
Modeling	and	Solving	AI	

Problems	in	Picat

Roman Barták, Neng-Fa Zhou

Numberlink

Source: wiki

Pair	up	all	the	matching	
numbers	on	the	grid	with	
single	continuous	lines	(or	
paths).
• The	lines	cannot	branch	

off or	cross over	each	
other,	and

• the	numbers	have	to	fall	
at	the	end	of	each	line	
(i.e.,	not	in	the	middle).

It	is	considered	all	the	cells	
in	the	grid	are	filled.

Numberlink:	a	hard	instance

Solved with the sat module of Picat and the Lingeling solver in 40s.

Numberlink:	Picat encoding

import sat.

numberlink(NP,NR,NC,InputM) =>
M = new_array(NP,NR,NC),
M :: 0..1,
% no two numbers occupy the same square
foreach(J in 1..NR, K in 1..NC)

sum([M[I,J,K] : I in 1..NP]) #=1
end,
% connectivity constraints
foreach(I in 1..NP, J in 1..NR, K in 1..NC)

Neibs = [M[I,J1,K1] : (J1,K1) in [(J-1,K),(J+1,K),(J,K-1),(J,K+1)],
J1>=1, K1>=1, J1=<NR, K1=<NC],

(InputM[J,K]==I ->
M[I,J,K] #=1, sum(Neibs) #= 1

;
M[I,J,K] #=> sum(Neibs) #= 2

)
end,
solve(M).

{{0,0,0,4,0,0,0},
{0,3,0,0,2,5,0},
{0,0,0,3,1,0,0},
{0,0,0,5,0,0,0},
{0,0,0,0,0,0,0},
{0,0,1,0,0,0,0},
{2,0,0,0,4,0,0}}

picat-lang.org/asp/numberlink_b.pi

Tutorial	outline

Part	I:	From	Prolog	to	Picat
– Introduction	to	Picat’s programming	constructs
– Behind	the	scene

Part	II.	Combinatorial	(optimization)	problems	in	Picat
– A	very	short	introduction	to	SAT,	CP,	MIP	modules
– Examples	of	combinatorial	(optimization)	problems	and	
their	encodings	in	Picat

– Behind	the	scene

Part	III.	Classical	action	planning	in	Picat
– A	very	short	introduction	to	formal	models	of	classical	
planning	problems

– Examples	of	planning	problems	and	their
encodings	in	Picat

– Behind	the	scene

Wrap	up

FROM	PROLOG	TO	PICAT

Part	I:

What	is	Picat?

Why	the	name	“PICAT”?
– Pattern-matching,	Intuitive,	Constraints,	Actors,	Tabling

Core	logic	programming	concepts:
– logic	variables	(arrays	and	maps	are	terms)
– implicit	pattern-matching	and	explicit	unification
– explicit	non-determinism

Language	constructs	for	scripting	and	modeling:
– functions,	loops,	list	and	array	comprehensions,	and	
assignments

Facilities	for	combinatorial	search:
– tabling	for	dynamic	programming
– the	cp,	sat,	and	mipmodules	for	CSPs
– the	plannermodule	for	planning

Picat’s Data	Types

Variables

Picat> var(X)
yes

Picat> X = a, var(X)
no

Picat> X.put_attr(a,1), attr_var(X)
yes

Picat> X.put_attr(a,1), Val = X.get_attr(a)
Val = 1
yes

Picat> import cp
Picat> X :: 1..10, dvar(X)
X = DV_010b48_1..10
yes

A	variable	name	begins	with	a	capital	letter	or	the	underscore.

Atoms	and	Characters

Picat> atom(abc)
yes

Picat> atom('_abc')
yes

Picat> char(a)
yes

Picat> Code = ord(a)
Code = 97

Picat> A = chr(97)
A = a

An	unquoted	atom	name	begins	with	a	lower-case	letter.
A	character	is	a	single-letter	atom.

Numbers

Picat> int(123)
yes

Picat> Big = 99999999999999999999999
Big = 99999999999999999999999

Picat> X = 0b111101
X = 61

Picat> X = 0xff0
X = 4080

Picat> real(1.23)
yes

Picat> X = 1.23e10
X = 12300000000.0

Lists

Picat> L = [a,b,c], list(L)
L = [a,b,c]
yes

Picat> L = new_list(3)
L = [_101c8,_101d8,_101e8]

Picat> L = 1..2..10
L = [1,3,5,7,9]

Picat> L = [X : X in 1..10, even(X)]
L = [2,4,6,8,10]

Picat> L = [a,b,c], Len = len(L)
L = [a,b,c]
Len = 3

Picat> L = [a,b] ++ [c,d]
L = [a,b,c,d]

Lists	are	singly-linked	lists.

Strings

Picat> S = "hello"
S = [h,e,l,l,o]

Picat> S = "hello" ++ "Picat"
S = [h,e,l,l,o,'P',i,c,a,t]

Picat> S = to_string(abc)
S = [a,b,c]

Picat> S = to_radix_string(123,16)
S = ['7','B']

Picat> X = to_int("123")
X = 123

Picat> X = parse_term("[1,2,3]")
X = [1,2,3]

Strings	are	lists	of	characters.

Structures

Picat> S = $student(mary,cs,3.8)
S = student(mary,cs,3.8)

Picat> S = new_struct(mary,3)
S = mary(_12ad0,_12ad8,_12ae0)

Picat> S = $f(a), A = arity(S), N = name(S)
A = 1
N = f

Picat> And = (a,b)
And = (a,b)

Picat> Or = (a;b)
Or = (a;b)

Picat> Constr = (X #= Y)
Constr = (_10f18 #= _10f20)

Arrays

Picat> A = {a,b,c}, array(A)
A = {a,b,c}
yes

Picat> A = new_array(3)
A = {_10528,_10530,_10538}

Picat> A = new_array(3,3)
A = {{_fdb0,_fdb8,_fdc0},…}

Picat> A = {X : X in 1..10, even(X)}
A = {2,4,6,8,10}

Picat> L = [a,b,c], A = to_array(L)
L = [a,b,c]
A = {a,b,c}

Picat> A = {a,b} ++ {c,d}
A = {a,b,c,d}

Maps	and	Sets

Picat> M = new_map([ichi=1, ni=2]), map(M)
M = (map)[ni = 2,ichi = 1]
yes

Picat> M = new_map([ni=2]), Ni = M.get(ni)
Ni = 2

Picat> M = new_map(), M.put(ni,2)
M = (map)[ni = 2]

Picat> M = new_map(), Ni = M.get(ni,unknown)
M = (map)[]
Ni = unknown

Picat> S = new_set([a,b,c])
S = (map)[c,b,a]

Picat> S = new_set([a,b,c]), S.has_key(b)
yes

Maps	and	sets	are	hash	tables.

Index	Notation

X[I1,…,In]	:	X	references	a	compound	value	

Picat> L = [a,b,c,d], X = L[4]
X = d

Picat> S = $student(mary,cs,3.8), GPA = S[3]
GPA = 3.8

Picat> A = {{1, 2, 3}, {4, 5, 6}}, B = A[2, 3]
B = 6

Linear-time access	of	list elements.

Constant-time access	of	structure and	array elements.

List	Comprehension

[T : E1 in D1, Condn , . . ., En in Dn, Condn]

Picat> L = [X : X in 1..10, even(X)]
L = [2,4,6,8,10]

Picat> L = [(A,I) : A in [a,b], I in 1..2].
L = [(a,1),(a,2),(b,1),(b,2)]

Picat> L = [(A,I) : {A,I} in zip([a,b],1..2)]
L = [(a,1),(b,2)]

Picat> L = [X : I in 1..5] % X is local
L = [_bee8,_bef0,_bef8,_bf00,_bf08]

Picat> X = _, L = [X : I in 1..5] % X is non-local
L = [X,X,X,X,X]

OOP	Notation	

Picat> Y = 13.to_binary_string()
Y = [‘1’, ‘1’, ‘0’, ‘1’]

Picat> Y = 13.to_binary_string().reverse()
Y = [‘1’, ‘0’, ‘1’, ‘1’]

% X becomes an attributed variable
Picat> X.put_attr(age, 35), X.put_attr(weight, 205), A =

X.get_attr(age)
A = 35

% X is a map
Picat> X = new_map([age=35, weight=205]), X.put(gender, male)
X = (map)([age=35, weight=205, gender=male])

Picat> S = $point(1.0, 2.0), Name = S.name, Arity = S.len
Name = point
Arity = 2

Picat> Pi = math.pi % module qualifier
Pi = 3.14159

O.f(t1,…,tn)

-- means	module	qualified	call	if	O	is	atom

-- means	f(O,t1,…,tn)	otherwise.

Explicit	Unification

Picat> X = 1
X=1

Picat> $f(a,b) = $f(a,b)
yes

Picat> [H|T] = [a,b,c]
H=a
T=[b,c]

Picat> $f(X,Y) = $f(a,b)
X=a
Y=b

Picat> $f(X,b) = $f(a,Y)
X=a
Y=b

Picat> X = $f(X)

bind

test

matching

matching

full	unification

without	occur	checking

Nondeterministic	Predicates

Picat> member(X,[1,2,3])
X = 1 ?;
X = 2 ?;
X = 3 ?;
no

Picat> between(1,3,X)

Picat> select(X,[1,2,3],R)

Picat> nth(I,[1,2,3],E)

Picat> append(L1,L2,[1,2,3])

Control backtracking
Picat> once(member(X,[1,2,3]))

Higher-Order

Picat> call(member,X,[1,2,3])

Picat> Sin = apply(sin,0.5)
Sin = 0.479425538604203

Picat> R = map(to_real,[1,2,3])
R = [1.0,2.0,3.0]

Picat> L = findall(X,member(X,[1,2,3]))
L = [1,2,3]

Picat> time(_ = 1..1000000)
CPU time 0.033 seconds.

Picat> maxof(member(X,[1,3,2]),X)
X = 3

The	ioModule

Picat> X = read_int()
123
X = 123

Picat> X = read_file_lines()
hello
Picat
X = [[h,e,l,l,o],['P',i,c,a,t]]

Picat> S = open("t"), Line = S.read_line(),
S.close()
S = (stream)[10002]
Line = [h,e,l,l,o,' ','P',i,c,a,t]

The	mathModule

Picat> X = sign(-2)
X = -1

Picat> X = sin(pi()/3)
X = 0.866025403784439

Picat> X = sqrt(5)
X = 2.23606797749979

Picat> X = factorial(30)
X = 265252859812191058636308480000000

Picat> X = gcd(100000,388)
X = 4

Picat> X = primes(17)
X = [2,3,5,7,11,13,17]

The	utilModule

Picat> import util

Picat> Ts = split("ab cd ef"), S = Ts.join()
Ts = [[a,b],[c,d],[e,f]]
S = [a,b,' ',c,d,' ',e,f]

Picat> permutation([1,2,3],P)
P = [1,2,3] ?;
P = [1,3,2] ?
…

Picat> Ps = permutations([1,2,3])
Ps = [[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2,1]]

Statements

Picat> (2 > 1, 2 < 3) % conjunction
yes

Picat> (X = a; X = b) % disjunction
X = a ?;
X = b

Picat> not X = a % negation

Picat> if var(X) then writeln(var) else writeln(no) end
var

Picat> (var(X) -> writeln(var); writeln(no))
var

Picat> X = cond(2>1, a, b) % conditional exp
X = a

The	foreach Loop

foreach(E1 in D1, Cond1 ,…, En in Dn, Condn)
Goal

end

Picat> A = new_array(5), foreach(I in 1..5) A[I] = X end
A = {_15bd0,_15bd8,_15be0,_15be8,_15bf0}

Picat> X = _, A = new_array(5), foreach(I in 1..5) A[I] = X end
A = {X,X,X,X,X}

Variables	that	occur	within	a	loop	but	not	before	
in	its	outer	scope	are	local	to	each	iteration

Assignments

X[I1,…,In] := Exp
Destructively	update	the	component	to	Exp.	Undo	
the	update	upon	backtracking.

Var := Exp
The	compiler	changes	it	to	Var’ = Exp and	
replaces	all	subsequent	occurrences	of	Var in	the	
scope	by	Var’.

Picat> X = 0, X := X + 1, X := X + 2, write(X).

Picat> X = 0, X1 = X + 1, X2 = X1 + 2, write(X2).

The	while Loop

while (Cond)
Goal

end

Picat> X = read_int(), while (X !== 0) X := read_int() end

Logic	Programming	in	Picat

• Pattern-matching	rules
– No	laziness	or	freeze

The	call	membchk(X,_) fails
– Facilitates	indexing

• Explicit	unification	
• Explicit	non-determinism

Head, Cond => Body. Head, Cond ?=> Body.

Non-backtrackable Backtrackable

Predicate	Facts	

index(+,-) (-,+)
edge(a,b).
edge(a,c).
edge(b,c).
edge(c,b).

edge(a,Y) ?=> Y=b.
edge(a,Y) => Y=c.
edge(b,Y) => Y=c.
edge(c,Y) => Y=b.
edge(X,b) ?=> X=a.
edge(X,c) ?=> X=a.
edge(X,c) => X=b.
edge(X,b) => X=c.

n Facts must	be	ground!
n A	call with	insufficiently	instantiated	arguments	fails

n Picat> edge(X,Y)
no

Functional	Programming	in	Picat

Dynamically	typed
List	and	array	
comprehensions
Strict	(not	lazy)
Higher-order	functions	

fib(0) = 1.
fib(1) = 1.
fib(N) = fib(N-1)+fib(N-2).

power_set([]) = [[]].
power_set([H|T]) = P1++P2 =>

P1 = power_set(T),
P2 = [[H|S] : S in P1].

qsort([]) = [].
qsort([H|T]) = qsort([E : E in T, E=<H])++

[H]++
qsort([E : E in T, E>H]).

Head = Exp, Cond => Body.

Patterns	in	Heads

Function	calls	cannot	occur	in	head	patterns.
Index	notations,	ranges,	dot	notations,	and	
comprehensions	cannot	occur	in	head	patterns.
As-patterns:

merge([],Ys) = Ys.
merge(Xs,[]) = Xs.
merge([X|Xs],Ys@[Y|_]) = [X|Zs], X<Y =>

Zs = merge(Xs,Ys).
merge(Xs,[Y|Ys]) = [Y|Zs] =>

Zs=merge(Xs,Ys).

Dynamic	Programming	in	Picat

• Linear	tabling
• Mode-directed	tabling
• Term	sharing

table
fib(0) = 0.
fib(1) = 1.
fib(N) = fib(N-1)+fib(N-2).

Dynamic	Programming:	Binomial	Coefficient

table
c(_, 0) = 1.
c(N, N) = 1.
c(N, K) = c(N-1, K-1) + c(N-1, K).

Scripting	in	Picat

main =>
print("enter an integer:"),
N = read_int(),
foreach(I in 0..N)

Num := 1,
printf("%*s", N-I, ""), % print N-I spaces
foreach(K in 0..I)

printf("%d ", Num),
Num := Num*(I-K) div (K+1)

end,
nl

end. $ picat pascal
enter an integer:5

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

SSA	(Static	Single	Assignment)
Loops

The	Picat Compiler

Canonical-form rules

Functions LoopsComprehensions Assignments

TOAM
Picat’s virtual machine

Transformation	of	Functions

f(A1,A2,…,An) = Exp, Cond => Body.

p(A1,A2,…,An,V), Cond => Body, V=Exp.

conc([], Ys) = Ys.
conc([X|Xs], Ys) = [X | conc(Xs, Ys)].

conc_p([], Ys, Zs) => Zs = Ys.
conc_p([X|Xs], Ys, Zs) =>

Zs = [X|Zs1],
conc_p(Xs, Ys, Zs1).

Tail-recursive

Transformation	of	Comprehensions

L = [Exp : E1 in D1, Condn , . . ., En in Dn, Condn]

L = Tail,
foreach (E1 in D1, Condn , . . ., En in Dn, Condn)

Tail = [Exp|NewVar],
Tail := NewVar,

end,
Tail = []

Transformation	of	Aggregates	of	Comprehensions

Sum = sum([f(I) : I in 1..100])

S = 0,
foreach (I in 1..100)

S := S + f(I)
end,
Sum = S

Deforestation

Transformation	of	foreach

foreach (E in D)
Goal

end

p(V1,…,Vn,[]) => true.
p(V1,…,Vn,[E|T]) => Goal, p(V1,V1,…,Vn,T).

V1,…,Vn are global vars in Goal
D is a list

Transformation	of	LHS	:=	RHS,	No	if-then-else,	no	loops

X = 0, X := X + 1, X := X + 2, write(X).

X = 0, X1 = X + 1, X2 = X1 + 2, write(X2).
Static Single Assignment form

Transformation	of	LHS	:=	RHS:	in	if-then-else

go(Z) =>
X = 1, Y = 2,
if Z > 0 then

X := X * Z
else

Y := Y + Z
end,
print([X,Y]).

go(Z) =>
X = 1, Y = 2,
p(X, Xout, Y, Yout, Z),
println([Xout,Yout]).

p(Xin, Xout, Yin, Yout, Z), Z > 0 =>
Xout = Xin * Z,
Yout = Yin.

p(Xin, Xout, Yin, Yout, Z) =>
Xout = Xin,
Yout = Yin + Z.

Transformation	of	LHS	:=	RHS,	in	loops

sum_list(L, Sum) =>
S = 0,
foreach (E in L)

S := S + E
end,
Sum = S.

sum_list(L, Sum) =>
S = 0,
p(L, S, Sout),
Sum = Sout.

p([], Sin, Sout) =>
Sout = Sin.

p([E|T], Sin, Sout) =>
St = Sin + E,
p(T, St, Sout).

Programming	Exercise: Count	Zeros

Write	a	function	that	returns	the	number	of	
zeros	in	a	given	simple	list	of	numbers.

count_zeros(L) = sum([1 : 0 in L]).

count_zeros(L) = Count =>
count_zeros(L, 0, Count).

count_zeros([], Count0, Count) => Count = Count0.
count_zeros([0|L], Count0, Count) =>

count_zeros(L, Count0+1, Count).
count_zeros([_|L], Count0, Count) =>

count_zeros(L, Count0, Count).

Programming	Exercise:	Replicate	Elements

Replicate	the	elements	of	a	list	a	given	number	
of	times.
Example:
repli([a,b],3) returns	[a,a,a,b,b,b].

repli(L, N) = [X : X in L, _ in 1..N].

Programming	Exercise:	Reverse	Words

Given	a	list	of	space-separated	words,	reverse	
the	order	of	the	words [from	GCJ].

3
this is a test
foobar
all your base

Input

Case #1: test a is this
Case #2: foobar
Case #3: base your all

Output

Programming	Exercise:	Reverse	Words

Given	a	list	of	space-separated	words,	reverse	
the	order	of	the	words [from	GCJ].

import util.

main =>
T = read_line().to_int(),
foreach (TC in 1..T)

Words = read_line().split(),
printf("Case #%w: %s\n", TC, Words.reverse().join())

end.

3
this is a test
foobar
all your base

Case #1: test a is this
Case #2: foobar
Case #3: base your all

Programming	Exercise:	Store	Credit

Given	an	integer	C,	and	a	sequence	of	integers,	
find	the	indices	of	the	two	items	that	sum	up	to	
C	(from	GCJ).	

2
100
3
5 75 25
200
7
150 24 79 50 88 345 3

Input

Case #1: 2 3
Case #2: 1 4

Output

Programming	Exercise:	Store	Credit,	Brute-force,	O(n2)

main =>
T = read_int(),
foreach (TC in 1..T)

C = read_int(),
N = read_int(),
Items = {read_int() : _ in 1..N},
do_case(TC, C, Items)

end.

do_case(TC, C, Items),
between(1, len(Items)-1, I),
between(I+1, len(Items), J),
C == Items[I]+Items[J]

=>
printf("Case #%w: %w %w\n", TC, I, J).

Programming	Exercise:	Store	Credit,	Fast,	O(n)
main =>

T = read_int(),
foreach (TC in 1..T)

C = read_int(),
N = read_int(),
Items = {read_int() : _ in 1..N},
Map = new_map(),
foreach (I in N..-1..1)

Is = Map.get(Items[I], []),
Map.put(Items[I],[I|Is])

end,
do_case(TC, C, Items, Map)

end.

do_case(TC, C, Items, Map),
between(1, len(Items)-1, I),
Js = Map.get(C-Items[I], []),
member(J, Js),
I < J

=>
printf("Case #%w: %w %w\n", TC, I, J).

COMBINATORIAL	(OPTIMIZATION)	

PROBLEMS	IN	PICAT

Part	II.

Combinatorial	puzzle, whose
goal	is	to	enter	digits	1-9	in
cells	of	9´9	table	in	such	a	way,
that	no	digit	appears	twice
or	more	in	every	row,	column,
and	3´3	sub-grid.

Solving	Sudoku

Use	information	that	each	digit	
appears	exactly	once
in	each	row,	column	and	sub-grid.	

Sudoku

Sudoku	in	general

We	can	see	every
cell	as	a	variable
with	possible	values
from	domain {1,…,9}.

There	is	a	binary	inequality	constraint
between	all	pairs	of	variables	in	every	
row,	column,	and	sub-grid.

Such	formulation	of	the	problem	is	called
a	constraint	satisfaction	problem.

Constraint	Satisfaction	Problem

Constraint	satisfaction	problem	consists	of:
– a finite	set	of	variables

• describe	some	features	of	the	world	state	that	we	are	looking	for,	
for	example	positions	of	queens	at	a	chessboard

– domains	– finite	sets	of	values	for	each	variable
• describe	“options”	that	are	available,	for	example	the	rows	for	
queens

• sometimes,	there	is	a	single	common	“superdomain”	and	domains	
for	particular	variables	are	defined	via	unary	constraints

– a finite	set	of	constraints
• a constraint	is	a	relation over	a	subset	of	variables
for	example	rowA ¹ rowB

• a constraint	can	be	defined	in	extension	(a	set	of	tuples	satisfying	
the	constraint)	or	using	a	formula (see	above)

A	solution	to	a	CSP

A feasible solution of a constraint satisfaction problem is
a complete consistent assignment of values to variables.
– complete = each variable has assigned a value
– consistent = all constraints are satisfied

Sometimes we may look for all the feasible solutions or for
the number of feasible solutions.

An optimal solution of a constraint satisfaction problem
is a feasible solution that minimizes/maximizes a value
of some objective function.
– objective function = a function mapping feasible solutions to

integers

Constraint	Logic	Programming

• For	each	variable	we	define	its	domain.
– we	will	be	using	discrete	finite	domains	only
– such	domains	can	be	mapped	to	integers

• We	define	constraints/relations between	the	variables.
[X,Y] :: 0..100, 3#=X+Y, Y#>=2, X#>=1.

• Recall	a	constraint	satisfaction	problem.

• We	want	the	system	to	find	the	values	for	the	variables	
in	such	a	way	that	all	the	constraints	are	satisfied.
X=1, Y=2

How	does	it	work?

How	is	constraint	satisfaction	realized?
– For	each	variable	the	system	keeps	its	actual	domain.
– When	a	constraint	is	added,	the	inconsistent	values	are	
removed	from	the	domain.

Example:

X Y
inf..sup inf..sup

[X,Y] :: 0..100 0..100 0..100
3#=X+Y 0..3 0..3
Y#>=2 0..1 2..3
X#>=1 1 2

SEND+MORE=MONEY

Assign	different	digits	to	letters	such	that	SEND+MORE=MONEY	
holds	and	S¹0	and	M¹0.

Idea:
generate	assignments	with	different	digits	and	check	the	constraint

crypto_naive(Sol) =>
Sol = [S,E,N,D,M,O,R,Y],
Digits1_9 = 1..9,
Digits0_9 = 0..9,
member(S, Digits1_9),
member(E, Digits0_9), E!=S,
member(N, Digits0_9), N!=S, N!=E,
member(D, Digits0_9), D!=S, D!=E, D!=N,
member(M, Digits1_9), M!=S, M!=E, M!=N, M!=D,
member(O, Digits0_9), O!=S, O!=E, O!=N, O!=D, O!=M,
member(R, Digits0_9), R!=S, R!=E, R!=N, R!=D, R!=M, R!=O,
member(Y, Digits0_9), Y!=S, Y!=E, Y!=N, Y!=D, Y!=M, Y!=O, Y!=R,

1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E =

10000*M + 1000*O + 100*N + 10*E + Y.

1.7 s

SEND+MORE=MONEY	(better)

crypto_better(Sol) =>
Sol = [S,E,N,D,M,O,R,Y],
Digits1_9 = 1..9,
Digits0_9 = 0..9,
% D+E = 10*P1+Y
member(D, Digits0_9),
member(E, Digits0_9), E!=D,
Y is (D+E) mod 10, Y!=D, Y!=E,
P1 is (D+E) // 10, % carry bit

% N+R+P1 = 10*P2+E
member(N, Digits0_9), N!=D, N!=E, N!=Y,
R is (10+E-N-P1) mod 10, R!=D, R!=E, R!=Y, R!=N,
P2 is (N+R+P1) // 10,

% E+O+P2 = 10*P3+N
O is (10+N-E-P2) mod 10, O!=D, O!=E, O!=Y, O!=N, O!=R,
P3 is (E+O+P2) // 10,

% S+M+P3 = 10*M+O
member(M, Digits1_9), M!=D, M!=E, M!=Y, M!=N, M!=R, M!=O,
S is 9*M+O-P3,
S>0,S<10, S!=D, S!=E, S!=Y, S!=N, S!=R, S!=O, S!=M.

0.001 s

Some letters can be
computed from other
letters and invalidity
of the constraint can
be checked before all

letters are know

SEND+MORE=MONEY	(CLP)

Domain	filtering	can	take	care	about	computing	values	for	
letters	that	depend	on	other	letters.

import cp.
crypto(Sol) =>
Sol=[S,E,N,D,M,O,R,Y],
Sol :: 0..9,
S #!= 0, M #!= 0,

1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E #=

10000*M + 1000*O + 100*N + 10*E + Y,
all_different(Sol),
solve(Sol).

Note:	It	is	also	possible	to	use	a	model	with	carry	bits.

0.0 s

assign values (from domains) to
variables – depth first search

Declarative model

CLP(FD)

A typical structure of CLP programs in Picat:
import cp.

problem(Variables) =>

declare_variables(Variables),

post_constraints(Variables),

solve(Variables).

Definition of CLP operators,
constraints and solvers

Definition of variables
and their domains

Definition of
constraints

Control part
• exploration of space of assignments
• assigning values to variables
• looking for one, all, or optimal solution

Domain	constraints

Domain in Picat is a set of integers
– other values must be mapped to integers
– integers are naturally ordered

Frequently, domain is an interval
– ListOfVariables :: MinVal..MaxVal
– defines variables with the initial domain

{MinVal,…,MaxVal}

For each variable we can define a separate domain (it
is possible to use any expression providing a list of
integers)
– X :: Expr
– X :: [1,2,3,8,9,15]++[27,28]

Arithmetic	constraints

Classical arithmetic constraints with operations
+,-, *, /, abs, min, max,… operations are built-in
It is possible to use comparison to define a
constraint #=, #<, #>, #=<, #>=, #!=
Picat> A+B #=< C-2.

What if we define a constraint before defining
the domains?
– For such variables, the system assumes initially the

infinite domain -MinInt..+MaxInt

Boolean	constraints

Arithmetic (reified) constraints can be connected using
logical operations:

• #~ :Q negation
• :P #/\ :Q conjunction
• :P #\/ :Q disjunction
• :P #=> :Q implication
• :P #<=> :Q equivalence

P and Q could be Boolean variables (constants) or
arithmetic, domain or Boolean constraints

Instantiation	of	variables

Constraints alone frequently do not set the
values to variables. We need to instantiate
the variables via search.
• indomain(X)
– assign a value to variable X (values are tried

in the increasing order upon backtracking)
• solve(Vars)
– instantiate variables in the list Vars
– algorithm MAC – maintaining arc consistency

during backtracking

Parameters	of	search

solve(:Options, +Variables)

• variable	ordering
– forward, backward, degree, constr,
min, max, min, ff, ffc, ffd, …

• value	ordering
– split, reverse_split
– down, rand

• optimization	
– $min(X),		$max(X)

Problem	modelling

Which decision variables are needed?
– variables denoting the problem solution
– they also define the search space

Which values can be assigned to variables?
– the definition of domains influences the

constraints used
How to formalise constraints?
– available constraints
– auxiliary variables may be

necessary

N-queens

Propose a constraint model for solving the N-queens problem
(place four queens to a chessboard of size N✖N such that
there is no conflict).
import cp.

queens(N,Queens) =>
QR = new_list(N), QR :: 1..N, % position in rows
QC = new_list(N), QC :: 1..N, % position in columns
Queens = zip(QR,QC), % coordinates of queens
foreach(I in 1..N, J in (I+1)..N)

QR[I] #!= QR[J], % different rows
QC[I] #!= QC[J], % different columns
QC[I]-QR[I] #!= QC[J]-QR[J], % different diagonals
QC[I]+QR[I] #!= QC[J]+QR[J]

end,
solve(QR++QC).

4-queens:	analysis

Picat> queens(4,Q).
Q = [{1,2},{2,4},{3,1},{4,3}] ? ;
Q = [{1,3},{2,1},{3,4},{4,2}] ? ;
Q = [{1,2},{2,4},{4,3},{3,1}] ? ;
Q = [{1,3},{2,1},{4,2},{3,4}] ? ;
Q = [{1,2},{3,1},{2,4},{4,3}] ? ;
Q = [{1,3},{3,4},{2,1},{4,2}] ? ;
Q = [{1,2},{3,1},{4,3},{2,4}] ? ;
Q = [{1,3},{3,4},{4,2},{2,1}] ? ;
…

Where is the problem?
– Different assignments describe the same solution!
– There are only two different solutions (very „similar“ solutions).
– The search space is non-necessarily large.

Solution
– pre-assign queens to rows (or to columns)

N-queens:	a	better	model

import cp.

queens2(N,Queens) =>
QR = 1..N,
QC = new_list(N), QC :: 1..N,
Queens = zip(QR,QC),
all_different(QC),
all_different([$QC[I]-I : I in 1..N]),
all_different([$QC[I]+I : I in 1..N]),
solve(QC).

Picat> queens2(4,Q).
Q = [{1,2},{2,4},{3,1},{4,3}] ?;
Q = [{1,3},{2,1},{3,4},{4,2}] ?;
no

Model properties:
– less variables (= smaller state space)
– less constraints (= faster propagation)

Homework:
– think about further improvements (symmetry breaking)

N-queens:	a	dual	model
A dual model swaps the roles of values and variables.
Instead of looking for positions of queens we will be deciding whether or not a given cell

contains a queen.

import cp.

queens_dual(N,Board) =>
Board = new_array(N,N),
Board :: 0..1,
foreach(R in 1..N) % exactly one queen per row

sum([Board[R,C] : C in 1..N]) #= 1
end,
foreach(C in 1..N) % exactly one queen per column

sum([Board[R,C] : R in 1..N]) #= 1
end,
foreach(D in 0..(N-1)) % at most one queen per diagonal

sum([Board[I,I+D] : I in 1..(N-D)]) #=< 1,
sum([Board[I+D,I] : I in 1..(N-D)]) #=< 1,
sum([Board[N-I+1,I+D] : I in 1..(N-D)]) #=< 1,
sum([Board[N-I+1-D,I] : I in 1..(N-D)]) #=< 1

end,
sum([Board[R,C] : R in 1..N, C in 1..N]) #= N,
solve(Board).

Picat> queens2(4,B).
B = {{0,0,1,0},{1,0,0,0},{0,0,0,1},{0,1,0,0}} ?;
B = {{0,1,0,0},{0,0,0,1},{1,0,0,0},{0,0,1,0}} ?;
no

Comment:
– The above model is much better suited for SAT.

model #backtracks

(8	queens)

naive 24

classical 24

dual 21

sat

Notes	on	SAT

The	constraints	need	to	be	translated	to	CNF	
(conjunctive	normal	form)	to	be	solved	by	SAT	
solvers.
The	Picat does	the	translation	automatically.
Example	of	encoding:

import cp.

sudoku(Board) =>
N = Board.length,
N1 = ceiling(sqrt(N)),
Board :: 1..N,
foreach(R in 1..N)

all_different([Board[R,C] :
C in 1..N])

end,
foreach(C in 1..N)

all_different([Board[R,C] : R in 1..N])
end,
foreach(R in 1..N1..N, C in 1..N1..N)

all_different([Board[R+I,C+J] :
I in 0..N1-1, J in 0..N1-1])

end,
solve(Board).

Back	to	Sudoku

board(Board) =>
Board = {{_, 6, _, 1, _, 4, _, 5, _},

{_, _, 8, 3, _, 5, 6, _, _},
{2, _, _, _, _, _, _, _, 1},
{8, _, _, 4, _, 7, _, _, 6},
{_, _, 6, _, _, _, 3, _, _},
{7, _, _, 9, _, 1, _, _, 4},
{5, _, _, _, _, _, _, _, 2},
{_, _, 7, 2, _, 6, 9, _, _},
{_, 4, _, 5, _, 8, _, 7, _}}.

import cp.

sudoku(Board) =>
N = Board.length,
N1 = ceiling(sqrt(N)),
Board :: 1..N,
foreach(R in 1..N)

all_different([Board[R,C] :
C in 1..N])

end,
foreach(C in 1..N)

all_different([Board[R,C] : R in 1..N])
end,
foreach(R in 1..N1..N, C in 1..N1..N)

all_different([Board[R+I,C+J] :
I in 0..N1-1, J in 0..N1-1])

end,
solve(Board).

Back	to	Sudoku

Seesaw	problem

The	problem:

Adam	(36	kg),	Boris	(32	kg)	and	Cecil	(16	kg)
want	to	sit	on	a	seesaw	with	the	length	10	foots
such	that	the	minimal	distances	between	them	are	more	than	2	
foots	and	the	seesaw	is	balanced.

A CSP	model:

• A,B,C	in	-5..5 position
• 36*A+32*B+16*C	=	0 equilibrium	state
• |A-B|>2,	|A-C|>2,	|B-C|>2 minimal	distances

-5 -4 -3 -2 -1 0 1 2 3 4 5

Seesaw	problem	- implementation

Symmetry	breaking

– important	to	reduce	search	space

import cp.

seesaw(Sol) =>
Sol = [A,B,C],
Sol :: -5..5,

36*A+32*B+16*C #= 0,
abs(A-B)#>2, abs(A-C)#>2, abs(B-C)#>2,

solve(Sol).

import cp.

seesaw(Sol) =>
Sol = [A,B,C],
Sol :: -5..5,

A #=< 0,
36*A+32*B+16*C #= 0,
abs(A-B)#>2, abs(A-C)#>2, abs(B-C)#>2,

solve(Sol).

Picat> seesaw(X).

X = [-4,2,5] ? ;
X = [-4,4,1] ? ;
X = [-4,5,-1] ? ;
X = [4,-5,1] ? ;
X = [4,-4,-1] ? ;
X = [4,-2,-5] ? ;

no

Picat> seesaw(X).

X = [-4,2,5] ? ;
X = [-4,4,1] ? ;
X = [-4,5,-1] ? ;

no

Seesaw	problem	- a	different	perspective

A	set	of	similar	constraints	typically	indicates	a	structured	sub-problem	that	
can	be	represented	using	a	global	constraint.

We	can	use	a	global	constraint	describing	allocation	of	activities	to	an	
exclusive	resource.

[A,B,C] :: -5..5,
A #=< 0,
36*A+32*B+16*C #= 0,
abs(A-B)#>2,
abs(A-C)#>2,
abs(B-C)#>2

A in -5..0
B in -2..5
C in -5..5

[A,B,C] :: -5..5,
A #=< 0,
36*A+32*B+16*C #= 0,
cumulative([A,B,C],[3,3,3],[1,1,1],1) A in -5..0

B in -2..5
C in -5..5

abs(A-B)#>2,
abs(A-C)#>2,
abs(B-C)#>2

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
A B C

cumulative(starts,durations,resources,limit)

Golomb ruler

A	ruler	with	M	marks such	that	
distances between	any	two	marks	
are	different.

The	shortest	ruler is	the	optimal	
ruler.

Hard for		M³16,	no	exact	algorithm	
for	M	³ 24!

Applied	in	radioastronomy.

Solomon W. Golomb
Professor
University of Southern California
http://csi.usc.edu/faculty/golomb.html

0 1 4 9 11

Golomb ruler – a model
A	base	model:

Variables	X1,	…,	XM with	the	domain	0..M*M

X1 =	0 ruler	start

X1<	X2<…<	XM no	permutations	of	variables

"i<j	Di,j =	Xj – Xi difference	variables
all_different({D1,2,	D1,3,	…	D1,M,	D2,3,	…	DM-1,M})

Model	extensions:

D1,2 <	DM-1,M symmetry	breaking

better	bounds	(implied	constraints)	for	Di,j

Di,j =	Di,i+1 +	Di+1,i+2 +	…	+	Dj-1,j

so	Di,j ³ Sj-i =	(j-i)*(j-i+1)/2 lower	bound

XM =	XM – X1 =	D1,M =	D1,2 +	D2,3 +	…	Di-1,i +	Di,j +	Dj,j+1 +	…	+	DM-1,M

Di,j =	XM – (D1,2 +	…	Di-1,i +	Dj,j+1 +	…	+	DM-1,M)

so	Di,j £ XM – (M-1-j+i)*(M-j+i)/2 upper	bound

0 1 4 9 11

0 2 7 10 11"

Golomb ruler in	Picat

import cp.
golomb(M,X) =>

X = new_list(M),
X :: 0..(M*M), % domains for marks
X[1] = 0,

foreach(I in 1..(M-1))
X[I] #< X[I+1] % no permutaions

end,

D = new_array(M,M), % distances
foreach(I in 1..(M-1),J in (I+1)..M)

D[I,J] #= X[J] - X[I],
D[I,J] #>= (J-I)*(J-I+1)/2, % bounds
D[I,J] #=< X[M] - (M-1-J+I)*(M-J+I)/2

end,

D[1,2] #< D[M-1,M], % symmetry breaking
all_different([$D[I,J] : I in 1..(M-1),

J in (I+1)..M]),
solve($[min(X[M])],X).

What	is	the	effect	of	different	constraint	models?

What	is	the	effect	of	different	search	strategies?

Golomb ruler	- some	results

size

7
8
9

10
11

time in milliseconds on 1,7 GHz Intel Core i7, Picat 1.9#6

base model

12
94

860
7 494

147 748

base model
+ symmetry

7
44

353
3 212

57 573

base model
+ symmetry
+ implied constraints

4
21

143
1 091

23 851
time in milliseconds on 1,7 GHz Intel Core i7, Picat 1.9#6

size fail first leftmost first

7
8
9

10
11

enum

9
67

537
4 834

134 071

split

9
68

537
4 721

132 046

enum

5
23

170
1 217

26 981

split

4
21

143
1 091

23 851

Maxflow

83

import mip.

maxflow(CapM,Source,Sink) =>
N = CapM.length,
M = new_array(N,N),
foreach(I in 1..N, J in 1..N) % capacity

M[I,J] :: 0..CapM[I,J]
end,
foreach(I in 1..N, I != Source, I != Sink) % conservation

sum([M[J,I] : J in 1..N]) #= sum([M[I,J] : J in 1..N])
end,
Total #= sum([M[Source,I] : I in 1..N]),
Total #= sum([M[I,Sink] : I in 1..N]),
solve([$max(Total)],M),
writeln(M).

Source: wiki

CLASSICAL	ACTION	PLANNING	IN	

PICAT

Part	III.

Example:	The	farmer’s	problem

action([F,W,G,C],S1,Action,Cost), F=W ?=>
Action=farmer_wolf,
opposite(F,F1),
S1=[F1,F1,G,C], safe(S1), Cost=1.

action([F,W,G,C],S1,Action,Cost), F=G ?=>
Action=farmer_goat,
opposite(F,F1),
S1=[F1,W,F1,C], safe(S1), Cost=1.

action([F,W,G,C],S1,Action,Cost), F=C ?=>
Action=farmer_cabbage,
opposite(F,F1),
S1=[F1,W,G,F1], safe(S1) , Cost=1.

action([F,W,G,C],S1,Action,Cost) =>
Action=farmer_alone,
opposite(F,F1),
S1=[F1,W,G,C], safe(S1), Cost=1.

Locations	of

Farmer,	Wolf,	Goat,	and	Cabbage

Modeling	planning	problems

Representing	world	states	as	sets	of	atoms	
(factored	representation).
Representing	actions as	entities	changing	
validity	of	certain	atoms.

precond(a) Í s

(s – effects–(a)) È effects+(a)

Planning	Domain	Description	Language	(PDDL)

The	search	space	corresponds	to	the	state	space	of	the	
planning	problem.
– search	nodes	correspond	to	world	states
– arcs	correspond	to	state	transitions	by	means	of	actions
– the	task	is	to	find	a	path	from	the	initial	state	to	some	goal	
state

Basic	approaches
– forward	search	(progression)

• start	in	the	initial	state	and	apply	actions	until	reaching	a	goal	state
– backward	search	(regression)

• start	with	the	goal	and	apply	actions	in	the	reverse	order	until	a	
subgoal satisfying	the	initial	state	is	reached

• lifting	(actions	are	only	partially	instantiated)

State-space	planning

Heuristics	guide	the	planner	towards	a	goal	state	by	ordering	
alternative	plans.	They	do	not	solve	the	problem	with	the	large	
number	of	alternatives.

Example	(blockworld)
– If	a	block	is	placed	correctly	(consistent	with	the	goal)	then	any	action	

that	moves	that	block	just	enlarges	the	plan.
– If	a	block	is	on	a	wrong	place	and	there	is	an	action	that	moves	it	to	

the	correct	place	then	any	action	that	moves	the	block	elsewhere	just	
enlarges	the	plan.

It	is	possible	to	describe	desirable/forbidden	sequences	of	states	
using	linear	temporal	logic.
– control	rules

It	is	possible	to	describe	expected	plans	via	task	decompositions.
– hierarchical	task	networks

Domain	knowledge

Control	rules	in	practice

Domain	 #	insts TLPlan TALPlanner SHOP2 FF

Depots	 22	 22	 22	 22 22	

DriverLog 20 20 20 20 15
Zenotravel 20	 20	 20	 20 20

Rovers 20 20 20 20 20

Satellite	 20	 20	 20	 20 20	

Total - 894	
(100%)

610
(100%)

899
(99%)

237	
(83%)

problems solved

Planners	with	

control	rules

Planners	with	

control	rules
Forward	

planning

HTN	

planning

Control	rules	in	practice

Picat planning	module

Forward	planning	in	Picat language	(using	tabling):

Cost	optimization	done	via:
– iterative	deepening	(best_plan)
– branch-and-bound	(best_plan_bb)

plan(S,Plan,Cost),final(S) =>
Plan=[],Cost=0.

plan(S,Plan,Cost) =>
action(S,S1,Action,ActionCost),
plan(S1,Plan1,Cost1),
Plan = [Action|Plan1],
Cost = Cost1+ActionCost.

table (+,-,min)
plan(S,Plan,Cost),final(S) =>

Plan=[],Cost=0.
plan(S,Plan,Cost) =>

action(S,S1,Action,ActionCost),
plan(S1,Plan1,Cost1),
Plan = [Action|Plan1],
Cost = Cost1+ActionCost.

table (+,-,min)

Picat Planning	Domain	Model

Goal	condition

final(+State) => goal_condition.

Action	description	

action(+State,-NextState,-Action,-Cost),
precondition,
[control_knowledge]

?=>
description_of_next_state,
action_cost_calculation,
[heuristic_and_deadend_verification].

15-Puzzle

State	representation

main =>
Init = [(1,2),(2,2),(4,4),(1,3),(1,1),(3,2),(1,4),(2,4),

(4,2),(3,1),(3,3),(2,3),(2,1),(4,1),(4,3),(3,4)],
best_plan(Init,Plan).

Initial state Goal state

final(S) => S = [(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),
(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)].

Position of

gap

Position of

1

Position of

2

15-Puzzle:	Actions

action([P0@(R0,C0)|Tiles],NextS,Action,Cost) =>
Cost = 1,
(R1 = R0-1, R1 >= 1, C1 = C0, Action = up;
R1 = R0+1, R1 =< 4, C1 = C0, Action = down;
R1 = R0, C1 = C0-1, C1 >= 1, Action = left;
R1 = R0, C1 = C0+1, C1 =< 4, Action = right),

P1 = (R1,C1),
slide(P0,P1,Tiles,NTiles),
NextS = [P1|NTiles].

% slide the tile at P1 to the empty square at P0
slide(P0,P1,[P1|Tiles],NTiles) =>

NTiles = [P0|Tiles].
slide(P0,P1,[Tile|Tiles],NTiles) =>

NTiles=[Tile|NTilesR],
slide(P0,P1,Tiles,NTilesR).

15-Puzzle:	Heuristics	and	Performance

Heuristic	function

Performance

– Picat planner	easily	solves	15-puzzle	instances
– It	can	even	solve	some	hard	24-puzzle	instances	if	
a	better	heuristic	is	used

heuristic(Tiles) = Dist =>
final([_|FTiles]),
Dist = sum([abs(R-FR)+abs(C-FC) :

{(R,C),(FR,FC)} in zip(Tiles,FTiles)]).

NoMystery problem

A	truck	moves	between	locations	to	pickup	and	
deliver	packages	while	consuming	fuel	during	
moves.
– setting:
• initial	locations	of	packages	and	truck
• goal	locations	of	packages
• initial	fuel	level,	fuel	cost	for	moving	between	locations

– possible	actions:	load,	unload,	drive
– assumption:	track	can	carry	any	number
of	packages

Nomystery:	State	representation

Factored	representation
– state	=	a	set	of	atoms	that	hold	in	that	state	(a	vector	of	
values	of	state	variables)

{at(p0,l2),at(p1,l2),at(p2,l1),at(t0,l2),
in(p3,t0),in(p4,t0),in(p5,t0),
fuel(t0,level84)}

Structured	representation
– state	=	a	term	describing	objects	and	their	relations

objects	represented	by	properties	rather	than	by	names	
to	break	object	symmetries

s(l2, level84, [l2,l2,l4], [[l1|l3], [l2|l3], [l2|l4]])

truck	location

fuel	level

destinations	of	

loaded	packages
current	and	desired	locations	of	

waiting	packages

Nomystery:	Actions

Factored	representation
action(S,NextS,Act,Cost),

truck(T), member(at(T,L),S),
select(at(P,L),S,RestS), P != T

?=>
Act = load(L,P,T), Cost = 1,
NewS = insert_ordered(RestS,in(P,T)).

Structured	representation
action(s(Loc,Fuel,LPs,WPs),NextS,Act,Cost),

select([Loc|PkGoal],WPs,WPs1)
?=>

Act = load(Loc,PkGoal), Cost = 1,
LPs1 = insert_ordered(LPs,PkGoal),
NextS = s(Loc,Fuel,LPs1,WPs1).

Nomystery:	Heuristics

Estimate	distance	to	goal
Precise	heuristic	for	Nomystery domain:
– each	package	must	be	loaded	and	unloaded
– each	place	with	packages	to	load	or	unload	must	
be	visited

action(S,NextS,Act,Cost),
truck(T), member(at(T,L),S),
select(at(P,L),S,RestS), P != T

?=>
Act = load(L,P,T), Cost = 1,
NewS = insert_ordered(RestS,in(P,T)),
heuristics(NewS) < current_resource().

Nomystery:	Control	knowledge

Tell	the	planner	what	to	do	at	a	given	state	based	
on	the	goal
• unload	all	packages	destined	for	current	location	
(and	only	those	packages)

• load	all	undelivered	packages	at	current	location
• move	somewhere
– move	to	a	location	with	waiting	package	or	to	a	
destination	of	some	loaded	package

action(s(Loc,Fuel,LoadedPks,WaitPks), NextState, Action, Cost),
select(Loc,LoadedPks,LoadedPks1)

=>
Action = unload(Loc,Loc),
NextState = s(Loc,Fuel,LoadedPks1, WaitPks),
Cost = 1.

NoMystery Model

action(s(Loc,Fuel,LoadedCGs,Cargoes), NextState, Action, Cost),
select(Loc,LoadedCGs,LoadedCGs1)

=>
Action = unload(Loc,Loc),
NextState = s(Loc,Fuel,LoadedCGs1,Cargoes), Cost = 1.

Action(s(Loc,Fuel,LoadedCGs,Cargoes), NextState, Action, Cost),
select([Loc|CargoGoal],Cargoes,Cargoes1)

=>
insert_ordered(CargoGoal,LoadedCGs,LoadedCGs1),
Action = load(Loc,CargoGoal),
NextState = s(Loc,Fuel,LoadedCGs1,Cargoes1) , Cost = 1.

Action(s(Loc,Fuel,LoadedCGs,Cargoes), NextState, Action, Cost)
?=>

Action = drive(Loc,Loc1),
NextState = s(Loc1,Fuel1,LoadedCGs,Cargoes),
fuelcost(FuelCost,Loc,Loc1),
Fuel1 is Fuel-FuelCost,
Fuel1 >= 0, Cost = 1.

Experimental	setting

Four	domains	from	International	Planning	Competitions:

For	each	domain	the	following	models	(each	for	structured	
and	factored	representation	of	states):

– pure	model	(“physics	only”)
– model	with	heuristics
– model	with	control	knowledge
– model	with	heuristics	+	control	knowledge

Compare	#solved	problems	(30	minutes	per	problem)

domain	 #instances	 #optimal	

Depots 20 13

Nomystery 30 30

Visitall 20 5

Childsnack 20	 20	

Factored	vs.	structured	representations

Iterative	deepening

Branch	and	bound

Heuristics	vs.	control	knowledge	(ID)
Structured	representation

Factored	representation

ID	behavior

Heuristics	vs.	control	knowledge	(B-and-B)

Structured	representation

Factored	representation

B-and-B	behavior

quality_score= "∗
"

Comparison	to	PDDL	planners

Domain	 #	insts Picat Picat-nt SymbA

Barman	 14 14 0 6
Cave	 20 20 0 3
Childsnack 20 20 20 3
Citycar	 20 20 17 17
Floortile	 20 20 0 20

GED	 20 20 19 19
Parking	 20 11 4 1
Tetris	 17 13 13 10
Transport	 20 10 0 8	

number of optimally solved problems

no	tabling	

used

IPC	2014	

winner

Comparison	to	domain-dependent	planners

Domain	 #	insts Picat TLPlan TALPlanner SHOP2	

Depots	 22	 22	 22	 22	 22	

Zenotravel	 20	 20	 20	 20	 20	

Driverlog 20	 20	 20	 20	 20	

Satellite	 20	 20	 20	 20	 20	

Rovers 20	 20	 20	 20	 20	

Total 102 102 102 102 102
problems solved

Planners	with	

control	rules

Planners	with	

control	rules
Task	

hierarchies

Comparison	to	domain-dependent	planners

Domain	 #	insts Picat TLPlan TALPlanner SHOP2	

Depots	 22	 21.94	 19.93	 20.52	 18.63	
Zenotravel	 20	 19.86	 18.40	 18.79	 17.14	
Driverlog 20	 17.21 17.68 17.87 14.16
Satellite	 20 20.00	 18.33	 16.58	 17.16	
Rovers 20 20.00 17.67 14.61 17.57
Total 102 99.01 92.00 88.37 84.65

quality score (after 5 mins)

Planners	with	

control	rules

Planners	with	

control	rules
Task	

hierarchies

Comparison	to	domain-dependent	planners

Domain	 PDDL	 Picat TLPlan

Depots	 42	 156 933	
Zenotravel	 61	 109 308	
Driverlog 79 190 1395
Satellite	 75	 132 186	
Rovers 119 223 914
Total 376 810 3736

encoding size

WRAP	UP

Summary

Picat is	a	logic-based	multi-paradigm	language	
that	integrates	logic	programming,	functional	
programming,	constraint	programming,	and	
scripting.
– logic	variables,	unification,	backtracking,	pattern-

matching	rules,	functions,	list/array	
comprehensions,	loops,	assignments

– tabling	for	dynamic	programming	and	planning
– constraint	solving	with	CP	(constraint	

programming),	SAT	(satisfiability),	and	MIP	(mixed	
integer	programming).

picat-lang.org

Picat book

References

1. H.	Kjellerstrand:	
Picat:	A	Logic-based	Multi-paradigm	Language,	 ALP	Newsletter,	2014.

2. R.	Barták	and		N.-F.	Zhou:	
Using	Tabled	Logic	Programming	to	Solve	the	Petrobras Planning	Problem,	TPLP	
2014.

3. R.	Barták,	A.	Dovier,	and	N.-F.	Zhou:
On	Modeling	Planning	Problems	in	Tabled	Logic	Programming,	PPDP	2015.

4. S.	Dymchenko and	M.	Mykhailova:	
Declaratively	Solving	Google	Code	Jam	Problems	with	Picat,	PADL	2015.

5. S.	Dymchenko:	
An	Introduction	to	Tabled	Logic	Programming	with	Picat,	Linux	Journal,	August,	
2015.

6. N.-F.	Zhou:	
Combinatorial	Search	With	Picat,	ICLP	invited	talk,	2014.

7. N.-F.	Zhou,	R.	Barták,	and	A.	Dovier:
Planning	as	Tabled	Logic	Programming,	TPLP	2015.

8. N.-F.	Zhou,	H.	Kjellerstrand,	and	J.	Fruhman:
Constraint	Solving	and	Planning	with	Picat,	Springer,	2015.

9. N.-F.	Zhou,	H.	Kjellerstrand:
The	Picat-SAT	Compiler,	PADL	2016.

