Automated Planning

Blockworld Plan

pickup(C)
putontable(C,table)
pickup(B)
puton(B,D)
pickup(C)

puton(C,B)
OOO 7

Initial state

Input:
— initial (current) state of the world
— description of actions that can change the world
— desired state of the world

Output:
— a sequence of actions (a plan)

Properties:
— actions in the plan are unknown
— time and resources are not assumed

Planning

— deciding which actions are necessary to
achieve the goals

— topic of artificial intelligence

— complexity is usually worse than NP-c
(in general, undecidable)

|| planning ||
A

| scheduling |

Scheduling A

— deciding how to process the actions using
given restricted resources and time

— topic of operations research
— complexity is typically NP-c

|| executing ||

Launch: October 24, 1998

Target: Comet Borrelly

testing a payload of 12 advanced, high risk
technologies

— autonomous remote agent

* planning, execution, and monitoring spacecraft activities
based on general commands from operators

* three testing scenarios
— 12 hours of low autonomy (execution and monitoring)
— 6 days of high autonomy (operating camera, simulation of faults)
— 2 days of high autonomy (keep direction)
» beware of backtracking!

» beware of deadlock in plans! '
@é;’?
5?;‘/\

Problem Formalisation
— models and representations

State-space Planning
— forward and backward search

Plan-space Planning
— partial-order planning

Control Knowledge in Planning
— heuristics

— control rules

Planning deals with selection and organization
of actions that are changing world states.

System X modelling states and transitions:
— set of states S (recursively enumerable)

— set of actions A (recursively enumerable)
» actions are controlled by the planner!
* NO-0p

— set of events E (recursively enumerable)
« events are out of control of the planner!
* neutral event ¢

— transition function y: Sx A xE - 2°

+ actions and events are sometimes applied separately
y: SX(A UE) - P(S)

A planning task is to find which actions are applied
to world states to reach some goal from a given
initial state.

What s a goal?

— goal state or a set of of goal states
— satisfaction of some constraint over a sequence
of visited states

« for example, some states must be excluded or some states
must be visited

— optimisation of some objective function over a
sequence of visited states (actions)

 for example, maximal cost or a sum of costs

81

z = (SIAIEI Y)

e

So
oot
a7 ! - oo @-/- —-S = {SOI sery 55}
Iocation/l/zcationz ! Iocation/l/zcationz] - E - {} reSp {8}
movez] | mover movez] | mover — A = {movel,
53 52 movez,
L put, take, load,
location 1‘Iocation vl Tocation 1 location2 _— y: See figure
unload‘ load
= Sy Ss
movez e |nit: SO
7 e = @ . goal: ss
location 1 location 2 location 1 location 2

A planner generates plans

l Description of 2 A controller takes care

~| Planner .
Objectives about plan execution

Initial state

Plans — for each state it selects an

Execution status)
Y action to execute

Controller .
I — observations (sensor
Observations Actions input) are translated to
\/
System ¥ world state
T Events

Dynamic planning involves re-planning when the state is
not as expected.

 the system is finite

 the system is fully observable

— We know the current state completely.
» the system is deterministic

— VseS Vue(AUE): |y(s,u)|<1
« the system is static

— There are no external events.

« the goals are restricted
— The aim is to reach one of the goal states.

- the plans are sequential

— A plan consists of a (linearly ordered) sequence of actions.
« time is implicit

— Actions are instantaneous (no duration is assumed)).

« planning is done offline
— State of the world does not change during planning.

We will work with a deterministic, static, finite, and
fully observable state-transition system with
restricted goals and implicit time £ = (S,A, y).

Planning problem P = (%,s,,9):
— Sp is the initial state
— g describes the goal states

A solution to the planning problem P is a
sequence of actions {aj,a,,...,a.> witha
corresponding sequence of states {sy,Sq,...,S?
such that s; = y(s..1,a;) and s, satisfies g

@ Classical planning (STRIPS planning) =

Planningin the restricted model reduces to “path
finding” in the graph defined by states and state
transitions.

Is it really so simple?
5 locations, 3 piles per location, 100 containers,
3 robots
%, 10277 states

This is 10120 times more than the largest
estimate of the number of particlesin the

whole universe! ﬁ@
cccccc
AN, i

How to represent states and actions
without enumerating the sets S and A?

— recall 10277 states with respect to the number of
particles in the universe

How to efficiently solve planning
problems?
— How to find a path in a graph with 1027 nodes?

* Problem Formalisation
— models and representations

Each stateis described using a set of propositions

that hold at that state.
example: fonground, at2}

Each action is a syntactic expression describing:

* which propositions must hold in a state so the

action is applicable to that state
example: take: {onground}

* which propositions are added and deleted from

the state to make a new state
example: S o
take: {onground}, =l 5 }
1 a e= - 1 ' 4
location 1 location 2 o location 1rlocation 2

{holding}*

Let L= {p4, ..., Py be a finite set of propositional
symbols (language).
A planning domain X over L is a triple (S,A,y):

— S c 2L, i.e. state s is a subset of L describing which
propositions hold in that state
-« ifpes,then pholdsins
« if p ¢ s, then p does not hold in s
— action a € A is a triple of subsets of L
a = (precond(a),effects (a),effects*(a))
- effects(a) n effectst(a) = @
« action a is applicable to state s iff precond(a) c s

— transition function y:
* y(s,a) = (s — effects(a)) u effects*(a), if a is applicableto s

Planning problem P is a triple (Z,s,,9):
— X = (5,A,y) is a planning domain over L
— Sp is an initial state, sp€ S
— g < Lis aset of goal propositions
* Sg={s€S | gcs}isasetof goal states

Plan = is a sequence of actions {aj,a,,...,ay
— thelength of plan risk = | o |

— a state obtained by the plan =« (a transitive closure of y)
* y(s, ™) = s, if k=0 (plan m is empty)
« y(s, @) = y(y(s,a1), {ay,...,a), if k>0 and a, is applicable to s
« y(s, m) = undefined, otherwise

Plan 7 is a solution plan for P iff g < y(s,, m).

— redundant plan contains a subsequence of actions that also
solves P

— minimal plan: there is no shorter solution plan for P

§1 So
ut
|put
|
Vam—g take H/
) 4 /) 4
location 1 location 2 location 1 location 2
A
move2 move1 move2 move1
A A4
§3 §2
put
—>
o S % 4
/ take 4
location 1 location 2 location 1 location 2
A
unload load
Sy4 S5
move2
—>>
Y/ 4 ’
&4 | s Q)
location 1 location 2 location 1 location 2

* Simplicity

— easy to read

How many states for n containers?

* Computations

L = {onground, onrobot,
holding, atl, at2}

sp = {onground, at2}

g = {onrobot}

load = (
{holding,at1},
{holding},
{onrobot})

(take,movel,load,move2)
is a plan,
but not a minimal plan

8.n.n!states

loc2

cranel
A
=R
ol

A2 V7
pl

loc1

{nothing-on-c3, c3-on-cl,c1-on-pile1, nothing-on-c2, c2-on-pile2,

crane-empty, robot-at-loc2}

— the transition function is easy to model/compute using set
operations
— if precond(a) € s, then
¥(s,a) = (s — effects’(a)) U effects*(a),

* Expressivity
— some sets of propositions do not describe real states

* {holding, onrobot, at2}

— for many domains, the set representation is still too large
and not practical

Classical representation generalize the set representation
by exploiting first-order logic.
— State is a set of logical atoms that are true in a given
state.

— Action is an instance of planning operator that
changes true value of some atoms.

More precisely:

* L (language) is a finite set of predicate symbols and
constants (there are no function symbols!).

* Atom is a predicatesymbol with arguments.
example: on(c3,c1)

* We can use variables in the operators.
example: on(x,y)

State is a set of instantiated atoms (no variables). There
is a finite number of states!

— The truth value of some atoms
is changing in states:

cranel — * fluents
-CZ /7
c3 P2 ﬁﬁ * example: at(rl,loc2)
cl |7 ri
it O (09
— The truth value of some state
loct loc2 is the same in all states
{attached(p1,locl), in(cl,pl), in(c3,pl), . .
top(c3,pl), on(c3,cl), on(cl,pallet), attached(p2,locl), in(c2,p2), top(c2,p2), ¢ rlgld atoms
on(c2,pallet), belong(cranel,locl), empty(cranel), adjacent(locl,loc2), adja- .
cent(loc2,locl), at(rl,loc2), occupied(loc2), unloaded(rl)}. * eXGmple.
adjacent(loc1,loc2)

We will use a classical closed world assumption.
An atom that is not included in the state does not hold at that

state!

operator o is a triple (name(o), precond(o), effects(o))
— name(o0): name of the operator in the form n(xy,...,xy)

* n: asymbol of the operator (a unique name for each operator)

* Xq,..,X: Symbols for variables (operator parameters)
— Must contain all variables appearing in the operator definition!

— precond(o):
* literals that must hold in the state so the operator is applicable on it
— effects(o):

* literals that will become true after operator application (only fluents
can be there!)

take(k,l,c,d,p)
.; crane k at location [takes ¢ off of d in pile p
precond: belong(k, 1), attached(p,1),empty(k), top(c,p),on(c,d)
effects: holding(k, ¢), ~empty(k), = in(c, p), 2 top(c, p), 7 on(e, d), top(d, p)

An action is a fully instantiated operator

— substitute constants to variables ﬁﬁ
P
—4]

take(k,l, ¢, d,p) - -
.: crane k at location [takes ¢ off of d in pile p operator
precond: belong(k, 1), attached(p,1),empty(k), top(c, p),on(c, d)
effects: holding(k, ¢), mempty(k), ~in(c,p), ~top(c, p), ~on(c, d), top(d, p)

take(cranel,locl,c3,c1,pl) action
.» crane cranel at location locl takes c3 off cl in pile pl
precond: belong(cranel,locl), attached(pl,locl),
empty(cranel), top(c3,pl), on(c3,cl)
effects: holding(cranel,c3), —empty(cranel), —in(c3,pl),
—top(c3,pl), —on(c3,cl), top(cl,pl)

Notation:

— St = {positive atoms in S}
— S~ = {atoms, whose negation is in S}

Action a is applicable to state s if any only
precond*(@a) s A precond(@a)Ns =0

The result of application of action ato s is
y(s,a) = (s — effects™(a)) v effects*(a)

take(cranel,locl,c3,cl,pl)
;; crane cranel at location locl takes c3 off cl in pile pl
precond: belong(cranel,locl), attached(pl,locl),

empty(cranel), top(c3,pl), on(c3,c1) .
effects: holding(cranel,c3), —empty(cranel), —in(c3,pl), . O O
—top(c3,pl), —on(c3,cl), top(cl,pl) loc1 loc2
1
=7 =
a1 D il
pl O 0

Let L be a language and O be a set of operators.

Planning domain X over language L with operators
O is a triple (§,A, y):

— states S C 2{all instantiated atoms from L}

— actions A = {all instantiated operators from O over L}
+ action a is applicable to state s if
precond*(@) s A precond-(@)ns =0
— transition function y:
» y(s,a) = (s — effects(a)) u effects*(a), if a is applicableon s

» Sis closed with respect to y (if s € S, then for every action a
applicable to s it holds y(s,a) € S)

Planning problem P is a triple (X,s,,8):
=(S,A, ¥) is a planningdomain
— Sgis an initial state, s € S
— g is a set of instantiated literals

* state s satisfies the goal condition g if and only if
g'SsAg Ns=0

* Sg={s €S| ssatisfies g} — a set of goal states

Usually the planning problem is given by a triple
(O,so,g).
— O defines the the operators and predicatesused
— 5o provides the particular constants (objects)

cranel

3 c2

2 VAR cx—
Emp 7 (i RGN,
: O O [[our goat
locl loc2

loc2

s,= {attached(pl,locl), in(cl,pl), in(c3,p1), g = {loaded(r1,c3), at(r1,loc2)}
top(c3,pl), on(c3,cl), on(cl,pallet), attached(p2,locl), in(c2,p2), top(c2,p2),

on(c2,pallet), belong(cranel,locl), empty(cranel), adjacent(locl,loc2), adja-

cent(loc2,locl), at(rl,loc2), occupled (loc2), unloaded r1)} move(r1,|0C2,|OC1),

R take(cranel,locl,c3,c1,pl),
load(cranel,locl,c3,r1),

move(rl,locl,loc2)

take(cranel,locl,c3,c1,pl),

move(rl,loc2,locl),
load(cranel,loc1,c3,r1),

move(rl,locl,loc2) cranel
L/
< 1)
a1 ” 1 o
pi O 0

locl loc2

Expressive power of both representationsis identical.

However, the translation from the classical
representationto a set representation brings exponential
increase of size.

trivial
set classical
representation representation
T - actions
make a" pOSSIbIe take(cranel,locl,c3,c1,pl)
instances ;; crane cranel at location locl takes c3 off cl in pile p1
states precond: belong(cranel,locl), attached(pl,locl),
empty(cranel), top(c3,pl), on(c3,c1)

{on(cl,pallet), on(cl,rl), on(cl,cZ), ey at(rl,l l)r } effects: holding(cranel,c3), —empty(cranel), —in(c3,pl),
—top(c3,pl), —on(c3,cl), top(cl,pl)

take-cranel-loc1-c3-c1-pl
precond: belong-cranel-locl, attached-p1-loci,

on-cl-pallet, on-c1-r1,on-c1-c2, ..., at-ri-I1, ... empty-cranel, top-c3-p1, on-c3-cl
{ pallet, ! e it delete: empty-cranel, in-c3-p1, top-c3-pl, on-c3-pl
add: holding-cranel-c3, top-c1-p1

— infinitely large table with a finite set of blocks
— the exact location of block on the table is irrelevant
— a block can be on the table or on another (single) block

— the planning domain deals with moving blocks by a
computer hand that can hold at most one block

situation example

o [=

Constants Actions

— blocks: a,b,c,d,e unstack(x,y)

Precond: on(x,y), clear(x), handempty
- . Effects: —on(x,y), = clear(x), clear(y),
Predicates: —handempty, holding(x),

— ontable(x)
block x is on a table stack(x,y) ,

Precond: holding(x), clear(y)

- on(x,y) Effects: —holding(x), —clear(y),
block x is on y on(x,y), clear(x), handempty
block x is free to move Precond: ontable(x), clear(x), handempty

— holdina(x Effects: —ontable(x), —|clea§(x),
the hangd(h())lds block x S G el

— handempty putdown(x)
the handis empty Precond: holding(x)

Effects: —holding(x), ontable(x),
clear(x), handempty
Propositions: Actions

36 propositions for 5 blocks

« ontable-a
block a is on table (5x)

* Onh-C-a

block ¢ is on block a (20x)

e clear-c

block c is free to move (5x)

* holding-d

the hand holds block d (5x)

 handempty
the hand is empty (1x)

50 actions for 5 blocks

NN\

unstack-c-a
Pre: on-c-a, clear<, handempty

Del: on-c-a, clear<, handempty
Add: holding-c, clear-a

stack-c-a
Pre: holding-c, clear-a
Del: holding-c, clear-a
Add: on-c-a, clear<, handempty

pickup-b
Pre: ontable-b, clear-b, handempty
Del: ontable-b, clear-b, handempty
Add: holding-b

putdown-b
Pre: holding-b
Del: holding-b
Add: ontable-b, clear-b, handempty

SNONTN TN

e State-space Planning

— forward and backward search

The search space corresponds to the state space of the
planning problem.

— search nodes correspond to world states

— arcs correspond to state transitions by means of actions

— the task is to find a path from the initial state to some goal

state

Basic approaches

— forward search

— backward search
* lifting
* STRIPS
— problem dependent (blocks world)

Note: all algorithms will be presented for the classical
representation

Start in the initial state and go towards some goal
state.

We need to know:

— whether a given state is a goal state

— how to find a set of applicable actions for a given
state

— how to define a state after applying a given action

Forward-search(O, s¢, g)

5« 8

m < the empty plan

loop
if s satisfies g then return w
E < {ala is a ground instance of an operatorin O,

and precond(a) is true in s}

if E = () then return failure
nondeterministically choose an action a € F
s «— y(s,a)

mw e .4

take c3
cranel locl loc2
(=1,
; I
= rl take c2

pl

locl loc2

move r1

{belong(cranel,locl), adjacent(loc2,locl), 1
. -C crane
holding(cranel,c3), unloaded(rl),
Y — A==
at(r1,loc2), , N/ T
. 1
occupied(loc2),...} : oy
locl loc2
move(rl,loc2,locl) ' move(r...m) | |
., robot 7 moves from location [to location m
precond: adjacent(l,m),at(r,[), ~occupied(m)
{belong(cranel |OC1) effects: at(r,m), occupied(m), - occupied(l), —at(r, 1)
14 I
adjacent(loc2,locl), holding(cranel,c3), unloaded(rl),
at(r1,locl), occupied(locl), ...}
load(k, 1, ¢,7)
Ioad(cra ne 1,|0C1,C3,r1) ;i crane k at location [loads container ¢ onto robot r

precond: belong(k, 1), holding(k, c), at(r, 1), unloaded(r)
effects: empty(k), ~holding(k, ¢), loaded(r, ¢), = unloaded(r)

{belong(cranel,locl), adjacent(loc2,locl),
empty(cranel), loaded(r1,c3),
at(r1,locl), occupied(locl), ...}

locl

Goal = {at(r1,locl),loaded(r1,c3)} - Sy

.“.
I
RN

Forward planning algorithm is sound.
— If some plan is found then it is a solution plan..
— It is easy to verify by using s = y(sg,m).

Forward planning algorithm is complete.

— If there is any solution plan then at least one search
branch corresponds to this plan.
— induction by the plan length

— at each step, the algorithm can select the correct action
from the solution plan (if correct actions were selected n
the previous steps)

We need to implement the presented algorithm
in a deterministic way:
— breadth-first search
e sound, complete, but memory consuming

— depth-first search

* sound, completeness can be guaranteed by loop checks
(no state repeats at the same branch)

- A*
* if we have some admissible heuristic
* the most widely used approach

What is the major problem of forward planning?
Large branching factor — the number of options

50 possible 9T initial state goal |
blocks to
pick up

* Thisis a problem for deterministic algorithm that needs
to explore the possible options.

Possible approaches:
— heuristic recommends an action to apply

— pruning of the search space

* For example, if plans m; and , reached the same state then we know
that plans m; 5 and T, r; will also reach the same state. Hence the
longer of the plans ; and m, does not need to expanded.

We need to remember the visited states ®.

Start with a goal (not a goal state as there might
be more goal states) and through sub-goals try
to reach the initial state.

We need to know:
— whether the state satisfies the currentgoal
— how to find relevant actions for any goal

— how to define the previous goal such that the
action convertsit to a current goal

Actiona is relevant for a goal g if and only if:
— action a contributes to goal g: g N effects(a) # @
— effects of action a are not conflicting goal g:
* g N effects*(a)=0
* gt N effects’(a)=0
A regression set of the goal g for (relevant) action a is
Y-1(g,a) = (g - effects(a)) U precond(a)

Example: Sackter)
. Precond: holding(x), clear(y)
goal' {on(a’b)’ On(b,C)} Effects: ~holding(x), ~clear(y),
action stack(a,b) is relevant Ol Ol) Ty

by backward application of the action we get a new goal:
{holding(a), clear(b), on(b,c)}

Backward-search(O, sg, g)

m «— the empty plan

loop
if s(satisfies g then return 7
A — {ala is a ground instance of an operator in O

and 7" !(g, a) is defined}

if A= () then return failure
nondeterministically choose an action a € A
T a.m

g —~""(g,a)

take C3,C1 locl loc2
N (= 1, take c3,c2
L7 7 ﬂﬁ move r1
pit O (09
locl
Goal = {at(r1,locl),loaded(r1,c3)} (=]

procon(l belong k 1), holding(k, ¢), at(r,), unloaded(r)
effects: empty(k), = holding(k, ¢), loaded(r, ¢), - unloaded(r)

Ioad (Cra ne1 Ioc1,c3 r1)4 ol cl‘ralne(LI at location [loads container ¢ onto robot r

{at(r1,locl), belong(cranel,locl),
holding(cranel,c3), unloaded(r1l)}
m

move(r,l,m)
;; robot 7 moves from location [to location m
ove(r1,I0c2,I0c1) % precond: adjacent(l,m),at(r,[), ~occupied(m)

effects: at(r,m), occupied(m), - occupied(l), —at(r, 1)

{belong(cranel,locl), holding(cranel,c3),
unloaded(rl),

adjacent(loc2,locl),
at(r1,loc2),
—occupied(locl)} o

locl loc2

Backward planning is sound and complete.

We can implement a deterministic version of the
algorithm (via search).

— For completeness we need loop checks.

* Let(g;,...,.8¢) be a sequence of goals. If Ji<k g; € g, then we can
stop search exploring this branch.

Branching

— The number of options can be smaller than for the forward
planning (less relevant actions for the goal).

— Still, it could be too large.

* If we want a robot to be at the position loc51 and there are direct
connections from states loc1,...,loc50, then we have 50 relevant
actions. However, at this stage, the start location is not important!

* We can instantiate actions only partially (some variables remain
free. This is called lifting.

Lifted-backward-search(O, sg, g)
7 < the empty plan
loop
if sq satisfies g then return 7
A «— {(o,8)|o is a standardization of an operator in O,
f is an mgu for an atom of g and an atom of effects (o),
and v 1(0(g),0(0)) is defined}
if A = () then return failure
nondeterministically choose a pair (0,0) € A
7 «— the concatenation of #(0) and ()

g —7"'(0(g),0(0))

Notes:
* standardization = a copy with fresh variables
* mgu = most general unifier

* by using the variables we can decrease the branching factor
but the trade off is more complicated loop check

How can we further reduce the search space?

STRIPS algorithm reduces the search space of backward
planningin the following way:

— only part of the goal is assumed in each step, namely the
preconditions of the last selected action

* instead of y(s,a) we can use precond(a) as the new goal
* the rest of the goal must be covered later
e This makes the algorithm incomplete!

— If the current state satisfies the preconditions of the selected

action then this action is used and never removed later upon
backtracking.

STRIPS algorithm

The original STRIPS algorithm is a lifted
version of the algorithm below.

Ground-STRIPS(O, s, g)
7 < the empty plan '
loop ' 83
if s satisfies g then return =
A < {a | ais a ground instance of an operator in O,
and a is relevant for g}
if A = @ then return failure
nondeterministically choose any action a € A a,
n’! < Ground-STRIPS(O, s, precond(a))
if '’ = failure then return failure
;; If we get here, then m’ achieves precond(a) from s
s < y(s, ")
53 s now satisfies precond(a)
s < y(s,a)
n<«mn.na.a

\ g,= (g - effects(a,)) U precond(a;,) 86
1~ ={aq a,) isa plan for precond(a;) satisfied in s,

s =y(y(sg,aq),a,) is a state satisfying precond(a,)

Sussman anomaly is a famous example that
causes troubles to the STRIPS algorithm (the
algorithm can only find redundant plans).

Block worid Initial state I_I_I goal

a
4l
alb
A plan found by STRIPS may look like this:
- unstack(c,a),putdown(c),pickup(a),stack(a,b)
now we satisfied subgoal on(a,b)

» unstack(a,b),putdown(a),pickup(b),stack(b,c)

now we satisfied subgoal on(b,c),
but we need to re-satisfy on(a,b) again

» pickup(a),stack(a,b) red actions can be deleted

Solving Sussman anomaly
— interleaving plans

* plan-space planning
— using domain dependent information

* When does a solution plan exist for a blocks world?
— all blocks from the goal are present in the initial state

— no block in the goal stays on two other blocks (or on itself)

* How to find a solution plan?
Actually, it is easy and very fast!
— put all blocks on the table (separately)
— build the requested towers
We can do it even better with additional knowledge!

When do we need to move block x?

Exactly in one of the following situations:
— s contains ontable(x) and g contains on(x,y)
— s contains on(x,y) and g contains ontable(x)
— s contains on(x,y) and g contains on(x,z) for some y#z
— s contains on(x,y) and y must be moved

N~
e C

al|b

initial state

0

Stack-containers(O, s, £):
if g does not satisfy the consistency conditions then
return failure :; the planning problem is unsolvable
7 <« the empty plan
s < 5
loop
if s satisfies g then return &
if there are containers b and ¢ at the tops of their piles such that
position(c, s) is consistent with g and on(b,c) € ¢
then
append actions to 7 that move b to ¢
s < the result of applying these actions to s
:; we will never need to move b again
else if there is a container b at the top of its pile
such that position(, s) is inconsistent with g
and there is no ¢ such that on(b,c) € g
then
append actions to 7 that move b to an empty auxiliary pile
s < the result of applying these actions to s
;+ we will never need to move b again
else
nondeterministically choose any container ¢ such that ¢ is
at the top of a pile and position(c, s) is inconsistent with g
append actions to 7 that move ¢ to an empty auxiliary pallet
s < the result of applying these actions to s

Initial state I_l_l

Goal

[o]=]#]

M

b

G stack(a,b)

s

pickup(b)@

G pickup(a)

&
[a] [c]

Position is consistent with block cif there is no reason to move c.

0

stack(b,c)

* Plan-space Planning
— partial-order planning

The principle of plan space planning is similar to
backward planning:

— start from an ,,empty” plan containingjust the
description of initial state and goal

— add other actions to satisfy not yet covered (open)
goals

— if necessary add other relations between actions in
the plan

Planning is realised as repairing flaws in a partial
plan

— go from one partial plan to another partial plan until
a completeplan is found

Assume a partial plan with the following two actions:
— take(kl,c1,p1,11) —o ——a0
— load(k1,c1,r1,11)

Possible modifications of the plan:

— adding a new action Cor=o=>
* to apply action load, robot r1 must be at location 11
* action move(rl,l,11) moves robot rl to location |11 from some location |

— binding the variables
* action move is used for the right robot and the right location

— ordering some actions
* the robot must move to the location before the action load can be used
* the order with respect to action take is not relevant

— adding a causal relation

* new action is added to move the robot to a given location that is a
precondition of another action

e the causal relation between move and load ensures that no other action
between them moves the robot to another location

The initial state and the goal are encoded using two
special actions in the initial partial plan:
— Action a, represents the initial state in such a way that
atoms from the initial state define effects of the action and

there are no preconditions. This action will be before all
other actions in the partial plan.

— Action a, represents the goal in a similar way —atoms
from the goal define the precondition of that action and
there is no effect. This action will be after all other actions.

Planning is realised by repairing flaws in the partial
plan.

The search nodes correspond to partial plans.

A partial plan Il is a tuple (A,<,B,L), where
— A is a set of partially instantiated planning
operators {a,,...,a,}
— < is a partial order on A (a<a))
— B is set of constraints in the form x=y, x+y or x€D,
— Lis a set of causal relations (a;—Pa))
* a,,a; are ordered actions a;<a;
* pisa literal that is effect of a; and precondition of a;

* B contains relations that bind the corresponding
variables in p

action
precondition

causal
relations
O

--at(r1,11) o0
o -=—1in(cl,pl) S i holding(kl,cl) °©
9 empty (k1) unloaded(rl)

|
I
|
take(kl,cl,pl,11)[1 load(kl,cl,rl,11)
|
holding(kl,c1)-—---! loaded (ril,cl)
empty (k1)

—in{cl,pl)

in(cl,p1)~”

at(r1,13))
AN adjacent(1,11),

> at(rl,1)
~occupied(11)

move(r1,1,11)

at(rl,11)-—————————- J
—at(rl,1)
—occupied(11)

o 9 occupied(l)
@)

Ll -
action , .
effect -
CoT=o7

L
|
|
|
|
]
{
|
|
!
|
i
|
|
|
|
1
|
|
I
[
1
|
|
I

Open goal is an example of a flaw.

This is a precondition p of some operator b in the partial
plan such that no action was decided to satisfy this
precondition (there is no causal relation a; =Pb).

The open goal p of action b can be resolved by:

— finding an operator a (either present in the partial plan or a
new one) that can give p (p is among the effects of aand a
can be before b)

— binding the variables from p
— adding a causal relation a —=Pb

Threatis another example of flaw.
This is action that can influence existing causal relation.

— Let a; —Pa; be a causal relation and action b has among its
effects a literal unifiable with the negation of p and action b
can be between actions a; and a;. Then b is threat for that
causal relation.

We can remove the threat by one of the ways:

— ordering b before a; et B vy
. ‘ | empty(kD) ! unToaded(r1)
— ordering b after a; | |

1
holding(kl,cl) ---- loaded(rl,cl)

— binding variables in b J| TinteLey otk

L

in such a way that p MELI),
~occupied(11)
the negation of p T p— 17\
&

in(cl,p2)

' ' at(r1,13)~_.,at(r1,l)
does not bind with
—at(rl,1)

—occupied(11)
occupied(l)

Partial plan II = (A,<,B,L) is a solution plan for the problem
P=(X,s08)if:
— partial ordering < and constraints B are globally consistent

* there are no cycles in the partial ordering

* we can assign variables in such a way that constraints from B hold

— Any linearly ordered sequence of fully instantiated actions
from A satisfying < and B goes from s, to a state satisfying g.

Hmm, but this definition does not say how to verify that a
partial planis a solution plan!

How to efficiently verify that a partial planis a
solution plan?

Claim:
Partial plan Il = (A,<,B,L) is a solution plan if:
— there are no flaws (no open goals and no threats)
— partial ordering < and constraints B are globally consistent

Proof by induction using the plan length
— {ap,a1,a.} is a solution plan

— for more actions take one of the possible firstactions and
join it with action a,

PSP = Plan-Space Planning

PSP(x)
flaws «— OpenGoals(w) U Threats(x)
if flows = 0 then return(r)
select any flaw ¢ = flows
resolvers «— Resolve(o, 7)
if resolvers = () then return(failure)
nondeterministically choose a resolver p © resolvers
7’ «— Refine(p,)
return(PSP(="))
end

Notes:
* The selection of flaw is deterministic (all flaws must be resolved).

* The resolvent is selected non-deterministically (search in case of
failure).

Open goals can be maintained in an agenda of action
preconditions without causal relations. Adding a causal
relation for p removes p from the agenda.

All threats can be found in time O(n3) by verifying
triples of actions or threats can be maintained
incrementally: after adding a new action, check causal
relations influenced (O(n?)), after adding a causal
relation find its threats (O(n)).

Open goals and threats are resolved only by consistent
refinements of the partial plan.
— consistent ordering can be detected by finding cycles or by
maintaining a transitive closure of <

— consistency of constraints in B
* If there is no negation then we can use arc consistency.

* In case of negation, the problem of checking global consistency is
NP-complete.

Algorithm PSP is complete and sound.
— soundness

* If the algorithm finishes, it returns a consistent plan with no flaws
so it is a solution plan.

— completeness

* If there is a solution plan then the algorithm has the option to
select the right actions to the partial plan.

Be careful about the deterministic implementation!
— The search space is not finite!

— A complete deterministic procedure must guarantee that it
eventually finds a solution plan of any length —iterative
deepening can be applied.

PoP is a popularinstance of algorithm PSP.

— Agenda is a set of pairs

(a,p), where pis an

PoP(r, agenda) ;i where m = (A, <, B, L) Open precondition Of
if agenda = @ then return(r)]
select any pair (aj, p) in and remove it from agenda . action a.

relevant < Providers(p,)
if relevant = @ then return(failure)

nondeterministically choose an action a; € relevant — First find an action d; to
Le LUl >a) : . cover some p from the
update B with the binding constraints of this causal link

if a; is a new action in A then do: agenda .

update A with g;

update < with (a; < @), (a9 < a; < doo)
update agenda with aﬁ preconditions of a; — At the second Stage

for each threat on (a; ~2> aj) or due to g; do: resolve a" threats that
resolvers <— set of resolvers for this threat .
if resolvers = then return(failure) appeared by adding
nondeterministically choose a resolver in resolvers .
add that resolver to < or to B action a; or from a

return(PoP(rr, agenda))
end

causal relation with a;.

Initial state:

— At(Home), Sells(OBI,Drill), Sells(Tesco,Milk), Sells(Tesco,Banana)
— so action Start is defined as:

Precond: none

Effects: At(Home), Sells(OBI,Drill), Sells(Tesco,Milk), Sells(Tesco,Banana)

Goal:
— Have(Drill), Have(Milk), Have(Banana), At(Home)
— so action Finish is defined as:

Precond: Have(Drill), Have(Milk), Have(Banana), At(Home)
Effects: none

The following two operators are available:
— Go(l,m) ;; go from location / tom
Precond: At(/)
Effects: At(m), =At(/)
— Buy(p,s) ;; buy p at location s
Precond: At(s), Sells(s,p)
Effects: Have(p)

The initial (empty) plan
Go(/,m)
Precond: At(/)
Effects: At(m), —At())

Buy(p,s)
Precond: At(s), Sells(s, p)

Effects: Have(p)

action effects
below the
action

@) Start

o

At(Home), Sells(OBI,Drill), Sells(Tesco,Milk), Sells(Tesco,Bananas)

Have(Drill), Have(Milk), Y Have(Bananas), At(Home)

Finish

action
preconditions
above the action

There is only one way to satisfy the

open goals Have, and this is via e e att)
actions Buy (no threats added). Effects: At(m), -At()
Buy(p,s)

Precond: At(s), Sells(s, p)
Effects: Have(p)

Start

ST N

At(s4), Sells(s4,Drill) At(s,), Sells(sy,Milk) At(s;), Sells(sz,Bananas)

Buy(Drill, s4) Buy(Milk, s,) Buy(Bananas, s3)

N)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Finish

There is again a single way to satisfy

preconditions Sells and this is e ait
substituting the right constants. Effects: At(m), —At()
Buy(p,s)

Precond: At(s), Sells(s, p)
Effects: Have(p)

Star \
At(OBI), Sells(OBI,Drill) At(Tesco), Sells(Tesco,Milk) At(Tesco), Sells(Tesco,Bananas)
Buy(Drill,OBI) Buy(Milk,Tesco) Buy(Bananas,Tesco)

AN)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Finish

The only way to satisfy open goals is
by adding actions Go.
— There are new threats!

Start

At(ly)
Go(,0Bl) [~ ="

Go(/,m)
Precond: At(/)
Effects: At(m), =At(/)

Buy(p,s)
Precond: At(s), Sells(s, p)

Effects: Have(p)

At(l)

Go(/,, Tesco)

-
-
-

- = \\ S
- \ ~
- ~
" k Y X
¥ v

¥
At(OBlI), Sells(OBI,Drill) At(Tesco), Sells(Tesco,Milk) At(Tesco), Sells(Tesco,Bananas)

Buy(Drill,OBI) Buy(Milk, Tesco) Buy(Bananas, Tesco)

N Y

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Finish

One threat can be solved by ordering

Buy(Drill) before Go(Tesco)
— This solves all the threats!

Start

At(h)
Go(l;,0Bl)

Go(/,m)
Precond: At(/)
Effects: At(m), -At(/)

Buy(p,s)
Precond: At(s), Sells(s, p)

Effects: Have(p)

At(l)

Go(/,, Tesco)

1

At(OBI), Sells(OBI, Drill)

At(Tesco), Sells(Tesco,Milk) At(Tesco), Sells(Tesco,Bananas)

Buy(Drill,0BI) |

Buy(Milk,Tesco) Buy(Bananas, Tesco)

N [

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Finish

Open goal At(/,) can be satisfied by
assignment /;=Home taken from the
action Start.

Start

At(Home)

Go(Home,OBI)

Go(/,m)
Precond: At(/)
Effects: At(m), =At(/)

Buy(p,s)
Precond: At(s), Sells(s, p)

Effects: Have(p)

At(L)

Go(/,, Tesco)

7~ 1

At(OBI), Sells(OBI,Drill)

At(Tesco), Sells(Tesco,Milk) At(Tesco), Sells(Tesco,Bananas)

Buy(Drill,OBI) Buy(Milk, Tesco)

Buy(Bananas, Tesco)

N /

P

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Finish

Open goal At(/) can be satisfied by
assignment ,=0BI from action
Go(Home, OBI)

Start

At(Home)

Go(Home,OBI)

Go(/,m)
Precond: At(/)
Effects: At(m), -At(/)

Buy(p,s)
Precond: At(s), Sells(s, p)

Effects: Have(p)

At(OBI)

Go(OBI, Tesco)

B

At(OBI), Sells(OBI,Drill)

At(Tesco), Sells(Tesco,Milk) At(Tesco), Sells(Tesco,Bananas)

Buy(Drill,OBI) Buy(Milk, Tesco)

Buy(Bananas, Tesco)

N /

P

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Finish

Open goal At(Home) from Finish is

satisfied by action Go
— new threats appear

At(Home)

Start

Go(/,m)
Precond: At(/)
Effects: At(m), =At(/)

Buy(p,s)
Precond: At(s), Sells(s, p)

Effects: Have(p)

At(OBI)

Go(Home,OBI)

V

At(OBI), Sells(OBI,Drill)

——

-—— -
-
-

Buy(Drill,OBI)

AN

-
-

Go(OBl, Tesco)

_——

T~

P
V' 2 \
\
At(Tesco), Sells(Tesco,Milk) At(Tesco), Sells(Tesco,Bananas) \ At(l)

Buy(Milk, Tesco)

Buy(Bananas,Tesco) | | Go(/;, Home)

/

P

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Finish

Threats for At(Tesco) are removed by

ordering Go(Home) after both actions
Buy
Start
At(Home)

Go(/,m)
Precond: At(/)
Effects: At(m), -At(/)

Buy(p,s)
Precond: At(s), Sells(s, p)

Effects: Have(p)

At(OBI)

Go(Home,OBI)

At(OBI), Sells(OBI,Drill)

Buy(Drill,OBI)

AN

Go(OBI, Tesco)

B

At(Tesco), Sells(Tesco,Milk) At(Tesco), Sells(Tesco,Bananas) At(/3)

Buy(Milk, Tesco)

Buy(Bananas,Tesco) | | Go(/;, Home)

y ===

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Finish

Open goal At(/5) is satisfied by
asignment /;=Tesco from action

Go(OBI, Tesco).

At(Home)

Start

Go(Home,OBI)

At(OBI), Sells(OBI,Drill)
Buy(Drill,OBI)

AN

Have(Drill),

Go(/,m)
Precond: At(/)
Effects: At(m), =At(/)

Buy(p,s)
Precond: At(s), Sells(s, p)

Effects: Have(p)

At(OBI)

Go(OBl, Tesco)

B

At(Tesco), Sells(Tesco,Milk) At(Tesco), Sells(Tesco,Bananas) At(Tesco)

Buy(Milk, Tesco)

Buy(Bananas,Tesco)

Go(Tesco,
Home)

y ==

Have(Milk), Have(Bananas), At(Home)

Finish

State space planning

Plan space planning

search space

finite

infinite

search nodes

simple
(world states)

complex
(partial plans)

world states

explicit

not used

partial plan

action selection and
ordering done together

action selection and
ordering separated

plan structure

linear

causal relations

State space planning is much faster today thanks to heuristics
based on state evaluation.
However, plan space planning:
— makes more flexible plans thanks to partial order
— supports further extensions such as adding explicit time and resources

e Control Knowledge in Planning
— heuristics

— control rules

Heuristics are used to select next search node to be explored
(recall, that we described the planning algorithms using non-
determinism).

— Note: If we know, which node to select to get a solution, then we use
oracle. With oracle we will find the solution deterministically.

Naturally, we prefer the heuristic to be as close as possible to
oracle while being computed efficiently.

A typical way to obtain (admissible) heuristics is via solving a
relaxed problem (some problem constraints are relaxed — not
assumed).

— solve the relaxed problem for the successor nodes

— select the node with the best solution of the relaxed problem

For optimisation problems the heuristic h(u) estimates the real
cost h*(u) of the best solution reachable via node u.

— the heuristic is admissible, if h(u) < h*(u) (for minimization)

— the search algorithms using admissible heuristics are optimal

Heuristic estimates the number of actions to reach a goal state from a
given state or to reach a given predicate or a set of predicates.

Based on solving a “relaxed” problem:

— assume only positive effects

— assume that different atoms can be reached independently

Zero attempt:

— Aqy(s,p) =0 if pEs
— Ay(s,g) =0 if gCs
— Ag(s,p) =0

if p&s and Va€A, pé&effects*(a)

— Ay(s,p) = min {1+ Ay(s,precond(a)) | p€effects*(a)}

- AO(SIg) = Zpeg AO(SIp)

This heuristic is not admissible
(for optimal planning) because it
does not provide a lower bound
for the plan length!

A first attempt to admissible heuristic

- Aﬂl(s,g)= max{Aq(s,p) | pE€g}

Delta(s)

for each p do: if p € s then Ag(s,p) < 0, else Ag(s,p) « oo
U<« s .
iterate

for each a such that precond(a) C U do
U « U Ueffectst(a)
for each p € effectst(a) do
AO(S: P) <« min[AO(s)le + quprecond(a) AO(S) q)}
until no change occurs in the above updates
end

— If the heuristic value is greater than the best so-far solution then
we can cut-off the search branch.

— Based on experiments, heuristic A, is less informed than A,.

A second attempt to admissible heuristic
Let us try to explore reachability of pairs of atoms together.

— A,(s,p)=min_ {1+ A,(s,precond(a)) | p€effects*(a)}

— Ay(s,{p,q})=min{

€ effects*(a)},

min_{1+ A,(s,precond(a)) | {p,q} € effects*(a)},
|
|

{
min {1+ A,(s,{q}Uprecond(a
min_{1+ A,(s,{p}Uprecond(a

) | p
)) | g € effects*(a)}}

— A,(s,8)= max, .{A,(s,{p,a}) | {p,a} < g}

We can generalise the above idea to larger sets of atoms, but for k>2 this

heuristic is computationally expensive.

Forward planning

Heuristic-forward-search(r, s, g, A)

* Prefer the action leading to a if s satisfies g then return =
tat ith I h isti options < {a € A | a applicable to s}
state wi smaller heuristic for each a € options do Delta(y (s, a))
distance to a goal. while options # @ do
Lo . a < argmin{Ao(y (s, a),g) | a € options}
* Heuristic is Computed In every options <« options — {a}

7’ < Heuristic-forward-search(r. a, y (s, a), g, A)
if 7/ # failure then return(z’)

search step.

return(failure)
end
Backward planning
. L. Backward-search(, s, g, A)
* First, compute the heuristic if 5o satisfies g then return(x)
; HRC options < {a € A | a relevant for g}
distance from the initial state s, while options % 3 do
to all atoms: A(sg,p) a < argmin{Ao(so, y~\(g, @)) | a € options}
i options < options — {a}
— can be done incrementally 7' < Backward-search(a. 7, sp, y~1(g, @), A)
. if 7/ # failure then return(rr’
* Prefer the action whose | r failure then retum(z')
regression set is heuristically end
closer to the initial state.
Plan-space planning is based on AND-OR search.

There are two types of choices: 7
N the ChOice Of ﬂaw (AND nOde) l diti ;;recondiliong lh:;:tl?nrlszg

— the choice of resolver (OR node) [Ny m— sy

Flaw-selection heu ristic E;:ﬁ% Partial | | Partial | | Partial Partial | | Partial

Flaws:

planm,| [planmy| |planm, plan s | |plan mg
— This is a form of serialization of

the AND/OR treg, in particular A A A 7A\ A

the AND node is split into several nodes.

— Which serialization is better?

Action a,

Partial Partial
plan m; plan m,

abefore b bbefore a abefore b,

Partial plan

Action a,

Partial
plan

Partial
plan g

bbefore a a before b, b before a

abefore b bbefore a

. Partial Partial Partial Partial Partial Partial
Partial Partial planm,| |planm, plan my, | | plan my, planmy, | [plan g,
plan 7, plan 7,
. " . i Action Action Action Action Action Action
n N\ Action
Acé':n N Ac;::m Ac‘;lzo A he a; ay a; ED a; a

Partial Partial || Partial Partial |[Partial || Partial Partial Partial Partial Partial Partial Partial
plan ;4 ||plan 7y, || plan 74| plan 7,4 | |plan 715, |[plan 745 plan 44 || plan mypy plan 7y, || Plan mpp plan 73y, || plan 7z

— Better serialization leads to a smaller number of nodes in the graph.
— FAF (fewest alternatives first) heuristic
« first repair the flaws with fewer ways for repair

Which resolver for a flaw should be tried first?
Let {m,,..., T} be partial plans obtained by applying different flaw resolvers
and g, be a set of open goalsin m.
* Zero attempt

prefer a partial plan with fewer open goals

& 770(7'[) = |g71'|

— However, this does not really estimate the size of the plan.

* Nextattempt

Generate an AND-OR graph for m till given depth k and count the number
of new actions and the number of open goals not in s,

= ()

— This is too computationally expensive.

* One more improvement

Construct a planning graph (once) for the original goal. Then find an open
goal pin m, that was added last to the graph and on the path from s, to p
count the number of actions that are notinm

= n(m)

Heuristics guide the planner towards a goal state by ordering
alternative plans. They do not solve the problem with the large
number of alternatives.

Can we detect and prune bad alternatives?

Example (blockworld)

— If a block is placed correctly (consistent with the goal) then any action
that moves that block just enlarges the plan.

— If a block is on a wrong place and there is an action that moves it to
the correct place then any action that moves the block elsewhere just
enlarges the plan.

Domain dependent information can prune the search space, but
the open question is how to express such information for a
general planning algorithm.

— control rules

We need a formalism to express relations between the
current world state and future states.

Simple temporal logic

— extension of first-order logic by modal operators

* ¢, U @, (until) ¢ is true in all states until the first state (if any)
in which ¢, is true

[1 ¢ (always) ¢ is true now and in all future states

< ¢ (eventually) ¢ is true now or in any future state
O ¢ (next) ¢ is true in the next state
GOAL(¢) ¢ (no modal operators) is true in the goal state

— ¢ is a logical formula expressing relations between the objects
of the world (it can include modal operators)

The interpretation of modal formula involves not just the current state but
we need to work with a triple (S, s;, g):

— S =(sp, S1,... 7 is an infinite sequence of states
— S,€ES is the current state
- g is a goal formula

Plan 1T = {ay, a,,..., a,) gives a finite sequence of states S, = {sy, Sy,..., S, ?
where s.,; = ¥(s;,a;,1), that can be made infinite {sg, S1,-.. ,S1.1, Sy Sy Spy -

(S, s, g) | ¢ is defined as follows:
(S,s,8) Fo iff s, F ¢ for atom ¢
(S, Siy g) }:¢1 A ¢2 Iff (SI Sis g) F ¢1 a (Sr Sis g) % ¢2

°

L[]

(S, s, 8) FpLU ¢, iffthere existsj=ist. (S,s, 8) F @,
and for each k:i<k<j (S, s, g) F ¢4

(S,s, g) FO ¢ iff (S, s; 8) - ¢ for each j > i

(S,s,8) FO o iff (S, s, 8) F ¢ forsomej =i

(S, Sil g) }t O d) Iff (Sr Si+1l g) % ¢

(S, s, g) FGOAL(¢p) iffp €g

. badtower
Goodtower is a tower such that q
no block needs to be moved.

Badtower is a tower that is not good. B

A Initial State Goal State
goodtower(z) = clear(xz) A ~GOAL(holding(z)) A goodtowerbelow(z)
goodtowerbelow(x) 2 (ontable(x) A —3[y:GOAL(on(z,y))]))

V d[y:on(z, y)] ~GOAL(ontable(z)) A ~GOAL(holding(y)) A ~GOAL{clear(y))
A V[z:GOAL(on(z, 2))] z = y A V[2:GOAL(on(z,y))] 2 = =
A goodtowerbelow(y)

badtower(z) 2 clear(z) A ~goodtower(z)

| goodtower remains goodtower |
Control rule: —

O (V[a::clem‘(:c)] goodtower(z) = O(clear(z) V Iy:on(y, z)] goodtower(y))
A badtower(:n) = O(*G[y:on(y, 2‘1)}) — not put anything on

A (ontable(z) A 3[y:GOAL{on(z,y))] ﬂgoodtower(yﬂ badiower
= O(=holding(z))) — N

do not take a block from a table until you
can put it on a goodtower

To use control rules in planning we need to express how the formula changes when we
go from state s, to states;,;.

— We look for a formula progr(¢, s;) thatis true in s;,4, if ¢ is truein states;

* ¢ does not contain any modal operator
— progr(¢, s)=true ifs;F¢
= false if si|-¢ does not hold
* ¢ with logical connectives
— progr(: A ¢y, si) = progr(¢s, si) A progr(e, si)
— progr(= ¢, s) = -progr(e, s;)
* ¢ with quantifiers (no function symbols, just k constants c))
— progr(vx ¢, s;) = progr(p{x/c,}, si) A... A progr(e{x/c, si)
— progr(3x ¢, s) = progr(p{x/ci}, si) V ... V progr(p{x/ci}, si)
* ¢ with modal operators
— progr(¢, U ¢y, si) = ((¢1 U ¢,) A progr (¢4, si)) V progr (¢, si)
— progr(ld ¢, s) = (0 @) A progr(¢, s))
— progr($ ¢, 5) = (< @) V progr(e, s))
— progr(O ¢,s)=¢

Technical notes:
— progress(g, s;) is obtained from progr(¢, s;) by cleaning (true A d = d, —true — false, ...)
— Can be extended to a sequence of states s, ... ,S,”

progress(e, so, .,y 7)= ifn=0
= progress(progress(¢®, s, ... ,Sn.1 2), Sn) otherwise

(S,Si,g) I- ¢ Iff (S,Si_,_l,g) }: progress((,‘b, Si)-

— i.e. progress behaves as we need

(S,50,8) F @ then for any prefix S = s, ...,s;> of S it holds
progress(¢,S’) # false.

— If the control rule is satisfied then progress is not false

If plan 7 is applicable to sy and progress(¢, S;) = false, then there
is no extension S* of S, st. (S%s,,8) F)

— If progress is false then the control rule cannot be satisfied

The planning algorithm will modify the control rule for next
states by applying progress and if progress is false then we
know that there is no plan (going through a given state)
satisfying the control rule.

Forward state-space planning guided by control rules.

— If a partial plan S;; violates the control rule progress(¢, S,),
then the plan is not expanded.

STL-plan(O, s, &, @)
s < So a partial plan violates the control rule ¢

7 < the empty plan
loop /]
if ¢ = false then return failure /J a complete plan found

if s satisfies g then return = .
A <« {a | ais a ground instance of an operator in O]

and precond(a) is true in s} actions applicable to state s
if A = @ then return failure

REA : T
nondeterministically choose an action a € A

o a new state after the action
s < y(s,a)

w—
T < T.4 [

¢ < progress(¢, s) :| control rule progression ¢

 What we did not cover:
— State-variablerepresentation

— Problem solving by transformation to SAT/CSP
— Hierarchical task networks

— Planning with time and resources

— Planning with uncertainty and dynamic worlds

e What we have learned:

— Formalization of planning problems

— Mainstream solving approaches

AUTOMATED

Automated Planning:
Theory and Practice

« M. Ghallab, D. Nau, P. Traverso

« http://www.laas.fr/planning/

« Morgan Kaufmann

© 2016 Roman Bartak
Charles University in Prague, Faculty of Mathematics and Physics
bartak@ktiml.mff.cuni.cz

