
On Improving Plan Quality via Local Enhancements 

Tomáš Balyo
1
, Roman Barták

1
, Pavel Surynek

1,2 

1Charles University in Prague, Faculty of Mathematics and Physics, Malostranské nám. 25, Praha, Czech Republic 
2Kobe University, 5-1-1 Fukae-minamimachi, Higashinada-ku, Kobe 658-0022, Japan 

{tomas.balyo, roman.bartak, pavel.surynek}@mff.cuni.cz 
 

 

Abstract 

There exist planning algorithms that can quickly find sub-
optimal plans even for large problems and planning 
algorithms finding optimal plans but only for smaller 
problems. We attempt to integrate both approaches. We 
present an anytime technique for improving plan quality 
(decreasing the plan makespan) via substituting parts of the 
plan by better sub-plans. The technique guarantees 
optimality though it is primarily intended to quickly 
improve plan quality. We experimentally compare various 
approaches to local improvements.  

 Introduction   

AI planning deals with the problem of finding a sequence 

of actions that transfers the world from some initial state to 

a state satisfying certain goal conditions. In this paper we 

attempt to improve the quality of plans generated by sub-

optimal planners via doing local optimizations of the plans. 

More precisely, we will be improving makespan of parallel 

plans by optimizing sub-plans using SAT-based techniques 

such as SASE (Huang et al., 2010) that are successful for 

finding makespan-optimal plans. 

 The idea of making local repairs in a sub-optimal plan to 

improve it towards the optimal makespan already appeared 

in domain-dependent planning. Surynek (2011) and Wang 

et al., (2011) proposed techniques for shortening solutions 

of cooperative-path finding (CPF). Applying SAT-based 

mechanism to improve solutions of CPF problems where 

sub-solutions are replaced by makespan-optimal ones has 

been proposed in (Surynek, 2012). 

Methodology 

Assume that we have a sub-optimal parallel plan and we 

want to shorten its makespan. We propose a method that 

selects a sub-plan of the plan, finds a shorter sub-plan, and 

substitutes the original sub-plan by this shorter sub-plan in 

the original plan (Figure 1). To formulate this method 
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precisely we must answer three questions: How is the sub-

plan selected? How is a better sub-plan found? How many 

times should we repeat this local improvement process? 

Our idea is based on using existing planning techniques, 

namely the SAT-based approach, to find a better plan. 

Hence, the second question consists of two additional 

questions: How does a sub-plan define a planning 

problem? How do we solve optimally that planning 

problem? We shall now answer all above questions. 

Figure 1: Substituting a sub-plan by a shorter sub-plan (arrows 

indicate causal relations between the action). 

 

Identifying and Optimizing Local Sub-Problems 

Let P1,…, Pn be a plan reaching goal G from state S and 

Pi,…, Pj be its sub-plan. We formulate the planning 

problem Psub whose initial state is the state after applying 

actions P1,…, Pi-1 to state S, i.e., (S, (P1,…, Pi-1)), where  

is a state transition function. The goal of Psub contains the 

requirements of the sequence of actions Pj+1,…, Pn and the 

goal conditions in G, which are not fulfilled by Pj+1,…, Pn., 

i.e., 
-1

(G, (Pn,…, Pj+1)), where 
-1

 is a regression function. 

This ensures that any solution of Psub can substitute 

Pi,…, Pj in the original plan. 

 For the planning problem Psub and a parameter k we 

create a SAT formula Fk which is satisfiable if and only if 

there is a parallel plan for Psub of size k or shorter. To 

obtain this SAT formula we use the SASE encoding 

(Huang et al., 2010). If the formula Fk is satisfiable, then 

we can efficiently extract a parallel plan of size k (or 

shorter) from its satisfying assignment. We generate and 

solve Fk for decreasing k, starting with (j–i), until we find 

the smallest k such that Fk is satisfiable. 

Plan Window Shifting 

In this section we describe some methods how to select the 

local sub-plans (plan windows) for improvement. 

 The simplest idea is selecting the windows randomly 

(we used windows of maximal size 20). Another approach 

is to systematically shift a window of a certain size through 

the plan. A Systematical window shifting (SWS) procedure 

has three parameters: (window size, window shift, and fixed 
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point). It works by moving a window of the specified size 

through a plan from its beginning increasing its starting 

position by the window shift parameter until the end of the 

plan is reached. The fixed-point parameter of the SWS 

procedure specifies whether the iteration is repeated if any 

window has been improved. We start with windows of size 

2 and increase the size either by 1 or exponentially by the 

factor 3/2. Table 1 gives an overview of the parameters of 

methods that we studied. 

Experimental Study 

To evaluate properties of the proposed methods we did an 

experimental study comparing various combinations of the 

methods (see Table 1). We used the LPG planner (Gerevini 

and Serina, 2002) to generate the initial plans. Because we 

are improving the makespan, we used the SASE planner 

(Huang et al., 2010) to compare the quality of plans 

generated by our method. We used eight classical STRIPS 

domains from the International Planning Competition 

(Koenig, 2012) with 232 total problems and allocated 30 

minutes (1800 seconds) to each method per problem (run 

on Intel Core i7 920@2.67GHz with 6 GB RAM). 

 LPG solved 189 problems while SASE solved only 151 

problems. Both planers solved 135 common problems 

Table 1 shows the detailed results, namely the total 

makespan for all solved problems, and the makespan and 

runtime for jointly solved problems. We can see that SASE 

can generally solve problems with short plans only (total 

makespan). The plans generated by LPG have more than 

five times larger makespan than the plans generated by 

SASE (joint makespan). All our methods significantly 

reduce the makespan of plans by LPG, which was our goal. 

In fact, the plans improved by our methods are very close 

to the optimal plans produced by SASE. The table also 

shows that it is worth to scan the windows systematically 

over the plan rather than trying them completely randomly. 

It also seems that keeping the plan windows smaller is 

beneficial. The turbo method is better both in runtime and 

makespan than the expo method due to conservative 

increase of window size. Also using the fixed point 

improves the expo method because it forces it to iterate 

longer over the smaller windows. The fixed point does not 

work well only for the method turbo-halfstep. The reason 

is that it forces re-optimizing the plan windows that are 

already optimal, which only adds overhead. In fact, we 

have found that all the proposed methods suffer from the 

problem of re-optimizing already optimal plan windows. 

Conclusions 

In this paper we proposed a method for improving quality 

of plans by doing local enhancements of sub-optimal plans. 

The method significantly reduced the makespan of plans 

produced by the LPG planner and made them comparable 

to the optimal plans. Though the method is still slower than 

SASE, it can find solutions for more problems thanks to 

exploiting the LPG planner (any sub-optimal planner can 

be used to find the initial plan). It is especially beneficial 

for problems with large plans where SASE fails to find any 

plan. The general conclusion from the experimental study 

is that it is worth optimizing a larger number of smaller 

sub-plans than trying a smaller number of larger sub-plans. 
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Table 1. Method description and experimental results 

method size change shift fp total makespan joint makespan joint runtime 

LPG N/A N/A N/A 14531 100% 6752 548% 6 604 28% 

expo-fullstep size*3/2 size no 4411 30% 1911 155% 63 195 272% 

expo-fullstep-fp size*3/2 size yes 3434 24% 1665 135% 54 568 235% 

expo-halfstep size*3/2 size/2 no 3577 25% 1660 135% 55 652 240% 

expo-halfstep-fp size*3/2 size/2 yes 3138 22% 1550 126% 52 018 224% 

turbo-fullstep size+1 size no 3426 24% 1589 129% 52 446 226% 

turbo-fullstep-fp size+1 size yes 3156 22% 1563 127% 53 834 232% 

turbo-halfstep size+1 size/2 no 3076 21% 1515 123% 50 251 217% 

turbo-halfstep-fp size+1 size/2 yes 3013 21% 1540 125% 52 568 226% 

random  random size  20 random yes 6351 44% 1935 157% 63 082 272% 

SASE N/A N/A N/A 1506 N/A 1232 100% 23 220 100% 

 

 


