
Roman Barták
Charles University, Prague (CZ)

roman.bartak@mff.cuni.cz

Constraint Constraint ProcessingProcessing
for Planning & Schedulingfor Planning & Scheduling

SP2

Constraint Processing for Planning and Scheduling 2

What and why?What and why?

What is the topic of the tutorial?
constraint satisfaction techniques useful for P&S

What is constraint satisfaction?
technology for modeling and solving combinatorial optimization
problems

Why should one look at constraint satisfaction?
powerful solving technology
planning and scheduling are coming together and constraint
satisfaction may serve as a bridge

Why should one understand insides of constraint
satisfaction algorithms?

better exploitation of the technology
design of better (solvable) constraint models

Constraint Processing for Planning and Scheduling 3

Tutorial outlineTutorial outline
Constraint satisfaction in a nutshell

domain filtering and local consistencies

search techniques

extensions of a basic constraint satisfaction problem

Constraints for planning
constraint models

temporal reasoning

Constraints for scheduling
a base constraint model
resource constraints
branching schemes

Conclusions
a short survey on constraint solvers

Constraint satisfaction
in a nutshell

Constraint Processing for Planning and Scheduling 5

ConstraintsConstraints
starting simplestarting simple

Modeling (problem formulation)
N queens problem
decision variables for positions of queens in rows
r(i) in {1,…,N}
constraints describing (non-)conflicts
∀i≠j r(i) ≠ r(j) & |i-j| ≠ |r(i)-r(j)|

Search and inference (propagation)
backtracking (assign values and return upon
failure)
infer consequences of decisions
via maintaining consistency
of constraints

failure
× × ×
×
×
×

× ×
×

×
× ×
×
×

×
××

× ×

×

Constraint Processing for Planning and Scheduling 6

Constraint satisfactionConstraint satisfaction
based on declarative problem description via:

variables with domains (sets of possible values)
describe decision points of the problem with possible
options for the decisions
e.g. the start time of activity with time windows
constraints restricting combinations of values,
describe arbitrary relations over the set of variables
e.g. end(A) < start(B)

A feasible solution to a constraint satisfaction
problem is a complete assignment of variables
satisfying all the constraints.

An optimal solution to a CSP is a feasible solution
minimizing/maximizing a given objective function.

Constraint satisfaction

Consistency techniques

Constraint Processing for Planning and Scheduling 8

Domain filteringDomain filtering

Example:
Da = {1,2}, Db = {1,2,3}
a < b
Value 1 can be safely removed from Db.

Constraints are used actively to remove
inconsistencies from the problem.

inconsistency = a value that cannot be in any
solution

This is realized via a procedure FILTER that
is attached to each constraint.

Constraint Processing for Planning and Scheduling 9

ArcArc--consistencyconsistency

We say that a constraint is arc consistent (AC) if
for any value of the variable in the constraint there
exists a value for the other variable(s) in such a
way that the constraint is satisfied (we say that the
value is supported).
Unsupported values are filtered out of the domain.

A CSP is arc consistent if all the constraints are
arc consistent.

Constraint Processing for Planning and Scheduling 10

Making problems ACMaking problems AC

How to establish arc consistency in a CSP?
Every constraint must be filtered!

Example: X in [1,..,6], Y in [1,..,6], Z in [1,..,6], X<Y, Z<X-2

Filtering every constraint just once is not enough!

Filtering must be repeated until any domain is
changed (AC-1).

X in [1,..,6]
Y in [1,..,6]
Z in [1,..,6]

X in [1,..,6]
Y in [1,..,6]
Z in [1,..,6]

X in [1,..,5]
Y in [2,..,6]
Z in [1,..,6]

X in [1,..,5]
Y in [2,..,6]
Z in [1,..,6]

X<Y
X in [4,5]
Y in [2,..,6]
Z in [1,2]

X in [4,5]
Y in [2,..,6]
Z in [1,2]

Z<X-2
X in [4,5]
Y in [5,6]
Z in [1,2]

X in [4,5]
Y in [5,6]
Z in [1,2]

X<Y

Constraint Processing for Planning and Scheduling 11

Algorithm ACAlgorithm AC--33

Uses a queue of constraints that should be filtered.
When a domain of variable is changed, only the constraints
over this variable are added back to the queue for filtering.

procedure AC-3(V,D,C)
Q ← C
while non-empty Q do

select c from Q
D’ ← c.FILTER(D)
if any domain in D’ is empty then return (fail,D’)
Q ← Q ∪ {c’∈C | ∃x∈var(c’) D’x≠Dx} – {c}
D ← D’

end while
return (true,D)

end AC-3

Mackworth (1977)

Constraint Processing for Planning and Scheduling 12

AC in practiceAC in practice
Uses a queue of variables with changed domains.

Users may specify for each constraint when the filtering should be
done depending on the domain change.

The algorithm is sometimes called AC-8.

procedure AC-8(V,D,C)
Q ← V
while non-empty Q do

select v from Q
for c∈C such that v is constrained by c do

D’ ← c.FILTER(D)
if any domain in D’ is empty then return (fail,D’)
Q ← Q ∪ {u∈V | D’u≠Du}
D ← D’

end for
end while
return (true,D)

end AC-8

Constraint Processing for Planning and Scheduling 13

ArcArc--BB--consistencyconsistency

Sometimes, making the problem arc-consistent is costly
(for example, when domains of variables are large).
In such a case, a weaker form of arc-consistency might be
useful.

We say that a constraint is arc-b-consistent (bound
consistent) if for any bound values of the variable in the
constraint there exists a value for the other variable(s) in
such a way that the constraint is satisfied.

a bound value is either a minimum or a maximum value in domain
domain of the variable can be represented as an interval
for some constraints (like A<B) it is equivalent to AC

Lhomme (1993)

Constraint Processing for Planning and Scheduling 14

Pitfalls of ACPitfalls of AC

Disjunctive constraints
A, B in {1,...,10}, A = 1 ∨ A = 2
no filtering (whenever A ≠ 1 then deduce A = 2 and
vice versa)

Detection of inconsistency
A, B, C in {1,…,10000000}, A < B, B < C, C < A
long filtering (4 seconds)

Weak filtering
A, B in {1,2}, C in {1,2,3}, A ≠ B, A ≠ C, B ≠ C
weak filtering (it is arc-consistent)

Constraint Processing for Planning and Scheduling 15

a set of binary inequality constraints among all variables
X1 ≠ X2, X1 ≠ X3, …, Xk-1 ≠ Xk

all_different({X1,…,Xk}) = {(d1,…,dk) | ∀i di∈Di & ∀i≠j di ≠ dj}

better pruning based on matching theory over bipartite graphs

Initialization:
1. compute maximum matching
2. remove all edges that do not belong to

any maximum matching

Propagation of deletions (X1≠a):
1. remove discharged edges
2. compute new maximum matching
3. remove all edges that do not belong to

any maximum matching

Inside allInside all--differentdifferent

a

b

c

X1

X2

X3

××

X1

X2

X3

a

b

c

×

×

Régin (1994)

Constraint Processing for Planning and Scheduling 16

Meta consistencyMeta consistency

Can we strengthen any filtering technique?

YES! Let us assign a value and make the rest of
the problem consistent.

singleton consistency (Prosser et al., 2000)

try each value in the domain

shaving
try only the bound values

constructive disjunction
propagate each constraint in disjunction separately
make a union of obtained restricted domains

Constraint Processing for Planning and Scheduling 17

Path consistencyPath consistency
Arc consistency does not detect all inconsistencies!

Let us look at several constraints together!

The path (V0,V1,…, Vm) is path consistent iff for every
pair of values x∈D0 a y∈Dm satisfying all the binary
constraints on V0,Vm there exists an assignment of variables
V1,…,Vm-1 such that all the binary constraints between the
neighboring variables Vi,Vi+1 are satisfied.
CSP is path consistent iff every path is consistent.

Some notes:
only the constraints between the neighboring
variables must be satisfied
it is enough to explore paths of length 2 (Montanary,
1974)

X

Y
Z

X≠ZX≠Y

Y≠Z

{1,2}

{1,2} {1,2}

Mackworth (1977)

Constraint Processing for Planning and Scheduling 18

Path revisionPath revision
Constraints represented extensionally via matrixes.
Path consistency is realized via matrix operations

Example:
A,B,C in {1,2,3}, B>1
A<C, A=B, B>C-2 A<C

B>C-2
A=B

B>1

C

A

& * *
011
001
000

100
010
001

000
010
001

110
111
111

=
000
001
000

Constraint satisfaction

Search techniques

Constraint Processing for Planning and Scheduling 20

Search / LabelingSearch / Labeling
Inference techniques are (usually) incomplete.

We need a search algorithm to resolve the rest!

LabelingLabeling
depth-first search

assign a value to the variable
propagate = make the problem
locally consistent
backtrack upon failure

X in 1..5 ≈ X=1 ∨ X=2 ∨ X=3 ∨ X=4 ∨ X=5 (enumeration)

In general, search algorithm resolves remaining disjunctions!
X=1 ∨ X≠1 (step labeling)
X<3 ∨ X≥3 (domain splitting)
X<Y ∨ X≥Y (variable ordering)

Constraint Processing for Planning and Scheduling 21

Labeling skeletonLabeling skeleton

Search is combined with filtering
techniques that prune the search space.
Look-ahead technique (MAC)
procedure labeling(V,D,C)

if all variables from V are assigned then return V
select not-yet assigned variable x from V
for each value v from Dx do

(TestOK,D’) ← consistent(V,D,C∪{x=v})
if TestOK=true then R ← labeling(V,D’,C)
if R ≠ fail then return R

end for
return fail

end labeling

procedure labeling(V,D,C)
if all variables from V are assigned then return V
select not-yet assigned variable x from V
for each value v from Dx do

(TestOK,D’) ← consistent(V,D,C∪{x=v})
if TestOK=true then R ← labeling(V,D’,C)
if R ≠ fail then return R

end for
return fail

end labeling

Constraint Processing for Planning and Scheduling 22

Branching schemesBranching schemes

Which variable should be assigned first?
fail-first principle

prefer the variable whose instantiation will lead to a failure
with the highest probability
variables with the smallest domain first (dom)
the most constrained variables first (deg)

defines the shape of the search tree

Which value should be tried first?
succeed-first principle

prefer the values that might belong to the solution with the
highest probability
values with more supports in other variables
usually problem dependent

defines the order of branches to be explored

Constraint Processing for Planning and Scheduling 23

Heuristics in searchHeuristics in search
Observation 1:
The search space for real-life problems is so huge that it cannot be
fully explored.

Heuristics - a guide of search
value ordering heuristics recommend a value for assignment
quite often lead to a solution

What to do upon a failure of the heuristic?
BT cares about the end of search (a bottom part of the search tree)
so it rather repairs later assignments than the earliest ones
thus BT assumes that the heuristic guides it well in the top part

Observation 2:
The heuristics are less reliable in the earlier parts of the search
tree (as search proceeds, more information is available).

Observation 3:
The number of heuristic violations is usually small.

Constraint Processing for Planning and Scheduling 24

DiscrepanciesDiscrepancies
Discrepancy

= the heuristic is not followed

Basic principles of discrepancy search:
change the order of branches to be explored

prefer branches with less discrepancies

prefer branches with earlier discrepancies

heuristic = go left

heuristic = go left

is before

is before

Constraint Processing for Planning and Scheduling 25

Limited Discrepancy Search (Harvey & Ginsberg, 1995)
restricts a maximal number of discrepancies in the iteration

Improved LDS (Korf, 1996)
restricts a given number of discrepancies in the iteration

Depth-bounded Discrepancy Search (Walsh, 1997)
restricts discrepancies till a given depth in the iteration

…

Discrepancy searchDiscrepancy search

1 2345

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

678910

* heuristic = go left
Constraint Processing for Planning and Scheduling 26

CP is not (only) search!CP is not (only) search!

Backtracking is not very good
19 attempts

MAC combining search and arc
consistency

2 attempts

4 queens problem

Constraint satisfaction

Extensions

Constraint Processing for Planning and Scheduling 28

Constraint optimizationConstraint optimization

Constraint optimization problem (COP)
= CSP + objective function
Objective function is encoded in a constraint.

V = objective(Xs)
heuristics for bound estimate encoded in the filter

Branch and bound technique
find a complete assignment (defines a new

bound)
store the assignment
update bound (post the constraint that restricts

the objective function to be better than a
given bound which causes failure)

continue in search (until total failure)
restore the best assignment

Constraint Processing for Planning and Scheduling 29

Soft problemsSoft problems

Hard constraints express restrictions.
Soft constraints express preferences.
Maximizing the number of satisfied soft constraints
Can be solved via constraint optimization

Soft constraints are encoded into an objective function

Special frameworks for soft constraints
Constraint hierarchies (Borning et al., 1987)

symbolic preferences assigned to constraints

Semiring-based CSP (Bistarelli, Montanary, and Rossi, 1997)
semiring values assigned to tuples (how well/badly a tuple
satisfies the constraint)
soft constraint propagation

Constraint Processing for Planning and Scheduling 30

Dynamic problemsDynamic problems

Internal dynamics (Mittal & Falkenhainer, 1990)
planning, configuration
variables can be active or inactive, only active variables are
instantiated
activation (conditional) constraints

cond(x1,…, xn) → activate(xj)
solved like a standard CSP (a special value in the domain to denote
inactive variables)

External dynamics (Dechter & Dechter, 1988)
on-line systems
sequence of static CSPs, where each CSP is a result of the
addition or retraction of a constraint in the preceding problem
Solving techniques:

reusing solutions
maintaining dynamic consistency (DnAC-4, DnAC-6, AC|DC).

Constraints for
planning and scheduling

Constraint Processing for Planning and Scheduling 32

TerminologyTerminology

“The planning task is to construct a
sequence of actions that will transfer the
initial state of the world into a state where
the desired goal is satisfied“

“The scheduling task is to allocate known
activities to available resources and time
respecting capacity, precedence (and
other) constraints“

Constraint Processing for Planning and Scheduling 33

Constraints and P&SConstraints and P&S
Planning problem is internally dynamic
actions in the plan are unknown in advance

a CSP is dynamic
Solution (Kautz & Selman, 1992):

finding a plan of a given length is a static problem
standard CSP is applicable there!

Constraint technology is frequently used to solve well-
defined sub-problems such as temporal consistencies.

Scheduling problem is static
all activities are known

variables and constraints are known
standard CSP is applicable

Constraint Processing for Planning and Scheduling 34

P&S via CSP?P&S via CSP?

Exploiting state of the art constraint solvers!
faster solver ⇒ faster planner

Constraint model is extendable!
it is possible immediately to add other variables and
constraints
modeling numerical variables, resource and precedence
constraints for planning
adding side constraints to base scheduling models

Dedicated solving algorithms encoded in the
filtering algorithms for constraints!

fast algorithms accessible to constraint models

Constraints for planning

Constraint models

Constraint Processing for Planning and Scheduling 36

Planning problemPlanning problem
STRIPSSTRIPS

Propositions describe relevant
features of states.

{onground, onrobot,
holding, at1, at2}

Initial state describes all initially
valid propositions.

s0 = {onground, at2}

Goal describes propositions that
must be valid in the goal state

g = {onrobot}
both s4 and s5 are goal states

Action describes how propositions in
the state are changed.

load = (
{holding,at1}, % precondition
{holding}, % delete effect
{onrobot}) % add effect

Plan is a sequence of actions
transforming the initial state into a
goal state.

〈take,move1,load,move2〉

location 1 location 2

location 1 location 2

s1

s3

s4

take

put

location 1 location 2

location 1 location 2

s0

s2

s5

move1

put

take

move1

move1move2

loadunload

move2

move2

location 1 location 2 location 1 location 2

Constraint Processing for Planning and Scheduling 37

Planning graphPlanning graph

Planning graph is a layered graph representing
STRIPS-like plans of a given length.
nodes = propositions + actions
Interchanging propositional and action layers

action is connected to its preconditions in the previous layer
and to its add effects in the next layer
delete effect is modeled via action mutex (actions deleting
and adding the same effect cannot be active at the same layer)
propositional mutexes generated from action mutexes
no-op actions (same pre-condition as the add effect)

p1

p2

p3

p1

p2

p3

p4

p1

p2

p3

p4

a1

a2a2

a3

a1

a2

a3

propositional
layers

action layers

only actions that
are applicable to
the initial state

all propositions
from the goal state
must be present

* no-ops and mutexes not displayed

Blum & Furst (1997)

Constraint Processing for Planning and Scheduling 38

ActivityActivity--based modelbased model
Planning graph of a given length is a static
structure that can be encoded as a CSP.
Constraint technology is used for plan extraction.

Constraint model:
Variables

propositional nodes Pj,m (proposition pj in layer m)
only propositional layers are indexed

Domain
activities that has a given proposition as an add effect
⊥ for inactive proposition

Constraints
connect add effects with preconditions
mutexes

Do & Kambhampati (2000)

Constraint Processing for Planning and Scheduling 39

ActivityActivity--based modelbased model
constraintsconstraints

P4,m=a ⇒ P1,m-1≠⊥ & P2,m-1≠⊥ & P3,m-1≠⊥
action a has preconditions p1, p2, p3 and an add effect p4
the constraint is added for every add effect of a

Pi,m=⊥ ∨ Pj,m=⊥
propositional mutex between propositions pi and pj

Pi,m≠a ∨ Pj,m≠b
actions a and b are marked mutex and pi is added by a and pj is
added by b

Pi,k≠⊥
pi is a goal proposition and k is the index of the last layer

no parallel actions
maximally one action is assigned to variables in each layer

no void layers
at least one action different from a no-op action is assigned to
variables in a given layer

Do & Kambhampati (2000)

Constraint Processing for Planning and Scheduling 40

Boolean modelBoolean model
Planning graph of a given length is a encoded
as a Boolean CSP.
Constraint technology is used for plan extraction.

Constraint model:
Variables

Boolean variables for action nodes Aj,m and
propositional nodes Pj,n
all layers indexed continuously from 1
(odd numbers for action layers and even numbers for
propositional layers)

Domain
value true means that the action/proposition is active

Constraints
connect actions with preconditions and add effects
mutexes

Lopez & Bacchus (2003)

Constraint Processing for Planning and Scheduling 41

Boolean modelBoolean model
constraintsconstraints

precondition constraints
Ai,m+1 ⇒ Pj,m
pj is a precondition of action ai

next state constraints
Pi,m ⇔ (∨pi∈add(aj)

Aj,m-1) ∨ (Pi,m-2 & (∧ pi ∈del(a j)
¬Aj,m-1)))

pj is active if it is added by some action or if it is active in the previous
propositional layer and it is not deleted by any action
no-op actions are not used there.
Beware! The constraint allows the proposition to be both added and
deleted so mutexes are still necessary!

mutex constraints
¬Ai,m ∨ ¬Aj,m for mutex between actions ai and aj at layer m
¬Pi,n ∨ ¬Pj,n for mutex between propositions pi and pj at layer n

goals
Pi,k=true
pi is a goal proposition and k is the index of the last propositional layer

other constraints
no parallel actions – at most one action per layer is active
no void layers – at least one action per layer is active

Lopez & Bacchus (2003)

Constraints for planning

Temporal reasoning

Constraint Processing for Planning and Scheduling 43

FoundationsFoundations

What is time?
The mathematical structure of time is generally a set with
transitive and asymmetric ordering operation.
The set can be continuous (reals) or discrete (integers).

The planning/scheduling systems need to maintain
consistent information about time relations.

We can see time relations:
qualitatively

relative ordering (A finished before B)
typical for modeling causal relations in planning

quantitatively
absolute position in time (A started at time 0)
typical for modeling exact timing in scheduling

Constraint Processing for Planning and Scheduling 44

Qualitative approachQualitative approach
exampleexample

Robot starts entering a loading zone at time t1 and stops there at time t2.
Crane starts picking up a container at t3 and finishes putting it down at t4.
At t5 the container is loaded onto the robot and stays there until time t6.

Networks of temporal constraints:

enteringt1 t2

i1

picking up and loadingt3 t4

i2

loadedt5 t6

i3

i1

i2

i3
before

starts before meets

t1 t2

t3 t4

t5 t6

≤

<

<

<
<

=

Ghallab et al. (2004)

Constraint Processing for Planning and Scheduling 45

Qualitative approachQualitative approach
formallyformally

When modeling time we are interested in:
temporal references
(when something happened or hold)

time points (instants) when a state is changed
instant is a variable over the real numbers

time periods (intervals) when some proposition is true
interval is a pair of variables (x,y) over the real
numbers, such that x<y

temporal relations between temporal references
ordering of temporal references

Constraint Processing for Planning and Scheduling 46

Point algebraPoint algebra
symbolic calculus modeling relations between instants

without necessarily ordering them or allocating to exact times
There are three possible primitive relations between instants t1 and t2:

[t1 < t2], [t1 > t2], [t1 = t2]

A set of primitives, meaning a disjunction of primitives, can describe any
(even incomplete) relation between instants:

R = { {}, {<}, {=}, {>}, {<,=}, {>,=}, {<,>}, {<,=,>} }
{} means failure
{<,=,>} means that no ordering information is available

useful operations on R:
set operations ∩ (conjunction), ∪ (disjunction)
composition operation • ([t1 < t2] and [t2 =< t3] gives [t1 < t3])

Consistency:
The PA network consisting of instants and relations between them is
consistent when it is possible to assign a real number to each instant in such
a way that all the relations between instants are satisfied.
To make the PA network consistent it is enough to make its transitive closure,
for example using techniques of path consistency.

[t1 r t2] and [t1 q t3] and [t3 s t2] gives [t1 r ∩ (q•s) t2]

Vilain & Kautz (1986)

Constraint Processing for Planning and Scheduling 47

symbolic calculus modeling relations between intervals
(interval is defined by a pair of instants i- and i+, [i-<i+])

There are thirteen primitives:

Consistency:
The IA network is consistent when it is possible to assign real numbers
to xi

-,xi
+ of each interval xi in such a way that all the relations between

intervals are satisfied.
Consistency-checking problem for IA networks is an NP-complete problem.

symmetrical relationsb’, m’, o’, s’, d’, f’

x-=y- & x+=y+x equals y

y-<x- & x+=y+x finishes y

y-<x- & x+<y+x during y

x-=y- & x+<y+x starts y

x-<y-<x+ & x+<y+x overlaps y

x+=y-x meets y

x+<y-x before y

Interval algebraInterval algebra

x y

x y

x y

x

y

x

y

x

y

x

y

Allen (1983)

Constraint Processing for Planning and Scheduling 48

Qualitative approachQualitative approach
exampleexample

Two ships, Uranus and Rigel, are directing towards a dock.
The Uranus arrival is expected within one or two days.
Uranus will leave either with a light cargo (then it must stay in the
dock for three to four days) or with a full load (then it must stay in
the dock at least six days).
Rigel can be serviced either on an express dock (then it will stay
there for two to three days) or on a normal dock (then it must stay
in the dock for four to five days).
Uranus has to depart one to two days after the arrival of Rigel.
Rigel has to depart six to seven days from now.

now

ArriveUranus DepartUranus

ArriveRigel

DepartRigel

[1,2]

[6,7]

[1,2]

[3,4] or [6,∞]

[2,3] or [4,5]

Ghallab et al. (2004)

Constraint Processing for Planning and Scheduling 49

Qualitative approachQualitative approach
formallyformally

The basic temporal primitives are again time
points, but now the relations are numerical.
Simple temporal constraints for instants ti and tj:

unary: ai ≤ ti ≤ bi

binary: aij ≤ ti–tj ≤ bij,
where ai, bi, aij, bij are (real) constants

Notes:
Unary relation can be converted to a binary one, if we
use some fix origin reference point t0.
[aij,bij] denotes a constraint between instants ti a tj.
It is possible to use disjunction of simple temporal
constraints.

Constraint Processing for Planning and Scheduling 50

STNSTN
Simple Temporal Network (STN)

only simple temporal constraints rij= [aij,bij] are used
operations:

composition: rij • rjk = [aij+ajk, bij+bjk]
intersection: rij ∩ r’ij = [max{aij,a’ij}, min{bij,b’ij}]

STN is consistent if there is an assignment of values
to instants satisfying all the temporal constraints.
Path consistency is a complete technique making
STN consistent (all inconsistent values are filtered
out, one iteration is enough). Another option is using
all-pairs minimal distance Floyd-Warshall
algorithm.

Dechter et al. (1991)

Constraint Processing for Planning and Scheduling 51

AlgorithmsAlgorithms
Path consistency

finds a transitive closure of
binary relations r
one iteration is enough for
STN (in general, it is iterated
until any domain changes)
works incrementally

Floyd-Warshall algorithm
finds minimal distances
between all pairs of nodes
First, the temporal network is
converted into a directed graph

there is an arc from i to j with
distance bij

there is an arc from j to i with
distance -aij.

STN is consistent iff there are
no negative cycles in the
graph, that is, d(i,i)≥0

one iteration for STN

general

Constraint Processing for Planning and Scheduling 52

TCSPTCSP
Temporal Constraint Network (TCSP)

It is possible to use disjunctions of simple temporal
constraints.
Operations • and ∩ are being done over the sets of
intervals.

TCSP is consistent if there is an assignment of values
to instants satisfying all the temporal constraints.
Path consistency does not guarantee in general the
consistency of the TCSP network!

A straightforward approach (constructive disjunction):
decompose the temporal network into several STNs by choosing
one disjunct for each constraint
solve obtained STN separately (find the minimal network)
combine the result with the union of the minimal intervals

Dechter et al. (1991)

Constraints for scheduling

Base constraint model

Constraint Processing for Planning and Scheduling 54

Scheduling problemScheduling problem

Scheduling deals with optimal resource
allocation of a given set of activities in time.

Example (two workers building a bicycle):
Activities have a fixed duration, cannot be interrupted
and the precedence constraints must be satisfied

1

2

3

4

5

6

7

8

910

7
7

7

3

2

2 2

8 8

18

4 5 6

1 2

3 8 9 10

7

0 32

An optimal schedule minimizing the overall time

activity duration

Constraint Processing for Planning and Scheduling 55

Scheduling modelScheduling model
Scheduling problem is static so it can be directly
encoded as a CSP.
Constraint technology is used for full scheduling.

Constraint model:
Variables

position of activity A in time and space
time allocation: start(A), [p(A), end(A)]
resource allocation: resource(A)

Domain
ready times and deadlines for the time variables
alternative resources for the resource variables

Constraints
sequencing and resource capacities

Constraint Processing for Planning and Scheduling 56

Scheduling modelScheduling model
constraintsconstraints

Time relations
start(A) + p(A) = end(A)
sequencing

B « A
end(B) ≤ start(A)

Resource capacity constraints
unary resource (activities cannot overlap)

A « B ∨ B « A (∨ resource(A) ≠ resource(B))
end(A) ≤ start(B) ∨ end(B) ≤ start(A)

BB

AA

Constraints for scheduling

Resource constraints

Constraint Processing for Planning and Scheduling 58

ResourcesResources

Resources are used in slightly different
meanings in planning and scheduling!
scheduling

resource
= a machine (space) for processing the activity

planning
resource
= consumed/produced material by the activity
resource in the scheduling sense is often
handled via logical precondition (e.g. hand is
free)

Constraint Processing for Planning and Scheduling 59

Resource typesResource types

unary (disjunctive) resource
a single activity can be processed at given time

cumulative (discrete) resource
several activities can be processed in parallel
if capacity is not exceeded.

producible/consumable resource
activity consumes/produces some quantity of the
resource
minimal capacity is requested (consumption)
and maximal capacity cannot be exceeded
(production)

Constraint Processing for Planning and Scheduling 60

Unary resourcesUnary resources
Activities cannot overlap.

We assume that activities are uninterruptible.
uninterruptible activity occupies
the resource from its start till its
completion
interruptible (preemptible) activity
can be interrupted by another
activity

Note:
There exists variants of below presented filtering
algorithms for interruptible activities.

A simple model with disjunctive constraints
A « B ∨ B « A

end(A) ≤ start(B) ∨ end(B) ≤ start(A)

time

time

start(A) end(A)

Constraint Processing for Planning and Scheduling 61

What happens if activity A is not processed first?What happens if activity A is not processed first?

Not enough time for A, B, and C and thus A must be first!Not enough time for A, B, and C and thus A must be first!

4 16

7 15

6 16

Edge findingEdge finding

A (2)

C (5)

Baptiste & Le Pape (1996)

B (4)

A (2)
4 7

7 15

6 16
B (4)

C (5)

Constraint Processing for Planning and Scheduling 62

Edge findingEdge finding
rulesrules

The rules:
p(Ω ∪ {A}) > lct(Ω ∪ {A}) - est(Ω) ⇒ A«Ω
p(Ω ∪ {A}) > lct(Ω) - est(Ω ∪ {A}) ⇒ Ω«A
A«Ω ⇒ end(A) ≤ min{ lct(Ω') - p(Ω') | Ω'⊆Ω }
Ω«A ⇒ start(A) ≥ max{ est(Ω') + p(Ω') | Ω'⊆Ω }

In practice:
there are n.2n pairs (A,Ω) to consider (too many!)
instead of Ω use so called task intervals [X,Y]
{C | est(X) ≤ est(C) ∧ lct(C) ≤ lct(Y)}

time complexity O(n3), frequently used incremental algorithm

there are also O(n2) and O(n.log n) algorithms

Baptiste & Le Pape (1996)

Constraint Processing for Planning and Scheduling 63

NotNot--first/notfirst/not--lastlast
What happens if activity A is processed first?

Not enough time for B and C and thus A cannot be first!

4 16

7 15

6 16
A (2)

C (4)

B (5)

Torres & Lopez (2000)

4 16

7 15

8 16
A (2)

C (4)

B (5)

Constraint Processing for Planning and Scheduling 64

NotNot--first/notfirst/not--lastlast
rulesrules

Not-first rules:
p(Ω∪{A}) > lct(Ω) - est(A) ⇒ ¬ A«Ω
¬ A«Ω ⇒ start(A) ≥ min{ ect(B) | B∈Ω }

Not-last (symmetrical) rules:
p(Ω∪{A}) > lct(A) - est(Ω) ⇒ ¬ Ω«A
¬ Ω«A ⇒ end(A) ≤ max{ lst(B) | B∈Ω }

In practice:
can be implemented with time complexity
O(n2) and space complexity O(n)

Torres & Lopez (2000)

Constraint Processing for Planning and Scheduling 65

Cumulative resourcesCumulative resources
Each activity uses some capacity of
the resource – cap(A).
Activities can be processed in parallel if
a resource capacity is not exceeded.
Resource capacity may vary in time

modeled via fix capacity over time and fixed activities
consuming the resource until the requested capacity
level is reached

fix capacity

timeus
ed

 c
ap

ac
ity

fixed activities for making the
capacity profile

Constraint Processing for Planning and Scheduling 66

Where is enough capacity for processing the activity?

How the aggregated demand is constructed?

timeus
ed

 c
ap

ac
ity resource capacity

aggregated demand

Aggregated demandsAggregated demandsBaptiste et al. (2001)

timeus
ed

 c
ap

ac
ity resource capacity

aggregated demand

activity must be
processed here
activity must be
processed here

Constraint Processing for Planning and Scheduling 67

Timetable constraintTimetable constraint

How to ensure that capacity is not exceeded
at any time point?*

Timetable for the activity A is a set of
Boolean variables X(A,t) indicating whether
A is processed in time t.

capAcapt
ii AendtAstart

i ≤∀ ∑
<≤)()(

)(

),()()(,

)(),(

tAXAendtAstartit

capAcaptAXt

iii

A
ii

i

⇔<≤∀

≤⋅∀ ∑

* discrete time is expected

Baptiste et al. (2001)

cap=1
in unary resource

cap=1
in unary resource

Constraint Processing for Planning and Scheduling 68

Timetable constraintTimetable constraint
filtering examplefiltering example

initial situation

some positions forbidden due to capacity

new situation

{0,1} 00 X(A,t)

est(A) ect(A)

lst(A) lct(A)

{0,1} 0 X(A,t)0

{0,1} 00 X(A,t)
est(A)

lst(A)

ect(A)

lct(A)

0{0,1}

est(A) ect(A)

lst(A) lct(A)

{0,1} {0,1}1

Constraint Processing for Planning and Scheduling 69

ReservoirsReservoirs

Producible/consumable resource
Each event describes how much it increases or
decreases the level of the resource.

Cumulative resource can be seen as a special case
of producible/consumable resource (reservoirs).

Each activity consists of consumption event at the start
and production event at the end.

A
-1 B

-1 D
+1

Constraint Processing for Planning and Scheduling 70

Relative orderingRelative ordering

When time is relative (ordering of activities)
then edge-finding and aggregated demand deduce nothing

We can still use information about ordering of events
and resource production/consumption!

Example:
Reservoir: events consume and supply items

A
-1 B

-1 C
-1

D
+1

Constraint Processing for Planning and Scheduling 71

Resource profilesResource profiles

Event A „produces“ prod(A) quantity:
positive number means production
negative number means consumption

optimistic resource profile (orp)
maximal possible level of the resource when A happens
events known to be before A are assumed together with the
production events that can be before A

orp(A) = InitLevel + prod(A) + ∑B«A prod(B) + ∑B?A ∧ prod(B)>0 prod(B)

pessimistic resource profile (prp)
minimal possible level of the resource when A happens
events known to be before A are assumed together with the
consumption events that can be before A

prp(A) = InitLevel + prod(A) + ∑B«A prod(B) + ∑B?A ∧ prod(B)<0 prod(B)

*B?A means that order of A and B is unknown yet

Cesta & Stella (1997)

Constraint Processing for Planning and Scheduling 72

orporp filteringfiltering

orp(A) < MinLevel ⇒ fail
“despite the fact that all production is planned
before A, the minimal required level in the
resource is not reached”

orp(A) – prod(B) – ∑B«C ∧ C?A ∧ prod(C)>0 prod(C) < MinLevel
⇒ B«A

for any B such that B?A and prod(B)>0
“if production in B is planned after A and the
minimal required level in the resource is not
reached then B must be before A”

Cesta & Stella (1997)

Constraint Processing for Planning and Scheduling 73

prpprp filteringfiltering

prp(A) > MaxLevel ⇒ fail
“despite the fact that all consumption is planned
before A, the maximal required level (resource
capacity) in the resource is exceeded”

prp(A) – prod(B) – ∑B«C ∧ C?A ∧ prod(C)<0 prod(C) > MaxLevel
⇒ B«A
for any B such that B?A and prod(B)<0

“if consumption in B is planned after A and the
maximal required level in the resource is
exceeded then B must be before A”

Cesta & Stella (1997)

Constraint Processing for Planning and Scheduling 74

Detectable precedenceDetectable precedence
from time windows to orderingfrom time windows to ordering

What happens if activity A is processed What happens if activity A is processed beforebefore BB??

Restricted time windows can be used to deduce new
precedence relations.
est(A)+p(A)+p(B) > lct(B) ⇒ B « A

7

156

16

B (4)

A (5)

Vilím (2002)

Constraint Processing for Planning and Scheduling 75

Alternative resourcesAlternative resources

How to model alternative resources for a
given activity?
Use a duplicate activity for each resource.

duplicate activity participates in a respective resource
constraint but does not restrict other activities there

„failure“ means removing the resource from the domain of
variable resource(A)
deleting the resource from the domain of variable resource(A)
means „deleting“ the respective duplicate activity

original activity participates in precedence constraints
(e.g. within a job)
restricted times of duplicate activities are propagated to
the original activity and vice versa.

Constraint Processing for Planning and Scheduling 76

Alternative resourcesAlternative resources
filtering detailsfiltering details

Let Au be the duplicate activity of A
allocated to resource u∈res(A).

u∈resource(A) ⇒ start(A) ≤ start(Au)
u∈resource(A) ⇒ end(Au) ≤ end(A)
start(A) ≥ min{start(Au) : u∈resource(A)}
end(A) ≤ max{end(Au) : u∈ resource(A)}
failure related to Au ⇒ resource(A)\{u}

Actually, it is maintaining a constructive
disjunction between the alternative activities.

Constraints for scheduling

Search strategies

Constraint Processing for Planning and Scheduling 78

Branching schemesBranching schemes

Branching = resolving disjunctions
Traditional scheduling approaches:

take the critical decisions first
resolve bottlenecks …
defines the shape of the search tree
recall the fail-first principle

prefer an alternative leaving more flexibility
defines order of branches to be explored
recall the succeed-first principle

How to describe criticality and flexibility formally?

Constraint Processing for Planning and Scheduling 79

SlackSlack

Slack is a formal description of flexibility
Slack for a given order of two activities
„free time for shifting the activities“

slack(A « B) = max(end(B)) - min(start(A)) - p({A,B})

Slack for two activities
slack({A,B}) = max{ slack(A « B), slack(B « A) }

Slack for a group of activities
slack(Ω) = max(end(Ω)) - min(start(Ω)) - p(Ω)

A

B
slack for Aslack for A«B B

Smith and Cheng (1993)

Constraint Processing for Planning and Scheduling 80

Order branchingOrder branching

A « B ∨ ¬ A « B
Which activities should be ordered first?

the most critical pair (first-fail)
the pair with the minimal slack({A,B})

What order should be selected?
the most flexible order (succeed-first)
the order with the maximal slack(A??B)

O(n2) choice points

Smith and Cheng (1993)

Constraint Processing for Planning and Scheduling 81

First/last branchingFirst/last branching

(A<<Ω ∨ ¬A<<Ω) or (Ω<<A ∨ ¬ Ω<<A)
Should we look for first or last activity?

select a smaller set among possible first or
possible last activities (first-fail)

What activity should be selected?
If first activity is being selected then the activity
with the smallest min(start(A)) is preferred.
If last activity is being selected then the activity
with the largest max(end(A)) is preferred.

O(n) choice points

Baptiste et al. (1995)

Constraint Processing for Planning and Scheduling 82

Resource slackResource slack

Resource slack is defined as a slack of the
set of activities processed by the resource.

How to use a resource slack?
choosing a resource on which the activities
will be ordered first

resource with a minimal slack (bottleneck) preferred

choosing a resource on which the activity will
be allocated

resource with a maximal slack (flexibility) preferred

Conclusions

Constraint Processing for Planning and Scheduling 84

Constraint solversConstraint solvers

It is not necessary to program all the presented
techniques from scratch!
Use existing constraint solvers (packages)!

provide implementation of data structures for
modelling variables‘ domains and constraints
provide a basic consistency framework (AC-3)
provide filtering algorithms for many constraints
(including global constraints)
provide basic search strategies
usually extendible (new filtering algorithms, new
search strategies)

Constraint Processing for Planning and Scheduling 85

SICStusSICStus PrologProlog

www.sics.se/sicstus
a strong Prolog system with libraries for solving
constraints (FD, Boolean, Real)
arithmetical, logical, and some global constraints

an interface for defining new filtering algorithms

depth-first search with customizable value and
variable selection (also optimization)

it is possible to use Prolog backtracking

support for scheduling
constraints for unary and cumulative resources
first/last branching scheme

Constraint Processing for Planning and Scheduling 86

ECLiPSeECLiPSe
eclipse.crosscoreop.com

a Prolog system with libraries for solving
constraints (FD, Real, Sets)
integration with OR packages (CPLEX, XPRESS-MP)
arithmetical, logical, and some global constraints

an interface for defining new filtering algorithms
Prolog depth-first search (also optimization)
a repair library for implementing local search
techniques

support for scheduling
constraints for unary and cumulative resources
„probing“ using a linear solver
Gantt chart and network viewers

Constraint Processing for Planning and Scheduling 87

CHIPCHIP

www.cosytec.com
a constraint solver in C with Prolog as a host
language, also available as C and C++ libraries
popularized the concept of global constraints

different, order, resource, tour, dependency

it is hard to go beyond the existing constraints
support for scheduling

constraints for unary and cumulative resources
a precedence constraint (several cumulatives with the
precedence graph)

Constraint Processing for Planning and Scheduling 88

ILOG CPILOG CP
www.ilog.com/products/cp

the largest family of optimization products as C++
(Java) libraries
ILOG Solver provides basic constraint satisfaction
functionality
ILOG Scheduler is an add-on to the Solver with
classes for scheduling objects

activities
state, cumulative, unary, energetic resources;
reservoirs

alternative resources

resource, precedence, and bound constraints

Constraint Processing for Planning and Scheduling 89

MozartMozart

www.mozart-oz.org
a self contained development platform based on
the Oz language
mixing logic, constraint, object-oriented,
concurrent, and multi-paradigm programming

support for scheduling
constraints for unary and cumulative resources
first/last branching scheme
search visualization

Constraint Processing for Planning and Scheduling 90

SummarySummary

Basic constraint satisfaction framework:
local consistency connecting filtering algorithms
for individual constraints
search resolves remaining disjunctions

Problem solving:
declarative modeling of problems as a CSP
dedicated algorithms encoded in constraints
special search strategies

