Foundations of Automated Planning

Roman Barták

Charles University, Czech Republic

Lecture 01: Formulating Planning Problems

What is the content?

- automated planning
- but what is planning and what is the difference from scheduling?

Why could it be interesting to me?

- is it used somewhere?
- any applications?

What is the course about?

- problem formalisation
- solving approaches

Expected knowledge

search algorithms, logic, constraint satisfaction and SAT

Topics

- 1. problem formalization
- 2. classical planning (STRIPS)
 - state-space and plan-space planning
- 3. neo-classical planning (Graphplan)
 - compilation to SAT and CSP
- 4. planning with time and resources
 - scheduling task inside planning
- 5. control knowledge and hierarchical planning
 - speeding-up planners

Automated Planning: Theory and Practice

M. Ghallab, D. Nau, P. Traverso Morgan Kaufmann https://projects.laas.fr/planning/aptp/

Automated Planning and Acting

M. Ghallab, D. Nau, P. Traverso Cambridge University Press https://projects.laas.fr/planning/

Project Shakey (1966-1972)

Launch: October 24, 1998

Target: Comet Borrelly

testing a payload of 12 advanced, high risk technologies

autonomous remote agent

- planning, execution, and monitoring spacecraft activities based on general commands from operators
- three testing scenarios
 - 12 hours of low autonomy (execution and monitoring)
 - 6 days of high autonomy (operating camera, simulation of faults)
 - 2 days of high autonomy (keep direction)
 - » beware of backtracking!
 - » beware of deadlock in plans!

Deep Space 1

What?

What is planning and scheduling? What is a difference between them?

What is planning?

Input:

- initial (current) state of the world
- description of actions that can change the world
- desired state of the world

Output:

- a sequence of actions (a plan)

Properties:

- actions in the plan are unknown
- time and resources are not assumed

What is scheduling?

Input:

- a set of partially ordered activities
- available resources (machines, people, ...)

Output:

- allocation of activities to time and resources (schedule)
- Properties:
 - activities are known in advance
 - limited time and resources

Planning and scheduling

Planning

- deciding which actions are necessary to achieve the goals
- topic of artificial intelligence
- complexity is usually worse than NP-c (in general, undecidable)

Scheduling

- deciding how to process the actions using given restricted resources and time
- topic of operations research
- complexity is typically NP-c

Planning deals with **causal relations** between actions and solves the problem which actions are necessary to reach a goal.

Scheduling focuses on allocation of actions to time and space (resources).

Sometimes both tasks are better to be solved together.

 For example, when there are many plans but only a few of them can be scheduled.

Let's start

Planning problem formalisation

Planning deals with **selection and organization of actions** that are changing world states.

System Σ modelling states and transitions:

- set of states S (recursively enumerable)
- set of actions A (recursively enumerable)
 - actions are controlled by the planner!
 - no-op
- set of events E (recursively enumerable)
 - events are out of control of the planner!
 - neutral event $\boldsymbol{\epsilon}$
- transition function $\gamma: S \times A \times E \rightarrow 2^S$
 - actions and events are sometimes applied separately $\gamma: S \times (A \cup E) \rightarrow 2^{S}$

A **planning task** is to find which actions are applied to world states to reach some goal from a given initial state.

What is a goal?

- goal state or a set of goal states
- satisfaction of some constraint over a sequence of visited states
 - for example, some states must be excluded or some states must be visited
- optimisation of some objective function over a sequence of visited states (actions)
 - for example, maximal cost or a sum of costs

Example

$$C = (S,A,E,\gamma)
- S = \{s_0, ..., s_5\}
- E = \{\} resp. \{\epsilon\}
- A = \{move1, move2, put, take, load, unload\}
- \gamma: see figure$$

• init: s₀

A **planner** generates plans.

A controller takes care

about plan execution.

- for each state it selects an action to execute
- observations (sensor input) are translated to world states

Dynamic planning involves re-planning when the state is not as expected.

Simplifying assumptions

- the system is **finite**
- the system is **fully observable**
 - We know completely the current state.
- the system is **deterministic**
 - ∀s∈S ∀u∈(A∪E): |γ(s,u)|≤1
- the system is **static**
 - There are no external events.
- the goals are restricted
 - The aim is to reach one of the goal states.
- the plans are sequential
 - A plan consists of a (linearly ordered) sequence of actions.
- time is implicit
 - Actions are instantaneous (no duration is assumed).
- planning is done offline
 - State of the world does not change during planning.

We will work with a deterministic, static, finite, and fully observable state-transition system with restricted goals and implicit time: $\Sigma = (S, A, \gamma)$.

Planning problem $P = (\Sigma, s_0, g)$:

- $-s_0$ is the **initial state**
- g describes the goal states
- A solution to the planning problem P is a sequence of actions $\langle a_1, a_2, ..., a_k \rangle$ with a corresponding sequence of states $\langle s_0, s_1, ..., s_k \rangle$ such that $s_i = \gamma(s_{i-1}, a_i)$ and s_k satisfies goal condition g.

Classical planning (STRIPS planning)

Planning in the restricted model reduces to "path finding" in the graph defined by states and state transitions.

Is it really so simple?

5 locations, 3 piles per location, 100 containers, 3 robots

₩10²⁷⁷ states

This is 10¹⁹⁰ times more than the largest estimate of the number of particles in the whole universe!

How to represent states and actions without enumerating the sets S and A?

 recall 10²⁷⁷ states with respect to the number of particles in the universe

How to efficiently solve planning problems?

- How to find a path in a graph with 10^{277} nodes?

Each **state** is described using a **set of propositions** that hold at that state. *example: {onground, at2}*

Each **action** is a syntactic expression describing:

- which propositions must hold in a state so the action is applicable to that state *example: take: {onground}*
- which propositions are added and deleted from the state to make a new state example:
 - take: {onground}⁻, {holding}⁺

Let L= $\{p_1, ..., p_n\}$ be a finite set of propositional symbols (language).

A planning domain Σ over L is a triple (S,A, γ):

- $S \subseteq P(L)$, i.e. **state** s is a subset of L describing which propositions hold in that state
 - if $\mathbf{p} \in \mathbf{s}$, then \mathbf{p} holds in \mathbf{s}
 - if $\mathbf{p} \notin \mathbf{s}$, then \mathbf{p} does not hold in \mathbf{s}
- action $a \in A$ is a triple of subsets of L
 - a = (precond(a), effects⁻(a), effects⁺(a))
 - effects⁻(a) \cap effects⁺(a) = \emptyset
 - action **a** is applicable to state **s** iff precond(**a**) \subseteq **s**
- transition function γ :
 - $\gamma(\mathbf{s},\mathbf{a}) = (\mathbf{s} \text{effects}(\mathbf{a})) \cup \text{effects}(\mathbf{a})$, if **a** is applicable to **s**

Set representation: a planning problem

Planning problem P is a triple (Σ, s_0, g) :

- $-\Sigma = (S,A,\gamma)$ is a planning domain over L
- s_0 is an initial state, $s_0 \in S$
- $g \subseteq L$ is a set of goal propositions $S_g = \{s \in S \mid g \subseteq s\}$ is a set of goal states

Plan π is a sequence of actions $\langle a_1, a_2, ..., a_k \rangle$

- the length of plan π is k = $|\pi|$
- a state obtained by the plan π (a transitive closure of γ)

 $\gamma(s,\pi) = s$, if k=0 (plan π is empty) $\gamma(s,\pi) = \gamma(\gamma(s,a_1), \langle a_2,...,a_k \rangle)$, if k>0 and a_1 is applicable to s $\gamma(s,\pi) =$ undefined, otherwise

Plan π is a **solution plan** for P iff $g \subseteq \gamma(s_0, \pi)$.

- redundant plan contains a subsequence of actions that also solves P
- minimal plan: there is no shorter solution plan for P

Set representation: example

Direct successors of state s:

 $\Gamma(s) = \{\gamma(s,a) \mid a \in A \text{ is applicable to } s\}$

Reachable states:

 $\Gamma_{\infty}(s) = \Gamma(s) \cup \Gamma^{2}(s) \cup ...$

Planning problem has a solution iff $S_g \cap \Gamma_{\infty}(s_0) \neq \emptyset$.

Action a is relevant for goal g if and only if:

```
g \cap effects^+(a) \neq \emptyset
```

 $g \cap effects(a) = \emptyset$

Regression set for a goal g for (relevant) action a:

 $\gamma^{-1}(g,a) = (g - effects^{+}(a)) \cup precond(a)$ $\Gamma^{-1}(g) = \{\gamma^{-1}(g,a) \mid a \in A \text{ is relevant for } g\}$ $\Gamma_{\infty}^{-1}(g) = \Gamma^{-1}(g) \cup \Gamma^{-2}(g) \cup \dots$

Planning problem has a solution iff s₀ is a superset of some element in Γ_{∞}^{-1} (g).

Set representation: properties

Simplicity

easy to read

How many states for n containers?

crane-empty, robot-at-loc2}

Computations

- the transition function is easy to model/compute using set operations
- if precond(a) \subseteq s, then $\gamma(s,a) = (s - effects^{-}(a)) \cup effects^{+}(a),$

Expressivity

- some sets of propositions do not describe real states
 - {holding, onrobot, at2}
- for many domains, the set representation is still too large and not practical

Classical representation generalizes the set representation by exploiting **first-order logic**.

- State is a set of logical atoms that are true in a given state.
- Action is an instance of a planning operator that changes truth values of some atoms.

More precisely:

- L (language) is a finite set of predicate symbols and constants (there are no function symbols!).
- Atom is a predicate symbol with arguments. example: on(c3,c1)
- We can use **variables** in the operators. *example: on(x,y)*

State is a set of instantiated atoms (no variables). There is a finite number of states!

{attached(p1,loc1), in(c1,p1), in(c3,p1), top(c3,p1), on(c3,c1), on(c1,pallet), attached(p2,loc1), in(c2,p2), top(c2,p2),

on(c2,pallet), belong(crane1,loc1), empty(crane1), adjacent(loc1,loc2), adjacent(loc2,loc1), at(r1,loc2), occupied(loc2), unloaded(r1)}.

The truth value of some atoms is changing in states:

- fluents
- example: at(r1,loc2)

The truth value of some state is the same in all states

- rigid atoms
- example: adjacent(loc1,loc2)

We will use a classical **closed world assumption**: An atom that is not included in the state does not hold at that state!

Classical representation: planning operators

operator o is a triple (name(o), precond(o), effects(o))

- name(o): name of the operator in the form $n(x_1,...,x_k)$
 - n: a symbol of the operator (a unique name for each operator)
 - x₁,...,x_k: symbols for variables (operator parameters)
 - Must contain all variables appearing in the operator definition!

- precond(o):

• literals that must hold in the state so the operator is applicable on it

- effects(o):

• literals that will become true after operator application (only fluents can be there!)

 $\begin{array}{l} \mathsf{take}(k,l,c,d,p) \\ \texttt{;; crane } k \texttt{ at location } l \texttt{ takes } c \texttt{ off of } d \texttt{ in pile } p \\ \texttt{precond: } \mathsf{belong}(k,l), \texttt{attached}(p,l), \mathsf{empty}(k), \mathsf{top}(c,p), \mathsf{on}(c,d) \\ \texttt{effects: } \mathsf{holding}(k,c), \neg \texttt{empty}(k), \neg \texttt{in}(c,p), \neg \texttt{top}(c,p), \neg \texttt{on}(c,d), \texttt{top}(d,p) \end{array}$

c3 c1 crane1

c2

r1

An action is a fully instantiated operator

- substitute constants to variables

take(k, l, c, d, p);; crane k at location l takes c off of d in pile p precond: belong(k, l), attached(p, l), empty(k), top(c, p), on(c, d)effects: holding(k, c), \neg empty(k), \neg in(c, p), \neg top(c, p), \neg on(c, d), top(d, p)

take(crane1,loc1,c3,c1,p1)	action	
;; crane crane1 at location loc1 takes c3 off c1 in p precond: belong(crane1,loc1), attached(p1,loc1),	oile p1	
empty(crane1), top(c3,p1), on(c3,c1) effects: holding(crane1,c3), ¬empty(crane1), ¬in ¬top(c3,p1), ¬on(c3,c1), top(c1,p1)	(c3,p1),	

Classical representation: action usage

Notation:

- $S^+ = \{ positive atoms in S \}$
- S[–] = {atoms, whose negation is in S}

Action **a** is **applicable** to state **s** if and only if precond⁺(**a**) \subseteq **s** \land precond⁻(**a**) \cap **s** = \emptyset

The result of application of action a to **s** is $\gamma(\mathbf{s}, \mathbf{a}) = (\mathbf{s} - \text{effects}^{-}(\mathbf{a})) \cup \text{effects}^{+}(\mathbf{a})$

Let L be a language and O be a set of operators.

- **Planning domain** Σ over language L with operators O is a triple (S,A, γ):
 - states $S \subseteq P(\{all instantiated atoms from L\})$
 - actions A = {all instantiated operators from O over L}
 - action a is applicable to state s if precond⁺(a) ⊆ s ∧ precond⁻(a) ∩ s = Ø
 - transition function γ :
 - $\gamma(\mathbf{s},\mathbf{a}) = (\mathbf{s} \text{effects}(\mathbf{a})) \cup \text{effects}(\mathbf{a})$, if \mathbf{a} is applicable on \mathbf{s}
 - S is closed with respect to γ (if s ∈ S, then for every action a applicable to s it holds γ(s,a) ∈ S)

Planning problem P is a triple (Σ, s_0, g) :

- $-\Sigma = (S,A,\gamma)$ is a planning domain
- $-s_0$ is an initial state, $s_0 \in S$
- g is a set of instantiated literals
 - state s satisfies the goal condition g if and only if
 g⁺⊆ s ∧ g⁻ ∩ s = Ø
 - $S_g = \{s \in S \mid s \text{ satisfies } g\} a \text{ set of goal states}$

Usually the planning problem is given by a triple (O,s_0,g) .

- O defines the the operators and predicates used
- s₀ provides the particular constants (objects)

Planning Domain Description Language (PDDL)

Plan π is a sequence of actions $\langle a_1, a_2, ..., a_k \rangle$.

Plan π is a **solution of** P if and only if $\gamma(s_0, \pi)$ satisfies g.

- Planning problem has a solutions iff $S_g \cap \Gamma_{\infty}(s_0) \neq \emptyset$.
- Planning problem has a solution iff s₀ is a superset of some element from $\Gamma_{\infty}^{-1}(g)$ (but γ^{-1} is defined a bit differently).

Action a is relevant for a goal g if and only if :

action contributes to g: g \cap effects(a) $\neq \emptyset$

action effects are not in conflict with g:

- g⁻
$$\cap$$
 effects⁺(a) = ∅

- g⁺ \cap effects⁻(a) = Ø

Regression set for a goal g for a (relevant) action a:

 $\gamma^{-1}(g,a) = (g - effects(a)) \cup precond(a)$

Classical representation: an example plan

Expressive power of both representations is **identical**. However, the translation from the classical representation to the set representation brings **exponential increase of size**.

The blocks world

- infinitely large table with a finite set of blocks
- the exact location of block on the table is irrelevant
- a block can be on the table or on another (single) block
- the planning domain deals with moving blocks by a robotic hand that can hold at most one block

situation example

Blockworld: classical representation

Constants

– blocks: a,b,c,d,e

Predicates:

- ontable(x)
 block x is on a table
- on(x,y) block x is on y
- clear(x)
 block x is free to move
- holding(x)
 the hand holds block x
- handempty the hand is empty

Blockworld: set representation

Propositions:

36 propositions for 5 blocks

- ontable-a
 block a is on table (5x)
- on-c-a block c is on block a (20x)
- clear-c
 block c is free to move (5x)
- holding-d the hand holds block d (5x)
- handempty the hand is empty (1x)

Actions

50 actions for 5 blocks

unstack-c-a

Pre: on-c-a, clear-c, handempty Del: on-c-a, clear-c, handempty Add: holding-c, clear-a

stack-c-a

- Pre: holding-c, clear-a
- Del: holding-c, clear-a
- Add: on-c-a, clear-c, handempty

pickup-b

Pre: ontable-b, clear-b, handempty Del: ontable-b, clear-b, handempty Add: holding-b

putdown-b

- Pre: holding-b
- Del: holding-b
- Add: ontable-b, clear-b, handempty

© 2023 Roman Barták Charles University, Prague, Czech Republic bartak@ktiml.mff.cuni.cz