - $R^2\exists$-Step encoding with
 - Topological ranking
 - Input ranking
 - Reinforced encoding
- Selection Rule:
 1. $T =$ number of transitions
 2. if $T > 10$ use Reinforced
 3. else use $R^2\exists$-Step alternate between the two rankings for each makespan
Automatic Encoding Selection

General Idea

- No one can encoding can rule them all
- Take a set of encodings
 - Diversify! Diversify! Diversify!
 - Taking the best existing encodings is not that good
- Create a (heuristic) rule to select the best encoding for a problem
 - Rule should be simple – fast to evaluate
 - Rule should be smart to select well

Implementation

- Used Encodings:
 - $R^2\exists$-Step encoding with
 - Topological ranking
 - Input ranking
 - Reinforced encoding
- Selection Rule:
 1. $T =$ number of transitions
 2. if $T > 10$ use Reinforced
 3. else use $R^2\exists$-Step alternate between the two rankings for each makespan
Experiments

- Number of solved problems within 30 minutes
- We Compared
 - Selective encoding
 - Its components
 - State-of-the-art Rintanen encodings
 - Their optimal combination (R*)
- IPC 2011 Benchmarks, 20 problems in each of 14 domains

<table>
<thead>
<tr>
<th>Domain</th>
<th>Reinf</th>
<th>$R^2 \exists$</th>
<th>Sel</th>
<th>$R \forall$</th>
<th>$R \exists$</th>
<th>R^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>barman</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>elevators</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>floortile</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>16</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>nomystery</td>
<td>20</td>
<td>6</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>openstacks</td>
<td>0</td>
<td>15</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>parcprinter</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>parking</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pegsol</td>
<td>10</td>
<td>19</td>
<td>19</td>
<td>11</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>scanalyzer</td>
<td>15</td>
<td>9</td>
<td>15</td>
<td>17</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>sokoban</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>tidybot</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>13</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>transport</td>
<td>18</td>
<td>13</td>
<td>19</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>visitall</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>woodworking</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Total: 159, 172, 204, 180, 184, 188
Conclusion

- Combining diverse encodings is a perspective research direction
- Just combining the best (Rintanen) encodings is not optimal
- The proposed rule is very simple and the encoding pool small, but already the experiments show great improvement

Future Work
- Bigger and more diverse encoding pool
- More sophisticated selection rules