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Introduction

What is multi-agent path finding (MAPF)?

MAPF problem:
Find a collision-free plan (path) for each agent

Alternative names:
cooperative path finding (CPF), multi-robot path planning, 
pebble motion 



Tutorial outline
Part I: Introduction to Multi-agent pathfinding (MAPF)

– Problem formulation, variants, objectives
– Application areas

Part II: Search-based solvers
– Incomplete solvers
– Complete but suboptimal solvers
– Optimal solvers

Part III: Reduction-based solvers
– SAT encodings of MAPF
– CP encoding of MAPF

Part IV: Demos
– MAPF Scenario (MAPF for Ozobots)
– ASPRILO system (an abstract benchmark environment for robotic 

intra-logistics)

Part V: Open challenges, conclusion, discussion



INTRODUCTION TO MAPF
Part I:



MAPF formulation

• a graph (directed or undirected)
• a set of agents, each agent is assigned to 

two locations (nodes) in the graph (start, 
destination)

V1

V2

V3 V4

V5

V6



Plans

Each agent can perform either move (to a 
neighboring node) or wait (in the same node) 
actions.

Typical assumption:
all move and wait actions have identical durations (plans for 
agents are synchronized)

Plan is a sequence of actions for the agent leading 
from its start location to its destination.

The length of a plan (for an agent) is defined by the 
time when the agent reaches its destination and does 
not leave it anymore.



MAPF task

Find plans for all agents such that the plans do 
not collide in time and space (no two agents are 
at the same location at the same time).

V1

V2

V3 V4

V5

V6

time agent 1 agent 2
0 v1 v2

1 wait v1 move v3

2 move v3 move v4

3 move v4 move v6

4 move v5 wait v6



Plan existence

Some necessary conditions for plan existence:
• no two agents are at the same start node
• no two agents share the same destination node

(unless an agent disappears when reaching its 
destination)

• the number of agents is strictly smaller than the 
number of nodes



No-swap constraint

Agents may swap position

Agents use the same edge at 
the same time!

Swap is not allowed.

V1 V2

V3

V4

time agent 1 agent 2
0 v1 v2

1 move v2 move v1

time agent 1 agent 2
0 v1 v2

1 move v2 move v3

2 move v4 move v2

3 move v2 move v1

Agent at vi cannot perform move 
vj at the same time when agent 

at vj performs move vi



No-train constraint

Agent can approach a node 
that is currently occupied but 
will be free before arrival.  

Agents form a train.

Trains may be forbidden.

time agent 1 agent 2
0 v1 v2

1 move v2 move v3

2 move v4 move v2

3 move v2 move v1

time agent 1 agent 2
0 v1 v2

1 wait v1 move v3

2 move v2 wait v3
3 move v4 wait v3
4 wait v4 move v2

5 wait v4 move v1

6 move v2 wait v1

Agent at vi cannot perform 
move vj if there is another 

agent at vj

V1 V2

V3

V4



Train collisions

If any agent is delayed then trains may cause 
collisions during execution.

To prevent such collisions we may introduce more 
space between agents.



Robustness

k-robustness
An agent can visit a node, if that node has not been 
occupied in recent k steps.

1-robustness covers both no-swap and no-train 
constraints

[Atzmon et al., SoCS 2017]



Other constraints

• No plan (path) has a cycle.
• No two plans (paths) visit the same same 

location.
• Waiting is not allowed.
• Some specific locations must be visited.
• …



Objectives

How to measure quality of plans?
Two typical criteria (to minimize):
• Makespan
– distance between the start time of the first agent 

and the completion time of the last agent 
– maximum of lengths of plans (end times)

• Sum of costs (SOC)
– sum of lengths of plans

(end times)

time agent 1 agent 2
0 v1 v2

1 wait v1 move v3

2 move v3 move v4

3 move v4 move v6

4 move v5 wait v6

Makespan = 4
SOC = 7



Complexity

Optimal single agent path finding is tractable.
– e.g. Dijkstra's algorithm

Sub-optimal multi-agent path finding (with two 
free unoccupied nodes) is tractable.
– e.g. algorithm Push and Rotate 

MAPF, where agents have joint goal nodes (it 
does not matter which agent reaches which 
goal) is tractable.
– reduction to min-cost flow problem

Optimal (makespan, SOC) multi-agent path 
finding is NP-hard.



Applications



Offline MAPF Online MAPF
Warehouse Intersection

Fixed set of agents

Sequence of tasks One task per agent

Sequence of agentsFixed set of agents

One task per agent

Online Multi-Agent Pathfinding



Solving approaches

Search-based techniques
state-space search (A*)

state = location of agents at nodes
transition = performing one action for each agent

conflict-based search

Reduction-based techniques
translate the problem to another formalism 
(SAT/CSP/ASP …)



SEARCH-BASED SOLVERS
Part II:

Some slides and animations taken from Guni Sharon, Dor Atzmon, and Ariel Felner



WHAT IS SEARCH?
A General Problem Solving technique



Classical Search Setting

Start

Start state
a

b

c

Operators
Goal state

Goal



Classical Search Setting

Start

Start state
a

b

c

Operators

d

e

Expand(c)

Goal state

Goal

To expand or not expand, this is the question 

g(e)=min. cost from start



Classical Search Setting

Start

Start state
a

b

c

Operators

d

e

Expand(c)
h(e)=estimated the cost to reach a goal

Goal state

Goal

To expand or not expand, this is the question 

g(e)=min. cost from start A*
• Expands min g+h
• Returns optimal solutions
• “Optimally effective”



WHY SEARCH FOR 
MULTI-AGENT PATH FINDING?



It Works!

Finding an optimal solution to hundreds of agents



From Tiles to Agents

K=1 (Navigation in explicit graphs)
Explicit graph

K=N-1 (Tile puzzle)
(Huge) Implicit graph

K (# agents)

Classical Applications of Search



Overview

Solving Multi-Agent Path Finding with Search

OptimalSuboptimal

??Incomplete

??Complete



Overview

Solving Multi-Agent Path Finding with Search

– From A* to prioritized planners
– From prioritized planners back to A* (+ID+OD/M*)

– The Increasing Cost Tree Search (ICTS)

– The Conflict-Based Search framework (CBS)

– Approximately optimal search-based solvers



Single Agent Pathfinding

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

4 possible
movesStart

2 6 12 8

1 3 11 …

Classical search problem!

11 17 13

Search problem properties
• Number of states = ?
• Branching factor = ?



Single Agent Pathfinding

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

4 possible
movesStart

2 6 12 8

1 3 11 …

Classical search problem!

11 17 13

Search problem properties
• Number of states = 20
• Branching factor = 4



Pathfinding for Two Agent

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

5 possible
moves

5 possible
moves

25 Possible moves! = 5 x 5
Start

6,12 6,8 6,14 6,18 6,12 6,8 …

1,11 1,7 1,13 1,18 …
Search problem properties
• Number of states = ?
• Branching factor = ?



Pathfinding for Two Agent

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

What about k agents?

25 Possible moves! = 5 x 5
Start

6,12 6,8 6,14 6,18 6,12 6,8 …

1,11 1,7 1,13 1,18 …
Search problem properties
• Number of states = 202

• Branching factor = 52

5 possible
moves

5 possible
moves



Pathfinding for k Agent

A very hard search problemClassical search problem�

5k Possible moves! 

Search problem properties
• Number of states = 20k

• Branching factor = 5k



Key idea: 
Plan for each agent separately

Challenge:
Maintaining soundness, completeness, and optimality



Prioritized Planning (Silver 2005)

• Step 1: Plan blue agent



Prioritized Planning (Silver 2005)

• Step 1: Plan blue agent

0



Prioritized Planning (Silver 2005)

• Step 1: Plan blue agent

01



Prioritized Planning (Silver 2005)

• Step 1: Plan blue agent

01

2



Prioritized Planning (Silver 2005)

• Step 1: Plan blue agent
– Done!

• Step 2: Plan red

01

2

3



Prioritized Planning (Silver 2005)

• Step 1: Plan blue agent
– Done!

• Step 2: Plan red

01

2

3

0

avoid blue’s plan



Prioritized Planning (Silver 2005)

• Step 1: Plan blue agent
– Done!

• Step 2: Plan red

01

2

3

0

Wait



Prioritized Planning (Silver 2005)

• Step 1: Plan blue agent
– Done!

• Step 2: Plan red

01

3

0

1

2



Prioritized Planning (Silver 2005)

• Step 1: Plan blue agent
– Done!

• Step 2: Plan red

01

3

0

1

2

2

3



Prioritized Planning (Silver 2005)

• Step 1: Plan blue agent
– Done!

• Step 2: Plan red
– Done!

• …
• Step N: Plan Nth

agent 01

3

0

1

2

2

3 4



Prioritized Planning (Silver 2005) Analysis: First Agent

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

4 possible
movesStart

2 6 12 8

1 3 11 …11 17 13



Prioritized Planning (Silver 2005) Analysis: First Agent

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

4 possible
movesStart

2 6 12 8

1 3 11 …11 17 13

Singe-agent pathfinding
• A state is the agent’s location
• Number of states = 4 x 5
• Branching factor = 4



• A state is a (location,time) pair
• Number of states = 4 x 5 x maxTime
• Branching factor = 4+1

Prioritized Planning (Silver 2005) Analysis: Second Agent

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

5 possible
movesStart

8 12 18 14

3 7 …13 9

13



Prioritized Planning (Silver 2005) Analysis: Second Agent

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

5 possible
moves

• A state is a (location,time) pair
• Number of states = 4 x 5 x maxTime
• Branching factor = 4+1



Prioritized Planning Analysis

• Complexity?
– Polynomial in the grid size and max time

• Soundness?
– Yes! 

• Complete? Optimal?
– No L



Advanced Prioritized Planning

• Smart agent prioritization
– Conflict oriented WHCA* [Bnaya and Felner ‘14]

– Re-prioritization and safe intervals [Andreychuk and Yakovlev ‘18]

• Integrate planning and execution
– Windowed Hierarchical CA* [Silver ‘06]



Prioritized Planning (Silver 2005) - Results



High-level idea: reservation-based planning

+ Fast, requires almost no coordination
- But incomplete and not optimal

Prioritized MAPF - Summary



Search-based Solvers - Overview

OptimalSuboptimal

?• Cooperative A*
• WHCA*

Incomplete

??Complete



Can a MAPF algorithm be 
complete and efficient?



Can a MAPF algorithm be 
complete and efficient?



MAPF as a Puzzle

• MAPF is highly related to pebble motion problems
– Each agent is a pebble
– Need to move each pebble to its goal
– Cannot put two pebbles in one hole 

• Pebble motion can be solved polynomially!
• But far from optimally
• Complex formulation

[Kornhauser et al., FOCS 1984]



MAPF as a Puzzle (cont.)

Similar approaches:
� Slidable Multi-Agent Path Planning [Wang & Botea, IJCAI, 2009]

� Push and Swap  [Luna & Bekris, IJCAI, 2011]

� Parallel push and swap [Sajid, Luna, and Bekris, SoCS 2012]

� Push and Rotate [de Wilde et al. AAMAS 2013]

� Tree-based agent swapping strategy [Khorshid at el. SOCS, 2011]



Procedure-based Solvers



Procedure-based Solvers #2



Examples

Push and Swap (Luna and Bekris ‘13)

Bibox (Surynek ‘09) FAR (Wang and Botea ’08)



OptimalSuboptimal

?• Cooperative A*
• WHCA*

Incomplete

?• Kornhauser et al. ’84
• Push & Swap (Luna & Bekris)

• Bibox (Surynek)

…

Complete

Search-based Solvers - Summary



Can a MAPF algorithm be 
complete and efficient and optimal?

NP-hard(Surynek ’15, ‘10)(Yu and LaValle ‘13)
�Ratner & Warmuth, ’86)

On the Complexity of Optimal Parallel Cooperative Path-Finding, Surynek 2015
Planning Optimal Paths for Multiple Robots on Graphs, Yu and LaValle, 2013



From Tiles to Agents

K=1 (Navigation in explicit graphs)
Explicit graph

K=N-1 (Tile puzzle)
(Huge) Implicit graph

K (# agents)

Can we adapt techniques from these extreme cases?



Optimal MAPF

Yes! 
(and invent some new techniques also)



Searching the k-agent search space
– A*+OD+ID  [Standley ‘10]

– EPEA* [Felner ‘X, Goldenberg ‘Y]

– M* [Wagner & Choset ‘Z]

Other search-based approaches
– ICTS [Sharon et al ‘13]

– CBS [Sharon et al ’15]

Search-based Approaches to Optimal MAPF



Optimal MAPF with A*

• A* expands nodes
• A* gain efficiency by choosing which node to expand

What is the complexity of expanding 
a single node in MAPF with 20 agents?

520= 95,367,431,640,625



Search Tree Growth

67

a b c

d e f
g h i

a,i

Root

b,fd,id,hd,f . . 
.

g,i g,c g,e e,c e,i a,c . . 
.



Search Tree Growth with Operator Decomposition

68

a b c

d e f
g h i

a,i

Root

b,fd,id,hd,f . . 
.

g,i g,c g,e e,c e,i a,c . . 
.

d,i b,i a,i

g,f e,f a,f d,f

(Standley ‘10)



Analysis of OD

• Pros
– Branching factor is reduced to 5 (= single agent)
– With a perfect heuristic can solve the problem

• Cons
– Solution is deeper by a factor of k 
– More nodes may be expanded, due to intermediates

69



Enhanced Partial Expansion A* (Felner ‘12, Goldenberg ‘14)

70

a b c

d e f
g h i

a,i

Root

b,fd,id,hd,f . . 
.

g,i g,c g,e e,c e,i a,c . . 
.



Independence Detection (Standley ‘10)

S2
G0 G2

S1 S0,
G1

Theoretically, a 3 agents problem, but …

(Standley ‘10)

Simple Independence Detection
1. Solve optimally each agent separately
2. While some agents conflict

1. Merge conflicting agents to one group 
2. Solve optimally new group



Independence Detection (Standley ‘10)

Theoretically, a 2 agents problem, but …

(Standley ‘10)

Simple Independence Detection
1. Solve optimally each agent separately
2. While some agents conflict

1. Merge conflicting agents to one group 
2. Solve optimally new group

SO S1

G1 G0



Independence Detection (Standley ‘10)

Theoretically, a 2 agents problem, but …

(Standley ‘10)

Independence Detection
1. Solve optimally each agent separately
2. While some agents conflict

1. Try to avoid conflict, with the same cost
2. Merge conflicting agents to one group 
3. Solve optimally new group

SO S1

G1 G0



Independence Detection (Standley ‘10)

SO A S1

B

C D E

G1 G0

Independence Detection
1. Solve optimally each agent separately
2. While some agents conflict

1. Try to avoid conflict, with the same cost
2. Merge conflicting agents to one group 
3. Solve optimally new group

Really a 2 agent problem
But….



M* (Wagner & Choset ‘11,’14)

SO A S1

B

C D E

G1 G0

S0,S1

S0,AA,S1

S0,AB,S1B,A A,B S0,B A,S1

M* 
1. Find optimal path for each agent individually
2. Start the search. Generate only nodes on optimal paths
3. If conflict occurs – backtrack and consider all ignored actions



M* (Wagner & Choset ‘11,’14)

SO A S1

B

C D E

G1 G0

M* 
1. Find optimal path for each agent individually
2. Start the search. Generate only nodes on optimal paths
3. If conflict occurs – backtrack and consider all ignored actions



M* (Wagner & Choset ‘11,’14)

SO A S1

B

C D E

G1 G0

S0,S1

A,A

M* 
1. Find optimal path for each agent individually
2. Start the search. Generate only nodes on optimal paths
3. If conflict occurs – backtrack and consider all ignored actions



M* (Wagner & Choset ‘11,’14)

SO A S1

B

C D E

G1 G0

M* 
1. Find optimal path for each agent individually
2. Start the search. Generate only nodes on optimal paths
3. If conflict occurs – backtrack and consider all ignored actions

S0,S1

S0,AA,S1



Recursive M* (Wagner & Choset ‘11,’14)

SO A S1

B

C D E

G1 G0

Recursive M* 
1. Find optimal path for each agent individually
2. Start the search. Generate only nodes on optimal paths
3. If conflict occurs – backtrack and consider all ignored actions

- Apply M* recursively after backtracking

S0,S1

S0,AA,S1

B,A

D,B



Recursive M* (Wagner & Choset ‘11,’14)

Joint path up to bottleneck can be long…

SO S1

G1 G0

S0,S1

S0,AA,S1

S0,AB,S1B,A A,B S0,B A,S1



Searching the k-agent search space
– A*+OD+ID  [Standley ‘10]

– EPEA* [Felner ‘X, Goldenberg ‘Y]

– M* [Wagner & Choset ‘Z]

Other search-based approaches
– ICTS [Sharon et al ‘13]

– CBS [Sharon et al ’15]

Search-based Approaches to Optimal MAPF



Increasing Cost Tree Search (Sharon et al. ‘12)

Is there a solution 
with costs

?

High-level

Low-levelNO!

10 10 10



What about this?
10 1110

10

3 11

83

High-level

Low-levelYES!
10

Increasing Cost Tree Search (Sharon et al. ‘12)



∆

No 
solution

Try to find 
a solution

30

31

32

SIC

Increasing Cost Tree Search (Sharon et al. ‘12)



Does it work? – YES!

number of agents

#problems solved 
under 5 minutes



Does it work? – Not Always

• A*:     solved  in        51ms
• ICTS: solved  in 36,688ms – Why?

– Sum of single agent costs =2 BUT optimal solution =74
ICTS Complexity depends on Δ



Solving Optimally Problems with more than 75 agents!



Conflict-Based Search (CBS)

CBS only performs single agents
But, many times, and under different constraints

Conflict: agent 1 and agent 2 
plan to occupy C at time 2

Constrain agent 1, avoid C at time 2
or

Constrain agent 2 to avoid C at time 2



Nodes:
• A set of individual constraints for each agent
• A set of paths consistent with the constraints

Goal test:
• Are the paths conflict free

��

Expand

Expand

Goal

Root

OK OK

Conflict

Goal TestNot GoalReplan 1 Replan 2

{1,2,C,2}

The Constraint Tree



• How many states A* will expand?
• How many states CBS will?

��

Analysis: Example 1



Motivation: cases with bottlenecks:

A*

��

S1,S2

A1,B1 A1,B2 Am,Bm…
C,CA1,C

C,G2

G1,G2

• g+h=6:  All m2 combinations of (Ai,Bj) will be expanded
• f=7: 3 states are expanded

Conflict-Based Search (Sharon et al. ‘12,’15)



• A*  : m2+3     =  O(m2) states
• CBS: ? 

��

Analysis: Example 1



• A*  : m2+3     =  O(m2) states
• CBS: 2m+14 =  O(m) states

When m > 4 CBS will examine   
fewer states than A*

��

Analysis: Example 1



• States expanded by CBS?
• States expanded by A*?

��

Analysis: Example 2



• 4 optimal solutions for each agent                    
• Each pair of solutions has a conflict

• Rough analysis:
– CBS: exponential in #conflicts = 54 states
– A*:   exponential   in  #agents  =  8 states

What if I have both?

Trends observed
• In open spaces:   use A*
• In bottlenecks:    use CBS

���

Analysis: Example 2



Should merge(A,B): meta-reasoning rules

1. Plan for each agent individually
2. Validate plans
3. If the plans of agents A and B conflict

5    Constrain A to avoid the conflicts
or

Constrain B to avoid the conflict

Should merge(A,B)   (simple rule):
Merge when observed more than T conflicts between A,B

4      If (should merge(A,B))  
merge A and B into a meta-agent 
and solve with A*

Else 

���

(never merge) T=∞

basic CBS

T=0 (always merge)

Standley’s ID
MA-CBS

Meta-Agent CBS (MA-CBS)



Many bottlenecks

Few  bottlenecks

Many bottlenecks                  à High T     (closer to CBS)
More agents                           à Low T    (closer to A*)
Faster single-agent search   à lower T (close to A*)

Choosing the Right B



CBS Enhancements

• Which conflict to resolve? [Boyarski et al. ‘16]

• What to do after merging? [Boyarski et al. ‘16]

• Heuristics for the constraint tree search [Felner et al. ‘18]

• Augmenting CBS with human knowledge [Cohen et al.]

• Which low-level solver to use?
• When to merge the agents ?
…



Summary – No Universal Winner

• A* (M*, EPEA*, A*+OD+ID)
– Main factors: #agents, graph size, heuristic accuracy

• ICTS
– Main factors: #agents, Δ, graph size

• CBS and its variants
– Main factors: #conflicts 

Where to use what?



Results…



OptimalSuboptimal

?• Cooperative A*
• WHCA*

Incomplete

• A*+OD+ID 
(Standley)

• ICTS 
(Sharon et al.)

• M* 
(Wagner & Choset)

• CBS
(Sharon et al.)

…

• Kornhauser et al. ’84
• Push & Swap (Luna & Bekris)

• Bibox (Surynek)
…

Complete

Search-based Solvers - Summary



Solving MAPF

Optimal 
Solvers

A*+OD+ID

ICTS

…

Suboptimal 
Solvers

WHCA*

Push & 
Swap

…



Bounded Suboptimal Algorithms

How to create a bounded suboptimal algorithm?
• Different search algorithms
• Inadmissible heuristics

An algorithm is bounded suboptimal iff
– It accepts a parameter !
– It outputs a solution whose cost is at most 1 + ! ⋅Optimal



Suboptimal ICTS

∆

30

31

32

SIC

Open Question!



Suboptimal A*

a b c

d e f
g h i

a,i

b,fd,id,hd,f . . 
.

g,i g,c g,e e,c e,i a,c . . 
.

d,i b,i a,i

g,f e,f a,f d,f



Suboptimal rM*

SO A S1

B

C D E

G1 G0

S0,S1

S0,AA,S1

B,A

D,B



Suboptimal CBS

Observation: 
Suboptimality can be introduced in both levels

– ECBS (Barer et al. ‘14)
– ECBS+Highways (Cohen et al. ’15, ‘16)



Slightly Suboptimal Really Matters

Do not be greedy!



Advanced Issues in Search-based MAPF Algorithms

• When to use which algorithm? Ensembles?
• Using knowledge about past plans (Cohen et al. ’15)

• Stronger heuristics for all algorithms
• Deeper analysis of algorithms’ complexity
• Beyond grid worlds

– Kinematic constraints (Ma et al. ‘16)

– Any-angle planning (Yakovlev et al. ‘17)

– Hierarchical environments (Walker et al. ’17)

– Large agents (Li et al. ‘19)

• Priorized planning based on CBS (Ma et al. ‘19)

• Planning & execution (see later today J)



REDUCTION-BASED SOLVERS
Part III:



Motivation

How to exploit knowledge of others for solving 
own problems?
• by translating the problem P to another 

problem Q

Why is it useful?
• If anybody improves the solver for Q then we 

get an improved solver for P for free.
• Staying on the shoulders of giants.

Reduction, compilation, re-formulation 
techniques



Technologies

Boolean satisfiability
– fast SAT solvers

Constraint programming
– global constraints for pruning search space

Answer set programming
– declarative framework

Combinatorial auctions
…



Introduction to SAT

Express (model) the problem as a SAT formula in 
a conjunctive normal form (CNF)

Boolean variables (true/false values)
clause = a disjunction of literals (variables and 
negated variables)
formula = a conjunction of clauses
solution = an instantiation of variables such that the 
formula is satisfied

Example:
(X or Y ) and (not X or not Y)
[exactly one of X and Y is true]



SAT abstract expressions

SAT model is expressed as a CNF formula
We can go beyond CNF and use abstract 
expressions that are translated to CNF.

We can even use numerical variables (and 
constraints).

A => B B or not A

sum(Bs) >= 1
(at-least-one(Bs))

disj(Bs)

sum(Bs) = 1 at-most-one(B) and at-least-one(B)



SAT encoding: core idea

In MAPF, we do not know the lengths of plans 
(due to possible re-visits of nodes)!
We can encode plans of a known length using a 
layered graph (temporally extended graph).

Each layer corresponds to one time slice and 
indicates positions of agents at that time.



SAT encoding with all-different

Uses multi-valued state variables (logarithmic 
encoding) encoding position of agents in layers. 

• Agent waits or moves to a neighbor

• No-train constraint

• Agents are not at the same nodes

[Surynek, ICTAI 2012]

agent

layer
Position of agent a 

at layer i



Direct SAT encoding

Directly encodes positions of agents in layers

• Agent is placed at exactly one node in each layer

• No two agents are placed at the same node in each layer

• Agent waits or moves to a neighbor

• No-swap and no-train (nodes before and after move are empty)

[Surynek, PRICAI 2014]

agent

layer

node
Agent k is at

node j at layer i



Comparison of SAT encodings

Finding makespan optimal solutions

[Surynek, PRICAI 2014]



Mixed model

Using layered graph describing agent positions at each time step
Btav : agent a occupies vertex v at time t

Constraints:
• each agent occupies exactly one vertex at each time.

• no two agents occupy the same vertex at any time.

• if agent a occupies vertex v at time t, then a occupies a 
neighboring vertex or stay at v at time t + 1.

Preprocessing:
Btav = 0 if agent a cannot reach vertex v at time t or
a cannot reach the destination being at v at time t

[Barták et al, ICTAI 2017]



Incremental generation of layers

Setting the initial and destination locations

Agent occupies one vertex at any time

No conflict between agents 

Agent moves to a neighboring vertex

K-robustness

Picat code
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Objectives in SAT

Makespan (minimize the maximum end time)
incrementally add layers until a solution found

Sum of cost (minimize the sum of end times)
incrementally add layers and look for the SOC 
optimal solution in each iteration (makespan+SOC
optimal)
generate more layers (upper bound) and then 
optimize SOC (naïve)
incrementally add layers and increase the cost limit 
until a solution is found [Surynek et al, ECAI 2016]
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Introduction

Motivation

Objective How to develop robust and scalable AI technology
for dealing with complex dynamic application scenarios?

What’s needed? — a fruit fly!

Robotic intra-logistics

Why?

rich multi-faceted, full of variations
scalable layout, objects, granularity
measurable makespan, energy, quality of service
integrative mapf, data, constraints, decisions
relevant industry 4.0

What for? — enabling research and teaching
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Introduction

Robotic intra-logistics

Robotics systems for logistics and warehouse
automation based on many

mobile robots
movable shelves

Main tasks: order fulfillment, i.e.
routing
order picking
replenishment

Many competing industry solutions:
Amazon, Dematic, Genzebach,
Gray Orange, Swisslog
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Introduction

Robotic intra-logistics at Amazon
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Introduction

Robotic intra-logistics at Swisslog
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Introduction

What’s (not) in the picture?

Objects
floor, robots, shelves, products, people, etc.

Relations
positions, carries/d, capacity, orientation, durations, etc.

Actions
move, pickup, putdown, pick, charge, restock, etc.

Objectives
deadlines, throughput, exploitation, energy management,
human machine interaction, etc.

The asprilo dudes (UP&NMSUkPS) ASPRILO, a world beyond MAPF 8 / 57
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Outline

1 Introduction

2 Beyond MAPF

3 ASPRILO

4 Summary
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Beyond MAPF

*APF

Classified by objects, measurability, constraints, decisions

MAPF

TAPF

GTAPF

Others

A good overview of many extensions can be found in [1].
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Beyond MAPF

MAPF: Multi-Agent Path Finding

Most simple, straightforwards extension of APF
Objects: only robots and the map

anonymous: n agents, n targets, any agent can be assigned to any
target

non-anonymous: n agents, n targets, each agent is assigned a
(pre-defined) target

The asprilo dudes (UP&NMSUkPS) ASPRILO, a world beyond MAPF 11 / 57



Beyond MAPF

TAPF: Combined Target Assignment and

Path Finding

Proposed in [2]: teams of robots

Multiple teams of robots (objects: only robots and the map)

Targets assigned to teams (constraint: one robot - one target)

Collision free paths for robots to targets (no swapping), with minimal
maxspan

The asprilo dudes (UP&NMSUkPS) ASPRILO, a world beyond MAPF 12 / 57



Beyond MAPF

Generalized-TAPF

Proposed in [3], inspired by online store order fulfilling requirements

Order #1
“Vintage LEGO Kit” and “Programming LEGO”
Rush order: 2/1/2019

Order #2
“Vintage LEGO Kit” and “Dancing with the Stars video”
International shipping

Requirements

Group: an order might contain many items

Deadline: each order needs to be accomplished before a timestamp

Checkpoint: to fulfill certain item, some checkpoint needs to be
visited
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Beyond MAPF

Generalized-TAPF

Multiple teams of robots (same as TAPF).

Sets of orders (multiple targets for an order, #robots 6= #orders
possible).

Checkpoints for robots/teams (certain locations must be visited
before targets).

Deadlines for orders.

Group completion (one order at a time).

Collision free paths for robots to targets, with minimal maxspan.

ASP-based solutions.

The asprilo dudes (UP&NMSUkPS) ASPRILO, a world beyond MAPF 14 / 57



Beyond MAPF

Others

Inspired by real-word applications, di↵erent considerations:

Continuous vs. discrete movement

Online vs. o✏ine

Checkpoints not to be (can be) revisited

Suboptimal solutions vs. scalability

Complex actions: transfers of items/targets between robots when
pickup/putdown actions are considered

Multi-dimensional G-TAPF: on the ground (two dimensions, cars) vs.
in the air (three dimensions, drones)

The asprilo dudes (UP&NMSUkPS) ASPRILO, a world beyond MAPF 15 / 57
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ASPRILO Overview
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ASPRILO Overview

Components

Main Components
Standardized benchmark domains
Formal specification
Versatile instance generator
Visualizer for problems and (candidate) solutions
Solution checker with error feedback

Reference ASP encodings

Resources
Web potassco.org/asprilo
Paper arxiv.org/abs/1804.10247
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Components

Main Components
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Concise problem specification

Domains ranging from MAPF to full order fulfillment

Formal specification
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ASPRILO Overview

Components

Main Components
Standardized benchmark domains
Formal specification

Formal elaboration

Correctness, completeness, optimality

Versatile instance generator
Visualizer for problems and (candidate) solutions
Solution checker with error feedback

Reference ASP encodings

Resources
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ASPRILO Overview

Components

Main Components
Standardized benchmark domains
Formal specification
Versatile instance generator

Rich set of customization options

Leverages multi-shot ASP for generation

Visualizer for problems and (candidate) solutions
Solution checker with error feedback

Reference ASP encodings

Resources
Web potassco.org/asprilo
Paper arxiv.org/abs/1804.10247
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ASPRILO Overview

Components

Main Components
Standardized benchmark domains
Formal specification
Versatile instance generator
Visualizer for problems and (candidate) solutions

Animated playback of plans

Graphical editor for instances

Solution checker with error feedback

Reference ASP encodings

Resources
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ASPRILO Overview

Components

Main Components
Standardized benchmark domains
Formal specification
Versatile instance generator
Visualizer for problems and (candidate) solutions
Solution checker with error feedback

Specific error descriptions

Modular design, easily extensible

Reference ASP encodings

Resources
Web potassco.org/asprilo
Paper arxiv.org/abs/1804.10247
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ASPRILO Overview

Components

Main Components
Standardized benchmark domains
Formal specification
Versatile instance generator
Visualizer for problems and (candidate) solutions
Solution checker with error feedback

Reference ASP encodings
High-level, elaboration-tolerant

Test bed for ASP and KRR technology

Resources
Web potassco.org/asprilo
Paper arxiv.org/abs/1804.10247
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ASPRILO Overview

Installation

1 Install the conda package manager

2 Create a custom conda environment that provides python 3.6

3 Activate your conda environment

4 Install clingo in your environment

5 Install asprilo’s instance generator and visualizer in your environment
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ASPRILO Overview

Installation

1 Install the conda package manager

2 Create a custom conda environment that provides python 3.6

$ conda create -n myenv python =3.6

3 Activate your conda environment

$ conda activate myenv

4 Install clingo in your environment

$ conda install -c potassco clingo

5 Install asprilo’s instance generator and visualizer in your environment

$ conda install -c asprilo generator visualizer

DONE!

The asprilo dudes (UP&NMSUkPS) ASPRILO, a world beyond MAPF 19 / 57



ASPRILO Overview

General Domain A

The warehouse is laid out as a (partial) 2-dimensional grid

Shelves store products in a certain quantity, each shelf occupies a
single grid node

Mobile robots move and navigate through the warehouse along the
grid, can carry shelves and deliver product units to picking stations
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ASPRILO Overview

General Domain A

Highway nodes are special grid nodes where robots must never put
down a shelf

A set of orders is initially provided, an order is fulfilled if all its
requested product units are delivered to its assigned picking station

Main Goal: plan robot actions such that all orders will be fulfilled
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ASPRILO Overview

Domain A Demo
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ASPRILO Overview

Domains A, B, C, M

Domain A most general domain

Domain B ignores product quantities

Domain C ignores product quantities
delivery actions at once

Domain M only move actions
singleton orders and shelves
reach shelves with ordered products

C
om
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y
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ASPRILO Overview

Domain M Demo
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ASPRILO Overview

Instance format

Fact format

init(object(T ,I ),value(A,V )).

where
T is an object type
I a (relative) object identifier
A an attribute
V its value

Object types and their attributes
node at/2

highway at/2

robot at/2, carries/1
shelf at/2

pickingStation at/2

product on/2

order line/2, pickingStation/1
Example robot 34 is at position (2,3).

init(object(robot ,34), value(at ,(2 ,3))).
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ASPRILO Overview

Example
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ASPRILO Overview

Example

init(object(node, 1), value(at, (1,1))).

init(object(highway, 1), value(at, (1,1))).
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ASPRILO Overview

Example

init(object(node, 7), value(at, (7,1))).

init(object(pickingStation,2), value(at,(7,1))).
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ASPRILO Overview

Example

init(object(node, 47), value(at, (2,6))).

init(object(robot,2), value(at, (2,6))).

init(object(robot,2), value(max_energy,0)).

init(object(robot,2), value(energy,0)).
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ASPRILO Overview

Example
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ASPRILO Overview

Example

init(object(node, 26), value(at, (8,3))).

init(object(shelf,3), value(at,(8,3))).
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ASPRILO Overview

Example

init(object(node, 26), value(at, (8,3))).

init(object(shelf,3), value(at,(8,3))).

init(object(product,1),value(on,(3,3))).

init(object(product,2),value(on,(3,2))).

init(object(product,3),value(on,(3,1))).
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ASPRILO Overview

Example

init(object(order,3),value(pickingStation,2)).

init(object(order,3),value(line,(1,1))).

init(object(order,3),value(line,(3,3))).
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ASPRILO Overview

Solution format

Solution (candidate) is a parallel plan for multiple robots

Fact format

occurs(object(T ,I ),action(A,V )).

Actions
move takes cardinal points (0,1), (1,0), (0,-1), and (-1,0)
pickup has no arguments, viz. ().
putdown has no arguments, viz. ().
deliver takes a triple (O,A,N) where

O is an order, A a product, and N its quantity
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where
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ASPRILO Overview

Example
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ASPRILO Specification

Outline

1 Introduction

2 Beyond MAPF

3 ASPRILO
Overview
Specification
Instance generator
Solution (candidate) visualizer
Solution (candidate) checker
Reference encodings in ASP

4 Summary
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ASPRILO Specification

Preliminaries

Multi sets
multi-set operations [̇, \̇, ✓̇, |̇ · |̇ . . .
(t1, . . . , tn, n) stands for n occurrence of (t1, . . . , tn) in a multi-set

Relational algebra
projection ⇡iR

selection �i=tR

Planning
Actions
Fluents
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ASPRILO Specification

Warehouse layout

Layout A quadruple (G ,R , S ,F ) where

G = (V ,E ) is a labeled directed graph where
⌫ : V ! {high, pick, star , park}
✏ : E ! N

R is a set of robots

S is a set of shelves
F = (position0, position0, carries0) is a triple of functions

position0 : R ! V is an injective function
position0 : S ! V is an injective function
carries0 : R ! {{s} | s 2 S} [ {;} is a function injective
on all non-empty functional values
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ASPRILO Specification

Actions

Layout ((V ,E ),R , S ,F )

Action atoms
move(r , e) for each (r , e) 2 R ⇥ E

pickup(r , s) for each (r , s) 2 R ⇥ S

putdown(r , s) for each (r , s) 2 R ⇥ S

Notation
M(R ,E ) = { move(r , e) | (r , e) 2 R ⇥ E }
P(R , S) = { pickup(r , s), putdown(r , s) | (r , s) 2 R ⇥ S }

Abuse We write M(r ,E ) instead of M({r},E )
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M(R ,E ) = { move(r , e) | (r , e) 2 R ⇥ E }
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ASPRILO Specification

Fluents

Layout ((V ,E ),R , S ,F )

Time points T

Fluent functions for each t 2 T

positiont : R ! V is an injective function
positiont : S ! V is an injective function
carriest : R ! {{s} | s 2 S} [ {;} is a function

Evolution A sequence (positiont , positiont , carriest)t2T
is called a (warehouse) evolution
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ASPRILO Specification

Trajectory

Layout ((V ,E ),R , S , (position0, position0, carries0))

Trajectory A sequence

hAtit2T of sets At ✓ M(R ,E ) [ P(R , S)

along with an evolution (positiont , positiont , carriest)t2T
such that for all t 2 T , r 2 R , s 2 S , (u, v) 2 E :
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ASPRILO Specification

Trajectory

Layout ((V ,E ),R , S , (position0, position0, carries0))

Trajectory A sequence

hAtit2T of sets At ✓ M(R ,E ) [ P(R , S)

along with an evolution (positiont , positiont , carriest)t2T
such that for all t 2 T , r 2 R , s 2 S , (u, v) 2 E :

1 |At \ (M(r ,E ) [ P(r , S))|  1
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ASPRILO Specification

Trajectory

Layout ((V ,E ),R , S , (position0, position0, carries0))

Trajectory A sequence

hAtit2T of sets At ✓ M(R ,E ) [ P(R , S)

along with an evolution (positiont , positiont , carriest)t2T
such that for all t 2 T , r 2 R , s 2 S , (u, v) 2 E :

1 |At \ (M(r ,E ) [ P(r , S))|  1

2 move(r , (u, v)) 2 At only if positiont�1(r) = u
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ASPRILO Specification

Trajectory

Layout ((V ,E ),R , S , (position0, position0, carries0))

Trajectory A sequence

hAtit2T of sets At ✓ M(R ,E ) [ P(R , S)

along with an evolution (positiont , positiont , carriest)t2T
such that for all t 2 T , r 2 R , s 2 S , (u, v) 2 E :

1 |At \ (M(r ,E ) [ P(r , S))|  1

2 move(r , (u, v)) 2 At only if positiont�1(r) = u

3 {move(r , (u, v)),move(r 0, (v , u)) | r 6= r
0 2 R , (v , u) 2 E} 6✓ At
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ASPRILO Specification

Trajectory

Layout ((V ,E ),R , S , (position0, position0, carries0))

Trajectory A sequence

hAtit2T of sets At ✓ M(R ,E ) [ P(R , S)

along with an evolution (positiont , positiont , carriest)t2T
such that for all t 2 T , r 2 R , s 2 S , (u, v) 2 E :

1 |At \ (M(r ,E ) [ P(r , S))|  1

2 move(r , (u, v)) 2 At only if positiont�1(r) = u

3 {move(r , (u, v)),move(r 0, (v , u)) | r 6= r
0 2 R , (v , u) 2 E} 6✓ At

4 pickup(r , s) 2 At only if

1 positiont�1(r) = positiont�1(s)
2 carriest�1(r) = ;
3 s /2 carriest�1(r 0) for all r 0 2 R
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ASPRILO Specification

Trajectory

Layout ((V ,E ),R , S , (position0, position0, carries0))

Trajectory A sequence

hAtit2T of sets At ✓ M(R ,E ) [ P(R , S)

along with an evolution (positiont , positiont , carriest)t2T
such that for all t 2 T , r 2 R , s 2 S , (u, v) 2 E :

1 |At \ (M(r ,E ) [ P(r , S))|  1

2 move(r , (u, v)) 2 At only if positiont�1(r) = u

3 {move(r , (u, v)),move(r 0, (v , u)) | r 6= r
0 2 R , (v , u) 2 E} 6✓ At

4 pickup(r , s) 2 At only if
1 positiont�1(r) = positiont�1(s)
2 carriest�1(r) = ;
3 s /2 carriest�1(r 0) for all r 0 2 R

5 putdown(r , s) 2 At only if s 2 carriest�1(r)

The asprilo dudes (UP&NMSUkPS) ASPRILO, a world beyond MAPF 34 / 57



ASPRILO Specification

Trajectory

Layout ((V ,E ),R , S , (position0, position0, carries0))

Trajectory A sequence

hAtit2T of sets At ✓ M(R ,E ) [ P(R , S)

along with an evolution (positiont , positiont , carriest)t2T
such that for all t 2 T , r 2 R , s 2 S , (u, v) 2 E :

6 positiont(r) =

⇢
v if move(r , (u, v)) 2 At

positiont�1(r) otherwise

7 positiont(s) =

⇢
positiont(r) if s 2 carriest(r)
positiont�1(s) otherwise

8 carriest(r) =

8
<

:

carriest�1(r) [ {s} if pickup(r , s) 2 At

carriest�1(r) \ {s} if putdown(r , s) 2 At

carriest�1(r) otherwise
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ASPRILO Specification

Orders, products, inventories

Products P

Orders O

destination : O ! {v 2 V | ⌫(v) = pick}

Order line (o, p, n) 2 O ⇥ P ⇥ N,
the request of n 2 N products p 2 P by order o 2 O

Inventory I ✓ S ⇥ P ⇥ N,
a relation reflecting the in-stock quantity per shelf and product

Requirement
Order line sets and inventories are functional in their last argument

Note
Order line sets and inventories are manipulated with multi-set operations
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ASPRILO Specification

Orders, products, inventories

Products P

Orders O

destination : O ! {v 2 V | ⌫(v) = pick}

Order line (o, p, n) 2 O ⇥ P ⇥ N,
the request of n 2 N products p 2 P by order o 2 O

Inventory I ✓ S ⇥ P ⇥ N,
a relation reflecting the in-stock quantity per shelf and product

Requirement
Order line sets and inventories are functional in their last argument

Note
Order line sets and inventories are manipulated with multi-set operations
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ASPRILO Specification

Pick set

Situation
A set L of order lines, an inventory I , a shelf s 2 S , and a picking rate n

Pick set A set Q of order lines such that

1 Q ✓̇ L

2 ⇡2,3Q ✓̇ ⇡2,3�1=s I

3 |̇Q |̇  n

4 {destination(o) | o 2 ⇡1Q} = {v} for some v 2 V

Note A pick set may be empty

Notation destination(Q) = v denotes the unique destination v

of all order lines in pick set Q (cf. Item 4 above)
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1 Q ✓̇ L

2 ⇡2,3Q ✓̇ ⇡2,3�1=s I

3 |̇Q |̇  n

4 {destination(o) | o 2 ⇡1Q} = {v} for some v 2 V

Note A pick set may be empty

Notation destination(Q) = v denotes the unique destination v

of all order lines in pick set Q (cf. Item 4 above)
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ASPRILO Specification

Picking sequence

Situation
A set L of order lines, an inventory I , a shelf s 2 S , and a picking rate n

Picking sequence hQtit2T consists of
pick sets Qt for (Lt�1, It�1) at shelf s where

1 hL0, I0i = hL, I i
2 hLt , Iti = hLt�1 \̇ Qt , It�1 \̇ ({s}⇥ ⇡2,3Qt)i

Note A picking sequence may contain empty pick sets

Success A picking sequence hLt , Itit2T is successful,
if there is some i � 0 such that Lk = ; for all k � i ;

we refer to Ii as the inventory resulting from applying hLt , Itit2T to I
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ASPRILO Specification

Fulfillment

Fulfilling trajectory
A trajectory hAtit2T valid in layout ((V ,E ),R , S ,F )
fulfills a set L of order lines at rate n given inventory I ,
whenever there is

a (shelf-wise) partition (Ls)s2S of L,
a collection of successful picking sequences (Qs

t )t2T
for each (Ls ,�1=s I ) at s 2 S and rate n, and
a robot r 2 R

such that
Q

s
t 6= ;

only if

1 At \ (M(r ,E ) [ P(r , S)) = ;
2 destination(Qs

t ) = positiont(r)
3 s 2 carriest(r)
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ASPRILO Instance generator

Outline

1 Introduction

2 Beyond MAPF

3 ASPRILO
Overview
Specification
Instance generator
Solution (candidate) visualizer
Solution (candidate) checker
Reference encodings in ASP

4 Summary
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ASPRILO Instance generator

Motivation, Features

Tool to automatically generate asprilo instances

Rich set of options to configure key instance characteristics
grid dimensions; number of shelves, robots, orders, products, etc.
grid type: random, structured, custom (via template)
supported domain: singleton product sets per shelf and order for
M-domain; or A,B,C-compatible

Implemented via multi-shot ASP
modular ASP program design: key attributes separately controlled by
dedicated program parts
easily extensible with new program parts and, hence, features
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ASPRILO Instance generator

Generating a Structured Instance

Structured instance with:

9x6 grid: -x 9 -y 6

3x2 storage zones: -X 3 -Y 2

9 shelves, 2 pick stations, 2 robots: -s 9 -p 2 -r2

4 products and 16 product units: -P 4 -u 16

4 orders, 2 order lines each, all products requested at least once:
-o 4 --ol 2 --oap

structured layout: -H

via

gen -x 9 -y 6 -X 3 -Y 2 -s 9 -p 2 -r 2 -P 4 -u 16 -o 4 \

--ol 2 --oap -H
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ASPRILO Instance generator

Generating a Structured Instance

gen -x 9 -y 6 -X 3 -Y 2 -s 9 -p 2 -r 2 -P 4 -u 16 -o 4 \

--ol 2 --oap -H
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ASPRILO Instance generator

Generating a Random Instance

Random instance with:

6x6 grid: -x 6 -y 6

20 shelves, 6 pick stations, 10 robots: -s 20 -p 6 -r 10

8 products and 30 product units, 2 products per shelf:
-P 8 -u 30 --prs 2

4 orders, 2 order lines each: -o 4 --ol 2

random layout: default, no explicit option required

for underlying clingo process
randomize model enumeration: --random
use 8 threads, multishot-solving: -t 8 -I

via
gen -x 6 -y 6 -s 20 -p 6 -r 10 -P 8 -u 30 --prs 2 \

-o 4 --ol 2 --random -t 8 -I
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ASPRILO Instance generator

Generating a Random Instance

gen -x 6 -y 6 -s 20 -p 6 -r 10 -P 8 -u 30 --prs 2 \

-o 4 --ol 2 --random -t 8 -I
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ASPRILO Instance generator

Extending a Custom Layout

Handcrafted Layout: 14x5 grid with “corridor”, 2 pick stations
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ASPRILO Instance generator

Extending a Custom Layout

Extend Instance with:

30 shelves, 10 robots: -s 20 -p 6 -r 10

10 products and 100 product units: -P 10 -u 100

4 orders, 2 order lines each: -o 4 --ol 2

random layout: default, no explicit option required

custom layout as template: -T custom_layout.lp

via

gen -s 30 -r 10 -P 10 -u 100 -o 4 --ol 2 \

-T custom_layout.lp
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ASPRILO Instance generator

Extending a Custom Layout

Extended Instance:

gen -s 30 -r 10 -P 10 -u 100 -o 4 --ol 2 \

-T custom_layout.lp
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ASPRILO Solution (candidate) visualizer

Outline

1 Introduction

2 Beyond MAPF

3 ASPRILO
Overview
Specification
Instance generator
Solution (candidate) visualizer
Solution (candidate) checker
Reference encodings in ASP

4 Summary
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ASPRILO Solution (candidate) visualizer

Motivation, Features

Visualizer for instances and plans

Renders ASP instance as warehouse diagram

Animated execution of plans upon an instances including e↵ects

Graphical creation and editing of instances

 Essential for an intuitive perception of the problem domain and for the
verification of plans
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ASPRILO Solution (candidate) visualizer

Visualizing an Instance
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ASPRILO Solution (candidate) visualizer

Visualizing a Plan
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ASPRILO Solution (candidate) visualizer

Editing an Instance
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ASPRILO Solution (candidate) checker

Outline

1 Introduction

2 Beyond MAPF

3 ASPRILO
Overview
Specification
Instance generator
Solution (candidate) visualizer
Solution (candidate) checker
Reference encodings in ASP

4 Summary
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ASPRILO Solution (candidate) checker

Motivation, Features

Checks correctness of plans

Specific description of error causes

Implemented in ASP
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ASPRILO Solution (candidate) checker

Erroneous Plan
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ASPRILO Solution (candidate) checker

Plan Verification

clingo $ASPRILO -ROOT/checker/encodings/a/checker.lp \

instance.lp plan -err.lp out -ifs="\n"|grep err

which yields

err(static ,highwayPutdown ,(2 ,4,2,29))

err(static ,collNode ,(robot ,5,3,8))

err(deliver ,shelfAmount ,(3 ,25))

err(deliver ,orderAmount ,(3 ,25))

err(putdown ,noShelf ,(3 ,30))

err(move ,domain ,(1 ,10))
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ASPRILO Reference encodings in ASP

Outline

1 Introduction

2 Beyond MAPF

3 ASPRILO
Overview
Specification
Instance generator
Solution (candidate) visualizer
Solution (candidate) checker
Reference encodings in ASP

4 Summary
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ASPRILO Reference encodings in ASP

ASP Encoding for Domain M

routing

time(1..horizon).

direction((X,Y)) :- X=-1..1, Y=-1..1, |X+Y|=1.

nextto((X,Y),(X’,Y’),(X+X’,Y+Y’)) :- position((X,Y)), direction((X’,Y’)), position((X+X’,Y+Y’)).

{ move(R,D,T) : direction(D) } 1 :- isRobot(R), time(T).

position(R,C,T) :- move(R,D,T), position(R,C’,T-1), nextto(C’,D,C).

:- move(R,D,T), position(R,C ,T-1), not nextto(C ,D,_).

position(R,C,T) :- position(R,C,T-1), not move(R,_,T), isRobot(R), time(T).

moveto(C’,C,T) :- nextto(C’,D,C), position(R,C’,T-1), move(R,D,T).

:- moveto(C’,C,T), moveto(C,C’,T), C < C’.

:- { position(R,C,T) : isRobot(R) } > 1, position(C), time(T).

processed(O,A) :- ordered(O,A), shelved(S,A), position(S,C,0), position(R,C,horizon), isRobot(R).

processed(O) :- isOrder(O), processed(O,A) : ordered(O,A).

:- not processed(O), isOrder(O).
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ASPRILO Reference encodings in ASP

ASP Encoding for Domain M

routing to shelves

time(1..horizon).

direction((X,Y)) :- X=-1..1, Y=-1..1, |X+Y|=1.

nextto((X,Y),(X’,Y’),(X+X’,Y+Y’)) :- position((X,Y)), direction((X’,Y’)), position((X+X’,Y+Y’)).

{ move(R,D,T) : direction(D) } 1 :- isRobot(R), time(T).

position(R,C,T) :- move(R,D,T), position(R,C’,T-1), nextto(C’,D,C).

:- move(R,D,T), position(R,C ,T-1), not nextto(C ,D,_).

position(R,C,T) :- position(R,C,T-1), not move(R,_,T), isRobot(R), time(T).

moveto(C’,C,T) :- nextto(C’,D,C), position(R,C’,T-1), move(R,D,T).

:- moveto(C’,C,T), moveto(C,C’,T), C < C’.

:- { position(R,C,T) : isRobot(R) } > 1, position(C), time(T).

processed(O,A) :- ordered(O,A), shelved(S,A), position(S,C,0), position(R,C,horizon), isRobot(R).

processed(O) :- isOrder(O), processed(O,A) : ordered(O,A).

:- not processed(O), isOrder(O).
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ASPRILO Reference encodings in ASP

ASP Encoding for Domain A

routing + transport + delivery
time(1..horizon).

direction((X,Y)) :- X=-1..1, Y=-1..1, |X+Y|=1.

nextto((X,Y),(X’,Y’),(X+X’,Y+Y’)) :- position((X,Y)), direction((X’,Y’)), position((X+X’,Y+Y’)).

{ move(R,D,T) : direction(D) ;

pickup(R,S,T) : isShelf(S) ;

putdown(R,S,T) : isShelf(S) } 1 :- isRobot(R), time(T).

waits(R,T) :- not pickup(R,_,T), not putdown(R,_,T), not move(R,_,T), isRobot(R), time(T).

position(R,C,T) :- move(R,D,T), position(R,C’,T-1), nextto(C’,D,C).

:- move(R,D,T), position(R,C ,T-1), not nextto(C, D,_).

carries(R,S,T) :- pickup(R,S,T), position(R,C,T-1), position(S,C ,T-1).

:- pickup(R,S,T), carries(R,_,T-1).

:- pickup(R,S,T), carries(_,S,T-1).

:- pickup(R,S,T), position(R,C,T-1), position(S,C’,T-1), C != C’.

:- putdown(R,S,T), not carries(R,S,T-1).

serves(R,S,P,T) :- position(R,C,T), carries(R,S,T), position(P,C), isStation(P).

position(R,C,T) :- position(R,C,T-1), not move(R,_,T), isRobot(R), time(T).

carries(R,S,T) :- carries(R,S,T-1), not putdown(R,_,T), time(T).

position(S,C,T) :- position(R,C,T ), carries(R,S,T).

position(S,C,T) :- position(S,C,T-1), not carries(_,S,T), isShelf(S), time(T).

moveto(C’,C,T) :- nextto(C’,D,C), position(R,C’,T-1), move(R,D,T).

:- moveto(C’,C,T), moveto(C,C’,T), C < C’.

:- { position(R,C,T) : isRobot(R) } > 1, position(C), time(T).

:- { position(S,C,T) : isShelf(S) } > 1, position(C), time(T).
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Summary

Summary

ASPRILO aims at enabling research and teaching of

complex dynamic scenarios occurring in the rich

model scenario of robotic intra-logistics

ASPRILO o↵ers

Standardized benchmark domains
Formal specification
Versatile instance generator
Visualizer for problems and (candidate) solutions
Solution checker with error feedback
Reference ASP encodings

Join us at potassco.org/asprilo !
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CHALLENGES AND CONCLUSIONS
Part V:



Multi-Agent Pathfinding in the “Real” World



Why I like to work on Multi-Agent Pathfinding

– A real-world multi-agent application
– A very challenging multi-agent planning problem
– No clear dominant approach (yet)

• Search-based vs. constraints programming vs. SAT vs. …

– Execution is bound to differ from the plan (integration…)
– So much left to do…

Conclusion



Challenge: MAPF with Self-Interested Agents



Challenge: MAPF with Self-Interested Agents



Incentives and mechanism designs [Bnaya et al. ‘13, Amir ‘15]

What if the other agent is adversarial?
or even worse, a human?

Challenge: MAPF with Self-Interested Agents



Challenge: MAPF with Self-Interested Agents



• Robotics
– Kinematic constraints (Ma et al. ‘16)
– Uncertainty is a first-class citizen
– Continuous configuration space
– Any-angle motion [Yakovlav et al. ‘17]

• Traffic management
– Flow-based approaches 
– No collisions, only traffic jams
– Scale

Challenges: Applying MAPF for Real Problems



• Task allocation
– See Ma et al. ‘16 for combining,  flow-based and CBS

• Pick up and delivery tasks
– See Ma et al. ’16, ’17, ‘19 and others

• Online settings

Challenge: MAPF as Part of a System



Challenge: Relation to General Multi-Agent Planning

MAPF is a special case of MAP
• MAP
–Many models, rich literature
–Much work on uncertainty
– Poor scaling

• MAPF
– Fewer models, growing literature
– Not much work on uncertainty 
– Scales well

Cross fertilization seems natural



From MAPF to MAP



Some MAPF papers at AAAI-19

• Multi-Agent Path Finding for Large Agents
Wednesday 10:25am-11:25am

• Searching with Consistent Prioritization for Multi-
Agent Path Finding
Wednesday 11:30am-12:30pm

• Online Multi-Agent Pathfinding
Wednesday 11:30am-12:30pm

• Lifelong Path Planning with Kinematic Constraints for 
Multi-Agent Pickup and Delivery
Wednesday 2:00pm-3:30pm

• Symmetry Breaking Constraints for Grid-based Multi-
Agent Path Finding
Wednesday 3:35pm-4:35pm



Thanks!

Roman Barták, Philipp Obermeier, Torsten 
Schaub, Tran Cao Son, Roni Stern

https://tinyurl.com/mapf-aaai-2019


