Multi-Agent
Pathfinding

Roman Bartak, Roni Stern

What is multi-agent path finding (MAPF)?
DO

-0
MAPF problem:

d
‘ LJ\ \‘
Find a collision-free plan (path) for each agent

4,400
Alternative names:

cooperative path finding (CPF), multi-robot path planning,
pebble motion

Part I: Introduction to MAPF
— Problem formulation, variants and objectives

— Applications

Part Il. Search-based solvers
— Incomplete solvers

— Complete suboptimal solvers
— Optimal solvers

Part lll. Reduction-based solvers
— SAT encodings

— CP encodings

Part IV. From planning to execution
— Execution policies for MAPF
— Execution-aware offline planning

Part V. Challenges and conclusions

INTRODUCTION TO MAPF

e agraph (directed or undirected)

* aset of agents, each agent is assigned to

two locations (nodes) in the graph (start,
destination)

Each agent can perform either move (to a
neighboring node) or wait (in the same node)
actions.

Typical assumption:
all move and wait actions have identical durations (plans for

agents are synchronized)
Plan is a sequence of actions for the agent leading
from its start location to its destination.
The length of a plan (for an agent) is defined by the

time when the agent reaches its destination and does
not leave it anymore.

Find plans for all agents such that the plans do
not collide in time and space (no two agents are
at the same location at the same time).

o — ECEETINET
@ Vi V2
(D))
(%) (%)
@\/

wait vi move vs3
movevs move va

move va move Ve

A W N P O

move Vs wait Ve

Some trivial conditions for plan existence:
* no two agents are at the same start node

* no two agents share the same destination node
(unless an agent disappears when reaching its
destination)

* the number of agents is strictly smaller than the
number of nodes

r

v; at the same time when agent
at v; performs move v;

Agent at v; cannot perform move

~

,

Agents may swap position Swap is not allowed.
“time | agent 1 | ogort2 [N e | agent1 | agent2 |
0 Vi V2 0 Vi V2
1 move vz move Vi 1 move vz move V3
Agents use the same edge at Z B I
3 move vz move vi

the same time!

Agent at v, cannot perform

Vi v move v; if there is another
v‘a @ agent at v,
Agent can approach a node Trains may be forbidden.

will be free before arrival.

that is currently occupied but m-
Vi V2

0
m 1 wait vi move Vs
0 Vi V2 2 move V2 wait vs
1 movevz move vs 3 move va wait vs
2 moveva move V2 4 wait va move V2
3 movevz move vi 5 wait va move vi
6

move vz wait vz

Agents form a train. [TUTkd
0,020,0mO080,

If any agent is delayed then trains may cause
collisions during execution.

To prevent such collisions we may introduce more
space between agents.

k-robustness

An agent can visit a node, if that node has not been
occupied in recent k steps.

1

- ool

1-robustness covers both no-swap and no-train
constraints

No plan (path) has a cycle.

No two plans (paths) visit the same same
location.

Waiting is not allowed.

Some specific locations must be visited.

How to measure quality of plans? e

Two typical criteria (to minimize):

* Makespan

— distance between the start time of the first agent
and the completion time of the last agent

— maximum of lengths of plans (end times)

+ Sum of costs (SOC) ime | gent 1 | sgent |
— sum of lengths of plans Vi V2
. waitvi move v3
(end times)

0
1
2 movevs move Va
Makespan =4
sOC=7 3 move va move Ve
4

movevs wait Ve

Optimal single agent path finding is tractable.
— e.g. Dijkstra's algorithm

Sub-optimal multi-agent path finding (with two
free unoccupied nodes) is tractable.
— e.g. algorithm Push and Rotate

MAPF, where agents have joint goal nodes (it
does not matter which agent reaches which
goal) is tractable.

— reduction to min-cost flow problem
Optimal (makespan, SOC) multi-agent path
finding is NP-hard.

Search-based techniques

state-space search (A*)

state = location of agents at nodes
transition = performing one action for each agent

conflict-based search

Reduction-based techniques

translate the problem to another formalism
(SAT/CSP/ASP ...)

SEARCH-BASED SOLVERS

Some slides and animations taken from Guni Sharon, Dor Atzmon, and Ariel Felner

I’

0n|n

T
o7l |

Pl
P Moy
g o NN EEECE GEG

K=1 (Navigation in explicit graphs)
Explicit graph

K=N-1 (Tile puzzle)
(Huge) Implicit graph

K (# agents)

11

15

1 2,3 4,5

112 34,5

6 7|8 9|10

11 /12|13 14|15

11 /1213|141

5

B 17 18192

0 @ 17|18 19 20

Start state

-3

Goal state

b: branching factor = # of operators
d: depth of best goal node

112 3 4|5

1]2]3/4]5 Nodes expanded

6 @ 8|9 10 = 1+b+b%*+..+b?=0(b?) 6|78 9 10
111213)14 15 111213] 1415
B 17 18|19 20 @ 1718|1920

Tt g, Goal state

Start state

(lHEHHIF‘Illll::E)EEr:;;)ri- EEEEESR ;(]:.l.l:::.;.l:::.‘::;ii;“ll"1IEI|!II»
ORI

Q) YT Lad
h(e)=estimated the cost to reach a goal

Expand(c)

g(e)=min. cost from start

Suboptimal Optimal

Incomplete ? ?

Complete ? ?

First Attempt: Cooperative A* (silver 05)

* Plan for each agent separately

* Avoid collisions with previously planned agents

e Step 1: Plan blue

e Step 1: Plan blue

e Step 1: Plan blue

e Step 1: Plan blue

e Step 1: Plan blue
— Done!

e Step 2: Planred

e Step 1: Plan blue
— Done!

e Step 2: Plan red

avoid blue’s plan

e Step 1: Plan blue

e Step 2: Planred

e Step 1: Plan blue

e Step 2: Plan red

— Done!

— Done!

e Step 1: Plan blue

e Step 2: Planred

e Step 1: Plan blue

e Step 2: Plan red

« Step N: Plan Nth

— Done!

— Done!

— Done!

agent

4 possible
moves

3
8 |9 |10

13|14 | 15

18 | 19 | 20

4 possible
moves

13 |14 | 15

Singe-agent pathfinding 1] 18 | 19 | 20

« A state is the agent’s location
« Number of states =4 x 5

« Branching factor = 4

Classical search problem!

4 possible
moves

5 possible

« A state is a (location,time) pair
« Number of states = 4 x 5 x maxTime

« Branching factor = 4+1

4 possible
moves

5 possible

« A state is a (location,time) pair
« Number of states = 4 x 5 x maxTime

« Branching factor = 4+1

1. Initialize the reservation table T
2. For each agent do
2.1. Find a path (do not conflict with T)

2.2. Reserve the path inT

Percentage Success

——RA*
&~ (H)CA*
“— WHCA*(8)
—A— WHCA*(16)
o—WHCA*(32)

50
Number of Agents

 Complexity?

— Polynomial in the grid size and max time
* Soundness?

— Yes!
 Complete? Optimal?

—No ®

Not complete (=may not find a solution)
Not optimal (=may find an inefficient solution)

* A goal location that blocks another agent

e All-or-nothing (can’t move until planning is done)
— Some relief to this with WHCA* (Silver ‘05)

* Ordering the agents is key (how to do that?)
— Conflict oriented ordering (Byana & Felner ‘14)

Suboptimal Optimal

Incomplete ° Cooperative A* ?
 WHCA*

Complete ? ?

Can a MAPF algorithm be
complete and efficient?

g

W e RN
I

.z'
756
5 12 4
—_—

 MAPF is highly related to pebble motion problems
— Each agent is a pebble

— Need to move each pebble to its goal

— Cannot put two pebbles in one hole

* Pebble motion can be solved polynomially!
e But far from optimally [Kornhauser et al., FOCS 1984]

 Complex formulation

Similar approaches:

¢ Slidable Multi-Agent Path Planning weng s sotea, ica, 2000
¢ Push and Swap [Luna & Bekris, IJCAI, 2011]

e Parallel push and swap [sajid, Luna, and Bekris, SoCS 2012]
® Push and Rotate [de wilde et al. AAMAS 2013]

® Tree-based agent swapping strategy ixnorshia atel. socs, 2011)

THIS IS WHAT YO NMEED TO GET

THIS 1S HOW

FY(‘{ IAVE THI=S

W -5 ﬁ—eu@

Y ‘?"ﬁ"““’@@ ?_

—

ém

YO BID (T

Bibox (Surynek ‘09)

a b
FAR (Wang and Botea '08)

C

Suboptimal Optimal

|ncomp|ete * Cooperative A* ?
* WHCA*
Complete * Kornhauser et al. ’84 ?

Push & Swap (Luna & Bekris)
* Bibox (Surynek)

4 possible 5 possible
moves

« A state is a (location,time) pair
« Number of states = 4 x 5 x maxTime

« Branching factor = 4+1

5 possible
moves

5 possible

« A state is a pair (locationl1, location2)

« Number of states = ?
« Branching factor = ?

25 Possible moves! = 5x5

2-agent pathfinding search problem

« Number of states = (4 x 5)°
« Branching factor = 5

5 possible
moves

7~

/

5 possible
moves

15

20

ACleessided iskaeahghrp bdde

Can a MAPF algorithm be
complete and efficient and optimal?

1 2 8
17 56 14 NP‘hard
9 15 12 4

313106

Search problem properties
« Number of states = (4 x 5)«

 Branching factor = 5%

K=N-1 (Tile puzzle)

K=1 (Navigation in explicit graphs)
Explicit graph (Huge) Implicit graph
& 1213
\ 4|56 |7
i K (# agents) —To Tl
| 12[13[14[15

Can we adapt technigues from these extreme cases?

Yes!

(and invent some new techniques also)

100

80

60

40

20

0

ICTS

MA-CBS(1)
——MA-CBS(100)

EPEA*

CBS

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Searching the k-agent search space
— A*+OD+ID [standley “10]
— EPEA* [Felner X, Goldenberg ‘Y]
— M* [Wagner & Choset Z]

Other search-based approaches

— ICTS [Sharon et al “13]
— CBS [Sharon et al '15]

Ve
/ Operators | ‘?

| Start ———> b) Goal state / function:

— ; Is a given state a goal state?
\—/\ ¥ ? i »

e A* expands nodes

e A* gain efficiency by choosing which node to expand

What is the complexity of expanding
a single node in MAPF with 20 agents?

520= 95,367,431,640,625

Root

b | ¢
- o

s

A

AN

63

* Pros

— Branching factor is reduced to 5 (= single agent)
— With a perfect heuristic can solve the problem

e Cons

— Solution is deeper by a factor of k
— More nodes may be expanded, due to intermediates

65

66

(Standley '10)

Simple Independence Detection

1. Solve optimally each agent separately

2. While some agents conflict
1. Merge conflicting agents to one group
2. Solve optimally new group

Theoretically, a 2 agents problem, but ...

SO S1

(Standley '10)

Gl GO

Simple Independence Detection

1. Solve optimally each agent separately

2. While some agents conflict
1. Merge conflicting agents to one group
2. Solve optimally new group

Theoretically, a 2 agents problem, but ...

SO S1

(Standley '10)

Independence Detection

1. Solve optimally each agent separately

2. While some agents conflict
1. Try to avoid conflict, with the same cost
2. Merge conflicting agents to one group

3. Solve optimally new group

Really a 2 agent problem
Independence Detection But....

1. Solve optimally each agent separately

2. While some agents conflict
1. Try to avoid conflict, with the same cost
2. Merge conflicting agents to one group

3. Solve optimally new group

M*

1. Find optimal path for each agent individually

2. Start the search. Generate only nodes on optimal paths

3. If conflict occurs — backtrack and consider all ignored actions

M*
I:> 1. Find optimal path for each agent individually
2. Start the search. Generate only nodes on optimal paths
3. If conflict occurs — backtrack and consider all ignored actions

S0,S1

1

AA

M*

1. Find optimal path for each agent individually

2. Start the search. Generate only nodes on optimal paths

3. If conflict occurs — backtrack and consider all ignored actions

@ @

AS1 SO,A

M*

1. Find optimal path for each agent individually

2. Start the search. Generate only nodes on optimal paths

3. If conflict occurs — backtrack and consider all ignored actions

@

AS1 SO,A

tht

D,B

1

Recursive M*

1. Find optimal path for each agent individually

2. Start the search. Generate only nodes on optimal paths

3. If conflict occurs — backtrack and consider all ignored actions
- Apply M* recursively after backtracking

SO S1

Gl GO

Joint path up to bottleneck can be long...

Searching the k-agent search space
— A*+OD+ID [standiey “10]
— EPEA* [Felner X, Goldenberg ‘Y]
— M* [Wagner & Choset Z]

Other search-based approaches

— ICTS [Sharon et al “13]
— CBS [Sharon et al '15]

High-level

Is there a solution
with costs

L Yol
' J

High-level

What about this? J

10 11

Low-level

50
45
40
35
30
25
20
15
10

Tryl\]:o find

a ﬁoﬁjtion
solution

——A*+OD+ID

rn e

-==|CTS

ICTS+P

#problems solved
under 5 minutes

5 10 15 20 25 30

number of agents

o N*- cenhad in BArmce

JICTS Complexity depends on A

— Sum of single agent costs =2 BUT optimal solution =74

Solving Optimally Problems with more than 75 agents!

100 el pm
30 \— O
co || ——MA-CBS(10) | \l\-
ICTS
40 MA-CBS(1)
8- MA-CBS(100)
20 EPEA*
CBS
0
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Motivation: cases with bottlenecks:

g+h=6: All m? combinations of (A;,B;) will be expanded

A*

f=7: 3 states are expanded

A* and ICTS work in a
K-agent search space

CBS plans for single agents
but under constraints

« Conflict: [agent A, agent B, location X, time T]
« Constraint: [agent A, location X, time T]

Resolve conflict by imposing [$1,C,2] or [S2,C,2]

« Conflict: [agent A, agent B, location X, time T]
« Constraint: [agent A, location X, time T]

Resolve conflict by adding [A,X,T] or [B,X,T]

CBS: general idea

1.
2.

3.

Plan for each agent individually
Validate plans

If the plans of agents A and B conflict
Constrain A to avoid the conflict

or
Constrain B to avoid the conflict

Nodes:
* A set of individual constraints for each agent
* A set of paths consistent with the constraints

Goal test:

* Are the paths conflict free

Eftomtd
(Con:{} [cost:6)

i
2} S2 b2
(con: (1,6.2)} Jcost: 7Y ((com: {(2.C,2)H [Cost: 7

Sol Sol .
1-51,A1,ALC,G1 | 1-51,A1,C,G1
2-52,81,C,62 2-52,81, B1,C,G2

Goal 92

Conflict
{1,2,G2}

Replan 2

 How many states A* will expand?
 How many states CBS will?

93

« A* :m%+3 = O(m?3) states
 CBS: 2m+14 = O(m) states

When m > 4 CBS will examine
fewer states than A*

« States expanded by CBS?
» States expanded by A*?

@ O O

!
(v
1

ﬁ;

2

3

2

94

95

c’é

L |

» 4 optimal solutions for each agent

» Each pair of solutions has a conflict B £2)
L e
1 2 3 4

* Rough analysis:
— CBS: exponential in #conflicts = 54 states
— A*: exponential in #agents = 8 states

Trends observed
* In open spaces: use A*
* In bottlenecks: use CBS

What if I have both?

1. Plan for each agent individually
2. Validate plans
3. If the plans of agents A and B conflict

4 If (should merge(A,B))
merge A and B into a meta-agent

and solve with A*
Else

5 Constrain A to avoid the conflicts
or
Constrain B to avoid the conflict

Should merge(A,B) (simple rule):
Merge when observed more than T conflicts between A,B

T=0 (always merge) | (never merge) T=e

Standley's D | Mace basic CBS

97

Many bottlenecks

brc202d with EPEA* as a low-level solver

k| EPEA* B(1) B(5)| B(10)[B(100)B(500) CBS
5 1,834 2,351 1,286| 1,276] 1,268| 1,267 1,664
10 6,034 8,059 4,580 4,530 4,498 4,508 5,495
15| 12,354 15,389 6,903| 6,871| 6,820] 6,793 8,685
20|> 70,003| >73.,511] 35,095(21,729/19,846(31,229| >43.625

Few bottlenecks

den520d with A* as a low-level solver |

brc202d

k A¥ B(1)) B(5)| B(I0)B(100)B(500) CBS

5 0223 273 218] 220 219 222 219

10[1,099 1458 553| 552| 549 552 546

15 1,182 1,620 1.838] 1,810 1,829 1,703 1,672

20(4792 4375 1996| 2,011| 2,020 1.857| 1,708

25| 7.633| 14,749 2,193| 2,255 2,320 2.888| 3,046

30> 62,717> 60,214| 8,082| 8,055 8,107 8.013| 7,745

35[> 65,947|> 51,815| 13,670(13,587|15,981(28,274|> 45,954
40|~ 81 ~82 .86 / 2 ' ~ 45

den520d 40[> 81,487| >82,860| 18,473(18,39920,391|31,189|> 45,857
Many bottlenecks HighT (cdoser to CBS)

9
More agents 2> LowT (closerto A*)
Faster single-agent search > lower T (close to A*)

 When to merge agents?
* What to do after merging? [soyarski et al. 16]

e Which conflict to resolve? [Boyarski et al. ‘16]
* How to resolve it?

 Which low-level solver to use?
e Heuristics for the constraint tree search [maetal. ‘18]

« A* (M*, EPEA*, A*+OD+ID)

— Main factors: #agents, graph size, heuristic accuracy
* |CTS

— Main factors: #agents, A, graph size
e CBS and its variants

— Main factors: #conflicts

Where to use what?

o)

ol Al
.
;44
e

9]

&
i

e

ol Pl e
ol o]
i8]

e oR oas Samnam
I
. Solved instances ICTS
Solved instances IcTS ICBS
ICBS Den520d |32 agents
Ost003d| 16 agents MDD-SAT
250 - MDD-SAT 250
200
g 200 - -l - ey —— P
o [~}
c c
] 8 | R S S S
@ 150 2 150
5 5
5 100 4100
o €
E 2
Z s0 50
0 T - T 0 T
Runtime (seconds) Runtime (seconds)
01 1 10 100 01 1 100
Solved instances ICTS Solved instances
Brc202d |32 agents ICBS Grid 32x32 | 10% obstacles
300 1 ‘ MDD-SAT 350 MDD-SAT
| | IC8s
3250 To-m-- s ettt L, oo EPEA
3 ; ‘ @ ‘ ICTS
§200 1oo-ooooheoeo o ol T €250 T gasicsaT
£ % 200
& 150 -
= —
5 o150 +-------;
-g 100 2
£ £ 100
2
50 |- =
So
0 ; , o + , =
Runtime (seconds) Runtime (seconds)

0,1 1 10 100 0,1 1 10 100

Suboptimal Optimal

Incomp|ete * Cooperative A* ?
« WHCA*
Complete ° Kornhauser et al. "84 « A*+OD+ID
* Push & Swap (Luna & Bekis) (Standley)
* Bibox (Surynek) e |ICTS
(Sharon et al.)
° M*
(Wagner & Choset)
e CBS

(Sharon et al.)

A*+0OD+ID
Optimal ICTS
Solvers
?
WHCA*
Suboptimal Push &

Solvers - Swap

An algorithm is bounded suboptimal iff
— It accepts a parameter ¢

— It outputs a solution whose cost is at most (1 + ¢) -Optimal

How to create a bounded suboptimal algorithm?

» Different search algorithms

* |nadmissible heuristics

SIC £10,10,10

v

@ 10,12,10 @ 32

Open Question!

11,11,10

b Cw

e | f @\

AN
OO0

OO0
@QQ@

A,S1 SO,A
n_'_a

B,A

t

D,B

1

% SOLVED INSTANCES

(Con:{} [cCost:6)
Sol
1-S1,A1,C,G1
ks
(con: (162 [cost 7) ((con: {(2.C2)Hcost: 7)

Sol Sol
{1- Sl,Al,Al,C,Gl} 1-51,A1,C,G1
2-52,81,C,G2 2-52,81, B1,C,G2

Observation:

Suboptimality can be introduced in both levels

— ECBS (Barer et al. ‘14)
— ECBS+Highways (Cohen et al. ’15, ‘16)

100
90
80
70

60 | —t=CBS
50 | —g—BCBS(W,1) \

40
e CBS-LH(VW, VW) \

30
20 =é=BCBS(1,wW) \
10 — =»==ECBS

\,

0 ————————— N

5 10 15 20 25 30 40 50 70 100 130 150 200 250
AGENTS

When to use which algorithm? Ensembles?
Using knowledge about past plans [cohenetal]
Stronger heuristics for all algorithms
Deeper analysis of algorithms’ complexity

Beyond grid worlds

— Kinematic constraints (Ma et al. ‘16)

— Any angle planning (Yakovlev et al. ‘17)

— Hierarchical environments (Walker et al. ’17)

Planning & execution (see later today ©)

REDUCTION-BASED SOLVERS

How to exploit knowledge of others for solving
own problems?

e by translating the problem P to another
problem Q
Why is it useful?

* |If anybody improves the solver for Q then we
get an improved solver for P for free.

e Staying on the shoulders of giants.

Reduction, compilation, re-formulation
techniques

Boolean satisfiability

— fast SAT solvers

Constraint programming

— global constraints for pruning search space

Answer set programming
— declarative framework

Combinatorial auctions

Express (model) the problem as a SAT formula in
a conjunctive normal form (CNF)
Boolean variables (true/false values)

clause = a disjunction of literals (variables and
negated variables)

formula = a conjunction of clauses
solution = an instantiation of variables such that the
formula is satisfied
Example:
(XorY) and (not X or notY)
[exactly one of X and Y is true]

SAT model is expressed as a CNF formula

We can go beyond CNF and use abstract
expressions that are translated to CNF.

A=>B B or not A

sum(Bs) >=1 disj(Bs)
(at-least-one(Bs))

sum(Bs) =1 at-most-one(B) and at-least-one(B)

We can even use numerical variables (and
constraints).

In MAPF, we do not know the lengths of plans
(due to possible re-visits of nodes)!

We can encode plans of a known length using a
layered graph (temporally extended graph).

Each layer corresponds to one time slice and
indicates positions of agents at that time.

. Vi @ A Vi
%) V| . V;
Q
Vi Ve

Uses multi-valued state variables (logarithmic
encoding) encoding position of agents in layers.

1& agent
layer
* Agent waits or moves to a neighbor

fp=1=c8, = 1v\/ Lo, =1
Ce{1,..n}|{v,vp}EE

* No-train constraint

a b
/\ Lty # L
beA|b+a

* Agents are not at the same nodes

a

AlDifferent(£;", L2, ..., L")

l

Directly encodes positions of agents in layers
node % agent
* Agentis placed at exactly one node in each layer

n i i n i
ii=1j<t Xk V =Xk j=1 %)k

* No two agents are placed at the same node in each layer

u i i
/\k,h=1,k<h _‘Xj.k v _‘Xj,h

* Agent waits or moves to a neighbor

i i+1 i+1 i+1 i ’ i
‘X}',k = ‘X}',k v Vl:{vj,vl}eE xl,k ‘X}',k = ‘X}',k \% Vl:{vj,vl}EE Xl,k

* No-swap and no-train (nodes before and after move are empty)

i i+1 u i u i+1
Xk NX e = Ny =X ANy =X

Finding makespan optimal solutions

Runtime | Grid 8x8 | 10% obstacles

100
m
< 10 A A (<27 O O
C ~
3
[A v © 2 etk o ket R
2
g o1 ——o— INVERSE
= —— ALL-DIFFERENT
S001 F--pf-- P ——/— OD+ID
< ——O— DIRECT
0.001 A

[A]

Using layered graph describing agent positions at each time step
B:av : @agent a occupies vertex v at time t

Constraints:

e each agent occupies exactly one vertex at each time.
Y _Biay =1fort=0,..., m,and a=1,..., k.

* no two agents occupy the same vertex at any time.
ZQZIBMU <lfort=0,..., m,and v=1,..., n.

* if agent a occupies vertex v at time t, then a occupies a

neighboring vertex or stay at v at time t + 1.

Btal' =1= SuEncibS(l')(B(l‘—l—l)au) 2 1

Preprocessing:
B.,v = 0 if agent a cannot reach vertex v at time t or
a cannot reach the destination being at vat time t

impc»:"sat . ,

path(N,As) => .
X = len(as), Incremental generation of layers
lower_upper_bounds (As, LB,UB),

between (LB, UB, M),
B = new_array (M+1,K,N),
B :: 0..1,

¥ Initialize the first and last states Setting the initial and destination locations

foreach (A in 1..K)

(V, FV As[A],

B[1,A,V 1
B[M+1,A,FV] = 1

end,

% Each agent occupies exactly one vertex Agent OCCUpies onevertexatanytime
foreach (T in 1..M+1, A in 1..K)
sum([B[T,A,V] : V in 1..N]) #= 1
end,
% No two agents occupy the same vertex
foreach (31: 1.'.M+1, ".'" ." :.:N) 4Noconﬂict betweenagents
sum([B[T,A,V] : A in 1..K]) #=< 1
end,
% Every transition is wvalic
foreach (T i M, A in 1..K, V in 1..N)
neibs (v, - . .
B[T,A,V] #=> 4Agent moves to a neighboring vertex
sum([B[T+1,A,U] : U in Neibs]) #>= 1

end,

foreach(T in 1..M1, A in 1.

B[T,A,V] #=> sum([B[Pre
1..K, '
Prev in max(1,T-L)..T]) #= 0

end K-robustness

solve(B),
output_plan(B).

in 1..N)

Makespan Sum of costs
Picat [MDD | ASP Picat | MDD | ICBS
gl6_p10_a05 0.27 0.02 10.86 5.68 0.01 0.01
gl6_pl10_al0 1.37 0.14 9.58 35.82 0.01 0.01
gl6_pl0_a20 2.76 0.76 26.06 || 143.35 0.01 0.01
gl6_p10_a30 3.11 0.79 >600 || 495.04 0.52 0.02
gl16_p10_ad0 8.25 4.71 >600 >600 | 107.95 | >600

Instance

g16_p20_a05 1.01 0.16 5.96 16.2 0.01 0.01
gl6_p20_al0 1.5 0.31 18.59 92.16 1.58 0.16
gl16_p20_a20 2.12 0.46 20.71 209.74 0.6 0.05

g16_p20_a30 4.37 1.45 >600 >600 >600 | >600
g16_p20_ad0 3.48 1.15 >600 >600 >600 | >600
g32_p10_a05 1.98 0.53 12.93 29.91 0.01 0.01
g32_pl10_al0 3.08 1.21 31.34 84.92 0.01 0.01
g32_p10_a20 8.71 6.8 | 105.47 || 586.71 0.03 0.01
g32_pl10_a30 || 34.48 | 40.13 | 274.11 >600 0.22 0.02
g32 pl0_ad0 (| 3495 | 24.87 >600 >600 1.81 0.34
g32_p20_a05 5.75 2.77 11.99 58.27 0.01 0.01
g32_p20_al0 297 1.11 33.22 112.2 0.09 0.01
g32_p20_a20 1693 | 13.73 | 101.84 >600 2.5 0.22
g32_p20_a30 12.98 4.54 | 199.69 >600 1.78 0.05
g32 _p20_ad0 16.51 8.17 | 418.56 >600 3.24 0.13

| Total solved || 20 | 20 | 15 || 12 | 18 | 17 |

Runtime in seconds

Makespan (minimize the maximum end time)

incrementally add layers until a solution found

Sum of cost (minimize the sum of end times)

incrementally add layers and look for the SOC
optimal solution in each iteration (makespan+SOC
optimal)

generate more layers (upper bound) and then
optimize SOC (naive)

incrementally add layers and increase the cost limit
until a solution is found [Surynek et al, ECAI 2016]

Express the problem as a constraint satisfaction
problem:

— finite domain variables
— constraints = relations between the variables

— solution = instantiation of variables satisfying all the
constraints

Modeling (choice of constraints) is important.

Example:
E,N,D,O,R,Y in 0..9, —_———— =

S,Min 1..9 | s E N DI
,Min 1..9,
P1,P2,P3 in 0..1 |4_r MOREI

D+E = 10*P1l+Y |I=MONE b4 I
P;.+N+R = 1.8*P§+E | 956 7l
P2+E+0 = *P3+N |
P3+S+M = 10*M +O 1065 2

all different(S,E,N,D,M,O,R,Y)

Every SAT model is also a CP model.

CP models support numerical variables and constraints
directly.

CP solvers are based on interleaving local consistency
and search

Consistency techniques remove inconsistent values
all-different({1,2},{1,2},{1,2,3})
> all-different({1,2},{1,2},{3})
Global constraints introduce “specialized” solvers
into general CP framework

e.g. all-different is based on pairing in bipartite graphs

Separate path planning (which nodes are visited)
and time scheduling (when the nodes are

visited):
— find a path for each agent (planning)
each agent needs to get from its origin to destination

— ensure that paths are collision free (scheduling)
no two agents meet at the same time at the same node

It is natural to include:

— different durations of actions (e.g. different
distances between the nodes)

— capacities of edges and nodes

Two versions of the MAPF:

* no re-visits allowed (restricted MAPF)
* flow, path, and scheduling models
Can be modeled directly as a single CSP (we know
the maximum length of plans)

* re-visits allowed (classical MAPF)

e scheduling model with optional activities

Layered model based on the number of re-visits.

Based on network flows

Path planning

if agent enters the node, it must also leave it (flow
preservation constraint) vzev\{orig)}: 3 Usedla,p] = Flou[s,]

a€lnArcs(z)

Vo € V \ {dest(p)} : > Used[a, p] = Flow|[z, p]
a€ OutArcs(z)

Scheduling

time intervals spent in a node do not overlap
(Flow[z, p1] A Flow[z, p2]) = (OutT [z, p1] < InT [z, p2] V OutT [z, p2] < InT[z,p1])

Temporal constraints

Used|a, p]| = OutT [z, p] + w(a) = InT[y, p].
InT|z,p] < OutT[z, p].

Based on covering by cycles

Path planning

each node has predecessor and successor
Prev|z, p]| = y <& Next|y, p] = =.

Scheduling

time spent in a node modeled as activity N
NoOQwverlap(U Nz, p]).

peP

Temporal constraints

EndOf (N [z, p]) + w(z, Nezt[z, p]) = StartOf (N [Next|z, p], p]),

Based on optional activities

Path planning

Activities for traversing arcs and visiting nodes

PresenceOf (N|x, a]) & PresenceOf(Ni”[x, al) N (x,a) I N(x,a) Neut(x,a)
Alternative(Nm[x, al, U Aly, x, a]) A(y,x,a)l A(x,z,a)

(y.x)€E

SChEdUIing NoOverlap(U Nlx, a])

acA

Temporal constraints

StartOf (N[x, a]) = EndOf(N'"™[x, a))
EndOf(N|x, a]) = StartOf (N°*![x, a])

1000000
100000

10000

1000 //

100 "-'()pt
Flow

mm
mmm
mmm
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Comparison of CP models (map size

565
L
—Flow
i —Path
e
xe

reau8233535RessgIRR2EYI2RERRRASINNZ2RNERA2

PreasmarsnisAaNSEIEEIYIREZEEEASISISNZIGISEEAR:

SAT uses layers to encode time slices (number of
layers = makespan)

CP uses layers to encode re-visits of nodes
(number of layers = number of re-visits)

using activities for nodes

and arcs
N(x,a) N(x,a,k)
A(y,x,a) I A(y,x,a,k)

transitions to next layers
via A(x,x,a,k)

Upper bound for the number of layers:

Upper bound Length of the shortest path, over all agents,
on makespan from the origin node to the destination node
B— Pmin

5 + 1

Could be a huge number (leading to a big model).

Layers can be incrementally added until a
solution is found.

Makespan of the solution can used to estimate the
number of layers (if we optimize makespan).

[Bartak et al, AAMAS 2018] :
Model comparison

1000000

Runtime [ms]

BEEREEEEES FEESEREEEEEEEEESS TR R R
Solved instances

——Picat —~ = SM-OPT weeee SM-HEUR

Crwsnr298a3rReRRgaRNITNATIRARRERE
Sclved instances

——PKAt = SMOPT - SM-HEUR

-
g

v
8
-

g

Part I1V:

FROM PLANNING TO EXECUTION

Who is to blame?
[Elimelech et al. ‘17]

* How to react when an unplanned event occur?

* How to plan a-priori if we know such events may occur?

* How to react when an unplanned event occur?

* How to plan a-priori if we know such events may occur?

Plan

Plan

Red

Agent 51 ¢ Gl
Blue

Agent S2 G2 | G2
Red

Agent 51 ¢ G1
Blue) G2 G2

Agent

Plan

Plan

Red

Agent 51 ¢ Gl
Blue

Agent S2 G2 | G2
Red

Agent 51 ¢ G1
Blue) G2 G2

Agent

Plan

Exec.

Red

Agent 51 ¢ G1
Blue
Agent 52 G2 G2
5
Red
Agent 51 ¢ G1
Blue) G2 G2

Agent

Ee"' s1 | A G1
gent
Exec.r
A”e s2 | s2 G2 | G2
gent
Unexpected f===
dela® 9
A -
fed s1 | A G1
gent
Exec.r
A”e s2 | s2 G2 | G2
gent
Potential

Unexpected
delay ®

future conflict

J

Replan a
new plan

Repair the
existing plan

QEN plan

Red Red

et | S| Al A|A|C |Gl o st A e |6t

Blue Blue

nget | S2 | 52| B | € | G2 | G2 e | S22 [B [€ | G2 |62
Repair the — Replan a

existing plan new plan

+ Fast to compute (O(1)) - Hard to compute
+ Fewer messages - Need full sync.
- Solution quality may vary + High solution quality

Exec.

Exec.

Ee"' s1i|l Al Al c | a1
gent
E'”e 2 1s2| B | ¢ | g2 a2
gent
=Y Potential

Unexpected
delay ®

N)

future conflict

J

Red

el s AR @

Pd
E'”eszszgcegsg
gent

Unexpected
delay ®

Potential
future conflict

J

Lazy

Reasonable

Eager

When collision is
about to occur

When collision
will occur

When an agent
is delayed

______Lazy |Reasonable |Eager _

Repair
Replan

When agents need to communicate?

Minimal Communication Protocol (MCP)

[Ma et al. "16]

Red | g |'s, | G, | B | Gy

Agent
Blue /A \52 \Gz G,

Agent

MCP
* Preserve ordering of visits to locations

* Repair only to avoid breaking this order
* Send a message only when agents exit a shared location

Red
Agent Sq S, G, B G,

Blue
nent | S2 | A | S2 | G2 | G

MCP

* Preserve ordering of visits to locations

* Repair only to avoid breaking this order

. Serr a message only when agents exit a shared location

A

Can also move
faster than planned

MCP

* Preserve ordering of visits to locations

* Repair only to avoid breaking this order

. Serr a message only when agents exit a shared location

Can also move
faster than planned Red

noent | St LS2] G2| B | G

Blue
nent | 2 | A | S2 | Gy | G

MCP

* Preserve ordering of visits to locations
* Repair only to avoid breaking this order
. Serf a message only when agents exit a shared location

Can also move
faster than planned

MCP

Red
rgont | S19>S: 3> Gogp B o G
Blue
agent | 29 A S, G Gy

Ma et al. '16, '18

* Preserve ordering of visits to locations
* Repair only to avoid breaking this order
. Serr a message only when agents exit a shared location

Can also move
faster than planned

Red
Ageent S1p- 5, G B G,
Blue
oy | S A S, GGy

Label each edge with the
robot’s velocity constraints

= A Simple Temporal Network
=» Solvable in poly-time

* How to react when an unplanned event occur?

 How to plan a-priori if we know such events may occur?

How to consider unpredictable changes a-prior?

* Find a plan whose expected (*) cost is minimal
— AME (Ma et al.’17)
* Find a plan that is executable with high probability
— UM* (Wagner & Choset ‘17)
* Find a plan that is robust to a fixed number of changes

— K-robust MAPF solvers (Atzmon et al., see SoCS and AAMAS ’18)

(@) ° QO [] QO o 9 R R
° 0,0 8088.530
o © 2’0 0,0 o© 0
o @ © -
@* *x 0 @ o
e * 8’05 o 0 e 0
o %o é088 or ¢ ¢
® * O %60 d
o) & °-
© o Yo 2o @
g o ® é s o 80*“ §*.O*
@ '@ ’.J_ .0850 0
* O O Q0
O*OO 09.§; Og* O o*g *o0 -
'@ ¥ 9 g o° .
® 0 00 8 o ©O

Planning and execution in MAPF

& 5
oo

Under-studies aspect of MAPF =z -

& 4
e

Dilemma #1: replan vs. repair

Dilemma #2: when to repair/replan? . . = =

s
o o
e <o
ot ¥ oo

— Eager, reasonable, lazy, or MCP

re.

Mophen &
- phas

P

-

P
Whee ¢
-

Eager

4 s
o e
o Woen 27 agere

Yy

Dilemma #3: a-prior planning: robust or expectation

Many open challenges

How to consider solution quality?

Relation to conformant and contingent planning

Life-long MAPF planning

Part V:

CHALLENGES AND CONCLUSIONS

Why | like to work on Multi-Agent Pathfinding

— A real-world multi-agent application

— A very challenging multi-agent planning problem
— No clear dominant approach (yet)
* Search-based vs. constraints programming vs. SAT vs. ...

— Execution is bound to differ from the plan (integration...)
— So much left to do...

Incentives and mechanism designs (enay et al. '13, Amir'15]

What if the other agent is adversarial?
or even worse, a human?

Penalty %" M Penalty
W Travel M Travel

®) \) N N A0 \ 2 T
<« ¢ i o <« P\\ﬂ? e X Y 5e\“ « g\"P « p.\‘ﬂ? o « \g 52\‘\
W N\ W

(a) 50x50 grid with 20% for 20 agents (b) Dragon age’s den520 for 10 agents

Robotics
— Kinematic constraints (Ma et al. ‘16)

— Uncertainty is a first-class citizen
— Continuous configuration space
— Any-angle motion [Yakovlav et al. “17]

Traffic management

— Flow-based approaches

— No collisions, only traffic jams
— Scale

Task allocation
— See Ma et al. ‘16 for combining, flow-based and CBS

Pick up and delivery tasks
— See Ma et al.’16, ‘17 and others

Online settings

Cross fertilization seems natural

MAPF is a special case of MAP
« MAP

— Many models, rich literature
— Much work on uncertainty

— Poor scaling

* MAPF

— Fewer models, growing literature
— Not much work on uncertainty

— Scales well

Thanks!

Roman Bartak, Roni Stern

