#### On Different Strategies for Eliminating Redundant Actions from Plans



# Outline

- Problem description
- Definitions SAT, MaxSAT, SAS+
- Redundant plans
- Heuristic approaches
- SAT encoding of plan reduction
- Removing the largest and most costly sets of redundant actions
- Experimental results on IPC 2011 domains
- Conclusion

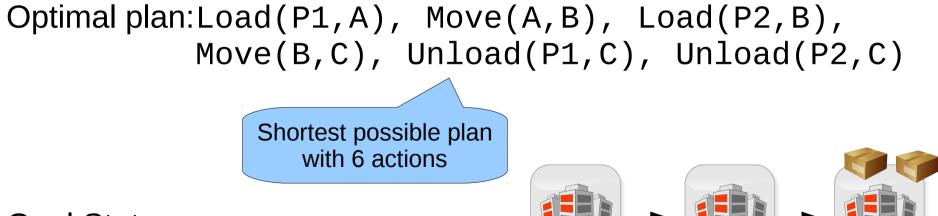
**Initial State** 

- A package in Atlanta and Boston
- A truck in Atlanta



Boston

Cleveland

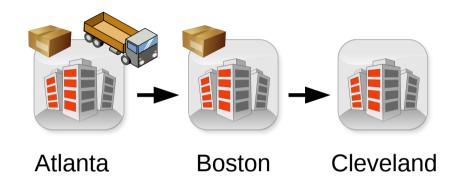


Atlanta

Goal StateBoth packages in Cleveland

**Initial State** 

- A package in Atlanta and Boston
- A truck in Atlanta



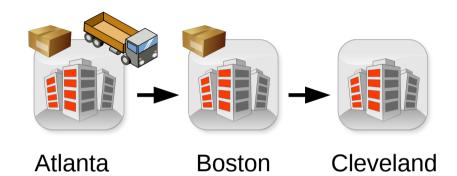
Optimal plan:Load(P1,A), Move(A,B), Load(P2,B), Move(B,C), Unload(P1,C), Unload(P2,C), Move(C,A)

Goal StateBoth packages in Cleveland



**Initial State** 

- A package in Atlanta and Boston
- A truck in Atlanta

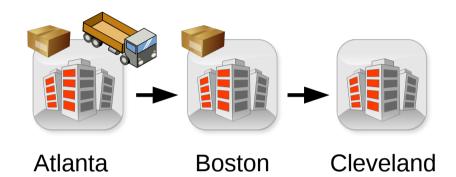


#### Redundant



**Initial State** 

- A package in Atlanta and Boston
- A truck in Atlanta



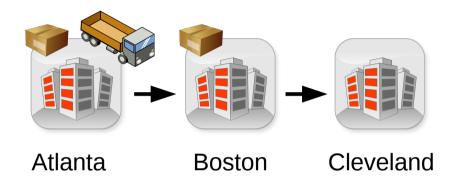
Redundant plan:Move(A,C), Move(C,A), Load(P1,A), Move(A,B), Load(P2,B), Move(B,C), Unload(P1,C), Unload(P2,C)

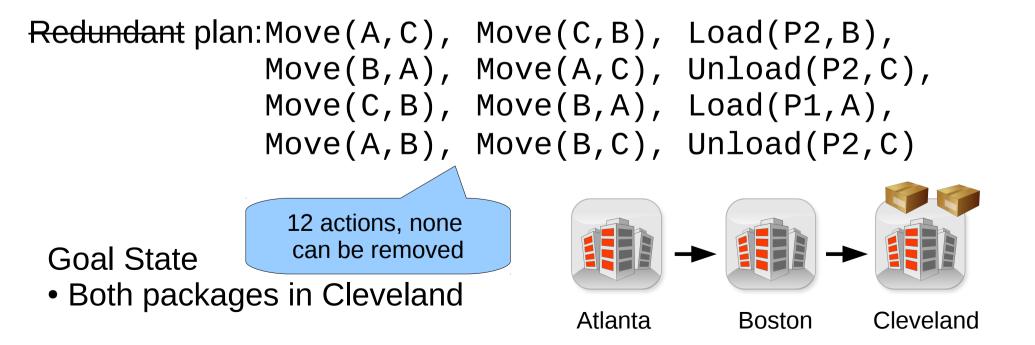
Goal StateBoth packages in Cleveland



**Initial State** 

- A package in Atlanta and Boston
- A truck in Atlanta





- Our goal is to remove all redundant actions from plans in order to improve them
- After removing all redundant actions, plans can be often further improved by replacing or reordeing (and further removing) actions
  - But we will not deal with such optimization
    - There are other algorithms for that
- Plans obtained by satisficing planners often contain many redundant actions

# Definitions – SAT

- A **Boolean variable** has two possible values **true** and **false**
- A literal a is a Boolean variable (positive literal x) or its negation (negative literal -x)
- A **clause** is a disjunction (or) of literals
- A CNF formula is conjuction (and) of clauses
- A truth assignment T
  - assigns a value T(x) to each Boolean variable x
  - satisfies a positive literal x if T(x)=true and a negative literal -x if T(x)=false
  - satisfies a clause if it satisfies any of its literals
  - satisfies a CNF formula if it satisfies all of its clauses

# Definitions – SAT, MaxSAT

- A CNF formula is **satisfiable** if there is a truth assignment that satisfies it
- The **Satisfiability** (**SAT**) problem is to determine whether a given formula is satisfiable (and find a truth assignment if yes)
- A Partial MaxSAT (PMaxSAT) formula consists of hard and soft clauses. The PmaxSAT problem is to find a truth assignment that satisfies all its hard clauses and as many of its soft clauses as possible
- A Weighted Partial MaxSAT (WPMaxSAT) is like PMaxSAT, but the soft clauses have weights and the goal is to maximize the weight of the satisfied soft clauses

### Definitions – SAS+

- A SAS+ planning task consists of
  - A finite set of multivalued **state variables**. Each variable has a finite domain
  - A finite set of **actions** with preconditions and effects, which are of the form x=e, where x is a state variable and e is a value from the domain of x
  - Description of the initial state the initial values of all the state variables
  - A set of **goal conditions** in the form of x=e, where e is the goal value of the state variable x

### Definitions – SAS+

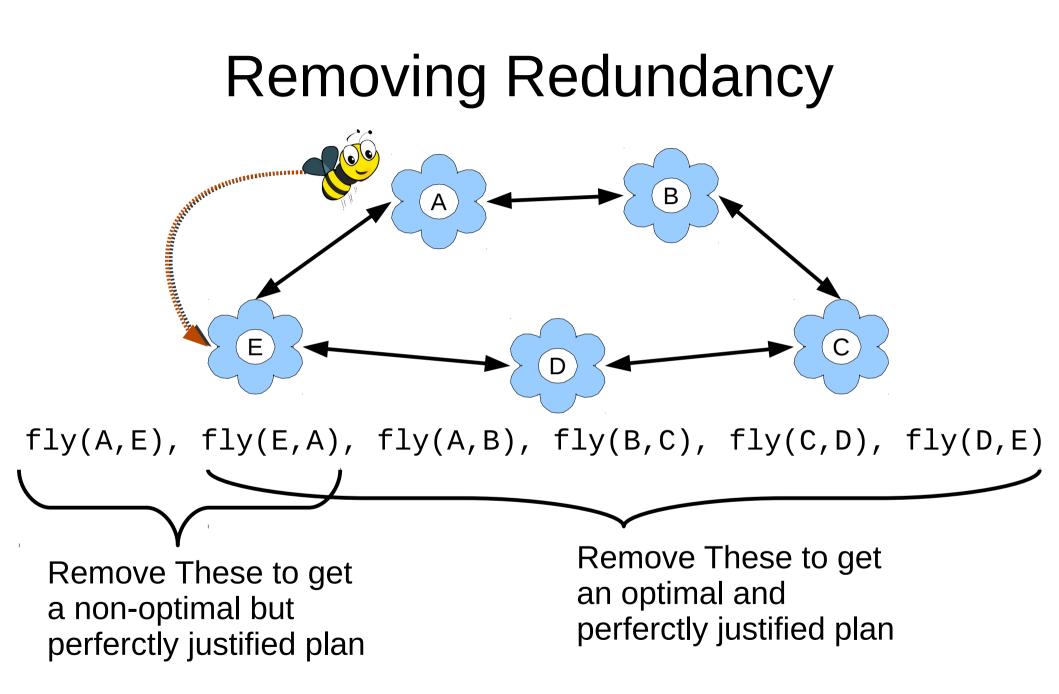
- A **state** is a set of assignments, where each state variable has exactly one value assigned
- An action is **applicable** to a given state if all of its preconditions are compatible with the state.
- A new state S' is obtained by applying an action A to a state S (denoted by S'=app(A,S)). The values of state variables in S' are copied from S and then some of them are changed according to the effects of A
- A plan P is sequence of actions (P=[A1,A2,...,An]) such that the state app(An, ... app(A2, app(A1, init))...) satisfies all the goal conditions
- Actions have costs, the total cost of a plan is the sum of the costs of its actions

#### **Redundant Plans**

- Let P be a plan for a planning task T and let P' be a proper subsequence of P. If P' is a plan for T, then P' is called a plan reduction of P.
- A plan is **redundant** if it has a plan reduction
- A plan is called perfectly justified if it is not redundant
- Determining whether a plan is redundant is an NP complete problem (Fink, Yang 1992)

# Removing Redundancy

- Prior to this work there were only incomplete heuristic algorithms
  - Removing pairs/groups of inverse actions (Chrpa, McCluskey, Osborne 2012)
  - Greedy justification (Fink, Yang 1992)
  - Action elimination (Nakhost, Müller 2010)
- We introduce our own heuristic algorithm
- We will then show how remove the set of redundant actions with a maximum possible total cost (NP-hard)

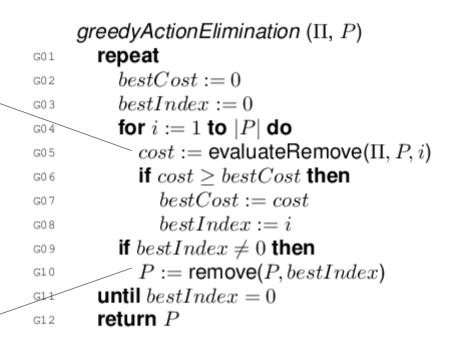


• The order of removing redundant actions matters

# [Greedy] Action Elimination

|     | evaluateRemove ( $\Pi, P, k$ )    |
|-----|-----------------------------------|
| E01 | $s := s_I$                        |
| E02 | for $i:=1$ to $k-1$ do            |
| E03 | s := apply(P[i],s)                |
| E04 | cost := C(P[k])                   |
| E05 | for $i:=k+1$ to $ P $ do          |
| E06 | if applicable $(P[i], s)$ then    |
| E07 | s := apply(P[i], s)               |
| E08 | else                              |
| E09 | cost := cost + C(P[i])            |
| E10 | if goalSatisfied( $\Pi, s$ ) then |
| E11 | return cost                       |
| E12 | else                              |
| E13 | return $-1$                       |

remove (P, k) $s := s_I$ R01 P' := [] // empty plan R02 for i := 1 to k - 1 do R03  $s := \operatorname{apply}(P[i], s)$ R04  $P' := \operatorname{append}(P', P[i])$ R05 for i := k + 1 to |P| do R06 if applicable (P[i], s) then R07  $s := \operatorname{apply}(P[i], s)$ R08  $P' := \operatorname{append}(P', P[i])$ R09 return P'R10



- Can we remove the k-th action and all that depend on it? How much would we gain?
- Remove the set with the maximal gain

# **Encoding Plan Reduction**

- For a given planning task and its plan P we construct a CNF formula F such that
  - Each satisfying assignment of F represents a plan reduction of P or P itself
  - F contains a Boolean variable a<sub>j</sub> for each action in P which indicates the presence of the *j*-th action in the plan reduction
- By adding the clause  $(\neg a_1 \lor \neg a_2 \lor ... \lor \neg a_n)$  to F we obtain a formula that is satisfiable if and only if P is a redundant plan

# Encoding – basic ideas

- We need to ensure that a given condition holds at a given time
  - Goal conditions in the end
  - Action preconditions when the action is applied
- Two ways to ensure a condition C at time T
  - Either C is an initial condition and there are no opposing actions in the plan reduction before T
  - Or there is a supporting action in the reduction at time T'<T for C and there are no opposing actions between T' and T

# Removing The Maximum Number of Redundant Actions

- We will use Partial MaxSAT solving
  - The hard clauses are the plan reducion encoding
  - The soft clauses are unit clauses  $(\neg a_1), (\neg a_2), ... (\neg a_n)$
- The PmaxSAT solver will satisfy all the hard clauses and as many soft clauses as possible, i.e., remove as many actions as possible

MR1F := encodeMaximumRedundancy( $\Pi$ , P)MR2 $\phi :=$  partialMaxSatSolver(F)MR3return  $P_{\phi}$ 

# Removing The Set of Redundant Actions with Maximum Weight

- We will use Weighted Partial MaxSAT solving
  - The hard clauses are the plan reducion encoding
  - The soft clauses are unit clauses, weight = act. cost  $(\neg a_1), (\neg a_2), ... (\neg a_n)$
- The WPmaxSAT solver will satisfy all the hard clauses and maximize the weight of the satisfied soft clauses, i.e., remove the most costly set of redundant actions.

# Experiments

- We used 3 satisficing planners
  - Metric FF
  - Fast Downward
  - Madagascar
- 10 minute time limit to find plans for each problem of the 2011 IPC
- Plan reduction methods
  - Inverse Action Elimination
  - Action Elimination and Greedy Action Elimination
  - PMaxSAT and WPMaxSAT reduction

#### **Experimental Results**

| Domain        |            | Found Plan |        | IAE  |      | AE    |      | Greedy AE |       | MLR   |      | MR       |        |
|---------------|------------|------------|--------|------|------|-------|------|-----------|-------|-------|------|----------|--------|
|               |            | Nr.        | Cost   | Δ    | T[s] | Δ     | T[s] | Δ         | T[s]  | Δ     | T[s] | $\Delta$ | T[s]   |
| Fast Downward | barman     | 20         | 7763   | 436  | 0,98 | 753   | 0,51 | 780       | 1,08  | 926   | 0,43 | 926      | 10,85  |
|               | elevators  | 20         | 28127  | 1068 | 1,51 | 1218  | 0,79 | 1218      | 1,20  | 1218  | 0,19 | 1218     | 1,99   |
|               | floortile  | 5          | 572    | 66   | 0,00 | 66    | 0,04 | 66        | 0,08  | 66    | 0,00 | 66       | 0,01   |
|               | nomystery  | 13         | 451    | 0    | 4,25 | 0     | 0,04 | 0         | 0,04  | 0     | 0,01 | 0        | 0,04   |
|               | parking    | 20         | 1494   | 4    | 0,06 | 4     | 0,09 | 4         | 0,10  | 4     | 0,04 | 4        | 0,21   |
|               | pegsol     | 20         | 307    | 0    | 0,00 | 0     | 0,06 | 0         | 0,06  | 0     | 0,02 | 0        | 0,30   |
|               | scanalyzer | 20         | 1785   | 0    | 0,01 | 78    | 0,06 | 78        | 0,08  | 78    | 0,04 | 78       | 0,49   |
|               | sokoban    | 17         | 1239   | 0    | 6,48 | 58    | 0,53 | 58        | 0,75  | 102   | 1,92 | 102      | 250,27 |
|               | transport  | 17         | 74960  | 4194 | 1,11 | 5259  | 0,56 | 5260      | 1,02  | 5260  | 0,19 | 5260     | 1,92   |
| Madagascar    | barman     | 8          | 3360   | 296  | 0,97 | 591   | 0,25 | 598       | 0,52  | 606   | 0,28 | 606      | 6,33   |
|               | elevators  | 20         | 117641 | 7014 | 6,77 | 24096 | 1,21 | 24728     | 10,44 | 28865 | 1,90 | 28933    | 37,34  |
|               | floortile  | 20         | 4438   | 96   | 0,09 | 96    | 0,31 | 96        | 0,37  | 96    | 0,04 | 96       | 0,24   |
|               | nomystery  | 15         | 480    | 0    | 2,63 | 0     | 0,04 | 0         | 0,04  | 0     | 0,01 | 0        | 0,02   |
|               | parking    | 18         | 1663   | 152  | 0,17 | 152   | 0,12 | 152       | 0,40  | 152   | 0,04 | 152      | 0,36   |
|               | pegsol     | 19         | 280    | 0    | 0,00 | 0     | 0,05 | 0         | 0,06  | 0     | 0,01 | 0        | 0,26   |
|               | scanalyzer | 18         | 1875   | 0    | 0,05 | 232   | 0,19 | 236       | 0,47  | 236   | 0,04 | 236      | 0,31   |
|               | sokoban    | 1          | 33     | 0    | 0,01 | 0     | 0,02 | 0         | 0,04  | 0     | 0,01 | 0        | 0,19   |
|               | transport  | 4          | 20496  | 4222 | 0,23 | 6928  | 0,20 | 7507      | 0,56  | 7736  | 0,16 | 7736     | 9,56   |

# Conclusion

- Plans obtained by satisficing planners on IPC domains often contain a lot of redundant actions
- Our new methods can improve the cost of a plan more than the previous approaches (restricted to elimination)
- Despite the NP completeness of the problem of removing a maximum set of redundant actions, our methods are very fast on IPC problems (thanks to the excellent performance of state-of-the-art MaxSAT solvers)
- Future work
  - Allow the reordering of actions before redundancy elimination to eliminate more actions
  - Find ways of detecting the cases when (G)AE achieves optimal elimination, i.e., polynomial methods are sufficient