Modeling
Planning Tasks

Action planning deals with the problem of finding a
sequence of actions (a plan) to transfer the world from
the current state to a desired state.

There are causal relations between actions (pick-up
is done before put-down).

A formal model of actions is required so planning is a
model-based approach.

This tutorial is about how to model planning tasks.



Part I: Introduction and Background
— Al Planning
— Formal models (STRIPS, control rules)

Part Il. Planning Domain Modelling Languages and Tools
— Modelling languages

— Modelling tools
— Lessons from ICKEPS

Part Ill. Designing and Developing a Domain Model
— Nomystery problem
— Efficient plan generation, enhancing domain models

Part IV. Development of Real-World Planning Application
— Petrobras
— Task Planning for Autonomous Underwater Vehicles

Part V. Closing Remarks and Open Problems

INTRODUCTION AND BACKGROUND



Planning deals with selection and organization of
actions that are changing world states.

System X2 modelling states and transitions:
— set of states S (recursively enumerable)
— set of actions A (recursively enumerable)

* actions are controlled by the planner!
* no-op
— set of events E (recursively enumerable)
* events are out of control of the planner!
* neutral event ¢
— transition function y: SXAXE — 2°

* actions and events are sometimes applied separately
v: SX(AUE) — 23

A planning task is to find which actions are applied to
world states to reach some goal from a given initial
state.

What is a goal?
— goal state or a set of of goal states
— satisfaction of some constraint over a sequence of visited
states

* for example, some states must be excluded or some states must
be visited

— optimisation of some objective function over a sequence
of visited states (actions)
» for example, maximal cost or a sum of costs



Representing world states as sets of atoms

(factored representation).

Representing actions as entities changing

validity of certain atoms.
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State is a set of instantiated atoms (no variables). There is
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— The truth value of some
atoms is changing in states:

* fluents
* example: at(r1,loc2)
— The truth value of some state
is the same in all states
* rigid atoms

* example:
adjacent(loc1,loc2)

We will use a classical closed world assumption.
An atom that is not included in the state does not hold at that state!




operator o is a triple (nhame(o), precond(o), effects(o))
— name(o0): name of the operator in the form n(x,...,x,)

* n:asymbol of the operator (a unique name for each operator)

* Xq,...,X: Symbols for variables (operator parameters)
— Must contain all variables appearing in the operator definition!

— precond(o):
* literals that must hold in the state so the operator is applicable on it
— effects(o):

* literals that will become true after operator application (only fluents
can be there!)

take(k.l,c.d,p)
.; crane k at location [ takes ¢ off of d in pile p
precond: belong(k, 1), attached(p, 1), empty(k), top(c, p),on(c, d)
effects:  holding(k, ¢), " empty(k), —in(c, p), = top(e, p), mon(c, d), top(d, p)

An action is a fully instantiated operator

— substitute constants to variables ﬁ@
p— cran 1
o

take(k,l,c,d,p) - i
.. crane k at location [ takes ¢ off of d in pile p operator
precond: belong(k, 1), attached(p,[),empty(k), top(c, p),on(c, d)
effects:  holding(k, ¢), mempty(k), —~in(ec,p), 7 top(c, p), mon(e, d), top(d, p)

take(cranel,locl,c3,cl,pl) action
.» crane cranel at location locl takes c3 off cl in pile pl
precond: belong(cranel,locl), attached(pl,locl),
empty(cranel), top(c3,pl), on(c3,cl)
effects:  holding(cranel,c3), —empty(cranel), —in(c3,pl),
—top(c3,pl), —on(c3,cl), top(cl,pl)




Notation:
— S* = {positive atoms in S}
— S- = {atoms, whose negation is in S}
Action a is applicable to state s if any only
precond*(@) €s A precond(@a)ns =0

The result of application of actionato s is
y(s,a) = (s — effects™(a)) v effects*(a)

take(cranel,locl,c3,cl,pl) —
;; crane cranel at location locl takes c3 off cl in pile pl (a7 cranel
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empty(cranel), top(c3,pl), on(c3,cl) @

pl

effects:  holding(cranel,c3), —empty(cranel), —in(c3,pl),
—top(c3,pl), —on(c3,cl), top(cl,pl) loc1 loc2
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The planning problem is given by a triple (O,s,,g).

— O defines the the operators and predicates used
(this is also called a domain model)

— Sy is an initial state, it provides the particular
constants (objects)

— g is a set of instantiated literals

* state s satisfies the goal condition g if and only if
grSsAg Ns=0

* S;={s €S | ssatisfies g} — a set of goal states



Constants Operators B IJ‘I
— blocks: a,b,c,de T a][b
Precond: on(x,y), clear(x), handempty ﬂ
. Effects: —on(x,y), —clear(x), clear(y),
Predicates: —handempty, holding(x), IJ_I
— ontable(x) — [a] [o] B
block x is on a table B o) —.-l—
recond: holding(x), clear(y)
— on(x, y) Effects: —holding(x), —clear(y), @
block x is on y on(x,y), clear(x), handempty c] IJ_I
— Clear(x) pickup(x) M E B
block x is free to move Precond: ontable(x), clear(x), handempty J:/L
- Effects: —ontable(x), —clear(x),
— holding(x) ; —
the hand holds block x “handempty, holdine) B 'JD"-'
_ handempty putdown(x) a
- Precond: holding(x)
the hand is empty Effects: —holding(x), ontable(x),
clear(x), handempty

=T
-

Forward-search(O, sg, g)
S = 50
T « the empty plan
loop
if s satisfies g then return
E < {ala is a ground instance of an operator in O,
and precond(a) is true in s} Heuristics suggest
if £ = () then return failure oo hichactionto
nondeterministically choose an action a € E
s «— y(s,a)

e T.a

take c3
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A
=
P2
pl O [00)]
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move r1



Heuristics guide the planner towards a goal state by ordering
alternative plans. They do not solve the problem with the large
number of alternatives.

Example (blockworld)

— If a block is placed correctly (consistent with the goal) then any action
that moves that block just enlarges the plan.

— If a block is on a wrong place and there is an action that moves it to
the correct place then any action that moves the block elsewhere just
enlarges the plan.

It is possible to describe desirable/forbidden sequences of states
using linear temporal logic.

— control rules

It is possible to describe expected plans via task decompositions.
— hierarchical task networks

We need a formalism to express relations between the
current world state and future states.

Simple temporal logic

— extension of first-order logic by modal operators

* ¢, U ¢, (until) ¢ is true in all states until the first state (if any)
in which ¢, is true

L1 ¢ (always) ¢ is true now and in all future states

« & ¢ (eventually) ¢ is true now or in any future state

O ¢ (next) ¢ is true in the next state

* GOAL(¢) @ (no modal operators) is true in the goal state

— @ is a logical formula expressing relations between the
objects of the world (it can include modal operators)



. badtower
Goodtower is a tower such that

no block needs to be moved.

E
Badtower is a tower that is not good. [p]

A Initial State Goal State
goodtower(z) = clear(z) A ~GOAL(holding(z)) A goodtowerbelow(z)
goodtowerbelow(x) 2 (ontable(x) A —3[y:GOAL(on(z,y))]))

V J[y:on(x, y)] ~GOAL(ontable(z)) A ~GOAL(holding(y)) A =GOAL(clear(y))
A V[z:GOAL(on(z, 2))] z = y A V[z:GOAL(on(z,y))] 2 = =
A goodtowerbelow(y)

badtower(z) 2 clear(z) A ~goodtower(z)

| goodtower remains goodtower |
Control rule: ——

O (V[z:clear(a:)] goodtower(z) = O(clear(z) V J[y:on(y, x)] goodtower(y))

A badtower(:n) = O(‘ﬂﬂ[y:on(y, :C)} ) < do not put anything on
A {ontable(z) A A[y:GOAL{on(z,y))] ~goodiower(y)) 244"
N

= O(—-holding(a:)))

do not take a block from a table until you
can put it on a goodtower

Forward state-space planning guided by control rules.

— If a partial plan S, violates the control rule progress(¢, S,,),
then the plan is not expanded.

STL-plan(O, s, g, @)
s < So a partial plan violates the control rule ¢

7 < the empty plan
loop / ‘
if ¢ = false then return failure 2 a complete plan found

if s satisfies g then return & !
A < {a | ais a ground instance of an operator in O 1

and precond(a) is true in s} actions applicable to state s
if A = @ then return failure
nondeterministically choose an action a € A
s < y(s,a)

—

T <« T.a [

[
J a new state after the action

;|
¢ < progress(¢, s) - control rule progression ¢




PLANNING DOMAIN MODELLING
LANGUAGES AND TOOLS

Domain Model Problem Specification
(environment ,actions) (initial state, goals)

\ 4

Planning Engine

\ 4

Plan




. A (description) language

- Describe domain model and problem
SpeCification (usually one domain model for a class of problems)

. A planning engine

- must support the language
- should be efficient for the given domain

model
. Plans interpreting

Planning Domain
Definition Language
(PDDL)

Inspired by the STRIPS
and ADL languages

Most widespread

Official language of
International Planning
Competitions (IPCs)

(define (domain blocksworld)
(:requirements :strips :typing)
(:types block)
(:predicates (on ?x - block ?y - block)
(ontable ?x - block)
(clear ?x - block)
(handempty)
(holding ?x - block)
)
(:action pick-up
:parameters (?x - block)
:precondition (and (clear ?x)
(ontable ?x)
(handempty))
ceffect (and (not (ontable ?x))
(not (clear ?x))
(not (handempty))
(holding ?x))



PDDL 1.2

- Predicate centric (i.e., classical representation)
- Object types

- ADL features (e.g., conditional effects, equality)
PDDL 2.1

— Numeric Fluents

- Durative Actions
PDDL 2.2

- Timed-initial literals

~ Derived Predicates

PDDL 3.0

- State-trajectory constraints (hard constraints for the planning
process)

- Preferences (soft constraints for the planning process)

PDDL 3.1

- Object Fluents

PDDL+
- Continuous processes

- Exogenous events
PPDDL

- Probabilistic action effects

- Reward fluents
MA-PDDL

- Multi-agent planning



NASA’s response to
PDDL

Variable
representation

Timelines/activities

Constraints between
activities

. Combines aspects from

NDDL and PDDL

- Actions and states
(PDDL)

- Variable representation

(NDDL)

- Temporal Constraints
(NDDL)

Hierarchical methods

class Instrument

{
Rover rover;
InstrumentLocation location;
InstrumentState state;

Instrument (Rover r)
{
rover = rj;
location = new InstrumentLocation();
state = new InstrumentState();

}

action TakeSample{
Location rock;
eq (10, duration);
}
}

Instrument::TakeSample

{
met_by(condition object.state.Placed on);
eq(on.rock, rock);

contained_by(condition object.location.Unstowed);

equals(effect object.state.Sampling sample);
eq(sample.rock, rock);

starts(effect object.rover.mainBattery.consume tx);
eq(tx.quantity, 120); // consume battery power
}

https://github.com/nasa/europa/wiki/Example-Rover

action Pickup (crew ev, object item)

{
duration := 5 ;
[start] located(ev) == located(item);

[all] possesses(ev,item) ==
FALSE:—->TRUE ;
[end] located(item)

}

:= POSSESSED ;

action Putaway (crew ev, object item,
location stowage)

{
Duration := 10 ;
[start] located(ev) == stowage ;

[all] possesses(ev, item) ==
TRUE : ->FALSE ;

[end] located(item):= stowage ;

}

[Boddy & Bonasso, 2010]



became the official
language of the
probabilistic track of
the IPC since 2011

models partial
observability

efficient description of
(PO)MDPs

Dozens of classical planners
— support typed STRIPS

domain wildfire_mdp {
types {

x_pos : object;

y_pos : object;

Yi

pvariables {

// Action costs and penalties

COST_CUTOUT : {non-fluent, real, default = -5 }; //
Cost to cut-out fuel from a cell

COST_PUTOUT : {non-fluent, real, default = -10 }; //
Cost to put-out a fire from a cell

PENALTY_TARGET_BURN : {non-fluent, real, default = -100 }; //
Penalty for each target cell that is burning

PENALTY NONTARGET_BURN : {non-fluent, real, default = -5 };

// Penalty for each non-target cell that is burning

}

cpfs{
burning'(?x, ?y) = if ( put-out(?x, ?y) ) // Intervention to
put out fire?
then false
// Modification: targets can only start to burn if at
least one neighbor is on fire
else if (~out-of-fuel(?x, ?y) "~ ~burning(?x, ?y))
// Ignition of a new fire? Depends on neighbors.
then [if (TARGET(?x, ?y) " ~exists_{?x2: x_pos,
?y2: y_pos} (NEIGHBOR(?x, ?y, ?x2, ?y2) "~ burning(?x2, ?y2)))
then false
else Bernoulli( 1.0 / (1.0 + exp[4.5 -
(sum_{?x2: x_pos, ?y2: y_pos} (NEIGHBOR(?x, ?y, ?x2, ?y2) "
burning(?x2, ?y2)))1) ) 1
else

burning(?x, ?y); // State persists

https://cs.uwaterloo.ca/~mgrzes/IPPC_2014/

- newer planners support action costs, and some ADL

features
- many of them are optimal
Several temporal planners
— support durative actions

- few support numeric fluents or timed-initial literals

- few fully support concurrency

- very few are optimal
Several probabilistic planners
- (PO)MDP
- FOND
A few continuous planners



“It is almost a law in PDDL planning that for
every language feature one adds to a domain
definition, the number of planners that can solve
(or even parse) it, and the efficiency of those
planners, falls exponentially” [anonymous
reviewer]

Motivate development of more expressive
planning engines
Reduce the number of features in models

Picat is a logic-based multi-paradigm language
that integrates logic programming, functional
programming, constraint programming, and
scripting.

— logic variables, unification, backtracking, pattern-

matching rules, functions, list/array
comprehensions, loops, assignments

— tabling for dynamic programming and planning

— constraint solving with CP (constraint
programming), SAT (satisfiability), and MIP (mixed
integer programming).



Forward planning in Picat language (using tabling):
table (+,-,min)
plan(S,Plan,Cost) ,final (S) =>

Plan=[],Cost=0.
plan(S,Plan,Cost) =>

action(S,S1,Action,ActionCost),

plan(S1l,Planl,Costl),

Plan = [Action|Planl],

Cost = Costl+ActionCost.

Cost optimization done via:

— iterative deepening
— branch-and-bound

Goal condition

final (+State) => goal condition.

Action description

action (+State, -NextState,-Action,-Cost),
precondition,
[control knowledge]

?2=>
description of next state,

action_cost_caIculaEion,
[heuristic_and deadend verification].



Locations of
Farmer, Wolf, Goat, and Cabbage

action([F,F,G,C],S1, Action,Cost) ?=>
Action=farmer wolf, Cost=1,
opposite (F,F1l),
S1=[F1l,F1,G,C], safe(Sl).
action([F,W,F,C],S1, Action,Cost) ?=>
Action=farmer goat, Cost=1,
opposite (F,F1l),

S1=[F1l ,W,F1,C], safe(S1l).
action([F,W,G,F],S1, Action,Cost) ?=>
Action=farmer cabbage, Cost=1,

opposite (F,F1),

S1=[F1l,W,G,Fl1], safe(Sl).
action([F,W,G,C],S1, Action,Cost) =>
Action=farmer alone, Cost=1l,

opposite (F,F1) ,
S1=[F1,W,G,C], safe(Sl).

KE Tools for Planning Domain
Modelling




Assist in domain developing process

- Support development cycle (as in SW
engineering)

- Visualize (parts of) the model

- Verification and Validation support (e.g.
consistency check)

Usable by non-experts (but with basic knowledge of
planning)

. GIPO (Graphical Interface for Planning with
Objects) won the ICKEPS 2005 competition

. Based on the OCL (Object-Centered Language)
. Define life histories of objects

. Supports “classical” PDDL (limitedly also
"durative” actions)

. Supports HTN (HyHTN planner is integrated)
[McCluskey et al., 2003]



. Supports development cycle
. Exploits UML for domain modelling

. Exploits Petri Nets for dynamic analysis of
state machines (e.g. reachability analysis)

. Supports PDDL 3.1
. Project webpage

https://code.google.com/archive/p/itsimple/

e Tutorial on domain modelling in ItSimple by
Chris Muise

http://www.youtube.com/watch? feature=player_embedded&v=FGBhvBnzyvo

File Settings Help

e B @ |Modeling| Analysis Planning = PDDL Translation

v @ itSIMPLE Projects
» 4 Satellite Domain IPC3 Numeric
v (@ Satellite Domain IPC3 Strips I Select| % Actor © UseCase —>UseCaseAssociation -»Dependency ® ZoomIn /1
v ) Use Case Diagram =
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O turnto
O switchinstrument on
© switch instrument off P .

1 Use Case Diagram - Satellite Domain IPC3 Strips Class Diagram - Satellite Domain IPC3 Strips

© calibrate instrument / \ \g
O take image take image Ty —— turn to
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» B |nstrument
B Mode I
B Direction I
» B Global 0, ~
v | ) State Machine Diagram - Satellite " A .
£ Satellite's power available ) . ‘o \
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N State Machine Diagram - Instrument | ~\_)" - N

S Power on { switch instrument on
£ power off \
v & Satellite Domain
» | ) Object Repository
v & Three Satellite 6 Instruments 6 Directions




ItSimple — sample class diagram

Use Case Diagram - Satellite Domain IPC3 Strips [) l Class Diagram - Satellite Domain IPC3 Strips L]l State Machine Diagram - Satellite - Satellit
“| I Select| B Class B Enumeration - Class Association 4 Generalization =~ ® ZoomIn / ZoomOut 1:1

~,

~
<<agent>>
Satellite
powerAvailable : Boolean . @
0.% pointing 1 . .
Direction
turnTo(s: Satellite, dNew: Direction, dPrev: Direction) pointing
switchOn(s: Satellite, i: Instrument)
switchOff(s: Satellite, i: Instrument) 1 A
calibrate(s: Satellite, i: Instrument, d: Direction) tionTarget
takelmage(s: Satellite, i: Instrument, d: Direction, m: g
Mode)
<<utility>>
‘offBoard calibration Global
havelmage(d: Direction, m: Mode) : Boolean
onBogrd
Uu‘k
Instrument @
powerOn : Boolean 0.x supports 1.x Mode
calibrated : Boolean
supporks

ItSimple — sample state machine (Satellite)

-| Iy Select| @ Initial State £ State @ FinalState —> Action Association = ® ZoomIn /2 Zoom OQut 1:1

takelmage(s: Satellite, i: Instrument, d: Direction, m: Mode)

switchOFF(s: Satellite, i Instrument)

Power on power off

tpowerOn =true i.powerOn = false J

switchOn(s: Satellite, i: Instrurent)

calibrate(s: Satellite, i Instrument, d: Direction)




I Select | @ Initial State & State @ FinalState — Action Association  ® ZoomIn 2 Zoom Out 1:1

turnTo(s: Satellite, dNew: Direction, dPrev: Direction)[...]/..

calibrate(s: Sate| llt strument, d: Direction)[...]/..

vitchOn(s: Satellite, i Instrurment)[...]

/stut owert vailable )

s powerAvailable rals
switchOFf(s: Satellite, i: Instrument)[...]

takelmage(s: Satellite, i: Instru rdD ctio

EUROPA [Barreiro et al., 2012]
- Framework supporting NDDL and ANML

JABBAH [Gonzalez-Ferrer et al., 2009]
- Supports HTN

KEWI [Wickler et al., 2014]

- Object Centered (including inheritance)
- Web Application (supports collaboration)
VIZ [Vodrazka & Chrpa, 2010]

- A“light-weight” KE tool



. “A Collection of Tools for Working with
Planning Domains” [Muise]

. Web application

. Rich editor (syntax highlighting, autocomplete,
etc.)

. Plug-in support

. Repository of all domains and problems from
the IPCs

«)> C @ (6 planning.domains, . O W pddldomians -> Lo

/#Plugins planning.domains

PDDL Editor ile - ®Session - @Import # Solve ®Torchlight

1 (define (domain satellite)

unamedr.pddl 2 (:requirements :equality :strips)
3- (:predicates
domain.pddl 4 (on_board ?i 75) (supports ?i 2n) (pointing ?s 2d) (power_avail ?s) (power_on 2i) (calibrated ?i) (have_image 2d n) (calibration_target 2i 2d)(satellite ?x) (direction ?x) (instrument 2x) (mode ?x)

5~ (:action turn_to
s ( ?s 2d_new 2d_prev)

Analysis 1)

d
d (satellite 7s) (direction 2d_new) (direction 2d_prev) (pointing s 2d_prev))

7
8
5 9
por-pfiler.pddl 16 24 prev))))

(and (pointing ?s 2d_new) (not (pointing ?

1
12+ (:action switch_on
13 :parameters ( 71 ?s)
14 :precondit

Analysis (2)

Plan (1) 15 d (instrunent 71) (satellite 7s) (on_board ?i 7s) (power_avail 75))
16 t
17 (and (power_on ?1) (not (calibrated ?1)) (not (power_avail ?s))))

24 (and (power_avail 7s) (not (power_on ?1))))

26~ (:action calibrate

d) (power_on ?1))

25) (calibration_target

2s) (instrument 21) (direction 2d) (on_board ?

31 (calibrated 71))

33+ (:action take_inage
34 :pa s (75 2d 71 )

35 precor n

and (satellite 7s) (direction 7d) (instrument 7i) (node 7n) (calibrated i) (on_board 7i ?s) (supports 7i 7n) (power_on 7i) (pointing ?s 2d) (power_on 7))

38 (have_inage 7 7n))




v O W pddl domic

<> C @ editor.planning.domains,
PDDL Editor File - #®Session~ @Import 4% Solve ®Torchlight  Plugins @ Help
unamed1.pddl
Found Plan (output)
domain.pddl
(turn_to satelliteo groundstation2 phenomenon6) (:action turn_to
Analysis (1) :parameters (satellite@ phenomenon4 groundstation2)
(switch_on instrumento satelliteo) :precondition
(and

o1-pfiler.pdd]
por-phleL.p (satellite satellite@)

(calibrate satelliteo instrumento groundstation2)
(direction phenomenond)

Analysis (2) i i (direction groundstation2)

(turn_to satelliteo phenomenon4 groundstation2) | (pointing satellite® groundstation2)
Plan (1) 1 )

(take_image satelliteo phenomenong instrumento thermographo) reffect

(and
(turn_to satelliteo stars phenomenony) ::Z:"ti"g satellited phenomenond)
X X X (pointing satellite@ groundstation2)
(take_image satelliteo stars5 instrumento thermographo) )
)

(turn_to satelliteo phenomenon6 stars) )

(take_image satelliteo phenomenon6 instrumento thermographo)

chlight Plugins @Help planning.domains

jon~ ©lmport # Solve ®To

PDDL Editor

unamedt.pdd! Torchlight Output (readme)

domain.pddl
Analysis (1) TorchLight: parsing domain file
domain 'SATELLITE' defined
. done.

por-pfiler.pddl

TorchLight: parsing problem file
problem 'STRIPS-SAT-X-1' defined

Analysis (2) ... done.

Plan (1)
TorchLight: running Fast-Downward translator to generate variables ... done.
TorchLight: creating S and DTG structures ... done.
TorchLight: static examination of SG and DTG structures ... done.

START-
- - -META-INFORMATION.

Input domain : testing/domain.1516635316636.pddl
Input problem instance : testing/prob.1516635316636.pddl
Number of sample states : 1000

DOMAIN TRANSITION GRAPHS (DTG-t: DTG transition)
Perc vars all DTG-t invertible : 20
Perc vars all DTG-t no side-eff : 80 /* all no side effects */
Perc vars all DTG-t irr side-eff: 80 /* all side effect deletes irrelevant */

Perc well-behaved leaf vars : 100 /* support graph leaf vars satisfying global TorchLight criterion */
Perc well-behaved nonleaf vars : 66 /* support graph nonleaf vars satisfying global TorchLight criterion */
Perc DTG-t invertible : 83

Perc DTG-t no side-ef f : 96 /* no side effects */

Perc DTG-t irr side-eff 1 96 /* all side effect deletes irrelevant */

Perc DTG-t self-irr side-eff  : 98 /* all side effect deletes irrelevant, except for own precond */

Perc DTG-t irr own-delete 1 16 /* start value of transition is irrelevant */

GUARANTEED GLOBAL ANALYSIS (USES GLOBAL DEPENDENCY GRAPHS gDG)-
Perc successful goG 8 provably no local minima under h+ */
h+ exit distance bound : -1, -1.09, -1 /* min, mean, max over successful gDGs (-1 if perc successful gDG = 0); perc successful gDG = 160 ==> max is a provable
Perc gbG cyclic : @ /* perc gbG cannot be successful because cyclic */

Perc gDG to not Ok : @ /* perc gbG cannot be successful because deletes of t® harmful */




The Fifth International Competition
on Knowledge Engineering for
Planning and Scheduling

(ICKEPS 2016) . »

ot B

“Promote the knowledge-based and domain
modelling aspects of Al P&S, to accelerate
knowledge engineering research, to encourage
the development and sharing of prototype tools
or software platforms that promise more rapid,
accessible, and effective ways to construct
reliable and efficient P&S systems”



ICKEPS 2005 (San Francisco) - Tools and Tools
Environments for KE

ICKEPS 2007 (Providence) - teams working
(offline) on KE tasks and application scenarios

ICKEPS 2009 (Thessaloniki) - Tools for translating
into planner-ready language from application-
oriented language

ICKEPS 2012 (Sao Paulo) - teams working (offline)
on KE tasks and application scenarios

ICKEPS 2016 (London) teams working (online) on
KE tasks and application scenarios

Pre-competition
- Organizers prepared 4 scenarios
. 2 temporal (Star-trek, Roundabout)
. 2 classical (RPG, Match Three Harry)
- Organizers composed competition rules and
evaluation criteria
On-site modelling
- Teams up to 4 members
- 6 hours time limit for modelling

Demonstration
- 10 minutes per team to present their KE process

Board of Judges
- Deciding the winners



. KE process

- Use of KE tools o ;Evaluation
<  [4OUTSTANDING
- Teamwork [ ] Excellent
. Models []Very Good
Average
- Correctness E Below Average
- Generality
- Readability

- Planners’ performance

. It was fun!

. Teams often selected easier domains to tackle
(e.g. classical ones)

. Provided models were different, in some cases
quite considerably

. Interesting modelling approaches — e.g. analysing
domain transition graph to identify “bad” states

. Not many KE tools were exploited

- The winning team (Muise & Lipovetzky)
exploited the Planning.Domains framework



According to the specification the hero dies if:

- does not have a sword and enters a room with a
monster

— destroys the sword in a room with a monster

— in a room with a trap, the hero performs any other
action than “disarm” (for this action the hero must
be empty handed)

The competitors observed:

-~ the hero must have a sword in order to enter a
room with a monster

— the hero must be empty handed to enter a room
with a trap

The models do not explicitly consider hero's
death

Some Planning Operators encoded in the models:
- move-without-sword

- move-with-sword

- destroy-sword-move-disarm

Models were rather “planner-friendly” than
“user-friendly”



. Modelling oriented rather than KE tools oriented
. Practical applications

- Combine offline and on-site modelling
. Get more competing teams

- 6 teams competed on ICKEPS 2016
. Automatize the model evaluation process
. Attract interest outside “planning” community

- “expert bias” can be mitigated

DESIGNING AND DEVELOPING
A DOMAIN MODEL



A truck moves between locations to pickup and
deliver packages while consuming fuel during
moves.

— setting:
* initial locations of packages and truck
» goal locations of packages
* initial fuel level, fuel cost for moving between locations

— possible actions: load, unload, drive

— assumption: track can carry any number
of packages

Factored representation

— state = a set of atoms that hold in that state (a vector of
values of state variables)
{at(p0,12),at(pl,12),at(p2,11),at(t0,12),

in(p3,t0),in(p4,t0),in(p5,t0),
fuel (t0,level84)}

Structured representation
— state = a term describing objects and their relations

objects represented by properties rather than by names
to break object symmetries

s(12 1eve184 [12 12,141, [[11|13],[12]|13],[12]|14]1])

S
truck location destinations Of current and desired locations of
loaded packages waiting packages
fuel level




Factored representation

action(S,NextS,Act,Cost),
truck(T), member(at(T,L),S),
select(at(P,L),S,RestS), P !=T
?2=>
Act = load(L,P,T), Cost =1,
NewS = insert_ ordered(RestS,in(P,T)).

Structured representation

action(s(Loc,Fuel,LPs,WPs), NextS,Act,Cost),
select ([Loc |PkGoal] ,WPs,WPs1)
?2=>
Act = load(Loc,PkGoal), Cost =1,
LPsl = insert_ordered(LPs,PkGoal),
NextS = s(Loc,Fuel,LPsl, WPsl).

Estimate distance to goal

Precise heuristic for Nomystery domain:
— each package must be loaded and unloaded

— each place with packages to load or unload must
be visited

action(S,NextS,Act,Cost),
truck(T), member(at(T,L),S),
select(at(P,L),S,RestS), P !=T

?2=>
Act = load(L,P,T), Cost =1,
NewS = insert_ordered(RestS,in(P,T)),
heuristics (NewS) < current resource().




Tell the planner what to do at a given state based on the
goal

* unload all packages destined for current location (and
only those packages)

action(s(Loc,Fuel,LoadedPks,WaitPks), NextState, Action, Cost),
select (Loc,LoadedPks,LoadedPksl)
=>
Action = unload(Loc,Loc),
NextState = s(Loc,Fuel,LoadedPksl, WaitPks),
Cost = 1.

* load all undelivered packages at current location

* move somewhere

— move to a location with waiting package or to a destination
of some loaded package

action(s(Loc,Fuel,LoadedCGs,Cargoes), NextState, Action, Cost),
select (Loc,LoadedCGs,LoadedCGsl)

=>
Action = unload(Loc,Loc),
NextState = s(Loc,Fuel,LoadedCGsl,Cargoes), Cost = 1.

Action(s(Loc,Fuel,LoadedCGs,Cargoes), NextState, Action, Cost),
select ([Loc|CargoGoal],Cargoes,Cargoesl)
=>
insert_ordered(CargoGoal,LoadedCGs,6 LoadedCGsl),
Action = load(Loc,CargoGoal),
NextState = s(Loc,Fuel,LoadedCGsl,Cargoesl) , Cost = 1.

Action(s(Loc,Fuel,LoadedCGs,Cargoes), NextState, Action, Cost)
?2=>

Action = drive(Loc,Locl),

NextState = s(Locl,Fuell,LoadedCGs,Cargoes),

fuelcost (FuelCost,Loc,Locl),

Fuell is Fuel-FuelCost,

Fuell >= 0, Cost = 1.



Factored vs. structured representations
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Factored representation untime fact variants - all - BB
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using structured representation of states
instead of factored representation

— object symmetry breaking
control knowledge helps more than heuristics

heuristics are more important for iterative-
deepening than for branch-and-bound

control knowledge is critical for branch-and-
bound



Efficient Plan Generation

I”

No planner “rules them al

Planning Portfolios
— Collection of different planning techniques running
sequentially or in parallel (or combination of both)

Dynamic portfolios
- Configured specifically for a given domain
- PbP

Static portfolios
- Configured once for all (possible) domains

- IBACOP, FDSS



One might introduce “accidental complexity”
- Too large representation

- “Deep” and undetectable dead-ends

— Not “going along” with some classes of heuristics

Can we improve the planning process by making
the model more efficient ?

Captures useful domain-specific information
Provides “guidance” for planning engines
Complement “raw” domain model specification

Two main categories of DCK
- Planner-specific (e.g. TALPlanner, Roller)

- Planner-independent (this talk !)



Planner-independent DCK

Domain qqd P_roblem DCK
specification

| |
v

Enhanced Domain
and Problem specification

l

Generic Planning Engine

l

\ Enhanced Plan \

J

Plan

Obtaining DCK

Automatically

— training based

— online

Manually



Outer entanglements are relations between
planning operators and initial or goal predicates

Entanglement by init — allows only such instances

of an operator requiring an initial predicate

- e.g. unstacking blocks only from their initial positions,
loading packages only in their initial locations

Entanglement by goal — allows only such

instances of an operator achieving goal predicates

- e.g. stacking blocks only to their goal positions,
unloading packages only in their goal locations

Un Y) = Stack(X,Y) =
( €on(X,Y)klear(X),handempty?} //prec ( {holding(X),cle rec
{on(xX,v),dlear(X),handempty} //neg eff ;Clear(Y)} //neg eff
{holding(X),clear(Y)} ) //pos eff on(X,YQclear(X),handempty} ) //pos eff
entangled entangled
by init by goal
on(C,B) on(A,B)
— :>
on(B,A) on(B,C)
init goal

allowed: Unstack(C,B), Unstack(B,A) allowed: Stack(A,B), Stack(B,C)



1) Create a “twin” predicate p’ of an “entangled”
predicate p

2) Modify the “entangled” operator by adding p’
into its precondition (p’ has the same
parameters as p)

3) Create instances of p’ corresponding with
instances of p in the initial state (resp. goal)
and add them to the initial state

(:action unstack
:parameters (?x - block ?y - block)
:precondition (and (on ?x ?y)(clear ?x)(handempty) (stai_on ?x ?y))
teffect (and (holding ?x)(clear ?y)
(not (clear ?x))(not (handempty))(not (on ?x ?y)))
)

(:action stack
:parameters (?x - block ?y - block)
:precondition (and (holding ?x)(clear ?y)(stag_on ?x ?y))
teffect (and (on ?x ?y)(clear ?x)
(not (clear ?y)) (handempty) (not (holding ?x)))

)



Outer Entanglements restrict the number of
instantiated operators and consequently might reduce
the size of the state space

Outer Entanglements (significantly) reduces memory
requirements

Remarkable performance in BW, Depots, Gripper and
Matching-BW

Can be rather restrictive and might work efficiently in
subclasses of domains/problems

Outer entanglements might be learnt from a set of
training plans — might compromise completeness

Primitive operators can be assembled into one
single operator — macro-operator (macro)
Assemblage of operators o, and o, into o;;:

— pre(o;;) = pre(o;) U (pre(o;) — add(o;))

- del(o;;) = (del(o;) U del(o;)) — add(o;)

Widely studied (e.g. Macro-FF, Wizard, MUM,
BLOMA)

Can address a specific shortcoming of a planner (e.g.
Marvin [Coles et al, 2007])



B

& unstack(B,A) & putdown(B) (g

B

A A A B

& &

unstack-putdown(B,A)
| =
B

A A B
unstack(X,Y) = pudown(X) =
{ {on(X,Y),clear(X),handempty?} //prec { {holding(X)} //prec
{on(X,Y),clear(X),handempty} //neg eff {holding(X)} //neg eff
{holding(X),clear(Y)} } //pos eff {ontable(X),on(X),clear(X),handempty} } //pos eff

unstack-putdown(X,Y) =

{ {on(X,Y),clear(X),handempty?} //prec
{on(X,Y),holding(X),} //neg eff
{clear(X),clear(Y),ontable(X),handempty} } //pos eff

Macros can be understood as “short-cuts” in the search
space
Solution plans can be much shorter

Introducing macros can increase branching factor
considerably !

There might be high memory requirements for
planners

“A short-cut is the longest
way between two points”




MUM [Chrpa et al., 2014]

— Outer entanglements can reduce branching factor
the macros introduce

— Applying outer entanglements only on macros does
not compromise completeness

- Outer entanglements provide heuristics in the
macro learning process

OMA [Chrpa et al., 2015] — an online version of
MUM

. Exploiting “Block deordering” technique
initially used in plan optimization [Siddiqui &
Haslum 2012]

. Can capture longer repetitive sequences
within “macroblocks”

. Can learn longer (and sometimes useful)
macros than other approaches (e.g. MUM)



Critical Sections use a shared resource and has to be completed
at once (without any other process interfering)

In planning, share resources involve robotic hand, truck etc.
Critical Section Macros involves

Locker (locks the resource, e.g. pick)
— User (uses the resource, e.g. paint)
— “Gluing” op (“connects” other ops — e.g. move)

— Releaser (releases the resource —e.g. drop)

Can be combined with other “chaining” approaches (e.g. MUM)
Aggressive version removes replaced original ops

Planner PAR10
o M B C CcM AC ACM
barman
lama 8428 - 5022 396 8.5 11 1.9
probe 8427 - 2044 9000 43 231 0.5
MpC 9000 - 9000 9000 11 8700 0.6
yahsp 9000 - 442 253 0.3 10 0.1
BFWS 9000 - 4.9 3007 2.2 1.8 0.1
FDSS 3234 - 1820 310 152 15 1.9
bw
lama 681 - 380 711 404 616 0.4
probe 1679 - 558 214 172 0.4 0.3
MpC 9000 - 9000 172 168 5700 3012
yahsp 948 - 1848 1235 950 0.1 0.2
BFWS 8106 - 8700 8709 8114 58 3.2
FDSS 2506 - 2493 2806 2794 11 0.6
depots
lama 9000 9000 9000 8417 9000 0.5 0.3
probe 39 38 43 87 37 0.3 0.1
MpC 3985 1649 2221 4883 1947 0.4 0.1
yahsp 2809 3050 3061 7550 3060 1.4 0.1
BFWS 6383 5180 4873 4550 4620 0.1 0.1
FDSS 3838 5597 5325 5592 5601 0.6 0.4
gripper
lama 7342 101 103 1926 985 4.8 4.1
probe 9000 9000 9000 9000 9000 17 17
MpC 9000 9000 9000 9000 9000 48 1.3
yahsp 9000 9000 9000 9000 9000 9000 0.2
BFWS 9000 7529 7526 9000 7525 1371 1381
FDSS 9000 4802 5081 6493 6202 7.2 6.4
matching-bw
lama 1202 1202 9000 2.6 2.2 0.1 0.1
probe 5108 3610 9000 0.7 1.5 0.1 0.1
MpC 9000 9000 9000 1582 3982 4500 3000
yahsp 9000 639 9000 1501 1512 0.1 0.1
BFWS 5748 4604 9000 985 442 0.1 0.1
FDSS 2.2 1.8 4505 2.4 1.9 0.1 0.1

Average PAR10 score (in seconds) of the (O)riginal, (M)UM, (B)LoMa, (C)ritical Section Marcos, Aggressive Critical
Section Macros (AC) and their combination with MUM (CM, ACM respectively) encodings



Representing individual objects might not be
efficient if we care about their numbers

In Gripper, k balls are moved from roomA to

roomB
— Standard representation: (at balll rooma), ..., (at ballk
rooma)

— Bagged representation: (count ball rooma nk)

Bagged representation alleviates some
unwanted symmetries (e.g. which ball is picked
first)

(:action pick

:parameters (?nl ?n0 ?obj ?room ?gripper)
:precondition (and (ball ?obj)(room ?room) (gripper
?gripper) (at-robby ?room) (free ?gripper) (more ?nl
?n0) (count ?obj ?room ?nl))

teffect (and (carry ?obj ?gripper) (not (count ?obj ?room
?nl)) (count ?0bj ?room ?n0) (not (free ?gripper))))

(:action drop

:parameters (?nl ?n0 ?obj ?room ?gripper)
:precondition (and (ball ?obj)(room ?room) (gripper
?gripper) (carry ?obj ?gripper) (more ?nl ?n0) (at-robby
?room) (count ?obj ?room ?n0))

teffect (and (not (count ?o0bj ?room ?n0)) (count ?o0bj ?room
?nl) (free ?gripper) (not (carry ?obj ?gripper)))))



. Representing DCK as Golog-like programs

. Plans are generated in compliance with
programs

. Programs can be compiled into planning task
descriptions (in PDDL)

. Programs can hence be exploited by generic
(state-of-the-art) planning engines

1) nil—empty program

2) o—asingle operator instance

3) any-any action

4) ? - atest action

5) (o,,0,) —a sequence of programs

6) if Y then o, else o, — a conditional sentence

7) while ¢ do 6 —a while loop

8) o* - A nondeterministic iteration

9) (o4|0,) — A nondeterministic choice between programs
10) ni(x-t)o - A nondeterministic choice of variable x of type t



while Iclear(B) do ri(b-block)putOnTable(b)
—  While B is not clear choose any block b and put it on
the table

any*;loaded(A,Truck)?
— Perform any sequence of actions until A is loaded
into Truck

(load(C,P);fly(P.LA) | load(C,T);drive(T,LA))
— Either load Cinto the plane P or the truck T and
perform the appropriate action to move to LA

. Inspired by Finite State Automata
. Define “grammar” of solution plans

. “Schematical” representation is easier to
understand by non-experts in planning

. Can be incorporated in planning domain
models



A quadruple (S5,0,T;s,) where

S is a set of DCK states
Spe S is the initial DCK state
O is a set of planning operators

T is a set of transitions

Each transition is in the form (s,0,C,s') where

s,s'eS, 00
C is a set of constraints where each is in the form
p,—p — p must or must not be in the current planning state

g: p — p must be an open goal in the current planning state

An empty truck (can carry at most one
package) should move only to locations where
some package is waiting to be delivered

After a package that has to be delivered is
loaded into the truck, the truck moves to
package's goal location where the package is
then unloaded

Drive; at(?p ?to), g: at(?p ?dest), ?to = ?dest

Load; g: at(?p ?dest), ?dest != 71 Drive; in(?p ?t), g: at(?p ?to)

Unload; g: at(?p ?1)




Use of Transition-based DCK

Let s,;be the current planning state and s, be the current DCK state

The intermediate step of the generic planning algorithm with embedded transition
based DCK
1. Non-deterministically select an action a such that

- ais applicable in s;;

- There is a transition (sk,0,C,s's) such that a is an instance of o and all
constraints in C are satisfied

2. Update the current planning state by applying a in s;;

3. Set s'kas the current DCK state

A constraint in Cin the form p, —p, g:p is satisfied iff p es;;p £s; p is an open goal in s;;
respectively

Translating into PDDL - Example

The PDDL encoding of a DCK enhanced Simple Logistic domain
model (supplementary predicates in red)



rﬂ1 ! ! 000

(:action walk
:parameters (?start - location ?end - location ?m - man)
:precondition (and (at ?m ?start)(link ?start ?end))
teffect (and (not (at ?m ?start)) (at ?m ?end)))

(:action pickup_spanner
:parameters (?1 - location ?s - spanner ?m - man)
:precondition (and (at ?m ?1)(at ?s ?1))

teffect (and (not (at ?s ?1))(carrying ?m ?s)))

(:action tighten nut
:parameters (?1 - location ?s - spanner ?m - man ?n - nut)
:precondition (and (at ?m ?1)(at ?n ?1)(carrying ?m ?s)(useable ?s)
(loose ?n))
teffect (and (not (loose ?n))(not (useable ?s)) (tightened ?n)))

Unnecessary symmetries

— It does not matter which spanner is used for
tightening a nut

- Use bagged representation

Deep dead-ends

— Delete-relaxed heuristics assumes that one spanner
can be used to tighten all nuts

— Constraint the Walk operator



(:action walk
:parameters (?start - location ?end - location ?m - man)

:precondition (and (at ?m ?start)(link ?start ?end)(at-count ?start c0))
teffect (and (not (at ?m ?start)) (at ?m ?end)))

(:action pickup_spanner

:parameters (?1 - location ?m — man ?n0 ?nl ?n2 ?n3 — counter)

:precondition (and (at ?m ?1)(more ?nl ?n0)(count 2?1 ?nl)(more ?n3 ?n2)
(carry-count ?m ?n2))

teffect (and (not (at-count 2?1 ?nl))(at-count ?1 ?n0)(not (carry-count ?m ?n2))

(carry-count ?m ?n3)))

(:action tighten_nut

:parameters (?1 - location ?m - man ?n — nut ?n2 ?n3 — counter)

:precondition (and (at ?m ?1)(at ?n ?1)(more ?n3 ?n2)(carry-count ?m ?n3)
(loose ?n))

teffect (and (not (loose ?n))(tightened ?n) (not (carry-count ?m ?n3))(carry-
count ?m ?n2)))

)

Reducing size of the representation
- Entanglements, bagged representation

Reduced depth of search
- Macros

Guidance of search
-~ Procedural DCK, Transition-based DCK



In practice, separating the “raw” domain model and DCK is
easier to maintain

Extend existing KE tools (e.g. itSimple, Planning.Domains)
by supporting automatic/manual DCK acquisition

Understanding in which cases planners fail and how DCK

can alleviate such an issue

— Even changing the order of operators and predicates in their
preconditions/effects have a significant impact on planners'
performance !

DEVELOPMENT OF REAL-WORLD
PLANNING APPLICATION



* one of the challenge problems at ICKEPS 2012
* transporting cargo items between ports and

petroleum platforms while assuming limited
capacity of vessels and fuel consumption during
transport

* basic operations:

— navigating, docking/undocking, loading/unloading,
refueling

* objectives:

— fuel consumption, makespan, docking cost,
waiting queues, the number of ships

cargo specification loading port delivering point weight
c1 Ri F1 20t
C2 Ri F6 5t
c3 Ri F4 15t
c4 Santos G4 8t
\ c5 Ri F2 15t
Brazilian Southwest Coast ~~.____ cs R s o
------ c7 Ri F5 25t

F1 F2 F3 F4
G1 468km [580Km [420km |500km [380km [520km |540km |320km |350km |300km|
G2 580km |468km [380km [520km [300km [500km [540km |110km |400km [180km
G3 588km |600km [420km |560km |580km |580km |580km |400km |450km |280km
G4 B600km [588km |580km |580km [420km [580km |570km [180km [420km |140km LANTIC OCEAN
A1 200km | 40km 320km [280km [180km |80km |- 340km | 120km | 270km
A2 340km |380km |[370km [340km [280km |300km |340km |- 270km [ 100km
P1 300km |160km [280km |[200km |160km [130km |120km |270km |- 200km
320km [ 340km 100km




Classical planning

— the planning part (decision of actions) modeled in PDDL
2.1 and solved by SGPIlan (optimize fuel)

— the scheduling part (time allocation) solved in post-
processing

Temporal planning

— modeled completely in PDDL 2.1 (durative actions and
resources)

— solved using the Filuta planner (optimize makespan)
Monte Carlo Tree Search

— using abstract actions (Load, Unload, Refuel, GoToWaiting)

— solved using MCTS (optimize “usedFuel + 10 * numActions
+ 5 * makespan”)

Each vessel modeled separately as a timeline

(sequence of actions)
[Start,Fuel,Action,Loc,LoadedCargo,Dur]
LoadedCargo = [Weight,CargoLoc,Dest]

left-to-right scheduling with rolling horizon

vessel 1

vessel 2

vessel 3




navigate

I platform
4

wait \>

ase Suiyiem

&

This does not work!

— more vessels heading for the same cargo (but only the
first vessel will load it)

— useless planned actions (just to do something —
refueling)

Exploiting macro actions, landmarks (cargo must
be picked up), control rules, heuristics

loaded
available cargo
+empty
i
. <€ .
Pickup Deliver
navigate, dock, load,{refuel}, undock .| navigate, dock, unload,{refuel}, undock
>
loaded
cargo available empty
4

Wait ” Go2Wait
{navigate, dock, refuel, undock}, navigate
J




e Solving approach:

— separate planning (fuel optimization) from
scheduling (time allocation, makespan)

— separate route selection from cargo-to-deliver
selection

e State representation:

— cargo Items: [ [OriginLoc, [DestinationLoc,
Weightl,Weight2,...]11, ...]

— vessels: [[Location, FuelLevell,
FuelLevel2,...], «..]

Removes symmetries between items and vessels.

table (+,+, -,min)
plan([], Vessels, Plan, Fuel) =>
Plan = [], Fuel = 0.
plan(Cargo, Vessels, Plan, Fuel) =>
select_port(Cargo, Port, PortCargo, RestCargo),
select_cargo(PortCargo,Destinations,FreeCap,RestPortCargo),
select_and_move_vessel (Vessels, Port, FuellLevell,
RestVessels, Planl, Fuell),
load_at_other_ ports(RestCargo, Port, FreeCap, FuelLevell,
Destinations2, RestCargo2, Port2, FuellLevel2, Plan2,
Fuel2),
path_plan(Port2, FuellLevel2, Destinations ++ Destinations2,
FinalLoc, FinalLevel, Plan3, Fuel3),
plan(addCargo(RestCargo2, Port, RestPortCargo),
addVessel (RestVessels, FinallLoc, FinalLevel),Plan4,Fueld),
Plan = Planl ++ $[load(Port),undock(Port)] ++ Plan2
++ Plan3 ++ Plan4,
Fuel = Fuell + Fuel2 + Fuel3 + Fueld.



* The challenge problem from ICKEPS 2012

— 10 vessels with fuel capacity 600I, 15 cargo items

* Random problems from ICTAI 2012

— varying the number of vessels, fuel capacity:

* Group A -3 vessels, fuel tank capacity 600 liters
* Group B - 10 vessels, fuel tank capacity 600 liters

— varying the number of items (1-15) in each group

* Comparison of

— temporal planner FILUTA

— MCTS planner

— B-Prolog planner

— Picat planner

B-Prolog 1263
Filuta 1989
MCTS 887
Picat 812

162
263
204
341

10 vessels with fuel capacity 600I, 15 cargo items

w un B~ b

~60 000
~600 000
~600 000

813



Petrobras results: fuel consumption
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Mixed-initiative Task Planning for
Autonomous Underwater Vehicles

In collaboration with LSTS lab, University of Porto
[Chrpa et al., 2015;2017]




. Necessity to control multiple heterogeneous
Autonomous Underwater Vehicles (AUVs)

. An operator (human) specifies high-level tasks
(e.g. “sample an object with ctd camera”)

. Task assignment to each AUV should be
automatized

. Each task has specific requirements
. Each vehicle has specific capabilities

. For completing tasks AUVs have to perform
certain sequences of actions

. Hence, we need to find a plan that if
executed, the AUVs will complete all given
tasks



. In LSTS, AUVs are controlled via NEPTUS (a
decision support tool with GUI) and DUNE
(onboard vehicle control) - “low-level” control

. Domain-independent Al planning (i.e., finding a
sequence of actions that achieves a defined goal)
- “high-level” task planning

- PDDL, a language for specifying planning
domain models and problem instances

- LPG-td, a planning engine accepting domain
and problem descriptions in PDDL and returning
a plan (if exists)

User specifies tasks in

NEPTUS é 2 Domain
) Model
%, é 7

NEPTUS generate a = P (PDDL)

planning problem and User noraeion oo |

sends it to LPG-td Mission |2 p s e
Mgmt. engine

LPG-td returns a plan to (Neptus) [~_plan_—{ (LPG-TD)

N E PTU S Disp/atcln ]and execution

NEPTUS distributes the
plan to each of the
vehicles




Each AUV has certain payloads attached to it

Each task must be completed by using a certain
payload (e.g. camera, sidescan)

Each AUV has a limited amount of energy that is
consumed by executing actions

. Collected data can be communicated while an AUV is

in its “depot” (a “safe spot” close to shore/ship)

. Two (or more) AUVs cannot be at the same location

or perform the same task simultaneously

Vehicles (V)
Payloads (P)
Phenomenons (X)
Tasks (7)
Locations (L)



. at €V X[ (vehicle’s location)

. base €V XL (vehicle’s “depot”)

. has €V XP (attached payloads to the vehicle)

. at-phen €X XL (phenomenon’s location)

. task €T XX XP (task description)

. sampled €T XV (acquired task data by vehicle)

. data €T (acquired task data by the control
centre)

. dist: L X L - R*(distance between locations)
. survey-dist: L X L - R (length of survey)

. speed: V - R (vehicle’s speed)

. battery-level: V - R (vehicle’s battery level)

. battery-use: VUP - R (vehicle’s or payload’s
energy consumption)



Move (v,I1,12)
Duration: d=dist(l1,12)/speed(v)
Precondition:
At start: (v,/1) €at, battery-level(v)> d*battery-use(v)
At end: Av’#v: (v,12) eat
Effects:
At start: (v,/1) &at, battery-level(v)=battery-level(v)-d*battery-use(v)

At end: (v,/12) eat

Sample (v,t,x,p,)
Duration: d=60 (constant duration)
Precondition:
At start: battery-level(v)> d*battery-use(p)
Overall: (v,l) éat, (x,1) Eat-phen, (v,p) Ehas, (t,x,v)Etask
Effects:
At start: battery-level(v)=battery-level(v)-d*battery-use(p)

At end: (t,v)esampled



Survey (v,t,x,p,11,12)
Duration: d=survey-dist(l1,/12)
Precondition:
At start: (v,/1) éat, battery-level(v)> d*(battery-use(v)+battery-use(p))
Overall: (x,11) eat-phen, (x,12) Eat-phen, (v,p) Ehas, (t,x,v)Etask
Effects:

At start: (v,/1) &at,
battery-level(v)=battery-level(v)-d*(battery-use(v)+battery-use(p))

At end: (v,12) eat, (t,v) Esampled

No concurrent survey action can be executed over x

Collect-data (v,t,1)
Duration: d=60 (constant duration)
Precondition:
Overall: (v,) at, (v1)Ebase, (t,v) Esampled
Effects:

At end: t&data



(:durative-action sample
:parameters (?v - vehicle ?1 — location ?t -task
?0 - phenomenon ?p - payload)
:duration (= ?duration 60)
:condition (and (over all (at-phen ?0 ?1))
(over all (task ?t ?o0 ?p))
(over all (at ?v ?1))
(over all (has ?p ?v))
(at start (>= (battery-level ?v)
(* (battery-use ?p) 60))))
teffect (and (at end (sampled ?t ?v))
(at start (decrease (battery-level ?v)
(* (battery-use ?p) 60)))) )

. Evaluated in LeixOes
Harbour, Porto

. 3 light AUVs carrying gt e
different payloads BRI 5 vy

@&fmupmusq \
. In phase one, areas of / \\
interest were surveyed \// = \\\
. In phase two, contacts “

identified in phase one
were explored




. The plans were
executable

. High discrepancies,
especially for move
and survey actions

. Rough time
predictions that were
done only on distance
and type of vehicle

Vehicle Action Time Difference
move 47.80 +49.11
. survey 23.15+ 23.26
Noptilus-1 sample 1.33+0.58
communicate | 0.16 £+ 0.17
move 39.57 + 35.66
. survey 107.88 £ 141.10
Noptilus-2 sample N/A
communicate | 0.25 + 0.07
move 59.90 + 57.05
. survey 24.00 £ 0.00
Noptilus-3 | - ple 9.57 + 13.64
communicate | 0.11 £0.16

1) Users can add, remove or modify tasks during

the mission

2) Vehicles might fail to execute an action

3) Communication with the control center is
possible only when a vehicle is in its “depot”




. System has to be flexible (e.g. a user can add a
new task) and robust (e.g. handling vehicles’
failures)

. Dynamic Planning, Execution and Re-planning

- Automatized response on task changes by
user and/or exceptional circumstances during
plan execution

. How the “one shot” model has to be changed?

. Removed battery constraints

- vehicles’ battery levels were much higher than duration of
operations

. Added maximum “away” time constraints

- Vehicles have to come to their depots to establish
communication (if they are “away” communication might
not be possible)

. Split the move action into move-to-sample, move-to-survey,
move-to-base, the former two must be succeeded by
sample and survey action respectively

. Optimizing plans (vehicles cannot go to locations they do
not have anything to do)

. Modified representation of phenomenons (objects and
areas of interests are explicitly distinguished)



. Numeric fluents
- from-base: V - R'(how long the vehicle is “away”)

- max-to-base: V - R (maximum “away’time)

. Preconditions (at start) of the move, sample, survey actions
contain (d — action duration):

- from-depot(v) < max-to-depot(v) — d

. Effects (at end) of the move, sample, survey actions contain
(d — action duration):

- from-depot(v) = from-depot(v) + d
. Effects (at end) of the move-to-base action contain:

- from-depot(v)=0

(:durative-action sample
:parameters (?v - vehicle ?1 - location ?t -task ?0 — oi
?p - payload)
:duration (= ?duration 60)
:condition (and (over all (at-oi ?0 ?1))
(over all (task ?t ?o0 ?p))
(over all (at ?v ?1))
(over all (has ?p ?v))
(at start (<= (from-base ?v)
(- (max-to-base ?v) 60)))
)
teffect (and (at end (sampled ?t ?v))
(at end (can-move ?v))
(at start (increase (from-base ?v) 60))



. All Tasks
- Allocates all specified tasks to the vehicles

- Minimizes the plan execution time and the
number of vehicles’ returns to their depots

. One Round

- Allocates only tasks for the next “round” (i.e.,
after vehicles return to their depots they cannot
move)

- Maximizes the number of completed tasks

Preprocessing
- Splitting large surveillance areas into smaller ones

Planning
- NEPTUS generates a problem specification in PDDL, runs LPG-td, then
processes and distributes the plan among the vehicles
Execution
- Each vehicle is responsible for executing its actions

- Move actions are translated into timed-waypoints for mitigating the
differences between planned and actual times

- When in depots vehicles communicate status of completed tasks
(success/failure) — failed tasks are “re-inserted”
Replanning

- If a new planning request comes (e.g. a user added a new task),
vehicles continue to execute their current plans until they come back
to their depots, then they receive new plans



Evaluated in Leixdées Harbour,

Porto

Mine-hunting scenario was
used

3 light AUVs, 2 carried

sidescan, one carried camera

In phase one, areas of
interest were surveyed

In phase two, contacts
identified in phase one
sampled to identify them as
mines, or false positives

Both models produced correct
plans that were successfully
executed

During one of the executions one
AUV (Noptilus 3) failed (depth
sensor fault) — tasks were
automatically re-inserted and
allocated to a different AUV, which
completed them

All Tasks model produces better
quality plans (for larger scenarios,
however, One Round model might
be more efficient)

V‘W’“

Most planned/actual differences are
quite small (less than 3 seconds).

Around time 1000 a noticeable
difference occurred (vehicle had to
ascend during the survey). The delay
was eliminated by accelerating
during the following move action.



CLOSING REMARKS AND OPEN
PROBLEMS

. Domain model is the key component for domain-
independent planning

- User-friendly (e.g., human readable)
- Planner-friendly (e.g. planners are efficient)
. We have languages to describe domain models

. We have planning engines supporting those
languages

. We have (some) KE tools supporting domain
modelling



. Planning succeeded in many real-world
applications

- Space Exploration

- Manufacture Planning

- Narrative Generation

- Task Planning for Autonomous Robots
- Urban Traffic Control

A limited number of expressive planning engines

- In IPC 2014, 67 planners participated, out of which
only 6 competed in temporal track

- In IPC 2018, only 5 competed in temporal track

Domain modelling is still a “black art”
- “Expert bias”

- No guidelines (e.g. how to make model planner-
efficient)

Limited tool support (e.g. debugging is still manual)
Lack of interest from the community



Do researches outside the planning community use
domain-independent planning ?

If not, why ?

- Lack of guidelines for domain modelling

- Lack of efficient and expressive planning engines
Lack of awareness

How can we motivate researches outside the planning
community to use domain-independent planning in
their research ?

. The notion of quality of domain models

- What it exactly stands for

- How to assess it

KE tool support

- Debugging

- Dynamic testing

- Planner efficiency assessing

. Adopting SW engineering principles
- Development life cycle

— Collaboration

- Maintenance



