
Foundations of
Automated Planning

Roman Barták
Charles University, Czech Republic

Lecture 01: Formulating Planning Problems

What is the content?
– automated planning
– but what is planning and what is the difference from

scheduling?

Why could it be interesting to me?
– is it used somewhere?
– any applications?

What is the course about?
– problem formalisation
– solving approaches

Course questions

Expected knowledge
– search algorithms, logic, constraint satisfaction and SAT

Topics
1. problem formalization
2. classical planning (STRIPS)

• state-space and plan-space planning

3. neo-classical planning (Graphplan)
• compilation to SAT and CSP

4. planning with time and resources
• scheduling task inside planning

5. control knowledge and hierarchical planning
• speeding-up planners

Course outline

Automated Planning: Theory and Practice
M. Ghallab, D. Nau, P. Traverso
Morgan Kaufmann
https://projects.laas.fr/planning/aptp/

Automated Planning and Acting
M. Ghallab, D. Nau, P. Traverso
Cambridge University Press
https://projects.laas.fr/planning/

Literature

Project Shakey (1966-1972)

Shakey

planning

STRIPS

computer vision

machine learning

knowledge representation

algorithm A*robotics

natural language processing

Deep Space 1

Launch: October 24, 1998
Target: Comet Borrelly
testing a payload of 12 advanced, high risk

technologies
– autonomous remote agent

• planning, execution, and monitoring spacecraft activities
based on general commands from operators

• three testing scenarios
– 12 hours of low autonomy (execution and monitoring)
– 6 days of high autonomy (operating camera, simulation of faults)
– 2 days of high autonomy (keep direction)

» beware of backtracking!
» beware of deadlock in plans!

What?
What is planning and scheduling?
What is a difference between them?

A

B

C

D
A

D

Plan
pickup(C)
putontable(C,table)
pickup(B)
puton(B,D)
pickup(C)
puton(C,B)

B

C

Initial state

A D
B
CGoal

What is planning?

Planning task at glance

Input:
– initial (current) state of the world
– description of actions that can change the world
– desired state of the world

Output:
– a sequence of actions (a plan)

Properties:
– actions in the plan are unknown
– time and resources are not assumed

What is scheduling?

Input:
– a set of partially ordered activities
– available resources (machines, people, …)

Output:
– allocation of activities to time and resources

(schedule)

• Properties:
– activities are known in advance
– limited time and resources

Scheduling task at glance

Planning and scheduling

Planning
– deciding which actions are necessary to

achieve the goals
– topic of artificial intelligence
– complexity is usually worse than NP-c

(in general, undecidable)

Scheduling
– deciding how to process the actions using

given restricted resources and time
– topic of operations research
– complexity is typically NP-c

planning

scheduling

executing

Planning deals with causal relations between
actions and solves the problem which actions are
necessary to reach a goal.
Scheduling focuses on allocation of actions to time
and space (resources).

Sometimes both tasks are better to be solved together.
– For example, when there are many plans but only a

few of them can be scheduled.

Goal Set of
actions

Scheduled
planPlanning Scheduling

What to do? How and when to do it?

From planning to scheduling

Let’s start
Planning problem formalisation

Conceptual model

Planning deals with selection and organization of
actions that are changing world states.

System S modelling states and transitions:
– set of states S (recursively enumerable)
– set of actions A (recursively enumerable)

• actions are controlled by the planner!
• no-op

– set of events E (recursively enumerable)
• events are out of control of the planner!
• neutral event e

– transition function g: S´A´E ® 2S

• actions and events are sometimes applied separately
g: S´(AÈE) ® 2S

Goals in planning

A planning task is to find which actions are applied to
world states to reach some goal from a given initial
state.

What is a goal?
– goal state or a set of goal states
– satisfaction of some constraint over a sequence of visited

states
• for example, some states must be excluded or some states must

be visited
– optimisation of some objective function over a sequence

of visited states (actions)
• for example, maximal cost or a sum of costs

Example

S = (S,A,E,g)
– S = {s0, …, s5}
– E = {} resp. {e}
– A = {move1,

move2,
put, take, load,
unload}

– g: see figure

• init: s0
• goal: s5

location 1 location 2

s0

location 1 location 2

s1

take

put

move1

put

take

move1

move1move2

loadunload

move2

move2

s4

location 1 location 2

s5

location 1 location 2

location 1 location 2

s3

location 1 location 2

s2

How does it work?

A planner generates plans.
A controller takes care
about plan execution.

– for each state it selects an
action to execute

– observations (sensor
input) are translated to
world states

Dynamic planning involves re-planning when the state is
not as expected.

Simplifying assumptions

• the system is finite
• the system is fully observable

– We know completely the current state.
• the system is deterministic

– "sÎS "uÎ(AÈE): |g(s,u)|£1
• the system is static

– There are no external events.
• the goals are restricted

– The aim is to reach one of the goal states.
• the plans are sequential

– A plan consists of a (linearly ordered) sequence of actions.
• time is implicit

– Actions are instantaneous (no duration is assumed).
• planning is done offline

– State of the world does not change during planning.

Classical planning

We will work with a deterministic, static, finite, and
fully observable state-transition system with restricted
goals and implicit time: S = (S,A,g).

Planning problem P = (S,s0,g):
– s0 is the initial state
– g describes the goal states

A solution to the planning problem P is a sequence of
actions áa1,a2,…,akñ with a corresponding sequence of
states ás0,s1,…,skñ such that si = g(si-1,ai) and sk satisfies
goal condition g.

F Classical planning (STRIPS planning) E

Simplification?

Planning in the restricted model reduces to “path
finding” in the graph defined by states and state
transitions.

Is it really so simple?
5 locations, 3 piles per location, 100 containers,

3 robots
Ä10277 states

This is 10190 times more than the largest estimate
of the number of particles in the whole universe!

This course

How to represent states and actions without
enumerating the sets S and A?

– recall 10277 states with respect to the number of
particles in the universe

How to efficiently solve planning problems?
– How to find a path in a graph with 10277 nodes?

Set representation

Each state is described using a set of propositions
that hold at that state.
example: {onground, at2}

Each action is a syntactic expression describing:
• which propositions must hold in a state so the

action is applicable to that state
example: take: {onground}

• which propositions are added and deleted from
the state to make a new state
example:

take: {onground}-,
{holding}+ take

location 1 location 2

s0

location 1 location 2

s1

Set representation: a planning domain

Let L= {p1, …, pn} be a finite set of propositional symbols
(language).

A planning domain S over L is a triple (S,A,g):
– S Í P(L), i.e. state s is a subset of L describing which

propositions hold in that state
• if p Î s, then p holds in s
• if p Ï s, then p does not hold in s

– action a Î A is a triple of subsets of L
a = (precond(a), effects-(a), effects+(a))

• effects-(a) Ç effects+(a) = Æ
• action a is applicable to state s iff precond(a) Í s

– transition function g:
• g(s,a) = (s – effects-(a)) È effects+(a), if a is applicable to s

Set representation: a planning problem

Planning problem P is a triple (S,s0,g):
– S = (S,A,g) is a planning domain over L
– s0 is an initial state, s0 Î S
– g Í L is a set of goal propositions

Sg = {sÎS | g Í s} is a set of goal states

Plan p is a sequence of actions áa1,a2,…,akñ
– the length of plan p is k = |p|
– a state obtained by the plan p (a transitive closure of g)

g(s,p) = s, if k=0 (plan p is empty)
g(s,p) = g(g(s,a1), áa2,…,akñ), if k>0 and a1 is applicable to s
g(s,p) = undefined, otherwise

Plan p is a solution plan for P iff g Í g(s0,p).
– redundant plan contains a subsequence of actions that also solves P
– minimal plan: there is no shorter solution plan for P

Set representation: example

L = {onground, onrobot,
holding, at1, at2}

s0 = {onground, at2}
g = {onrobot}

load = (
{holding,at1},
{holding},
{onrobot})

átake,move1,load,move2ñ
is a plan,
but not a minimal plan

location 1 location 2

location 1 location 2

s1

s3

s4

take

put

location 1 location 2

location 1 location 2

s0

s2

s5

move1

put

take

move1

move1move2

loadunload

move2

move2

location 1 location 2 location 1 location 2

Direct successors of state s:
G(s) = {g(s,a) | a Î A is applicable to s}

Reachable states:
G¥(s) = G(s) È G2(s) È …

Planning problem has a solution iff Sg Ç G¥(s0) ¹ Æ.

Action a is relevant for goal g if and only if:
g Ç effects+(a) ¹ Æ
g Ç effects-(a) = Æ

Regression set for a goal g for (relevant) action a:
g-1(g,a) = (g - effects+(a)) È precond(a)
G-1(g) = {g-1(g,a) | aÎA is relevant for g}
G¥-1(g) = G-1(g) È G-2(g) È …

Planning problem has a solution iff s0 is a superset of some
element in G¥-1(g).

Set representation: reachability

Set representation: properties

Simplicity
– easy to read
How many states for n containers?

Computations
– the transition function is easy to model/compute using set

operations
– if precond(a) Í s, then
g(s,a) = (s – effects-(a)) È effects+(a),

Expressivity
– some sets of propositions do not describe real states

• {holding, onrobot, at2}

– for many domains, the set representation is still too large
and not practical

8.n.n! states

{nothing-on-c3, c3-on-c1,c1-on-pile1, nothing-on-c2, c2-on-pile2,
crane-empty, robot-at-loc2}

Classical representation

Classical representation generalizes the set representation
by exploiting first-order logic.

– State is a set of logical atoms that are true in a given
state.

– Action is an instance of a planning operator that
changes truth values of some atoms.

More precisely:
• L (language) is a finite set of predicate symbols and

constants (there are no function symbols!).
• Atom is a predicate symbol with arguments.

example: on(c3,c1)
• We can use variables in the operators.

example: on(x,y)

Classical representation: states

State is a set of instantiated atoms (no variables). There
is a finite number of states!

The truth value of some atoms is
changing in states:

• fluents
• example: at(r1,loc2)

The truth value of some state is
the same in all states

• rigid atoms
• example:

adjacent(loc1,loc2)

We will use a classical closed world assumption:
An atom that is not included in the state does not hold at that
state!

Classical representation: planning operators

operator o is a triple (name(o), precond(o), effects(o))
– name(o): name of the operator in the form n(x1,…,xk)

• n: a symbol of the operator (a unique name for each operator)
• x1,…,xk: symbols for variables (operator parameters)

– Must contain all variables appearing in the operator definition!

– precond(o):
• literals that must hold in the state so the operator is applicable on it

– effects(o):
• literals that will become true after operator application (only fluents

can be there!)

Classical representation: actions

An action is a fully instantiated operator
– substitute constants to variables

action

operator

Classical representation: action usage

Notation:
– S+ = {positive atoms in S}
– S– = {atoms, whose negation is in S}

Action a is applicable to state s if and only if
precond+(a) Í s Ù precond–(a) Ç s = Æ

The result of application of action a to s is
g(s,a) = (s – effects–(a)) È effects+(a)

Classical representation: a planning domain

Let L be a language and O be a set of operators.

Planning domain S over language L with operators O is a
triple (S,A,g):
– states S Í P({all instantiated atoms from L})
– actions A = {all instantiated operators from O over L}

• action a is applicable to state s if
precond+(a) Í s Ù precond–(a) Ç s = Æ

– transition function g:
• g(s,a) = (s – effects-(a)) È effects+(a), if a is applicable on s
• S is closed with respect to g (if s Î S, then for every action a applicable to

s it holds g(s,a) Î S)

Classical representation: a planning problem

Planning problem P is a triple (S,s0,g):
– S = (S,A,g) is a planning domain
– s0 is an initial state, s0 Î S
– g is a set of instantiated literals

• state s satisfies the goal condition g if and only if
g+ Í s Ù g–Ç s = Æ

• Sg = {s Î S | s satisfies g} – a set of goal states

Usually the planning problem is given by a triple
(O,s0,g).

– O defines the the operators and predicates used
– s0 provides the particular constants (objects)

Planning Domain Description Language (PDDL)

(:predicates (at ?
x - locatable ?y - place)

(on ?x - crate ?y - surface)

(in ?x - crate ?y - truck)

(lifting ?x - hoist ?y - crate)

(available ?x - hoist)

(clear ?x - surface))

(:action Drive

:parameters (?x -
truck ?y - place ?z - place)

:precondition (and
 (at ?x ?y))

:effect (and (not
(at ?x ?y)) (at ?x

 ?z)))

(:action Lift

:parameters (?x -
hoist ?y - crate ?z - surface ?p - place)

:precondition (and
 (at ?x ?p) (avail

able ?x) (at ?y ?p
) (on ?y ?z) (clea

r ?y))

:effect (and (not
(at ?y ?p)) (lifti

ng ?x ?y) (not (cl
ear ?y)) (not (ava

ilable ?x))

(clear ?z) (not (o
n ?y ?z))))

(:action Drop

:parameters (?x -
hoist ?y - crate ?z - surface ?p - place)

:precondition (and
 (at ?x ?p) (at ?z

 ?p) (clear ?z) (l
ifting ?x ?y))

:effect (and (avai
lable ?x) (not (li

fting ?x ?y)) (at
?y ?p) (not (clear

 ?z)) (clear ?y)

(on ?y ?z)))

…

(:init

(at pallet0 depot0)
(clear crate1)(at pallet1 distributor0)
(clear crate0)(at pallet2 distributor1)
(clear pallet2)(at truck0 distributor1)
(at truck1 depot0)(at hoist0 depot0)
(available hoist0)(at hoist1 distributor0)
(available hoist1)
(at hoist2 distributor1)
(available hoist2)
(at crate0 distributor0)
(on crate0 pallet1)
(at crate1 depot0)
(on crate1 pallet0)

)

(:goal (and
(on crate0 pallet2)
(on crate1 pallet1)

)

Plan p is a sequence of actions áa1,a2,…,akñ.
Plan p is a solution of P if and only if g(s0,p) satisfies g.

– Planning problem has a solutions iff Sg Ç G¥(s0) ¹ Æ.
– Planning problem has a solution iff s0 is a superset of some element

from G¥-1(g) (but g-1 is defined a bit differently).

Action a is relevant for a goal g if and only if :
action contributes to g: g Ç effects(a) ¹ Æ
action effects are not in conflict with g:
– g-Ç effects+(a) = Æ
– g+ Ç effects-(a) = Æ

Regression set for a goal g for a (relevant) action a:
g-1(g,a) = (g - effects(a)) È precond(a)

Classical representations: plans

Classical representation: an example plan

s1= g = {loaded(r1,c3), at(r1,loc2)}

ámove(r1,loc2,loc1),
take(crane1,loc1,c3,c1,p1),
load(crane1,loc1,c3,r1),
move(r1,loc1,loc2)ñ

átake(crane1,loc1,c3,c1,p1),
move(r1,loc2,loc1),
load(crane1,loc1,c3,r1),
move(r1,loc1,loc2)ñ

our goal

Comparison of representations

Expressive power of both representations is identical.
However, the translation from the classical
representation to the set representation brings
exponential increase of size.

classical
representation

set
representation

trivial

make all possible
instances

{on(c1,pallet), on(c1,r1), on(c1,c2), …, at(r1,l1), …}
…

{on-c1-pallet, on-c1-r1, on-c1-c2, …, at-r1-l1, …}
…

states

take-crane1-loc1-c3-c1-p1
precond: belong-crane1-loc1, attached-p1-loc1,

empty-crane1, top-c3-p1, on-c3-c1
delete: empty-crane1, in-c3-p1, top-c3-p1, on-c3-p1
add: holding-crane1-c3, top-c1-p1

actions

Blockworld: an example problem

The blocks world
– infinitely large table with a finite set of blocks
– the exact location of block on the table is irrelevant
– a block can be on the table or on another (single) block
– the planning domain deals with moving blocks by a robotic

hand that can hold at most one block
situation example

c

a
bc

a b e

d

Blockworld: classical representation

Constants
– blocks: a,b,c,d,e

Predicates:
– ontable(x)

block x is on a table
– on(x,y)

block x is on y
– clear(x)

block x is free to move
– holding(x)

the hand holds block x
– handempty

the hand is empty

Operators
unstack(x,y)

Precond: on(x,y), clear(x), handempty
Effects: ¬on(x,y), ¬clear(x), clear(y),

¬handempty, holding(x),

stack(x,y)
Precond: holding(x), clear(y)
Effects: ¬holding(x), ¬clear(y),

on(x,y), clear(x), handempty

pickup(x)
Precond: ontable(x), clear(x), handempty
Effects: ¬ontable(x), ¬clear(x),

¬handempty, holding(x)

putdown(x)
Precond: holding(x)
Effects: ¬holding(x), ontable(x),

clear(x), handempty

c

a b

c
a b

c

a b

c

a
b

c

a b

Blockworld: set representation

Propositions:
36 propositions for 5 blocks

• ontable-a
block a is on table (5x)

• on-c-a
block c is on block a (20x)

• clear-c
block c is free to move (5x)

• holding-d
the hand holds block d (5x)

• handempty
the hand is empty (1x)

Actions
50 actions for 5 blocks

unstack-c-a
Pre: on-c-a, clear-c, handempty
Del: on-c-a, clear-c, handempty
Add: holding-c, clear-a

stack-c-a
Pre: holding-c, clear-a
Del: holding-c, clear-a
Add: on-c-a, clear-c, handempty

pickup-b
Pre: ontable-b, clear-b, handempty
Del: ontable-b, clear-b, handempty
Add: holding-b

putdown-b
Pre: holding-b
Del: holding-b
Add: ontable-b, clear-b, handempty

c
a b

c
a b

c

a b

c

a
b

c
a b

© 2023 Roman Barták
Charles University, Prague, Czech Republic

bartak@ktiml.mff.cuni.cz

