
On Improving Plan Quality via Local Enhancements

Tomáš Balyo
1
, Roman Barták

1
, Pavel Surynek

1,2

1Charles University in Prague, Faculty of Mathematics and Physics, Malostranské nám. 25, Praha, Czech Republic
2Kobe University, 5-1-1 Fukae-minamimachi, Higashinada-ku, Kobe 658-0022, Japan

{tomas.balyo, roman.bartak, pavel.surynek}@mff.cuni.cz

Abstract

There exist planning algorithms that can quickly find sub-
optimal plans even for large problems and planning
algorithms finding optimal plans but only for smaller
problems. We attempt to integrate both approaches. We
present an anytime technique for improving plan quality
(decreasing the plan makespan) via substituting parts of the
plan by better sub-plans. The technique guarantees
optimality though it is primarily intended to quickly
improve plan quality. We experimentally compare various
approaches to local improvements.

 Introduction

AI planning deals with the problem of finding a sequence

of actions that transfers the world from some initial state to

a state satisfying certain goal conditions. In this paper we

attempt to improve the quality of plans generated by sub-

optimal planners via doing local optimizations of the plans.

More precisely, we will be improving makespan of parallel

plans by optimizing sub-plans using SAT-based techniques

such as SASE (Huang et al., 2010) that are successful for

finding makespan-optimal plans.

 The idea of making local repairs in a sub-optimal plan to

improve it towards the optimal makespan already appeared

in domain-dependent planning. Surynek (2011) and Wang

et al., (2011) proposed techniques for shortening solutions

of cooperative-path finding (CPF). Applying SAT-based

mechanism to improve solutions of CPF problems where

sub-solutions are replaced by makespan-optimal ones has

been proposed in (Surynek, 2012).

Methodology

Assume that we have a sub-optimal parallel plan and we

want to shorten its makespan. We propose a method that

selects a sub-plan of the plan, finds a shorter sub-plan, and

substitutes the original sub-plan by this shorter sub-plan in

the original plan (Figure 1). To formulate this method

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This research is supported by the Czech Science Foundation (contract no.
P103/10/1287) and by the Grant Agency of Charles University (contracts
no. 266111 and 600112).

precisely we must answer three questions: How is the sub-

plan selected? How is a better sub-plan found? How many

times should we repeat this local improvement process?

Our idea is based on using existing planning techniques,

namely the SAT-based approach, to find a better plan.

Hence, the second question consists of two additional

questions: How does a sub-plan define a planning

problem? How do we solve optimally that planning

problem? We shall now answer all above questions.

Figure 1: Substituting a sub-plan by a shorter sub-plan (arrows

indicate causal relations between the action).

Identifying and Optimizing Local Sub-Problems

Let P1,…, Pn be a plan reaching goal G from state S and

Pi,…, Pj be its sub-plan. We formulate the planning

problem Psub whose initial state is the state after applying

actions P1,…, Pi-1 to state S, i.e., (S, (P1,…, Pi-1)), where

is a state transition function. The goal of Psub contains the

requirements of the sequence of actions Pj+1,…, Pn and the

goal conditions in G, which are not fulfilled by Pj+1,…, Pn.,

i.e.,
-1

(G, (Pn,…, Pj+1)), where
-1

 is a regression function.

This ensures that any solution of Psub can substitute

Pi,…, Pj in the original plan.

 For the planning problem Psub and a parameter k we

create a SAT formula Fk which is satisfiable if and only if

there is a parallel plan for Psub of size k or shorter. To

obtain this SAT formula we use the SASE encoding

(Huang et al., 2010). If the formula Fk is satisfiable, then

we can efficiently extract a parallel plan of size k (or

shorter) from its satisfying assignment. We generate and

solve Fk for decreasing k, starting with (j–i), until we find

the smallest k such that Fk is satisfiable.

Plan Window Shifting

In this section we describe some methods how to select the

local sub-plans (plan windows) for improvement.

 The simplest idea is selecting the windows randomly

(we used windows of maximal size 20). Another approach

is to systematically shift a window of a certain size through

the plan. A Systematical window shifting (SWS) procedure

has three parameters: (window size, window shift, and fixed

G G S Gsub
shortened plan

S Gsub
original plan

point). It works by moving a window of the specified size

through a plan from its beginning increasing its starting

position by the window shift parameter until the end of the

plan is reached. The fixed-point parameter of the SWS

procedure specifies whether the iteration is repeated if any

window has been improved. We start with windows of size

2 and increase the size either by 1 or exponentially by the

factor 3/2. Table 1 gives an overview of the parameters of

methods that we studied.

Experimental Study

To evaluate properties of the proposed methods we did an

experimental study comparing various combinations of the

methods (see Table 1). We used the LPG planner (Gerevini

and Serina, 2002) to generate the initial plans. Because we

are improving the makespan, we used the SASE planner

(Huang et al., 2010) to compare the quality of plans

generated by our method. We used eight classical STRIPS

domains from the International Planning Competition

(Koenig, 2012) with 232 total problems and allocated 30

minutes (1800 seconds) to each method per problem (run

on Intel Core i7 920@2.67GHz with 6 GB RAM).

 LPG solved 189 problems while SASE solved only 151

problems. Both planers solved 135 common problems

Table 1 shows the detailed results, namely the total

makespan for all solved problems, and the makespan and

runtime for jointly solved problems. We can see that SASE

can generally solve problems with short plans only (total

makespan). The plans generated by LPG have more than

five times larger makespan than the plans generated by

SASE (joint makespan). All our methods significantly

reduce the makespan of plans by LPG, which was our goal.

In fact, the plans improved by our methods are very close

to the optimal plans produced by SASE. The table also

shows that it is worth to scan the windows systematically

over the plan rather than trying them completely randomly.

It also seems that keeping the plan windows smaller is

beneficial. The turbo method is better both in runtime and

makespan than the expo method due to conservative

increase of window size. Also using the fixed point

improves the expo method because it forces it to iterate

longer over the smaller windows. The fixed point does not

work well only for the method turbo-halfstep. The reason

is that it forces re-optimizing the plan windows that are

already optimal, which only adds overhead. In fact, we

have found that all the proposed methods suffer from the

problem of re-optimizing already optimal plan windows.

Conclusions

In this paper we proposed a method for improving quality

of plans by doing local enhancements of sub-optimal plans.

The method significantly reduced the makespan of plans

produced by the LPG planner and made them comparable

to the optimal plans. Though the method is still slower than

SASE, it can find solutions for more problems thanks to

exploiting the LPG planner (any sub-optimal planner can

be used to find the initial plan). It is especially beneficial

for problems with large plans where SASE fails to find any

plan. The general conclusion from the experimental study

is that it is worth optimizing a larger number of smaller

sub-plans than trying a smaller number of larger sub-plans.

References

Gerevini, A., Serina, I. 2002. LPG: a Planner based on Local
Search for Planning Graphs. Proceedings of AIPS-2002, pp. 13-
22, AAAI Press.

Huang, R., Chen, Y., Zhang, W. 2010. A Novel Transition Based
Encoding Scheme for Planning as Satisfiability. Proceedings of
AAAI 2010, pp. 89-94, AAAI Press.

Koenig, S. 2012 (editor). International Planning Competition
(IPC), http://ipc.icaps-conference.org/, University of Southern
California, [accessed on April, 2012].

Surynek, P. 2011. Redundancy Elimination in Highly Parallel
Solutions of Motion Coordination Problems, Proceedings of
ICTAI 2011, pp. 701-708, IEEE Press.

Surynek, P. 2012. A SAT-Based Approach to Cooperative Path-
Finding Using All-Different Constraints, Proceedings of SoCS
2012, to appear.

Wang, K. C., Botea, A., Kilby, P. 2011. Solution Quality
Improvements for Massively Multi-Agent Pathfinding.
Proceedings of AAAI 2011, AAAI Press.

Table 1. Method description and experimental results

method size change shift fp total makespan joint makespan joint runtime

LPG N/A N/A N/A 14531 100% 6752 548% 6 604 28%

expo-fullstep size*3/2 size no 4411 30% 1911 155% 63 195 272%

expo-fullstep-fp size*3/2 size yes 3434 24% 1665 135% 54 568 235%

expo-halfstep size*3/2 size/2 no 3577 25% 1660 135% 55 652 240%

expo-halfstep-fp size*3/2 size/2 yes 3138 22% 1550 126% 52 018 224%

turbo-fullstep size+1 size no 3426 24% 1589 129% 52 446 226%

turbo-fullstep-fp size+1 size yes 3156 22% 1563 127% 53 834 232%

turbo-halfstep size+1 size/2 no 3076 21% 1515 123% 50 251 217%

turbo-halfstep-fp size+1 size/2 yes 3013 21% 1540 125% 52 568 226%

random random size 20 random yes 6351 44% 1935 157% 63 082 272%

SASE N/A N/A N/A 1506 N/A 1232 100% 23 220 100%

