
Branching: the Essence of Constraint Solving

Antonio J. Fern�andez1? and Pat Hill2

1 Departamento de Lenguajes y Ciencias de la Computaci�on, E.T.S.I.I., 29071

Teatinos, M�alaga, Spain email:afdez@lcc.uma.es
2 School of Computing, University of Leeds, Leeds, LS2 9JT, England

email:hill@comp.leeds.ac.uk

Abstract This paper focuses on the branching process for solving any

constraint satisfaction problem (CSP). A parametrised schema is pro-

posed that (with suitable instantiations of the parameters) can solve

CSP's on both �nite and in�nite domains. The paper presents a formal

speci�cation of the schema and a statement of a number of interesting

properties that, subject to certain conditions, are satis�ed by any in-

stances of the schema. It is also shown that the operational procedures

of many constraint systems (including cooperative systems) satisfy these

conditions. Moreover, the schema is also used to solve the same CSP in

di�erent ways by means of di�erent instantiations of its parameters.

Keywords: constraint solving, �ltering, branching.

1 Introduction

To solve a constraint satisfaction problem (CSP), we need to �nd an assignment
of values to the variables such that all constraints are satis�ed. A CSP can have
many solutions; usually either any one or all of the solutions must be found.
However, sometimes, because of the cost of �nding all solutions, partial CSP's
are used where the aim is just to �nd the best solution within �xed resource
bounds. An example of a partial CSP is a constraint optimisation problem (COP)
that assigns a value to each solution and tries to �nd an optimal solution (with
respect to these values) within a given time frame.

A common method for solving CSP's is to apply �ltering algorithms (also
called arc consistency algorithms or propagation algorithms) that remove incon-
sistent values from the initial domain of the variables that cannot be part of any
solution. The results are propagated through the whole constraint set and the
process is repeated until a stable set is obtained. However, �ltering algorithms
are, often, incomplete in the sense that they are not adequate for solving a CSP
and, as consequence, it is necessary to employ some additional strategy called
constraint branching that divides the variable domains and then continues with
the propagation on each branch independently.

Constraint Solving algorithms have received intense study from many re-
searchers, although the focus has been on developing new and more e�cient

? This work was partly supported by EPSRC grants GR/L19515 and GR/M05645 and

by CICYT grant TIC98-0445-C03-03.

methods to solve classical CSP's [8, 21] and partial CSP's [9, 15]. See [14, 17{
19] for more information on constraint solving algorithms and [13, 16] for se-
lected comparisons. To our knowledge, despite the fact that it is well known that
branching step is a crucial process in complete constraint solving, papers con-
cerned with the general principles of constraint solving algorithms have mainly
focused on the �ltering step [1, 7, 20].

In this paper, we propose a schema for constraint solving for both classical
and partial CSP's that includes a generic formulation of the branching process.
(This schema may be viewed as a generalisation and extension of the interval
lattice-based constraint-solving framework in [7].) The schema can be used for
most existing constraint domains (�nite or continuous) and, as for the framework
in [7], is also applicable to multiple domains and cooperative systems. We will
show that the operational procedures of many constraint systems (including
cooperative systems) satisfy these conditions.

The paper is organised as follows. Section 2 shows the basic notions used
in the paper and Section 3 describes the main functions involved in constraint
solving with special attention to those involved in the branching step. In Sec-
tion 4 a generic schema for classical constraint solving is developed and its
main properties are declared. Then, Section 5 extends the original schema for
partial constraint solving and more properties are declared. Section 6 shows sev-
eral instances of the schema to solve both di�erent CSP's. Section 7 contains
concluding remarks. Proofs of the properties can be found in a longer version of
this paper available in http://www.lcc.uma.es/�afdez/recentpapers.

2 Basic concepts

Let D;D1; : : : ; Dn be sets or domains. Then #D denotes the cardinality of D,
}(D) its power set and D< denote any totally ordered domain. ?D and >D

denote respectively, if they exist, the bottom and top element of D and �ctitious
bottom and top elements otherwise. Throughout the paper, � denotes a set of
domains called computation domains.

De�nition 1. (Constraint satisfaction problem) A Constraint satisfaction prob-
lem (CSP) is a tuple hV ;D; Ci where

{ V = fv1; : : : ; vng is a non-empty �nite set of variables.

{ D = }(D1)� : : :� }(Dn) where Di 2 �.

{ C � }(D1; : : : ; Dn) is a set of constraints for D.

If, as in the above de�nition, D = }(D1) � : : : � }(Dn), where Di 2 � for
all i 2 f1; : : : ; ng, then the set of all constraints for D is denoted as CD and the
set fDi j 1 � i � ng is denoted as �D.

De�nition 2. (Constraint store) Let S = (d1; : : : ; dn) 2 D. Then S is called

a constraint store for hV ;D; Ci. S is consistent if, for all i 2 f1; : : : ; ng, di 6= ;.
S is divisible if S is consistent and for some i 2 f1; : : : ; ng, #di > 1. Let

S0 = (d01; : : : ; d
0
n
) be another constraint store for hV ;D; Ci. Then S �s S

0
if and

only if di � d0
i
for 1 � i � n.

S is a solution for hV ;D; Ci if S = (fs1g; : : : ; fsng) and (s1; : : : ; sn) 2 c, for

all c 2 C. S0 is a partial solution for hV ;D; Ci if there exists a solution S00 for

hV ;D; Ci such that S00 �s S
0
. In this case we say that S0 covers S00.

The set of all solutions for hV ;D; Ci is denoted as Sol(hV ;D; Ci). Note that,
if S 2 Sol(hV ;D; Ci), then S is consistent and not divisible. If (d1; : : : ; dn) 2 D
and i 2 f1 : : : ; ng, then (d1; : : : ; dn)[di=d

0] = (d1; : : : ; di�1; d
0; di+1; : : : ; dn):

De�nition 3. (Stacks) Let P = (S1; : : : ; S`) 2 }(D). Then P is a stack for
hV ;D; Ci. Let P 0 = (S01; : : : ; S

0
`0
) be another stack for hV ;D; Ci. Then P �p P 0

if and only if for all Si 2 P (1 � i � `), there exists S0
j
2 P 0 (1 � j � `0) such

that Si �s S
0
j
. In this case we say that P 0 covers P .

3 The Branching Process

This section describes the main functions used in the branching process.
First we de�ne a �ltering function which removes inconsistent values from

the domains of a constraint store.

De�nition 4. (Filtering function) �lteringD :: }(CD) � D ! D is a called a

�ltering function for D if, for all S 2 D,

(a) �lteringD(C; S) �s S;

(b) 8R 2 Sol(hV ;D; Ci) : R �s S =) R �s �lteringD(C; S):
(c) If �lteringD(C; S) is consistent and not divisible then �lteringD(C; S) is a

solution for hV ;D; Ci.

Condition (a) ensures that the �ltering never gains values, condition (b)
guarantees that no solution covered by a constraint store is lost in the �ltering
process and condition (c) guarantees the correctness of the �ltering function.

Variable ordering is an important step in constraint branching. We de�ne a
selecting function which provides a schematic heuristic for variable ordering.

De�nition 5. (Selecting function) Let S = (d1; : : : ; dn) 2 D. Then

choose :: fS 2 D j S is divisibleg ! f}(D) j D 2 �Dg

is called a selecting function for D if choose(S) = dj (1 � j � n) and #dj > 1.

Example 1. Here is a naive strategy to select the left-most divisible domain.

Precondition : fS = (d1; : : : ; dn) 2 D is divisibleg

choosenaive(S) = d

Postcondition : f9j 2 f1; : : : ; ng : d = dj ; #dj > 1 and

8i 2 f1; : : : ; j � 1g : #di = 1g:

In the process of branching, some computation domain has to be partitioned,
in two or more parts, in order to introduce a choice point. We de�ne a splitting

function which provides a heuristic for value ordering.

De�nition 6. (Splitting function) Let D 2 � and k > 1. Then

split
D
:: }(D)! }(D)� : : :� }(D)| {z }

k times

is called a splitting function for D if, for all d 2 }(D), #d > 1, this function is

de�ned splitD(d) = (d1; : : : ; dk) such that the following properties hold:

Completeness : d1 [: : : [dk = d:

Disjointness : d1 \ : : : \ dk = ;:

Contractance : di � d; 8i 2 f1; : : : ; kg:

To guarantee termination, even on continuous domains, an extension of the
concept of precision map shown in [7] is applied here.

De�nition 7. (Precision map) Let <I = (<+; Integer) where <
+

is the do-

main of non-negative reals. Then precisionD is a precision map for D 2 �, if

precisionD is a strict monotonic function from }(D) to <I.
Let S = (d1; : : : ; dn) be a constraint store for hV ;D; Ci and, for each D 2 �D,

precisionD is de�ned for D. Then, a precision map for D = (D1; : : : ; Dn) is

de�ned as

precision(S) =
X

1�i�n

precisionDi
(di);

where the sum in <I is de�ned as (a1; a2) + (b1; b2) = (a1 + b1; a2 + b2).

The monotonicity of the precision is a direct consequence of the de�nition.

Proposition 1. Let S; S0 be two constraint stores for hV ;D; Ci. If S �s S
0
then

precision(S) <<I precision(S0).

The precision map also means a novel way to normalise the selecting func-
tions when the constraint system supports multiple domains. For instance, the
well known �rst fail principle chooses the variable constrained with the smallest
domain. For multiple domain constraint systems to emulate the �rst fail princi-
ple, we de�ne choose=1 so that it selects the domain with the smallest precision1.
We denote this procedure by choose� .

Precondition : fS = (d1; : : : ; dn) 2 D is divisibleg

choose� (S) = d

Postcondition : f9j 2 f1; : : : ; ng : d = dj ;#dj > 1 and

8i 2 f1; : : : ; ngnfjg : #di > 1 =) precision
Dj
(dj) �<I precision

Di
(di)g:

1 It is straightforward to include more conditions e.g., if di; dk; dj have the same (min-

imum) precision, the most left domain can be chosen i.e., dminimum(i;k;j) .

4 Branching in Constraint Solving

Figure 1 shows a generic schema for solving any CSP hV ;D; Ci. This schema
requires the following parameters: C, the set of constraints to solve, a constraint
store S for hV ;D; Ci, a bound p 2 <I and a non-negative real bound ". There
are a number of values and subsidiary procedures that are assumed to be de�ned
externally to the main branch procedure:

{ a �ltering function �lteringD=2 for D;
{ a selecting function choose=1 for D;
{ a splitting function splitD for each domain D 2 �D;
{ a precision map for D (therefore it is assumed that there is de�ned one
precision map for each D 2 �D);

{ a stack P 2 }(D) for hV ;D; Ci.

It is assumed that all the external procedures have an implementation that
terminates for all possible values.

procedure branch(C; S; p; ")

begin

S �ltering
D
(C; S); (1)

if S is consistent then (2)

if (S is not divisible or p < ><I and p � precision(S) � ("; 0)) then (3)

push(P; S); %% Add S to top of P (4)

else (5)

dj choose(S); (6)

(dj1; : : : ; djk) splitDj
(dj); where dj � Dj ; (7)

branch(C; S[dj=dj1]; precision(S); ") _
: : : : : : : : : : : : : : : _

branch(C; S[dj=djk]; precision(S); ");

9=
;%% Choice Points (8)

endif ;

endif ;

end.

Figure1. branch=4: A Generic Schema for Constraint Solving

Theorem 1. (Properties of the branch=4 schema) Let S be the top element in

D (i.e., S = (D1; :::; Dn)), " 2 <
+
and p = ><I. Then, the following properties

are guaranteed:

1. Termination: if " > 0:0 then branch(C; S; p; ") terminates;

2. Completeness: if " = 0:0 and the execution of branch(C; S; p; ") terminates,

then the �nal state for the stack P contains all the solutions for hV ;D; Ci;
3. Approximate completeness: if " > 0:0 and R is a solution for hV ;D; Ci, then

an execution of branch(C; S; p; ") will result in P containing either R or a

partial solution R0 that covers R.

4. Correctness: if " = 0:0, the stack P is initially empty and the execution

of branch(C; S; p; ") terminates with R in the �nal state of P , then R is a

solution for hV ;D; Ci.
5. Approximate correctness or control on the result precision: If P0:0, P"1 and

P"2 are stacks resulting from any terminating execution of branch(C; S; p; ")
(where initially P is empty) when " has the values 0:0, "1 and "2, respectively,
0:0 < "1 < "2 and P0:0 is not empty, then P0:0 �p P"1 �p P"2 :
(In other words, the set of (possibly partial) solutions in the �nal state of the

stack is dependent on the value of " in the sense that lower " is, closer to

the real set of solutions is).

Observe that the bound " guarantees termination and allows to control the
precision of the results.

5 Solving optimisation problems

The schema in Figure 1 can be adapted to solve COPs by means of three new
subsidiary functions.

De�nition 8. (Subsidiary functions and values) Let D< be a totally ordered

domain
2
. Then we de�ne

{ a cost function, fcost :: D ! D<;

{ an ordering relation, � :: D< �D< 2 f>;<;=g;
{ a bound, � 2 D<.

Then the extended schema, branch+=4, is obtained from the schema branch=4
by replacing Line 4 in Figure 1 with:

if fcost(S) � � then � fcost(S); push(P; S) endif; (4*)

Theorem 2. (Properties of the branch+=4 schema) Let S be the top element in

D (i.e., S = (D1; :::; Dn)), " 2 <
+
and p = ><I. Then, the following properties

hold:

1. Termination: if " > 0:0, then the execution of branch+(C; S; p; ") terminates;

2. If fcost is a constant function with value � and � is =, then all properties

shown in Theorem 1 hold for the execution of branch+(C; S; p; ").
3. Soundness on optimisation: if " = 0:0, � is > (resp. <), � = ?D<

(resp.

>D<
), the stack P is initially empty and the execution of branch+(C; S; p; ")

terminates with P non-empty, then the top element of P is the �rst solution

found that maximises (resp. minimises) the cost function.

2 Normally D< would be <.

Unfortunately, if " is higher than 0.0, we cannot guarantee that the top of the
stack contains a solution or even a partial solution for the optimisation problem.
However, by imposing a monotonicity condition on the cost function fcost=1, we
can compare solutions.

Theorem 3. (More properties on optimisation) Suppose that, for i 2 f1; 2g,
P"i is a stack resulting from the execution of branch+(C; S; p; "i) where "i 2 <

+
.

Suppose also that top(P) returns the top element of a non empty stack P . Then,

if "1 < "2 the following property hold.

Approximate soundness: If for i 2 f1; 2g, P"i is not empty, and top(P"2) is
a solution or covers a solution for hV ;D; Ci, then, if fcost=1 is monotone and �

is < (i.e., a minimisation problem),

fcost(top(P"1)) �D<
fcost(top(P"2));

and, if fcost=1 is anti-monotone and � is > (i.e.,a maximisation problem),

fcost(top(P"1)) �D<
fcost(top(P"2)):

Therefore, by using a(n) (anti-)monotone cost function, the lower " is, the
better the (probable) solution is. Moreover, decreasing " is a means to discard
approximate solutions. For instance, in a minimisation problem, if

fcost(top(P"1)) �D<
fcost(top(P"2))

with fcost=1 monotone, then, by the approximate soundness property it is de-
duced that top(P"2) cannot be a solution or cover a solution.

6 Examples

To illustrate the schemas branch=4 and branch+=4 presented in the previous two
sections, several instances of branch=4 are given for some well-known domains
of computation. In the following, branchX denotes an instance of the schema
branch=4 for solving the CSP hV ;D; Ci where X � �D. We assume that

� =fBool ; Integer ;<;Set Integerg [fInterv(D) j D is a latticeg:

where Interv(D) denotes the set f(d1; d2) j d1; d2 2 D; d1 � d2g.
To identify branchD, we indicate a possible de�nition for both the splitting

function and the precision map for each D 2 �D and assume that both a select-
ing function and a �ltering function for D have been already de�ned. We also
indicate the initial value of S 2 D, so that the execution of branchD(C; S; p; ")
allows to solve the CSP where " 2 <+.

The �nite domain (FD) Constraint solving in a FD of sparse elements is
solved by an instance branchFD as de�ned below where splitFD is de�ned as a
naive enumeration strategy in which values are chosen from left to right. For

example, consider a �nite domain of integers [5], Booleans [4] or �nite sets of
integers [6]).

FD 2 fInteger ;Bool ;Set Integerg;

branchFD

8>><
>>:
S = (FD ; : : : ;FD| {z }

n times

);

precisionFD (d) = (#d; 0);
splitFD (fa1; a2; a3; : : : ; akg) = (fa1g; fa2; a3; : : : ; akg):

Finite closed intervalsMany existing FD constraint systems solve constraints
de�ned in the domain of closed intervals [a; b] where a; b 2 FD and denoted
here by a::b. Usually a; b are either integers [3], Booleans3 [4] or �nite sets of
integers [10]. Here are two instances of our schema that solve CSP's on these
domains:

FD 2 fInteger ;Boolg;

branch Interv(FD)

8>><
>>:
S = (?FD ::>FD ; : : : ;?FD ::>FD| {z }

n times

);

precision Interv(FD)(a::b) = (b� a; 0);

split Interv(Integer)(a::b) = (a::a; a+ 1::b):

FD = Set Int ;

branchInterv(FD)

8>><
>>:
S = (;::Integer ; : : : ; ;::Integer| {z }

n times

);

precisionInterv(FD)(a::b) = (#b�#a; 0);

split Interv(FD)(a::b) = (a::bnfcg; a[fcg::b) where c 2 bna:

Lattice (interval) domain In [7], we have described a generic �ltering algo-
rithm that propagates interval constraints on any domain L with lattice struc-
ture subject to the condition that a function �L :: L� L! < is de�ned that is
strictly monotonic on its �rst argument and strictly anti-monotonic on its second
argument. Below we provide an instance to solve any CSP de�ned on Interv(L):

branchInterv(L)

8>>>>>>>><
>>>>>>>>:

L is a lattice and S = ([?L;>L]; : : : ; [?L;>L| {z }
n times

]);

precision Interv(L)(r) =

8>><
>>:

(b �L a; 2) if r = [a; b];
(b �L a; 1) if r = (a; b];
(b �L a; 1) if r = [a; b);
(b �L a; 0) if r = (a; b);

split Interv(L)(fa; bg) = (fa; c]; (c; bg) where a �L c �L b:

3 The Boolean domain is considered as the integer subset f0; 1g.

fa; bg denotes any interval in L. With this instance we have a constraint solving
mechanism for solving (interval) constraints de�ned on any domain with lattice
structure. Thus it is a good complement to the �ltering algorithm in [7]. Note
also that if L is < and �L is �, we obtain the instance branchInterv(<) (also, if

c = b�a
2:0

we have a usual strategy of real interval division at the mid point).

A cooperative domain The schema also supports cooperative instances that
solve CSP's de�ned on multiple domains. This is done by mixing together several
instances of the schema branch=4. As an example, consider branchBNR as de-
�ned below where split Interv(D) and precision Interv(D) are de�ned as in previous
examples for D 2 fBool ; Integer ;<g:

branchBNR

(
� = fInterv(D) j D 2 fBool ; Integer ;<gg:
S = (;::D1; : : : ; ;::Dn| {z }); fD1; : : : ; Dng � fBool ; Integer ;<g:

This instance simulates the well known splitsolve method of CLP(BNR) [2].

7 Concluding remarks

This paper analyses the branching process in constraint solving. We have pro-
vided a generic schema for solving CSP's on �nite or continuous domains as well
on multiple domains. We have proved key properties such as correctness and
completeness. We have shown how termination may be guaranteed by means of
a precision map. We have also shown, by means of an example, how, for systems
supporting multiple domains, the precision map can be used to normalise the
heuristic for variable ordering.

By using a schematic formulation for the branching process, we have indi-
cated which properties of main procedures involved in branching are responsible
for the key properties of constraint solving.

By combining a �ltering function satisfying our conditions with an appropri-
ate instance of our schema, we obtain an operational semantics for a constraint
programming domain (for example: FD, sets of integers, Booleans, multiple do-
mains, ...,etc) and systems designed for constraint solving such as clp(FD) [3],
clp(B) codognet+:local-prop-jar96, DecLic [11], clp(B/FD) [4], CLIP [12], Con-
junto [10] or CLP(BNR) [2].

References

1. K.R. Apt. The essence of constraint propagation. Theoretical Computer Science,

221(1-2):179{210, 1999.

2. F. Benhamou and W.J. Older. Applying interval arithmetic to real, integer and

Boolean constraints. The Journal of Logic Programming, 32(1):1{24, July 1997.

3. P. Codognet and D. Diaz. Compiling constraints in clp(FD). The Journal of Logic

Programming, 27(3):185{226, 1996.

4. P. Codognet and D. Diaz. A simple and e�cient boolean solver for constraint logic

programming. The Journal of Automated Reasoning, 17(1):97{129, 1996.
5. M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier.

The constraint logic programming language CHIP. In ICOT, editor, International

Conference on Fith Generation Computer Systems (FGCS'88), pages 693{702,

Tokyo, Japan, November-December 1988. OHMSHA Ltd. and Springer-Verlag.
6. A. Dovier, E.G. Omodeo, E. Pontelli, and G. Rossi. flogg: A language for pro-

gramming in logic with �nite sets. Journal of Logic Programming, 28(1):1{44, July

1996.
7. A.J. Fern�andez and P.M. Hill. An interval lattice-based constraint solving frame-

work for lattices. In Aart Middeldorp and Taisuke Sato, editors, 4th International

Symposium on Functional and Logic Programming (FLOPS'99), number 1722 in

LNCS, pages 194{208, Tsukuba, Japan, November 1999. Springer Verlag.
8. E.C. Freuder and P. Hubbe. Extracting constraint satisfaction subproblems. In

14th International Joint Conference on Arti�cial Intelligent (IJCAI'95), pages

548{557, Qu�ebec, Canada, August 1995. Morgan Kaufman.
9. E.C. Freuder and R.J. Wallace. Partial constraint satisfaction. Arti�cial Intelli-

gence, 58(21-70):21{70, 1992.
10. C. Gervet. Interval propagation to reason about sets: de�nition and implementa-

tion of a practical language. Constraints, 1(3):191{244, 1997.
11. F. Goualard, F. Benhamou, and L. Granvilliers. An extension of the WAM for hy-

brid interval solvers. The Journal of Functional and Logic programming, 1999(1):1{

36, April 1999. Special issue of Workshop on Parallelism and Implementation

Technology for (Constraint) Logic Programming Languages.
12. T.J. Hickey. CLIP: A CLP(Intervals) Dialect for Metalevel Constraint Solving. In

E. Pontelli and V.Santos Costa, editors, 2nd International Workshop on Practical

Aspects of Declarative Languages (PADL'2000), number 1753 in LNCS, pages 200{

214, Boston, USA, 2000. Springer Verlag.
13. G. Kondrak and P. Van Beek. A theoretical evaluation of selected backtracking

algorithms. Arti�cial Intelligence, 89(1-2):365{387, January 1997.
14. V. Kumar. Algorithms for constraint satisfaction problems: A survey. AI Magazine,

13(1):32{44, Spring 1992.
15. P. Meseguer and J. Larrosa. Constraint satisfaction as global optimization. In 14th

International Joint Conference on Arti�cial Intelligent (IJCAI'95), pages 579{585,

Qu�ebec, Canada, August 1995. Morgan Kaufman.
16. B.A. Nadel. Constraint satisfaction algorithms. Computational Intelligence, 5:188{

224, 1989.
17. Z. Ruttkay. Constraint satisfaction-a survey. CWI Quaterly, 11(2-3):163{214, 1998.
18. B.M. Smith. A Tutorial on Constraint Programming. Research Report 95.14,

University of Leeds, School of Computer Studies, England, April 1995.
19. P. Van Hentenryck. Constraint solving for combinatorial search problems: A tuto-

rial. In U. Montanari and F. Rossi, editors, 1st International Conference on Prin-

ciples and Practice of Constraint Programming (CP'95), number 976 in LNCS,

pages 564{587, Cassis, France, 1995. Springer Verlag.
20. P. Van Hentenryck, Y. Deville, and C-M. Teng. A generic arc-consistency algorithm

and its specializations. Arti�cial Intelligence, 57(2-3):291{321, 1992.
21. R.J. Wallace. Why AC-3 is Almost Always Better than AC4 for Establishing Arc

Consistency in CSPs. In R. Bajcsy, editor, 13th International Joint Conference

on Arti�cial Intelligence (IJCAI'93), pages 239{247, Chamb�ery, France, August-

September 1993. Morgan Kaufmann.

