
Multi-Agent
Pathfinding

Roman Barták, Roni Stern

Introduction

What is multi-agent path finding (MAPF)?

MAPF problem:
Find a collision-free plan (path) for each agent

Alternative names:
cooperative path finding (CPF), multi-robot path planning,
pebble motion

Tutorial outline

Part I: Introduction to MAPF
– Problem formulation, variants and objectives
– Applications

Part II. Search-based solvers
– Incomplete solvers
– Complete suboptimal solvers
– Optimal solvers

Part III. Reduction-based solvers
– SAT encodings
– CP encodings

Part IV. From planning to execution
– Execution policies for MAPF
– Execution-aware offline planning

Part V. Challenges and conclusions

INTRODUCTION TO MAPF
Part I:

MAPF formulation

• a graph (directed or undirected)
• a set of agents, each agent is assigned to

two locations (nodes) in the graph (start,
destination)

V1

V2

V3 V4

V5

V6

Plans

Each agent can perform either move (to a
neighboring node) or wait (in the same node)
actions.

Typical assumption:
all move and wait actions have identical durations (plans for
agents are synchronized)

Plan is a sequence of actions for the agent leading
from its start location to its destination.

The length of a plan (for an agent) is defined by the
time when the agent reaches its destination and does
not leave it anymore.

MAPF task

Find plans for all agents such that the plans do
not collide in time and space (no two agents are
at the same location at the same time).

V1

V2

V3 V4

V5

V6

time agent 1 agent 2
0 v1 v2

1 wait v1 move v3

2 move v3 move v4

3 move v4 move v6

4 move v5 wait v6

Plan existence

Some trivial conditions for plan existence:
• no two agents are at the same start node
• no two agents share the same destination node

(unless an agent disappears when reaching its
destination)

• the number of agents is strictly smaller than the
number of nodes

No-swap constraint

Agents may swap position

Agents use the same edge at
the same time!

Swap is not allowed.

V1 V2

V3

V4

time agent 1 agent 2
0 v1 v2

1 move v2 move v1

time agent 1 agent 2
0 v1 v2

1 move v2 move v3

2 move v4 move v2

3 move v2 move v1

Agent at vi cannot perform move
vj at the same time when agent

at vj performs move vi

No-train constraint

Agent can approach a node
that is currently occupied but
will be free before arrival.

Agents form a train.

Trains may be forbidden.

time agent 1 agent 2
0 v1 v2

1 move v2 move v3

2 move v4 move v2

3 move v2 move v1

time agent 1 agent 2
0 v1 v2

1 wait v1 move v3

2 move v2 wait v3
3 move v4 wait v3
4 wait v4 move v2

5 wait v4 move v1

6 move v2 wait v1

Agent at vi cannot perform
move vj if there is another

agent at vj

V1 V2

V3

V4

Train collisions

If any agent is delayed then trains may cause
collisions during execution.

To prevent such collisions we may introduce more
space between agents.

Robustness

k-robustness
An agent can visit a node, if that node has not been
occupied in recent k steps.

1-robustness covers both no-swap and no-train
constraints

[Atzmon et al., SoCS 2017]

Other constraints

• No plan (path) has a cycle.
• No two plans (paths) visit the same same

location.
• Waiting is not allowed.
• Some specific locations must be visited.
• …

Objectives

How to measure quality of plans?
Two typical criteria (to minimize):
• Makespan
– distance between the start time of the first agent

and the completion time of the last agent
– maximum of lengths of plans (end times)

• Sum of costs (SOC)
– sum of lengths of plans

(end times)

time agent 1 agent 2
0 v1 v2

1 wait v1 move v3

2 move v3 move v4

3 move v4 move v6

4 move v5 wait v6

Makespan = 4
SOC = 7

Complexity

Optimal single agent path finding is tractable.
– e.g. Dijkstra's algorithm

Sub-optimal multi-agent path finding (with two
free unoccupied nodes) is tractable.
– e.g. algorithm Push and Rotate

MAPF, where agents have joint goal nodes (it
does not matter which agent reaches which
goal) is tractable.
– reduction to min-cost flow problem

Optimal (makespan, SOC) multi-agent path
finding is NP-hard.

Applications

Solving approaches

Search-based techniques
state-space search (A*)

state = location of agents at nodes
transition = performing one action for each agent

conflict-based search

Reduction-based techniques
translate the problem to another formalism
(SAT/CSP/ASP …)

SEARCH-BASED SOLVERS
Part II:

Some slides and animations taken from Guni Sharon, Dor Atzmon, and Ariel Felner

How to Find Paths for +100 Agents

Why Search-Based MAPF Solvers?

K=1 (Navigation in explicit graphs)
Explicit graph

K=N-1 (Tile puzzle)
(Huge) Implicit graph

K (# agents)

Classical Search Setting

Start

Start state
a

b

c

Operators
Goal state

Goal

Classical Search Setting

Start

Start state
a

b

c

Operators

d

e

Expand(c)

g(e)=min. cost from start

b: branching factor = # of operators
d: depth of best goal node
Nodes expanded

≈ 1 + b + b2 + … + bd = O(bd)

h(e)=estimated the cost to reach a goal

Goal state

Goal

Search-based Solvers - Overview

OptimalSuboptimal

??Incomplete

??Complete

Decoupled Search-based Solvers

First Attempt: Cooperative A* (Silver ‘05)

• Plan for each agent separately
• Avoid collisions with previously planned agents

Cooperative A* (Silver 2005)

• Step 1: Plan blue agent

Cooperative A* - Example

• Step 1: Plan blue agent

0

Cooperative A* - Example

• Step 1: Plan blue agent

01

Cooperative A* - Example

• Step 1: Plan blue agent

01

2

Cooperative A* - Example

• Step 1: Plan blue agent
– Done!

• Step 2: Plan red

01

2

3

Cooperative A* - Example

• Step 1: Plan blue agent
– Done!

• Step 2: Plan red

01

2

3

0

avoid blue’s plan

Cooperative A* - Example

• Step 1: Plan blue agent
– Done!

• Step 2: Plan red

01

2

3

0

Wait

Cooperative A* - Example

• Step 1: Plan blue agent
– Done!

• Step 2: Plan red

01

3

0

1

2

Cooperative A* - Example

• Step 1: Plan blue agent
– Done!

• Step 2: Plan red

01

3

0

1

2

2

3

Cooperative A* - Example

• Step 1: Plan blue agent
– Done!

• Step 2: Plan red
– Done!

• …
• Step N: Plan Nth

agent 01

3

0

1

2

2

3 4

Cooperative A*: Analysis - First Agent

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

4 possible
movesStart

2 6 12 8

1 3 11 …11 17 13

Cooperative A*: Analysis - First Agent

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

4 possible
movesStart

2 6 12 8

1 3 11 …11 17 13

Singe-agent pathfinding
• A state is the agent’s location
• Number of states = 4 x 5
• Branching factor = 4

Classical search problem!

Cooperative A*: Analysis - Second Agent

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

4 possible
moves

5 possible
moves

4 possible
movesStart

8 12 18 14

3 7 …13 9

13

• A state is a (location,time) pair
• Number of states = 4 x 5 x maxTime
• Branching factor = 4+1

Cooperative A*: Analysis - Second Agent

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

4 possible
moves

5 possible
moves

4 possible
moves

• A state is a (location,time) pair
• Number of states = 4 x 5 x maxTime
• Branching factor = 4+1

Cooperative A* (Silver 2005)

1. Initialize the reservation table T
2. For each agent do
2.1. Find a path (do not conflict with T)
2.2. Reserve the path in T

WHCA* - Results

Cooperative A* - Analysis

• Complexity?
– Polynomial in the grid size and max time

• Soundness?
– Yes!

• Complete? Optimal?
– No L

Cooperative A* - Limitations

Not complete (=may not find a solution)
Not optimal (=may find an inefficient solution)

Cooperative A* - Key Limitations

• A goal location that blocks another agent
• All-or-nothing (can’t move until planning is done)

– Some relief to this with WHCA* (Silver ‘05)

• Ordering the agents is key (how to do that?)
– Conflict oriented ordering (Byana & Felner ‘14)

Search-based Solvers - Overview

OptimalSuboptimal

?• Cooperative A*
• WHCA*

Incomplete

??Complete

Can a MAPF algorithm be
complete and efficient?

MAPF as a Puzzle

• MAPF is highly related to pebble motion problems
– Each agent is a pebble
– Need to move each pebble to its goal
– Cannot put two pebbles in one hole

• Pebble motion can be solved polynomially!
• But far from optimally
• Complex formulation

[Kornhauser et al., FOCS 1984]

MAPF as a Puzzle (cont.)

Similar approaches:
� Slidable Multi-Agent Path Planning [Wang & Botea, IJCAI, 2009]

� Push and Swap [Luna & Bekris, IJCAI, 2011]

� Parallel push and swap [Sajid, Luna, and Bekris, SoCS 2012]

� Push and Rotate [de Wilde et al. AAMAS 2013]

� Tree-based agent swapping strategy [Khorshid at el. SOCS, 2011]

Procedure-based Solvers

Procedure-based Solvers #2

Examples

Push and Swap (Luna and Bekris ‘13)

Bibox (Surynek ‘09) FAR (Wang and Botea ’08)

OptimalSuboptimal

?• Cooperative A*
• WHCA*

Incomplete

?• Kornhauser et al. ’84
• Push & Swap (Luna & Bekris)

• Bibox (Surynek)

…

Complete

Search-based Solvers - Summary

A Two-Agent Search Problem

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

4 possible
moves

5 possible
moves

4 possible
movesStart

8 12 18 14

3 7 …13 9

13

• A state is a (location,time) pair
• Number of states = 4 x 5 x maxTime
• Branching factor = 4+1

A Two-Agent Search Problem

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

4 possible
moves

5 possible
moves

5 possible
movesStart

8 12 18 14

3 7 …13 9

13

• A state is a pair (location1, location2)
• Number of states = ?
• Branching factor = ?

Optimal Pathfinding for Two Agent

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

4 possible
moves

Classical search problem�

5 possible
moves

5 possible
moves25 Possible moves! = 5 x 5

Start

6,12 6,8 6,14 6,18 6,12 6,8 …

1,11 1,7 1,13 1,18 …

A very hard search problem

2-agent pathfinding search problem

• Number of states = (4 x 5)2

• Branching factor = 52

Can a MAPF algorithm be
complete and efficient and optimal?

Search problem properties
• Number of states = (4 x 5)k

• Branching factor = 5k

NP-hard
(Surynek ‘X)(Yu and La Velle ‘Y)

From Tiles to Agents

K=1 (Navigation in explicit graphs)
Explicit graph

K=N-1 (Tile puzzle)
(Huge) Implicit graph

K (# agents)

Can we adapt techniques from these extreme cases?

Optimal MAPF

Yes!
(and invent some new techniques also)

Searching the k-agent search space
– A*+OD+ID [Standley ‘10]

– EPEA* [Felner ‘X, Goldenberg ‘Y]

– M* [Wagner & Choset ‘Z]

Other search-based approaches
– ICTS [Sharon et al ‘13]

– CBS [Sharon et al ’15]

Search-based Approaches to Optimal MAPF

Optimal MAPF with A*

• A* expands nodes
• A* gain efficiency by choosing which node to expand

What is the complexity of expanding
a single node in MAPF with 20 agents?

520= 95,367,431,640,625

Search Tree Growth

63

a b c

d e f
g h i

a,i

Root

b,fd,id,hd,f . .
.

g,i g,c g,e e,c e,i a,c . .
.

Search Tree Growth with Operator Decomposition

64

a b c

d e f
g h i

a,i

Root

b,fd,id,hd,f . .
.

g,i g,c g,e e,c e,i a,c . .
.

d,i b,i a,i

g,f e,f a,f d,f

(Standley ‘10)

Analysis of OD

• Pros
– Branching factor is reduced to 5 (= single agent)
– With a perfect heuristic can solve the problem

• Cons
– Solution is deeper by a factor of k
– More nodes may be expanded, due to intermediates

65

Enhanced Partial Expansion A* (Felner ‘12, Goldenberg ‘14)

66

a b c

d e f
g h i

a,i

Root

b,fd,id,hd,f . .
.

g,i g,c g,e e,c e,i a,c . .
.

Independence Detection (Standley ‘10)

S2
G0 G2

S1 S0,
G1

Theoretically, a 3 agents problem, but …

(Standley ‘10)

Simple Independence Detection
1. Solve optimally each agent separately
2. While some agents conflict

1. Merge conflicting agents to one group
2. Solve optimally new group

Independence Detection (Standley ‘10)

Theoretically, a 2 agents problem, but …

(Standley ‘10)

Simple Independence Detection
1. Solve optimally each agent separately
2. While some agents conflict

1. Merge conflicting agents to one group
2. Solve optimally new group

SO S1

G1 G0

Independence Detection (Standley ‘10)

Theoretically, a 2 agents problem, but …

(Standley ‘10)

Independence Detection
1. Solve optimally each agent separately
2. While some agents conflict

1. Try to avoid conflict, with the same cost
2. Merge conflicting agents to one group
3. Solve optimally new group

SO S1

G1 G0

Independence Detection (Standley ‘10)

SO A S1

B

C D E

G1 G0

Independence Detection
1. Solve optimally each agent separately
2. While some agents conflict

1. Try to avoid conflict, with the same cost
2. Merge conflicting agents to one group
3. Solve optimally new group

Really a 2 agent problem
But….

M* (Wagner & Choset ‘11,’14)

SO A S1

B

C D E

G1 G0

S0,S1

S0,AA,S1

S0,AB,S1B,A A,B S0,B A,S1

M*
1. Find optimal path for each agent individually
2. Start the search. Generate only nodes on optimal paths
3. If conflict occurs – backtrack and consider all ignored actions

M* (Wagner & Choset ‘11,’14)

SO A S1

B

C D E

G1 G0

M*
1. Find optimal path for each agent individually
2. Start the search. Generate only nodes on optimal paths
3. If conflict occurs – backtrack and consider all ignored actions

M* (Wagner & Choset ‘11,’14)

SO A S1

B

C D E

G1 G0

S0,S1

A,A

M*
1. Find optimal path for each agent individually
2. Start the search. Generate only nodes on optimal paths
3. If conflict occurs – backtrack and consider all ignored actions

M* (Wagner & Choset ‘11,’14)

SO A S1

B

C D E

G1 G0

M*
1. Find optimal path for each agent individually
2. Start the search. Generate only nodes on optimal paths
3. If conflict occurs – backtrack and consider all ignored actions

S0,S1

S0,AA,S1

Recursive M* (Wagner & Choset ‘11,’14)

SO A S1

B

C D E

G1 G0

Recursive M*
1. Find optimal path for each agent individually
2. Start the search. Generate only nodes on optimal paths
3. If conflict occurs – backtrack and consider all ignored actions

- Apply M* recursively after backtracking

S0,S1

S0,AA,S1

B,A

D,B

Recursive M* (Wagner & Choset ‘11,’14)

Joint path up to bottleneck can be long…

SO S1

G1 G0

S0,S1

S0,AA,S1

S0,AB,S1B,A A,B S0,B A,S1

Searching the k-agent search space
– A*+OD+ID [Standley ‘10]

– EPEA* [Felner ‘X, Goldenberg ‘Y]

– M* [Wagner & Choset ‘Z]

Other search-based approaches
– ICTS [Sharon et al ‘13]

– CBS [Sharon et al ’15]

Search-based Approaches to Optimal MAPF

Increasing Cost Tree Search (Sharon et al. ‘12)

Is there a solution
with costs

?

High-level

Low-levelNO!

10 10 10

What about this?
10 1110

10

3 11

79

High-level

Low-levelYES!
10

Increasing Cost Tree Search (Sharon et al. ‘12)

∆

No
solution

Try to find
a solution

30

31

32

SIC

Increasing Cost Tree Search (Sharon et al. ‘12)

Does it work? – YES!

number of agents

#problems solved
under 5 minutes

Does it work? – Not Always

• A*: solved in 51ms
• ICTS: solved in 36,688ms – Why?

– Sum of single agent costs =2 BUT optimal solution =74
ICTS Complexity depends on Δ

Solving Optimally Problems with more than 75 agents!

Conflict-Based Search (Sharon et al. ‘12,’15)

Motivation: cases with bottlenecks:

A*

��

S1,S2

A1,B1 A1,B2 Am,Bm…
C,CA1,C

C,G2

G1,G2

• g+h=6: All m2 combinations of (Ai,Bj) will be expanded
• f=7: 3 states are expanded

CBS – Underlying Idea

CBS plans for single agents
but under constraints

A* and ICTS work in a
K-agent search space

Conflict-Based Search (Sharon et al. ‘12,’15)

• Conflict: [agent A, agent B, location X, time T]
• Constraint: [agent A, location X, time T]

Resolve conflict by imposing [S1,C,2] or [S2,C,2]

��

Conflict-Based Search (Sharon et al. ‘12,’15)

• Conflict: [agent A, agent B, location X, time T]
• Constraint: [agent A, location X, time T]

Resolve conflict by adding [A,X,T] or [B,X,T]

��

CBS: general idea
1. Plan for each agent individually
2. Validate plans
3. If the plans of agents A and B conflict

Constrain A to avoid the conflict
or

Constrain B to avoid the conflict

The Constraint Tree

Nodes:
• A set of individual constraints for each agent
• A set of paths consistent with the constraints

Goal test:
• Are the paths conflict free

��

Expand

Expand

Goal

Root

OKOK

Conflict

Goal TestNot GoalReplan 1 Replan 2

{1,2,C,2}

Analysis: Example 1

• How many states A* will expand?
• How many states CBS will?

��

Analysis: Example 1

• A* : m2+3 = O(m2) states
• CBS: 2m+14 = O(m) states

When m > 4 CBS will examine
fewer states than A*

��

Analysis: Example 2

• States expanded by CBS?
• States expanded by A*?

��

Analysis: Example 2

• 4 optimal solutions for each agent
• Each pair of solutions has a conflict

• Rough analysis:
– CBS: exponential in #conflicts = 54 states
– A*: exponential in #agents = 8 states

What if I have both?

Trends observed
• In open spaces: use A*
• In bottlenecks: use CBS

Should merge(A,B): meta-reasoning rules

1. Plan for each agent individually
2. Validate plans
3. If the plans of agents A and B conflict

5 Constrain A to avoid the conflicts
or

Constrain B to avoid the conflict

Should merge(A,B) (simple rule):
Merge when observed more than T conflicts between A,B

4 If (should merge(A,B))
merge A and B into a meta-agent
and solve with A*

Else

��

(never merge) T=∞

basic CBS

T=0 (always merge)

Standley’s ID
MA-CBS

Meta-Agent CBS (MA-CBS)

Many bottlenecks

Few bottlenecks

Many bottlenecks à High T (closer to CBS)
More agents à Low T (closer to A*)
Faster single-agent search à lower T (close to A*)

Choosing the Right B

Design Choices in CBS

• When to merge agents?
• What to do after merging? [Boyarski et al. ‘16]

• Which conflict to resolve? [Boyarski et al. ‘16]

• How to resolve it?
• Which low-level solver to use?
• Heuristics for the constraint tree search [Ma et al. ‘18]

• …

Summary – No Universal Winner

• A* (M*, EPEA*, A*+OD+ID)
– Main factors: #agents, graph size, heuristic accuracy

• ICTS
– Main factors: #agents, Δ, graph size

• CBS and its variants
– Main factors: #conflicts

Where to use what?

Results…

OptimalSuboptimal

?• Cooperative A*
• WHCA*

Incomplete

• A*+OD+ID
(Standley)

• ICTS
(Sharon et al.)

• M*
(Wagner & Choset)

• CBS
(Sharon et al.)

…

• Kornhauser et al. ’84
• Push & Swap (Luna & Bekris)

• Bibox (Surynek)
…

Complete

Search-based Solvers - Summary

Solving MAPF

Optimal
Solvers

A*+OD+ID

ICTS

…

Suboptimal
Solvers

WHCA*

Push &
Swap

…

Bounded Suboptimal Algorithms

How to create a bounded suboptimal algorithm?
• Different search algorithms
• Inadmissible heuristics

An algorithm is bounded suboptimal iff
– It accepts a parameter !
– It outputs a solution whose cost is at most 1 + ! ⋅Optimal

Suboptimal ICTS

∆

30

31

32

SIC

Open Question!

Suboptimal A*

a b c

d e f
g h i

a,i

b,fd,id,hd,f . .
.

g,i g,c g,e e,c e,i a,c . .
.

d,i b,i a,i

g,f e,f a,f d,f

Suboptimal rM*

SO A S1

B

C D E

G1 G0

S0,S1

S0,AA,S1

B,A

D,B

Suboptimal CBS

Observation:
Suboptimality can be introduced in both levels

– ECBS (Barer et al. ‘14)
– ECBS+Highways (Cohen et al. ’15, ‘16)

Slightly Suboptimal Really Matters

Do not be greedy!

Advanced Issues in Search-based MAPF Algorithms

• When to use which algorithm? Ensembles?
• Using knowledge about past plans [Cohen et al.]

• Stronger heuristics for all algorithms
• Deeper analysis of algorithms’ complexity
• Beyond grid worlds
– Kinematic constraints (Ma et al. ‘16)

– Any angle planning (Yakovlev et al. ‘17)

– Hierarchical environments (Walker et al. ’17)

• Planning & execution (see later today J)

REDUCTION-BASED SOLVERS
Part III:

Motivation

How to exploit knowledge of others for solving
own problems?
• by translating the problem P to another

problem Q

Why is it useful?
• If anybody improves the solver for Q then we

get an improved solver for P for free.
• Staying on the shoulders of giants.

Reduction, compilation, re-formulation
techniques

Technologies

Boolean satisfiability
– fast SAT solvers

Constraint programming
– global constraints for pruning search space

Answer set programming
– declarative framework

Combinatorial auctions
…

Introduction to SAT

Express (model) the problem as a SAT formula in
a conjunctive normal form (CNF)

Boolean variables (true/false values)
clause = a disjunction of literals (variables and
negated variables)
formula = a conjunction of clauses
solution = an instantiation of variables such that the
formula is satisfied

Example:
(X or Y) and (not X or not Y)
[exactly one of X and Y is true]

SAT abstract expressions

SAT model is expressed as a CNF formula
We can go beyond CNF and use abstract
expressions that are translated to CNF.

We can even use numerical variables (and
constraints).

A => B B or not A

sum(Bs) >= 1
(at-least-one(Bs))

disj(Bs)

sum(Bs) = 1 at-most-one(B) and at-least-one(B)

SAT encoding: core idea

In MAPF, we do not know the lengths of plans
(due to possible re-visits of nodes)!
We can encode plans of a known length using a
layered graph (temporally extended graph).

Each layer corresponds to one time slice and
indicates positions of agents at that time.

SAT encoding with all-different

Uses multi-valued state variables (logarithmic
encoding) encoding position of agents in layers.

• Agent waits or moves to a neighbor

• No-train constraint

• Agents are not at the same nodes

[Surynek, ICTAI 2012]

agent

layer
Position of agent a

at layer i

Direct SAT encoding

Directly encodes positions of agents in layers

• Agent is placed at exactly one node in each layer

• No two agents are placed at the same node in each layer

• Agent waits or moves to a neighbor

• No-swap and no-train (nodes before and after move are empty)

[Surynek, PRICAI 2014]

agent

layer

node
Agent k is at

node j at layer i

Comparison of SAT encodings

Finding makespan optimal solutions

[Surynek, PRICAI 2014]

Mixed model

Using layered graph describing agent positions at each time step
Btav : agent a occupies vertex v at time t

Constraints:
• each agent occupies exactly one vertex at each time.

• no two agents occupy the same vertex at any time.

• if agent a occupies vertex v at time t, then a occupies a
neighboring vertex or stay at v at time t + 1.

Preprocessing:
Btav = 0 if agent a cannot reach vertex v at time t or
a cannot reach the destination being at v at time t

[Barták et al, ICTAI 2017]

Incremental generation of layers

Setting the initial and destination locations

Agent occupies one vertex at any time

No conflict between agents

Agent moves to a neighboring vertex

K-robustness

Picat code

Ru
nt

im
e i

n s
ec

on
ds

Picat vs. rest

Objectives in SAT

Makespan (minimize the maximum end time)
incrementally add layers until a solution found

Sum of cost (minimize the sum of end times)
incrementally add layers and look for the SOC
optimal solution in each iteration (makespan+SOC
optimal)
generate more layers (upper bound) and then
optimize SOC (naïve)
incrementally add layers and increase the cost limit
until a solution is found [Surynek et al, ECAI 2016]

Introduction to CP

Express the problem as a constraint satisfaction
problem:
– finite domain variables
– constraints = relations between the variables
– solution = instantiation of variables satisfying all the

constraints
Modeling (choice of constraints) is important.
Example:
E,N,D,O,R,Y in 0..9,
S,M in 1..9,
P1,P2,P3 in 0..1

D+E = 10*P1+Y
P1+N+R = 10*P2+E
P2+E+O = 10*P3+N
P3+S+M = 10*M +O
all_different(S,E,N,D,M,O,R,Y)

S E N D
+ M O R E
= M O N E Y

9 5 6 7
+ 1 0 8 5
= 1 0 6 5 2

CP vs. SAT

Every SAT model is also a CP model.
CP models support numerical variables and constraints
directly.
CP solvers are based on interleaving local consistency
and search

Consistency techniques remove inconsistent values
all-different({1,2},{1,2},{1,2,3})
-> all-different({1,2},{1,2},{3})

Global constraints introduce “specialized” solvers
into general CP framework

e.g. all-different is based on pairing in bipartite graphs

CP models: core idea

Separate path planning (which nodes are visited)
and time scheduling (when the nodes are
visited):
– find a path for each agent (planning)

each agent needs to get from its origin to destination

– ensure that paths are collision free (scheduling)
no two agents meet at the same time at the same node

It is natural to include:
– different durations of actions (e.g. different

distances between the nodes)
– capacities of edges and nodes

CP models for MAPF

Two versions of the MAPF:
• no re-visits allowed (restricted MAPF)

• flow, path, and scheduling models

Can be modeled directly as a single CSP (we know
the maximum length of plans)

• re-visits allowed (classical MAPF)
• scheduling model with optional activities

Layered model based on the number of re-visits.

Restricted MAPF: flow model

Path planning
if agent enters the node, it must also leave it (flow
preservation constraint)

Scheduling
time intervals spent in a node do not overlap

Temporal constraints

Based on network flows

[Barták et al, MISTA 2017]

Restricted MAPF: path model

Path planning
each node has predecessor and successor

Scheduling
time spent in a node modeled as activity N

Temporal constraints

Based on covering by cycles

[Barták et al, MISTA 2017]

Restricted MAPF: scheduling (opt) model

Path planning
Activities for traversing arcs and visiting nodes

Scheduling

Temporal constraints

x

N(x,a)

z

Nout(x,a)
A(x,z,a)

y

Nin(x,a)
A(y,x,a)

Based on optional activities

[Barták et al, MISTA 2017]

1

10

100

1000

10000

100000

1000000

1 35 69 10
3

13
7

17
1

20
5

23
9

27
3

30
7

34
1

37
5

40
9

44
3

47
7

51
1

54
5

57
9

61
3

64
7

68
1

71
5

74
9

78
3

81
7

85
1

88
5

91
9

95
3

98
7

10
21

10
55

10
89

11
23

11
57

11
91

12
25

12
59

12
93

13
27

13
61

13
95

14
29

14
63

14
97

15
31

15
65

15
99

Opt
Flow
Path

Comparison of CP models

Comparison of CP models (map size)

1

10

100

1000

10000

100000

1000000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

Agents	3

Opt
Flow
Path

1

10

100

1000

10000

100000

1000000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

Agents	5

Opt
Flow
Path

1

10

100

1000

10000

100000

1000000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

Agents	7

Opt
Flow
Path

1

10

100

1000

10000

100000

1000000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

Agents	9

Opt
Flow
Path

Comparison of CP models (#agents)

Multi-layer model

SAT uses layers to encode time slices (number of
layers = makespan)
CP uses layers to encode re-visits of nodes
(number of layers = number of re-visits)

using activities for nodes
and arcs
N(x,a) N(x,a,k)
A(y,x,a) A(y,x,a,k)
transitions to next layers
via A(x,x,a,k)

[Barták et al, AAMAS 2018]

Number of layers

Upper bound for the number of layers:

Could be a huge number (leading to a big model).

Layers can be incrementally added until a
solution is found.

Makespan of the solution can used to estimate the
number of layers (if we optimize makespan).

Upper bound
on makespan

Length of the shortest path, over all agents,
from the origin node to the destination node

[Barták et al, AAMAS 2018]

Model comparison
[Barták et al, AAMAS 2018]

W = 1

W = 50

W = 100

W = 200

W = 300

Model comparison (length of arcs)

FROM PLANNING TO EXECUTION
Part IV:

Man (or AI) Make Plans and God Laughs

Automatic Intersection Manager

(Stone et al., UT Austin)

Automatic Intersection Manager

Who is to blame?
[Elimelech et al. ‘17]

Planning and Execution in MAPF

• How to react when an unplanned event occur?

• How to plan a-priori if we know such events may occur?

Planning and Execution in MAPF

• How to react when an unplanned event occur?

• How to plan a-priori if we know such events may occur?

Running Example – the Plan

G1 G2

S1 S2

A

C

B

Red
Agent S1 A A C G1

Blue
Agent S2 B C G2 G2

Plan

Running Example – the Plan

G1 G2

S1 S2

A

C

B

Red
Agent S1 A A C G1

Blue
Agent S2 B C G2 G2

Plan

Running Example – the Plan

G1 G2

S1 S2

A

C

B

Red
Agent S1 A A C G1

Blue
Agent S2 B C G2 G2

Plan

Running Example – the Plan

G1 G2

S1 S2

A

C

B

Red
Agent S1 A A C G1

Blue
Agent S2 B C G2 G2

Plan

Running Example – the Plan

G1 G2

S1 S2

A

C

B

Red
Agent S1 A A C G1

Blue
Agent S2 B C G2 G2

Plan

Running Example - Execution

G1 G2

S1 S2

A

C

B

Red
Agent S1 A A C G1

Blue
Agent S2 B C G2 G2

Exec.

Running Example

G1 G2

S1 S2

A

C

B

Red
Agent S1 A A C G1

Blue
Agent S2 S2 B C G2 G2

Exec.

Unexpected
delay L

Running Example

G1 G2

S1 S2

A

C

B

Red
Agent S1 A A C G1

Blue
Agent S2 S2 B C G2 G2

Exec.

Potential
future conflict

Unexpected
delay L

Repair or Replan?
Repair the

existing plan
Replan a
new plan

Wait! New plan

Repair or Replan?
Repair the

existing plan
Replan a
new plan

+ Fast to compute (O(1))
+ Fewer messages
- Solution quality may vary

- Hard to compute
- Need full sync.
+ High solution quality

When to Repair/Replan?

G1 G2

S1 S2

A

C

B

Red
Agent S1 A A C G1

Blue
Agent S2 S2 B C G2 G2

Exec.

Potential
future conflict

Unexpected
delay L

When to Repair/Replan?

G1 G2

S1 S2

A

C

B

Red
Agent S1 A A C G1

Blue
Agent S2 S2 B C G2 G2

Exec.

Potential
future conflict

Unexpected
delay L

?
? ?
? ? ?
?

When to Repair/Replan?

Reasonable EagerLazy

When collision is
about to occur

When collision
will occur

When an agent
is delayed

Execution Policy Configurations

Lazy Reasonable Eager
Repair N/A
Replan

Minimal Communication Protocol (MCP)
[Ma et al. ’16]

When agents need to communicate?

Minimal Communication Protocol (MCP)

G1S1 S2 G2

A

Red
Agent S1 S2 G2 B G1

Blue
Agent S2 A S2 G2 G2

B

Minimal Communication Protocol (MCP)

MCP
• Preserve ordering of visits to locations
• Repair only to avoid breaking this order
• Send a message only when agents exit a shared location

G1S1 S2 G2

A

Red
Agent S1 S2 G2 B G1

Blue
Agent S2 A S2 G2 G2

B

Plan Repair via Adjusting Agent Velocity

MCP
• Preserve ordering of visits to locations
• Repair only to avoid breaking this order
• Send a message only when agents exit a shared location

G1S1 S2 G2

A

Red
Agent S1 S2 G2 B G1

Blue
Agent S2 A S2 G2 G2

B

Can also move
faster than planned

Plan Repair via Adjusting Agent Velocity

MCP
• Preserve ordering of visits to locations
• Repair only to avoid breaking this order
• Send a message only when agents exit a shared location

Red
Agent S1 S2 G2 B G1

Blue
Agent S2 A S2 G2 G2

Can also move
faster than planned

Plan Repair via Adjusting Agent Velocity

MCP
• Preserve ordering of visits to locations
• Repair only to avoid breaking this order
• Send a message only when agents exit a shared location

Red
Agent S1 S2 G2 B G1

Blue
Agent S2 A S2 G2 G2

Can also move
faster than planned

Plan Repair via Adjusting Agent Velocity

MCP
• Preserve ordering of visits to locations
• Repair only to avoid breaking this order
• Send a message only when agents exit a shared location

Red
Agent S1 S2 G2 B G1

Blue
Agent S2 A S2 G2 G2

Can also move
faster than planned

Label each edge with the
robot’s velocity constraints

èA Simple Temporal Network
èSolvable in poly-time

Ma et al. ‘16, ‘18

Planning and Execution in MAPF

• How to react when an unplanned event occur?

• How to plan a-priori if we know such events may occur?

A Priori Planning For Change

How to consider unpredictable changes a-prior?

• Find a plan whose expected (*) cost is minimal
– AME (Ma et al. ’17)

• Find a plan that is executable with high probability
– UM* (Wagner & Choset ‘17)

• Find a plan that is robust to a fixed number of changes
– K-robust MAPF solvers (Atzmon et al., see SoCS and AAMAS ’18)

UM* (Wagner & Choset ‘17)

Execution Policies - Summary

Planning and execution in MAPF
• Under-studies aspect of MAPF
• Dilemma #1: replan vs. repair
• Dilemma #2: when to repair/replan?

– Eager, reasonable, lazy, or MCP

• Dilemma #3: a-prior planning: robust or expectation

Many open challenges
• How to consider solution quality?
• Relation to conformant and contingent planning
• Life-long MAPF planning

CHALLENGES AND CONCLUSIONS
Part V:

Conclusions

Why I like to work on Multi-Agent Pathfinding

– A real-world multi-agent application
– A very challenging multi-agent planning problem
– No clear dominant approach (yet)

• Search-based vs. constraints programming vs. SAT vs. …
– Execution is bound to differ from the plan (integration…)
– So much left to do…

Challenge: MAPF with Self-Interested Agents

Challenge: MAPF with Self-Interested Agents

Challenge: MAPF with Self-Interested Agents

Incentives and mechanism designs [Bnaya et al. ‘13, Amir ‘15]

What if the other agent is adversarial?
or even worse, a human?

Preliminary Results: MAPF with a Taxation Scheme

Challenges: Applying MAPF for Real Problems

• Robotics
– Kinematic constraints (Ma et al. ‘16)
– Uncertainty is a first-class citizen
– Continuous configuration space
– Any-angle motion [Yakovlav et al. ‘17]

• Traffic management
– Flow-based approaches
– No collisions, only traffic jams
– Scale

Challenge: MAPF as Part of a System

• Task allocation
– See Ma et al. ‘16 for combining, flow-based and CBS

• Pick up and delivery tasks
– See Ma et al. ’16, ‘17 and others

• Online settings

Challenge: Relation to General Multi-Agent Planning

MAPF is a special case of MAP
• MAP
– Many models, rich literature
– Much work on uncertainty
– Poor scaling

• MAPF
– Fewer models, growing literature
– Not much work on uncertainty
– Scales well

Cross fertilization seems natural

Agents can be Anything

Thanks!

Roman Barták, Roni Stern

