On Different Strategies for Eliminating
Redundant Actions from Plans

Tomas Balyo Lukas Chrpa Asma Kilani

ﬂ(l I Unwerszty of

Karlsruhe Institute of Technology HUDDERSF]ELD

Outline

Problem description
Definitions — SAT, MaxSAT, SAS+
Redundant plans

Heuristic approaches
SAT encoding of plan reduction

Removing the largest and most costly sets of
redundant actions

Experimental results on IPC 2011 domains
Conclusion

Problem Description

Initial State
« A package in Atlanta and Boston

e A truck in Atlanta

Atlanta Boston Cleveland

Optimal plan:Load(P1,A), Move(A,B), Load(P2,B),
Move(B,C), Unload(P1,C), Unload(P2,C)

Shortest possible plan
with 6 actions

Goal State

e Both packages in Cleveland
Atlanta Boston Cleveland

Problem Description

Initial State
« A package in Atlanta and Boston

e A truck in Atlanta

Atlanta Boston Cleveland

Optimal plan:.Load(P1,A), Move(A,B), Load(P2,B),
Move(B,C), Unload(P1,C), Unload(P2,C),
Move(C,A)

Goal State

e Both packages in Cleveland
Atlanta Boston Cleveland

Problem Description

Initial State
« A package in Atlanta and Boston

e A truck in Atlanta

Atlanta Boston Cleveland

Redundant
Optimal plan:.Load(P1,A), Move(A,B), Load(P2,B),
Move(B,C), Unload(P1,C), Unload(P2,C),

Move(C,A)

Wy IS this
“move* in the plan?
Goal State

e Both packages in Cleveland

Atlanta Boston Cleveland

Problem Description

Initial State
« A package in Atlanta and Boston
A truck in Atlanta

Atlanta Boston Cleveland

Redundant plan:Move(A,C), Move(C,A), Load(P1,A),
Move(A,B), Load(P2,B), Move(B,C),
Unload(P1,C), Unload(P2,C)

Goal State
e Both packages in Cleveland

Atlanta Boston Cleveland

Problem Description

Initial State S
e A package in Atlanta and Boston ‘j - —>
e A truck in Atlanta

Atlanta Boston Cleveland

Redundant plan:Move(A,C), Move(C,B), Load(P2,B),
Move(B,A), Move(A,C), Unload(P2,C),
Move(C,B), Move(B,A), Load(P1,A),
Move(A,B), Move(B,C), Unload(P2,C)

12 actions, none

Goal State can be removed
« Both packages in Cleveland

Atlanta Boston Cleveland

Problem Description

* Our goal is to remove all redundant actions
from plans in order to improve them

» After removing all redundant actions, plans can
be often further improved by replacing or
reordeing (and further removing) actions

« But we will not deal with such optimization
— There are other algorithms for that

* Plans obtained by satisficing planners often
contain many redundant actions

Definitions — SAT

A Boolean variable has two possible values — true
and false

A literal a is a Boolean variable (positive literal x) or
Its negation (negative literal -x)

A clause is a disjunction (or) of literals

A CNF formula is conjuction (and) of clauses

A truth assignment T

assigns a value T(x) to each Boolean variable x

satisfies a positive literal x if T(x)=true and a negative literal -x
If T(x)=false

satisfies a clause If it satisfies any of its literals
satisfies a CNF formula if it satisfies all of its clauses

Definitions — SAT, MaxSAT

A CNF formula is satisfiable if there is a truth
assignment that satisfies it

The Satisfiability (SAT) problem is to determine
whether a given formula is satisfiable (and find a truth
assignmnet if yes)

A Partial MaxSAT (PMaxSAT) formula consists of
hard and soft clauses. The PmaxSAT problem is to
find a truth assignment that satisfies all its hard
clauses and as many of its soft clauses as possible

A Weighted Partial MaxSAT (WPMaxSAT) is like
PMaxSAT, but the soft clauses have weights and the
goal is to maximize the weight of the satisfied soft
clauses

Definitions — SAS+

A SAS+ planning task consists of

A finite set of multivalued state variables. Each
variable has a finite domain

A finite set of actions with preconditions and
effects, which are of the form x=e, where X Is a
state variable and e is a value from the domain of x

Description of the initial state — the initial values of
all the state variables

A set of goal conditions in the form of x=e, where
e Is the goal value of the state variable x

Definitions — SAS+

A state is a set of assignments, where each state variable
has exactly one value assigned

An action is applicable to a given state if all of its
preconditions are compatible with the state.

A new state S'is obtained by applying an action Ato a
state S (denoted by S'=app (A, S)). The values of state

variables in S' are copied from S and then some of them
are changed according to the effects of A

A plan P is sequence of actions (P=[A1,A2,...,An]) such
that the state app(An, .. .app (A2, app(Al,

1nit))...) satisfies all the goal conditions

Actions have costs, the total cost of a plan is the sum of
the costs of its actions

e Let

Redundant Plans

P be a plan for a planning task T and let P’

be a proper subsequence of P. If P' Is a plan for
T, then P' Is called a plan reduction of P.

e AD
e AD

an Is redundant if it has a plan reduction
an is called perfectly justified If it Is not

redundant

* Determining whether a plan Is redundant is an
NP complete problem (Fink, Yang 1992)

Removing Redundancy

* Prior to this work there were only incomplete
heuristic algorithms

 Removing pairs/groups of inverse actions (Chrpa,
McCluskey, Osborne 2012)

* Greedy justification (Fink, Yang 1992)
» Action elimination (Nakhost, Muller 2010)

* We introduce our own heuristic algorithm

* We will then show how remove the set of
redundant actions with a maximum possible
total cost (NP-hard)

Removing Redundancy

- $ - —V@

fly(A,E), fly(E,A), fly(A,B), fly(B,C), fly(C,D), fly(D,E)

N R

2

‘*“““;uﬂlll i “““H{;
L

__
Y o~

Remove These to get Remoye These to get

a non-optimal but an optlma! an_d_

oerferctly justified plan perferctly justified plan

* The order of removing redundant actions matters

|Greedy] Action Elimination

evaluateRemove (11, P, k) greedyActionElimination (11, P)
E01 8 1= 8 Gl repeat
E02 fori:=1t0ok—1do c02 bestCost 1= 0
E03 s := apply(Pli],s) c03 bestIndex := ()
E04 cost := C(P|k]) co4 fori:=1to |P|do
E fori:=k+1to|P|do G0S cost := evaluateRemove(Il, F, i)
E06 if applicable(P/i], s) then G06 if cost > bestCost then
EQ7 s := apply(P/il, s) G0 bestCost 1= cost
E08 else Go8 bestindex =1
E03 cost 1= cost + C(P/i]) G0 if best Index # 0 then
E10 if goalSatisfied(11, s) then GL0 P = remove(P, bestIndex)
E1l return cost 5 until bestIndex =0
=2 else return P
E13 return —1

remove (P, k)

nove e Can we remove the k-th action
w: P =[] I emptyplan and all that depend on it? How
o fori:=ltok - 1do much would we gain?

RO4 s := apply(P|i],s)

ROS P’ .= append(P’,P[i]) .

«o fori:=k+1to|P|do * Remove the set with the
RO7 if applicable(P/[i], s) then . -

s == apply(Pli], s) maximal gain

RO3 P’ := append(P’, P|i])

R10 return P’

Encoding Plan Reduction

* For a given planning task and its plan P we
construct a CNF formula F such that

e Each satisfying assignment of F represents a plan
reduction of P or P itself

* F contains a Boolean variable a for each action Iin
P which indicates the presence of the j-th action In
the plan reduction

By adding the clause (—a,V-a,V..V-a,)to F
we obtain a formula that is satisfiable if and
only if P Is a redundant plan

Encoding — basic ideas

* \WWe need to ensure that a given condition holds
at a given time
* Goal conditions in the end
« Action preconditions when the action is applied

 Two ways to ensure a condition C at time T

* Either C is an initial condition and there are no
opposing actions in the plan reduction before T

* Or there Is a supporting action in the reduction at
time T'<T for C and there are no opposing actions
between T'and T

Removing The Maximum Number of
Redundant Actions

* We will use Partial MaxSAT solving

 The hard clauses are the plan reducion encoding
* The soft clauses are unit clauses

(—a,),(~a,),...(—a,)
 The PmaxSAT solver will satisfy all the hard

clauses and as many soft clauses as possible,
l.e., remove as many actions as possible

MaximumRedundancyEliminaion (11, P)
MR1 F' .= encodeMaximumRedundancy(II, P)
MR ¢ := partialMaxSatSolver(F)
MR3 return an)

Removing The Set of Redundant
Actions with Maximum Weight

* We will use Weighted Partial MaxSAT solving

 The hard clauses are the plan reducion encoding
* The soft clauses are unit clauses, weight = act. cost

(ma,),(~a,),...(na,)

« The WPmMaxSAT solver will satisfy all the hard
clauses and maximize the weight of the
satisfied soft clauses, I.e., remove the most
costly set of redundant actions.

Experiments

* We used 3 satisficing planners

 Metric FF
* Fast Downward
 Madagascar

* 10 minute time limit to find plans for each
problem of the 2011 IPC

 Plan reduction methods

* |nverse Action Elimination
» Action Elimination and Greedy Action Elimination
« PMaxSAT and WPMaxSAT reduction

Experimental Results

Domain Found Plan IAE AE Greedy AE MLR MR
Nr. Cost A T[s] A T[s] A T[s] A T[s] A TJs]
barman 20 7763 | 436 0,98 753 0,51 780 1,08 926 043 926 10,85
elevators 20 28127 | 1068 1,51 1218 0,79 | 1218 1,20 | 1218 0,19 | 1218 1,99
= floortile 5 572 66 0,00 66 0,04 66 0,08 66 0,00 66 0,01
g nomystery 13 451 0 425 0 0,04 0 004 0 001 0 0,04
Z parking 20 1494 4 0,06 4 0,09 4 0,10 4 0,04 4 0,21
g pegsol 20 307 0 0,00 0 0,06 0 0,06 0 0,02 0 0,30
& scanalyzer || 20 1785 0 0,01 78 0,06 78 0,08 78 0,04 78 0.49
sokoban 17 1239 0 648 58 0,53 58 0,75 102 1,92 102 250,27
transport 17 74960 | 4194 1,11 | 5259 0,56 | 5260 1,02 | 5260 0,19 | 5260 1,92
barman 8 3360 | 296 0,97 591 0,25 598 0,52 606 0,28 606 6.33
elevators 20 117641 | 7014 6,77 | 24096 1,21 | 24728 10,44 | 28865 1,90 | 28933 37.34
_ Moortile 20 4438 9 0,09 96 0,31 96 0,37 9 0,04 96 0,24
§ nomystery 15 480 0 2,63 0 0,04 0 004 0,01 0 0,02
& parking 18 1663 | 152 0,17 152 0,12 152 040 152 0,04 152 0,36
g pegsol 19 280 0 0,00 0 0,05 0 006 0,01 0 0,26
scanalyzer || 18 1875 0 0,05 232 0,19 236 047 236 0,04 236 0,31
sokoban 1 33 0 0,01 0 0,02 0 004 0 0,01 0 0.19
transport 4 20496 | 4222 023 | 6928 0,20 | 7507 056 | 7736 0,16 | 7736 9,56

Conclusion

Plans obtained by satisficing planners on IPC domains often
contain a lot of redundant actions

Our new methods can improve the cost of a plan more than
the previous approaches (restricted to elimination)

Despite the NP — completeness of the problem of removing a
maximum set of redundant actions, our methods are very fast
on |IPC problems (thanks to the excellent performance of
state-of-the-art MaxSAT solvers)

Future work

* Allow the reordering of actions before redundancy
elimination to eliminate more actions

* Find ways of detecting the cases when (G)AE achieves
optimal elimination, i.e., polynomial methods are sufficient

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

