
Decomposing Boolean formulas into connected
components

T. Balyo

Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic.

Abstract. The aim of this contribution is to find a way how to improve efficiency
of current state-of-the-art satisfiability solvers. The idea is to split a given instance
of the problem into parts (connected components) which can be solved separately.
For this purpose we define component trees and a related problem of finding optimal
component trees. We describe how this approach can be combined with standard
satisfiability solver decision heuristics to improve them. The proposed ideas were
implemented and experimentally evaluated on a large set of benchmark problems.
We provide results of these experiments.

Introduction

Boolean satisfiability (SAT) is one of the most important problems of computer science. SAT is
well known in theoretical computer science since it was the first known example of an NP-complete
problem [Cook, 1971]. SAT has many practical applications mainly in artificial intelligence. One of the
first and most successful applications was solving automated planning problems via reduction to SAT
[Kautz, Selman, 1992]. Other examples of applications are automated reasoning [Robinson, Voronkov,
2001] and hardware verification [Velev, Bryant, 2003]. Being NP-complete, SAT can not be solved in
polynomial time unless P=NP. However this bound holds only for the worst case scenario. Many formulas
which we need to solve for the applications of SAT can be solved in reasonable time using the current
state-of-the-art SAT solvers.

One of the ways of improving efficiency of a SAT solving procedure is to divide the problem into
smaller independent subproblems. The subproblems can be solved separately (in parallel). For problems
with exponential time complexity this approach can help us to achieve exponential speedup. This idea has
already been used to design efficient SAT solver decision heuristics [Balyo, Surynek, 2009;Pipatsrisawat,
Darwiche, 2001] and also to improve satisfiability model counting (]SAT) algorithms [Bayardo, Pehousek,
2000]. In this paper we will further investigate the possibilities of using connected components of SAT
problems to enhance SAT solvers.

SAT Definitions

A Boolean variable is a variable with two possible values: true and false. A literal is a Boolean
variable or its negation. A clause is a disjunction (OR) of literals. A conjunctive normal form (CNF)
formula is a conjunction (AND) of clauses. In the rest of the text by formula we always mean a CNF
formula. A truth assignment φ for a formula F is a function φ : V ars(F)→ {true, false} which assigns
truth values to each variable of F . Similarly a partial truth assignment assigns truth values to some
of the variables of F . We say that a (partial) truth assignment φ satisfies a variable x if φ(x) = true;
a positive literal of the variable x if φ(x) = true; a negative literal of x if φ(x) = false; a clause if it
satisfies any of its literals and a CNF formula if it satisfies all of its clauses. We say that a formula is
satisfiable if there is a (partial) truth assignment that satisfies it. Satisfiability (SAT) is the problem of
determining whether a given formula is satisfiable.

Solving SAT

There are several algorithms for SAT solving of various kinds, but the most successful ones are based
on the Davis Putnam Logemann Loveland (DPLL) procedure[Biere et. al., 2009]. DPLL is a depth first
search of the space of partial truth assignments. We start with an empty partial truth assignment and
try to extend it into a satisfying truth assignment. The search can be stopped if all the clauses are
satisfied and we can immediately backtrack if there is a clause with all literals falsified by the current
partial truth assignment. DPLL uses two additional enhancements: pure literal elimination and unit
propagation. If a variable has only positive occurrences or only negative occurrences, then the literals

T. BALYO: DECOMPOSING BOOLEAN FORMULAS INTO CONNECTED COMPONENTS

of this variable are called pure literals. Such a variable can be immediately assigned to the proper value
and make all its occurrences true. A clause is called unit if all but one of its literals are false and the
remaining literal is unassigned. This literal has to be assigned to be true in order to satisfy the clause.
This assignment can cause another clause to become unit and forces another assignment. The cascade
of such assignments is called unit propagation. We present the pseudocode of DPLL as Algorithm 1.

Algorithm 1 DPLL(clauses, vars, assignment) : boolean

if ∀c ∈ clauses assignment satisfies c then
return true

end if
if ∃c ∈ clauses assignment makes c false then

return false
end if
assignment = assignment ∪ unitPropagation(clauses, assignment)
assignment = assignment ∪ pureLiteralElimination(clauses, assignment)
select x such that x ∈ vars ∧ assignment(x) = NULL
return DPLL(clauses, vars \ {x}, assignments ∪ {x = true})

or DPLL(clauses, vars \ {x}, assignments ∪ {x = false})

The performance of DPLL very much depends on the selection of decision variables. We use decision
heuristics to select these variables. There are many very good decision heuristics already used by state-
of-the-art SAT solvers. Our goal is to design a new one, which similarly to the divide and conquer
principle will try to split the formula into parts and solve those independently. In order to exactly define
this idea we will use a graph derived from a formula called an interaction graph [Biere et. al., 2009].

Definition 1 An interaction graph of the formula F is an undirected graph G(V,E), where V is the set
of variables of F and (x, y) ∈ E if and only if there is a clause c ∈ F that contains literals of x and y.

�

� �

�

�

�

�

� �

�

�

�

�

� �

Figure 1. The interaction graph for the formula (x1∨¬x2)∧(¬x1∨x3)∧(x2∨¬x4∨¬x5)∧(¬x4∨¬x5∨x3)
and two of its component trees.

An example of a formula and its interaction graph is given on Figure 1 (left). We will be interested
in the connected components of interaction graphs, because subformulas corresponding to different con-
nected components can be solved separately since they have no common variables. If we consider the
worst case time complexity of solving general SAT instances, then solving formulas by components can
give us exponential speedup. For example if the interaction graph of a formula with n variables has two
equally large connected components of n/2 vertices, then this formula can be solved in 2n/2 + 2n/2 time
instead of 2n, which is 2(n/2)−1 times faster.

Unfortunately, interaction graphs of SAT formulas rarely have more than just one connected compo-
nent. However if we consider the DPLL algorithm and observe that extending a partial truth assignments
is equivalent to removing vertices from the interaction graph, we can see that the interaction graph can
get disconnected during the solving. To precisely describe this behavior we define the dynamic interaction
graph.

T. BALYO: DECOMPOSING BOOLEAN FORMULAS INTO CONNECTED COMPONENTS

Definition 2 A dynamic interaction graph of the formula F and its partial truth assignment φ is an
undirected graph G(V,E), where V is the set of variables of F which have no assigned truth values by φ
and (x, y) ∈ E if and only if there is a clause c ∈ F that contains literals of x and y.

If G is the dynamic interaction graph for a formula F and its arbitrary partial truth assignment φ,
then the subformulas corresponding to the connected components of G can be solved independently for
any partial truth assignment that extends φ. We will use this property to design our decision heuristic.
We want to assign those variables first, that will disconnect the interaction graph as quickly and as
uniformly as possible. The remaining problem is to find those variables. For this purpose we need to
define component trees and the component tree problem.

The component tree problem

Definition 3 A rootPath(v) of a vertex v in a rooted tree T is the set of vertices on the path from v to
the root of T (including both v and the root). Let G−S be a graph formed from G by removing the set of
vertices S and all incident edges from G. A rooted tree T is a component tree for a connected graph G if
G and T have the same vertices and for each vertex v that has at least 2 sons the following holds: The
vertices in the subtrees of the sons of v are in different connected components of G−rootPath(v).

An example of a graph and two of its component trees is on Figure 1. It is obvious from the given
example that there can be several different component trees for a given graph. We need to compare
different component trees, so we define the component value.

Definition 4 The component value C(v) of a vertex v in a component tree is defined as C(v) = 1 if v is
a leaf and C(v) = 2×

∑
s∈sons(v) C(s) otherwise. The component value of a tree is the component value

of its root.

The component values of the trees from the example on Figure 1 are 12 and 16 respectively. Compo-
nent trees with lower component values will be preferred. We will call T an optimal component tree for
a graph G if there is no other component tree for G that has lower component value than T . There can
be many optimal component trees for a given graph. For example a clique on n vertices has n! optimal
component trees with 2n−1 being their component value.

The component tree problem is the problem of finding an optimal component tree for a given graph.
The decision version is determining if there is a component tree of a given component value for a given
graph. The decision version is clearly in NP, since the component tree itself is the certificate. It is
unknown to the author of this paper whether it is NP-hard and thus NP-complete. However, if we do
not require an optimal component tree, we can obtain a component tree easily by depth first search.

If we perform a depth first search (DFS) on a graph, then the tree edges of the DFS spanning tree
form a component tree. Such a component tree can be very far from optimal. There are some examples of
graphs, where this algorithm cannot find an optimal component tree no matter in what order we process
the vertices [Balyo, 2010]. For these reasons we designed another algorithm called the component tree
builder (CTB).

The pseudocode of CTB is given as Algorithm 2. It builds the component tree by connecting
small component trees (initially consisting of only one vertex) into bigger ones. The rootOf(v) method
returns the root of the component tree to which v currently belongs. Every possible component tree
can be constructed by this algorithm and thus also the optimal ones [Balyo, 2010]. The quality of the
returned component tree depends on the order in which we process the vertices in the main loop. For
the ordering of the vertices we will use the following greedy heuristics: select a vertex so that after its
addition, the total increase of the component value is minimal. We experimentally compared CTB with
the greedy heuristics and the DFS algorithm, where the next vertex is selected randomly. The results
are presented on Figure 2.

The component trees often contain long segments of vertices with only one son. We call them linear
segments. An exact definition follows.

Definition 5 Let L = x1, x2, . . . , xn be a sequence of vertices in a component tree T . If x1 has no
brother and ∀i ∈ {1, . . . , n− 1} xi+1 is the only son of xi then L is a linear segment of T .

From the definition of the component tree we can easily prove that the order of vertices in the linear
segments is not important. We can permute the vertices inside all the linear segments and we get a
valid component tree with the same shape and thus with the same component value. This allows us to

T. BALYO: DECOMPOSING BOOLEAN FORMULAS INTO CONNECTED COMPONENTS

Algorithm 2 The component tree builder algorithm

INPUT G(V,E)
V ′ = ∅, E′ = ∅
for all v ∈ V do
R = ∅
for all s ∈ neighbor(G, v) do

if s ∈ V ′ then
R = R ∪ {rootOf(s)}

end if
end for
V ′ = V ′ ∪ {v}
for all r ∈ R do
E′ = E′ ∪ {(v → r)}

end for
end for
OUTPUT G(V ′, E′)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250

Va
ria

bl
es

 /
lo

g(
co

m
po

ne
nt

 v
al

ue
)

Problems

Variables
Greedy

DFS

Figure 2. Comparison of the component tree construction algorithms on interaction graphs of SAT
formulas. ”Variables” denotes the number of variables of the formula, ”Greedy” and ”DFS” are the
logarithms of the component values of the trees returned by the CTB algorithm using the greedy heuristics
and the depth first search algorithm respectively.

look at the linear segments as sets of vertices and contract them into one vertex. The resulting tree is
called a compressed component tree. An example of a component tree with its linear segments and its
compressed component tree is given on Figure 3.

�

�

� �

� �

�

�

�

���

� �����

��� 	

Figure 3. A component tree with linear segments {{1, 2}, {3}, {4, 5}, {6}, {7, 8, 9}} and its compressed
version.

T. BALYO: DECOMPOSING BOOLEAN FORMULAS INTO CONNECTED COMPONENTS

SAT decision heuristics

Now we use the component tree to design decision heuristics for SAT solving. The algorithm is
straightforward. We take the input formula and construct its interaction graph. We use our best
available algorithm for component tree construction and find a component tree. Finally we contract
its linear segments to get a compressed component tree. We will keep selecting decision variables from
the root until all of them are assigned and the formula is disconnected. We proceed on the subtrees
recursively to split the formula further. We will call this the component tree heuristics (CTH).

We have not yet specified the order of vertices in which we select them from the current compressed
linear segment. If we pick them in a random order, the practical performance of the heuristics is very low.
That is why we combine the component tree approach with state-of-the-art decision heuristics. These
heuristics help us to order the variables within a linear segment. Now we will briefly describe some
known decision heuristics and how they can be combined with CTH. Sometimes we will write “decision
literal” instead of “decision variable”, this means that we select the decision variable as well as the value
that should be tried first. Some heuristics incorporate clause learning, which is described in [Biere et.
al., 2009].

Jeroslow-Wang (JW) [Biere et. al., 2009] is a score-based decision heuristics. Each literal l has its
score defined as

∑
cl∈F |l∈cl 2−|cl|. The score is higher for literals with many occurrences in short clauses.

An unassigned literal with the highest score is selected for assignment. The scores are computed once
in the preprocessing phase. The combination with CTH is very simple, we select the literal with the
highest score from our linear segment.

Dynamic Largest Individual Sum (DLIS) [Biere et. al., 2009] is also score-based. The score of a
literal is the number of not satisfied clauses containing it. This score is dynamic and thus needs to be
recomputed when the partial truth assignment changes. The combination with CTH is analogous to JW.

Variable State Independent Decaying Sum (VSIDS) [Biere et. al., 2009] is yet another score-based
heuristic. For each literal l we define its score s(l) and its occurrence count r(l). At the beginning
of solving, s(l) is initialized to the number of clauses that contain l and r(l) is set to 0 for each l.
When a clause is added to the formula via clause learning, the occurrence counts of its literals are
incremented by one. After each 255 decisions the scores of the literals are updated by the following
formula: s(l) = s(l)/2 + r(l) and r(l) is set to 0 for each l. The literal with the highest score is selected
for the decision. The combination with CTH is again analogous to JW (and DLIS).

BerkMin [Biere et. al., 2009] also has literal scores based on the number of their occurrences. The
decision literal is selected as the highest scored literal from the most recently learned currently not
satisfied clause. The combination with CTH searches for the most recently learned unsatisfied clause
that contains a variable from the current linear segment. Then we select the highest scored suitable
literal from that clause.

Last Encountered Free Variable (LEFV) [Balyo, Surynek, 2009] defines no literal scores at all. It
selects a literal from the clause which was the last not satisfied clause encountered during the most recent
unit propagation. When combined with CTH, we select a literal from the last encountered clause that
belongs to the current linear segment. If there is no such literal in the clause, we select a random literal
from the linear segment.

Experiments

To measure the practical performance of our approach we implemented a SAT solver and all the
above described heuristics. Our solver implements the conflict driven clause learning (CDCL) DPLL
algorithm[Biere et. al., 2009]. For clause learning we used the first UIP scheme[Biere et. al., 2009]. Unit
propagation was implemented using the 2-watched literals scheme[Biere et. al., 2009] and our solver also
incorporates restarting[Biere et. al., 2009]. A detailed description of the solver is to be found in [Balyo,
2010].

We conducted experiments on various kinds of SAT benchmark problems. The formulas can be
divided into two classes: random 3SAT formulas and structured formulas (modeling pseudo-practical
problems). More exact description of the set of the used benchmark problems and their sources can be
found in chapter 5 of [Balyo, 2010].

Selected results of our experiments are presented on Figure 4 for random formulas and on Figure 5
for structured ones. From the plots for random problems we can see that the performance difference is
rather low for unsatisfiable formulas. Overall, there are many problems where the combined heuristics
outperformed the original but in the majority of cases it did not.

T. BALYO: DECOMPOSING BOOLEAN FORMULAS INTO CONNECTED COMPONENTS

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500 600 700 800

Problems

CTH_BerkMin / BerkMin
1

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500 600 700 800

Problems

CTH_VSIDS / VSIDS
1

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800

Problems

CTH_DLIS / DLIS
1

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800

Problems

CTH_JW / JW
1

Figure 4. Comparison of the decision heuristics with their combined versions on random 3SAT formulas.
The first 400 problems are satisfiable, the second half is unsatisfiable. If the cross is above the line then
the combined version is weaker than the original.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 50 100 150 200 250 300

D
ec

is
io

ns

Problems

BerkMin
CTH_BerkMin

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 50 100 150 200 250 300

D
ec

is
io

ns

Problems

VSIDS
CTH_VSIDS

Figure 5. Comparison of the decision heuristics with their combined versions on random structured
formulas. If the cross is above the line then the combined version is weaker than the original.

Conclusion

We defined a new general graph problem - the component tree problem and applied it to design a set
of new decision heuristics for satisfiability solving via the DPLL algorithm. We experimentally compared
the heuristics, but we did not manage to outperform the known heuristics used by state-of-the-art SAT
solvers. Probably one of the reasons is that the component tree is a very rough approximation of the
disconnection of Boolean formulas during DPLL. Component trees do not consider unit propagation,
pure literal elimination or clause learning, which are important features of DPLL. We would like to
remove these flaws in our future work.

Acknowledgments. I would like to thank my supervisor Roman Bartak and consultant Pavel Surynek
for valuable discussions. This research is supported by the Science Foundation of the Charles University (grant
No. 266111).

References

Balyo, T. and Surynek P., Efektivni heuristika pro SAT zalozena na znalosti komponent souvislosti grafu prob-
lemu, Proceedings of Znalosti 2009, 35-46, 2009

Balyo, T., Solving Boolean satisfiability problems, Diploma Thesis, Charles University in Prague, 2010
Bayardo, R. J. and Pehoushek J. D., Counting models using connected components, Proceedings of AAAI-00,

157-162, 2000
Biere, A. and Heule, M. and van Maaren, H. and Walsh, T. (editors), Handbook of Satisfiability, IOS Press, 2009
Cook, Stephen A., The complexity of theorem proving procedures, STOC, 151-158, 1971
Kautz, Henry A. and Selman, Bart, Planning as satisfiability, ECAI, 359-363, 1992
Pipatsrisawat K. and Darwiche A., A lightweight component caching scheme for satisfiability solvers, Lecture

notes in computer science volume 4501, 294-299, Springer, 2007
Robinson, John Alan and Voronkov, Andrei, editors, Handbook of Automated reasoning (in 2 volumes), Elsevier

and MIT Press, 2001
Velev, Miroslav N. and Bryant Randal E., Effective use of Boolean satisfiability procedures in the formal verifi-

cation of superscalar and vliw microprocessors, Journal of Symbolic Computation, 35(2):73-106, 2003

