Foundations of
Automated Planning

What is the content?

— automated planning

— but what is planning and what is the difference from
scheduling?

Why could it be interesting to me?

— is it used somewhere?
— any applications?

What is the course about?

— problem formalisation
— solving approaches

Expected knowledge
— search algorithms, logic, constraint satisfaction and SAT

Topics
1. problem formalization

2. classical planning (STRIPS)

 state-space and plan-space planning

3. neo-classical planning (Graphplan)
e compilation to SAT and CSP

4. planning with time and resources

e scheduling task inside planning

5. control knowledge and hierarchical planning

* speeding-up planners

Automated Planning: Theory and Practice

M. Ghallab, D. Nau, P. Traverso

Morgan Kaufmann
https://projects.laas.fr/planning/aptp/

Automated Planning and Acting
M. Ghallab, D. Nau, P. Traverso

Cambridge University Press
https://projects.laas.fr/planning/

Project Shakey (1966-1972)

natural language processing

planning

machine learning

STRIPS

knowledge representation
computer vision

H 3
robotics algorithm A

Launch: October 24, 1998
Target: Comet Borrelly

testing a payload of 12 advanced, high risk
technologies

— autonomous remote agent

* planning, execution, and monitoring spacecraft activities
based on general commands from operators

* three testing scenarios
— 12 hours of low autonomy (execution and monitoring)
— 6 days of high autonomy (operating camera, simulation of faults)
— 2 days of high autonomy (keep direction)
» beware of backtracking!

» beware of deadlock in plans! &R

What?

What is planning and scheduling?
What is a difference between them?

What is planning?

Plan
pickup(C)
putontable(C,table)
pickup(B)
puton(B,D)
pickup(C)
puton(C,B)

Input:
— initial (current) state of the world
— description of actions that can change the world
— desired state of the world

Output:

— a sequence of actions (a plan)

Properties:
— actions in the plan are unknown

— time and resources are not assumed

What is scheduling?

Input:
— a set of partially ordered activities

— available resources (machines, people, ...)
Output:

— allocation of activities to time and resources
(schedule)

* Properties:
— activities are known in advance

— limited time and resources

Planning

— deciding which actions are necessary to
achieve the goals

— topic of artificial intelligence

— complexity is usually worse than NP-c
(in general, undecidable)

Scheduling

— deciding how to process the actions using
given restricted resources and time

— topic of operations research
— complexity is typically NP-c

< <
> >

Planning deals with causal relations between
actions and solves the problem which actions are

necessary to reach a goal.

Scheduling focuses on allocation of actions to time
and space (resources).

What to do? How and when to do it?

Goal I:> [Planning } I:> ascetti::s |:> [Scheduling} |:> SCh;g:led

Sometimes both tasks are better to be solved together.

— For example, when there are many plans but only a
few of them can be scheduled.

Let’s start

Planning deals with selection and organization of
actions that are changing world states.

System > modelling states and transitions:
— set of states S (recursively enumerable)
— set of actions A (recursively enumerable)

 actions are controlled by the planner!
* no-op
— set of events E (recursively enumerable)
e events are out of control of the planner!
* neutral event ¢
— transition function y: SXAXE — 2°

e actions and events are sometimes applied separately
v: SX(AUE) — 2°

A planning task is to find which actions are applied to
world states to reach some goal from a given initial
state.

What is a goal?
— goal state or a set of goal states
— satisfaction of some constraint over a sequence of visited

states

* for example, some states must be excluded or some states must
be visited

— optimisation of some objective function over a sequence
of visited states (actions)
* for example, maximal cost or a sum of costs

Lo

location 1 location 2

A
move2 move1

A
put
- — (—
take
location 1 location 2
A
move2 move1
\
S3
put
—>
- ——
take
location 1 location 2
A
unload load
S4
move2
—>
- «—
move1

location 1 location 2

AY)

~

location 1 location 2

Y v/-j

location 1 location 2

= (SAEY)
—-S = {SOI XL¥, 55}

—E = {} resp. {¢}

— A = {movel,
movez,
put, take, load,

unload}
—v: see figure

¢ |n|t SO
» goal: s

Initial state

l Description of X

'

>| Planner

Objectives

Execution status ‘ J Plans

Controller

Observations T l Actions

System X
T Events

A planner generates plans.

A controller takes care
about plan execution.

— for each state it selects an
action to execute

— observations (sensor
input) are translated to
world states

Dynamic planning involves re-planning when the state is
not as expected.

the system is finite
the system is fully observable
— We know completely the current state.
the system is deterministic
— VseS Yue(AUE): |y(s,u)|<1
the system is static
— There are no external events.
the goals are restricted
— The aim is to reach one of the goal states.
the plans are sequential
— A plan consists of a (linearly ordered) sequence of actions.
time is implicit
— Actions are instantaneous (no duration is assumed).

planning is done offline
— State of the world does not change during planning.

We will work with a deterministic, static, finite, and
fully observable state-transition system with restricted
goals and implicit time: X = (S,A,y).

Planning problem P = (%,s,,8):
— Sy is the initial state
— g describes the goal states

A solution to the planning problem P is a sequence of
actions (a,a,,...,a,) With a corresponding sequence of
states (sg,51,...,5¢) such that s;=y(s;_;,a;) and s, satisfies
goal condition g.

& Classical planning (STRIPS planning) =

Planning in the restricted model reduces to “path
finding” in the graph defined by states and state
transitions.

Is it really so simple?

5 locations, 3 piles per location, 100 containers,
3 robots

G 10277 states

This is 101°° times more than the largest estimate
of the number of particles in the whole universe!

cranel
c2 |j7
c3 50
cl ri
pl '

7
el © doc2

How to represent states and actions without
enumerating the sets S and A?

— recall 10%77 states with respect to the number of
particles in the universe

How to efficiently solve planning problems?
— How to find a path in a graph with 10%// nodes?

Each state is described using a set of propositions

that hold at that state.
example: {onground, at2}

Each action is a syntactic expression describing:

* which propositions must hold in a state so the

action is applicable to that state
example: take: fonground}

* which propositions are added and deleted from
the state to make a new state

example: S0 ﬁﬂ St
take: {onground}, .
fholding}* =y [= iy

Let L= {p4, ..., P} b€ a finite set of propositional symbols
(language).

A planning domain X over L is a triple (S,A,y):

— Sc P(L), i.e. state s is a subset of L describing which
propositions hold in that state
e ifpes, thenpholdsins
* ifp ¢s,then p doesnot holdins
— action a € Ais a triple of subsets of L
a = (precond(a), effects(a), effects*(a))
» effects(a) N effectst(a) = D
e action a is applicable to state s iff precond(a) — s
— transition function y:
* y(s,a) = (s — effects(a)) L effects*(a), if ais applicable to s

Planning problem P is a triple (X,s,8):
— 2 =(S,A,y) is a planning domain over L
— spis aninitial state, sp € S
— gc Lis aset of goal propositions
S ={seS | g = s}is a set of goal states

Plan 1t is a sequence of actions (ay,a,,...,ay)
— thelengthof plantis k= | x|

— a state obtained by the plan &t (a transitive closure of y)
v(s,m) = s, if k=0 (plan & is empty)
v(s,m) = y(y(s,a1), (ay,...,ay)), if k>0 and a; is applicable to s
v(s,m) = undefined, otherwise

Plan 7t is a solution plan for P iff g < y(sg, 7).
— redundant plan contains a subsequence of actions that also solves P
— minimal plan: there is no shorter solution plan for P

LT -

location 1 location 2

put

take

A
move2 move1

S3

i

location 1 location 2

put

take

A
unload load

£ S4

=~

location 1 location 2

move2

move1

P/ 2

location 1 location 2

A
move2 move1

AY)

~

location 1 location 2

Y -/-j

location 1 location 2

L = {onground, onrobot,
holding, atl, at2}

Sp = {onground, at2}
g = {onrobot}

load = (
{holding,at1},
{holding},
{onrobot})

(take,movel,load,move?2)
is a plan,
but not a minimal plan

Direct successors of state s:
I'(s) ={y(s,a) | a € Ais applicable to s}
Reachable states:
[(s)=T(s)uI?s)u..
Planning problem has a solution iff S, N I',(s,) # &.

Action a is relevant for goal g if and only if:
g N effects*(a) # &
g N effects(a) = &
Regression set for a goal g for (relevant) action a:
v1(g,a) = (g - effects*(a)) U precond(a)
IY(g) = {y'(g,a) | acAis relevant for g}
I, Hg)=T"g)uI=(g)u..
Planning problem has a solution iff s, is a superset of some
element in " (g).

Simplicity
— easy to read - ”a"ﬂﬂ 8.n.n! states

How many states for n containers? =2 2

locl loc2

{nothing-on-c3, c3-on-cl,cl-on-pilel, nothing-on-c2, c2-on-pile2,

CO m p u ta t i O n S crane-empty, robot-at-loc2}

— the transition function is easy to model/compute using set
operations

— if precond(a) c s, then
v(s,a) = (s — effects’(a)) U effects*(a),

Expressivity
— some sets of propositions do not describe real states
* {holding, onrobot, at2}

— for many domains, the set representation is still too large
and not practical

Classical representation generalizes the set representation
by exploiting first-order logic.
— State is a set of logical atoms that are true in a given
state.

— Action is an instance of a planning operator that
changes truth values of some atoms.

More precisely:

* L (language) is a finite set of predicate symbols and
constants (there are no function symbols!).

 Atom is a predicate symbol with arguments.
example: on(c3,c1)

* We can use variables in the operators.
example: on(x,y)

State is a set of instantiated atoms (no variables). There
is a finite number of states!

The truth value of some atoms is

-/‘ changing in states:
cranel fluents
-C
c3 —7 « example: at(r1,loc2)
P O ook

The truth value of some state is
the same in all states

locl ' loc2 '

{attached(pl,locl), in(cl,pl), in(c3,pl),

top(c3,p1), on(c3,cl), on(cl,pallet), attached(p2,locl), in(c2,p2), top(c2,p2), ° rigid atoms

on(c2,pallet), belong(cranel,locl), empty(cranel), adjacent(locl,loc2), adja-

cent(loc2,locl), at(rl,loc2), occupied(loc2), unloaded(rl)}. ° examp/e:
adjacent(loc1,loc2)

We will use a classical closed world assumption:
An atom that is not included in the state does not hold at that
state!

operator o is a triple (name(o), precond(o), effects(o))
— name(o0): name of the operator in the form n(x,...,x,)

* n:asymbol of the operator (a unique name for each operator)
* Xq,-,Xc: Symbols for variables (operator parameters)

— Must contain all variables appearing in the operator definition!
— precond(o):
* literals that must hold in the state so the operator is applicable on it
— effects(o):

e literals that will become true after operator application (only fluents
can be there!)

take(k.l,c,d,p)
.. crane k at location [takes ¢ off of d in pile p
precond: belong(k,), attached(p,), empty(k), top(c,p),on(c, d)

effects: holding(k, ¢), mempty(k), = in(c, p), 2 top(c.p), mon(c, d). top(d, p)

An action is a fully instantiated operator

— substitute constants to variables
4 i -
take(k.l,c,d, p) — —
.» crane k at location [takes ¢ off of d in pile p operator

precond: belong(k, 1), attached(p,), empty(k), top(c, p),on(c, d)
effects: holding(k, ¢), ~empty(k), = in(c,p), = top(c, p), 7 on(e, d), top(d, p)

take(cranel,locl,c3,cl,pl) action
.» crane cranel at location locl takes c¢3 off cl in pile pl
precond: belong(cranel,locl), attached(pl,locl), <
empty(cranel), top(c3,pl), on(c3,cl)

effects: holding(cranel,c3), —empty(cranel), —in(c3,pl),
—top(c3,pl), —on(c3,cl), top(cl,pl)

Notation:
— S* = {positive atoms in S}
— S~ ={atoms, whose negation is in S}

Action a is applicable to state s if and only if
precond*(a) s A precond (a)Ns=0

The result of application of actionato s is
v(s,a) = (s — effects™(a)) U effects*(a)

take(cranel,locl,c3,cl,pl)
.» crane cranel at location locl takes ¢3 off cl in pile pl
precond: belong(cranel,locl), attached(pl,locl),
empty(cranel), top(c3,pl), on(c3,cl)
effects: holding(cranel,c3), —empty(cranel), —in(c3,pl),
—top(c3,pl), —on(c3,cl), top(cl,pl)

locl

cranel
: (21,
¢ P2 7
cl 7

/[
= rl ’-;
P ® 0

ﬂmnmibéiu“”mnww .v”MHUH_HHHWdté”‘

loc2 '

Let L be a language and O be a set of operators.

Planning domain X over language L with operators O is a
triple (S,A,y):
— states S — P({all instantiated atoms from L})
— actions A = {all instantiated operators from O over L}

e action a is applicable to state s if
precond*(a) s A precond(a) N"s=O
— transition function y:
* y(s,a) = (s — effects(a)) L effects*(a), if ais applicable on s

* Sis closed with respect to y (if s € S, then for every action a applicable to
s it holds y(s,a) € S)

Planning problem P is a triple (X,s,,8):
— 2 =(S,A,y) is a planning domain
— Sp is an initial state, sp € S
— g is a set of instantiated literals

* state s satisfies the goal condition g if and only if
gtcs AgNs=0
* S;={s € S| ssatisfies g} — a set of goal states

Usually the planning problem is given by a triple
(O,So,g).
— O defines the the operators and predicates used
— Sy provides the particular constants (objects)

(:predicates (at ?x - locatable ?Y -~ place)
(on ?x - crate ?y - surface)
(in ?x -~ crate ?y - truck)
(Lifting 2x - hoist ?y - crate)
(available 72x - hoist)
(clear ?x - surface))

(:action Drive
:parameters (?x - truck ?y - place 2z - place)
:precondition (and (at 2% ?y))

-effect (and (not (at ?x 2y)) (at ?2x 2z)))

(:action Lift
:parameters (?x - hoist oy - crate »z - surface ?P ~ pla
:precondition (and (at ?2x ?p) (available 72x) (at ?y ?p)
.effect (and (not (at ?y ?p)) (Lifting ?2x ?Y) (not (cle

(clear 2z) (not (on ?y 2z))))

(:action Drop
:parameters (?x - hoist ?y -~ crate ?z - surface ?p -~
:precondition (and (at 7x ?p) (at 2z ?pP) (clear ?z)
.effect (and (available ?x) (not (Lifting ox ?y)) (a
(on ?y 2z)))

Plan 1t is a sequence of actions (a,,a,,...,a;).

Plan 7t is a solution of P if and only if y(s,,m) satisfies g.
— Planning problem has a solutions iff S, N I, (so) # &.

— Planning problem has a solution iff s, is a superset of some element
from I' ;' 1(g) (but y?! is defined a bit differently).

Action a is relevant for a goal g if and only if :
action contributes to g: g N effects(a) # &
action effects are not in conflict with g:
— g N effectst(a) =
— gt effects’(a) =

Regression set for a goal g for a (relevant) action a:
v1(g,a) = (g - effects(a)) U precond(a)

Classical representation: an example plan

cranel
c2 v
c3 p2 /

cl | — rifl c3
z —
1 [00]
. O oo |]|:| our goal » 2
loc1 loc2 loc2

s,= {attached(pl,locl), in(cl,pl), in(c3,pl), g = {loaded(r1,c3), at(r1,loc2)}
top(c3,pl), on(c3,cl), on(cl,pallet), attached(p2,locl), in(c2,p2), top(c2,p2),
on(c2,pallet), belong(cranel,locl), empty(cranel), adjacent(locl,loc2), adja-
cent(loc2,locl), at(rl,loc2), occupied(loc2), unloaded(rl)}.

cranel

cl ri|l 3

=l
N
Y

locl loc2

Expressive power of both representations is identical.

However, the translation from the classical

representation to the set representation brings
exponential increase of size.

trivial
— T
{ set } { classical }
representation representation

V\//

make all possible
instances

actions

take(cranel,locl,c3,c1,pl)
;; crane cranel at location locl takes c3 off cl in pile pl
states precond: belong(cranel,locl), attached(pl,locl),

empty(cranel), top(c3,pl), on(c3,cl)
{on(c1,pallet), on(c1,rl), on(cl,c2), .., at(ri,I1), ..} effects: holding(cranel,c3), —empty(cranel), —in(c3,pl),

—top(c3,pl), —on(c3,cl), top(cl,pl)

take-cranel-locl-c3-c1-pl
precond: belong-cranel-locl, attached-p1-locl,

{on-c1-pallet, on-c1-r1, on-c1-c2, ..., at-ri-I1, ...} empty-cranel, top-c3-p1, on-c3-cl
delete: empty-cranel, in-c3-p1, top-c3-p1, on-c3-pl
add: holding-crane1-c3, top-c1-p1

The blocks world
— infinitely large table with a finite set of blocks
— the exact location of block on the table is irrelevant
— a block can be on the table or on another (single) block

— the planning domain deals with moving blocks by a robotic
hand that can hold at most one block

situation example

T a
| o =)

Constants

— blocks: a,b,c,d,e

Predicates:

ontable(x)
block x is on a table

on(x,y)
block x is on y

clear(x)
block x is free to move

holding(x)
the hand holds block x

handempty
the hand is empty

Operators

unstack(x,y)
Precond:
Effects:

on(x,y), clear(x), handempty
—on(x,y), —clear(x), clear(y),
—handempty, holding(x),

stack(x,y)
Precond:
Effects:

holding(x), clear(y)
—holding(x), —clear(y),
on(x,y), clear(x), handempty

pickup(x)
Precond:
Effects:

ontable(x), clear(x), handempty
—ontable(x), —clear(x),
—handempty, holding(x)

putdown(x)
Precond:
Effects:

holding(x)
—holding(x), ontable(x),
clear(x), handempty

NN NSNS

<:F

@F
o]

<:|:

7

1\‘_

;

Propositions: Actions

Add: holding-b

putdown-b
Pre: holding-b
Del: holding-b
Add: ontable-b, clear-b, handempty

36 propositions for 5 blocks 50 actions for 5 blocks
 ontable-a unstack-c-a
block a is on table (SX) Pre: on-c-a, clear-c, handempty
Del: on-c-a, clear-c, handempty
* Ohn-C-a Add: holding-c, clear-a
block ¢ is on block a (20x)
stack-c-a
* clear-c _ Pre: holding-c, clear-a
block ¢ is free to move (SX) Del: holding-c, clear-a
« holdin g-d Add: on-c-a, clear-c, handempty
the hand holds block d (5X) [ickupb
 handem pty Pre: ontable-b, clear-b, handempty
the hand is empty (].X) Del: ontable-b, clear-b, handempty

<:F

<:F
2 -

<:|:

7

@‘

4

:

© 2023 Roman Bartak
Charles University, Prague, Czech Republic

bartak@ktiml.mff.cuni.cz

