On Improving Plan Quality via Local Enhancements

Tomáš Balyo*, Roman Barták*, and Pavel Surynek*, **
{tomas.balyo, roman.bartak, pavel.surynek}@mff.cuni.cz

*Faculty of Mathematics and Physics
Charles University in Prague
Czech Republic

**Graduate School of Maritime Sciences
Kobe University, Japan

1. Background and Objectives

What is Planning?
- Finding plans – sequences of actions
- Input
 - A set of actions with preconditions and effects
 - Descriptions of the initial state and the goal state
- Output
 - Plan = a valid sequence of actions that transform the world from the initial state to the goal state

Planning Algorithms
- There are already many successful planners
- **Optimal planners** (find shortest possible plans) are **slow** and cannot handle large problems
- **Suboptimal planners** (produce longer plans) are a lot **faster** and can find plans for harder problems
- We need to choose between quality and performance

Our Goal
- Combine the planning approaches to have both **performance** and plans of **good quality**

2. The Proposed Method

Our Approach – The Basic Idea
A) Find a sub-optimal plan \(P \)
B) Select a sub-plan (sub-sequence) of \(P \)
C) Replace it with an improved subplan (thus improving \(P \) itself)
D) Keep repeating B) and C) until the entire plan is optimal or time is out

How do we do that?
A) A fast sub-optimal planner finds the initial plan \(P \) (we used LPG, but any fast planner is suitable)
B) The sub-plans are selected by systematically shifting a window of increasing size through \(P \)
C) The subplan optimization is formulated as a planning problem and solved by an optimal planner (we used the SAT-based SASE approach)

Window shifting methods: Halfstep (left) and Fullstep (right)

3. Results and Conclusions

Experiments
- Cumulative results of eight classical STRIPS domains from the International Planning Competitions
- Compared the new method with the fast planner LPG and the optimal planner SASE

<table>
<thead>
<tr>
<th>Method</th>
<th>Makespan</th>
<th>(\Delta)LPG</th>
<th>(\Delta)SASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPG</td>
<td>71.27</td>
<td>0.00</td>
<td>-75.38</td>
</tr>
<tr>
<td>SASE</td>
<td>146.65</td>
<td>75.38</td>
<td>0.00</td>
</tr>
<tr>
<td>Expo-fullstep</td>
<td>170.41</td>
<td>99.14</td>
<td>23.76</td>
</tr>
<tr>
<td>Turbo-halfstep</td>
<td>179.53</td>
<td>108.25</td>
<td>32.87</td>
</tr>
</tbody>
</table>

The makespan score of a planner indicates the number and quality of the produced plans. Higher value = better performance

The comparison of three window enlargement strategies:
- turbo = increase by one; expo = increase by a factor of 1.5;
- random = random size between 2 and 20

Does it work? – Conclusion
- We can solve as many problems as the **fastest planning algorithm**
- According to our experiments the plans are always **significantly improved**, moreover an **optimal** (or almost optimal) plan is often produced
- It is a successful anytime algorithm capable of finding optimal plans

SoCS 2012: The Fifth Annual Symposium on Combinatorial Search