
Foundations of 
Automated Planning

Roman Barták
Charles University, Czech Republic

Lecture 02: State-space & plan-space planning



Planning problem is given by a triple (O,s0,g).
– O defines the the operators and predicates used

operator o is a triple (name(o), precond(o), effects(o))
– name(o):  name of the operator in the form n(x1,…,xk)
– precond(o): literals that must hold in the state so the operator is applicable on it
– effects(o): literals that will become true after operator application

action is a fully instantiated operator (substitute constants to attributes)

– s0 is an initial state (provides particular constants -
objects)

– g is a goal (a set of instantiated literals)
• state s satisfies the goal condition g if and only if

g+ Í s Ù g–Ç s = Æ

Just to recall



Just to recall

Plan p is a sequence of actions áa1,a2,…,akñ.
Plan p is a solution of P if and only if g(s0,p) satisfies g.

Action a is applicable to state s if and only if:
precond+(a) Í s Ù precond–(a) Ç s = Æ
transition function g:

g(s,a) = (s – effects-(a)) È effects+(a), if a is applicable on s

Action a is relevant for a goal g if and only if:
action contributes to g: g Ç effects(a) ¹ Æ
action effects are not in conflict with g:

g-Ç effects+(a) = Æ /\ g+ Ç effects-(a) = Æ

regression set for a goal g for a (relevant) action a:
g-1(g,a) = (g - effects(a)) È precond(a)



Almost all planning algorithms are based on 
some form of search.

The algorithms differ in the search space to be 
explored and in the way of exploration.
– State Space Planning

• search nodes directly correspond to world states

– Plan Space Planning
• search nodes correspond to partial plans

How to do planning?



State-space planning

The search space corresponds to the state space of the 
planning problem.

– search nodes correspond to world states
– arcs correspond to state transitions by means of actions
– the task is to find a path from the initial state to some goal 

state
Basic approaches

– forward search
– backward search

• lifting
• STRIPS

Note: all algorithms will be presented for the classical 
representation



Forward planning

Start in the initial state and go towards some goal 
state.

We need to know:
– whether a given state is a goal state
– how to find a set of applicable actions for a given 

state
– how to define a state after applying a given action



Forward planning: algorithm

move r1

take c2
…

take c3

of an operator in O,



Forward planning: example

{belong(crane1,loc1), adjacent(loc2,loc1),
holding(crane1,c3), unloaded(r1),
at(r1,loc2), ¬occupied(loc1),
occupied(loc2),…}

move(r1,loc2,loc1)

{belong(crane1,loc1),
adjacent(loc2,loc1), holding(crane1,c3), unloaded(r1),
at(r1,loc1), occupied(loc1), …}

load(crane1,loc1,c3,r1)

{belong(crane1,loc1), adjacent(loc2,loc1),
empty(crane1), loaded(r1,c3),
at(r1,loc1), occupied(loc1), …}

Goal = {at(r1,loc1),loaded(r1,c3)}

initial state

loc1
goal



Forward planning: properties

Forward planning algorithm is sound.
– If some plan is found then it is a solution plan.
– It is easy to verify by using s = g(s0,p).

Forward planning algorithm is complete.
– If there is any solution plan then at least one search 

branch corresponds to this plan.
– induction by the plan length
– at each step, the algorithm can select the correct action 

from the solution plan (if correct actions were selected 
in the previous steps)



Deterministic implementations

We need to implement the presented algorithm 
in a deterministic way:
– breadth-first search

• sound, complete, but memory consuming

– depth-first search
• sound, completeness can be guaranteed by loop checks 

(no state repeats at the same branch)

– A*
• if we have some admissible heuristic
• the most widely used approach



Branching

What is the major problem of forward planning?
Large branching factor – the number of options

• This is a problem for deterministic algorithm that needs 
to explore the possible options.

Possible approaches:
– heuristic recommends an action to apply
– pruning of the search space

• For example, if plans p1 and p2 reached the same state then we know 
that plans p1p3 and p2p3 will also reach the same state. Hence the 
longer of the plans p1 and p2 does not need to expanded.
We need to remember the visited states L.

50 possible 
blocks to 
pick up a3

a1
a2

…a1 a2 a50a3

initial state goal



Backward planning

Start with a goal (not a goal state as there might 
be more goal states) and through sub-goals try 
to reach the initial state.

We need to know:
– whether the state satisfies the current goal
– how to find relevant actions for any goal
– how to define the previous goal such that the 

action converts it to a current goal



Backward planning: relevant actions

Action a is relevant for a goal g if and only if:
– action a contributes to goal g: g Ç effects(a) ¹ Æ
– effects of action a are not conflicting goal g:
• g-Ç effects+(a) = Æ
• g+ Ç effects-(a) = Æ

A regression set of the goal g for (relevant) action a is
g-1(g,a) = (g - effects(a)) È precond(a)

Example:
goal: {on(a,b), on(b,c)}
action stack(a,b) is relevant
by backward application of the action we get a new goal:
{holding(a), clear(b), on(b,c)}

stack(x,y)
Precond: holding(x), clear(y)
Effects: ~holding(x), ~clear(y),

on(x,y), clear(x), handempty



Backward planning: algorithm

take c3,c1

take c3,c2
move r1



Backward planning: an example

Goal = {at(r1,loc1),loaded(r1,c3)}

load(crane1,loc1,c3,r1)

{at(r1,loc1), belong(crane1,loc1), 
holding(crane1,c3), unloaded(r1)}

move(r1,loc2,loc1)

{belong(crane1,loc1), holding(crane1,c3), 
unloaded(r1),
adjacent(loc2,loc1),
at(r1,loc2),
¬ occupied(loc1)}

loc1

initial state



Backward planning: properties

Backward planning is sound and complete.

We can implement a deterministic version of the 
algorithm (via search).

– For completeness we need loop checks.
• Let (g1,…,gk) be a sequence of goals. If $i<k giÍ gk then we can stop 

search exploring this branch.

Branching
– The number of options can be smaller than for the forward 

planning (less relevant actions for the goal).
– Still, it could be too large.

• If we want a robot to be at the position loc51 and there are direct 
connections from states loc1,…,loc50, then we have 50 relevant 
actions. However, at this stage, the start location is not important!

• We can instantiate actions only partially (some variables remain 
free. This is called lifting.



Backward planning: a lifted version

Notes:
• standardization = a copy with fresh variables
• mgu = most general unifier
• by using the variables we can decrease the branching factor 

but the trade off is more complicated loop check



STRIPS

How can we further reduce the search space?

STRIPS algorithm reduces the search space of backward 
planning in the following way:

– only part of the goal is assumed in each step, namely the 
preconditions of the last selected action
• instead of g-1(s,a) we can use precond(a) as the new goal
• the rest of the goal must be covered later
• This makes the algorithm incomplete!

– If the current state satisfies the preconditions of the selected 
action then this action is used and never removed later upon 
backtracking.



STRIPS algorithm

The original STRIPS algorithm is a lifted 
version of the algorithm below.

g2 = (g - effects(a2)) È precond(a2)
π´ = áa6, a4ñ is a plan for precond(a2)
s = g(g(s0,a6),a4) is a state satisfying precond(a2)

g

g1 g2
g3

a1 a2
a3

g4 g5

g3

a4

a5

a6

g6

a3

satisfied in s0



Sussman anomaly

Sussman anomaly is a famous example that causes 
troubles to the STRIPS algorithm (the algorithm can 
only find redundant plans).
Block world

A plan found by STRIPS may look like this:
• unstack(c,a),putdown(c),pickup(a),stack(a,b)

now we satisfied subgoal on(a,b)
• unstack(a,b),putdown(a),pickup(b),stack(b,c)

now we satisfied subgoal on(b,c),
but we need to re-satisfy on(a,b) again

• pickup(a),stack(a,b)

A plan found by STRIPS may look like this:
• unstack(c,a),putdown(c),pickup(a),stack(a,b)

now we satisfied subgoal on(a,b)
• unstack(a,b),putdown(a),pickup(b),stack(b,c)

now we satisfied subgoal on(b,c),
but we need to re-satisfy on(a,b) again

• pickup(a),stack(a,b) red actions can be deleted

c
a b c

a
b

initial state goal



How to plan for blocks world?

Solving Sussman anomaly
– interleaving plans

• plan-space planning

– using domain dependent information
• When does a solution plan exist for a blocks world?

– all blocks from the goal are present in the initial state
– no block in the goal stays on two other blocks (or on itself)
– …

• How to find a solution plan?
Actually, it is easy and very fast!
– put all blocks on the table (separately)
– build the requested towers
We can do it even better with additional knowledge!



Plan space planning: core idea 

The principle of plan space planning is similar to 
backward planning:
– start from an “empty” plan containing just the 

description of initial state and goal
– add other actions to satisfy not yet covered (open) 

goals
– if necessary add other relations between actions in 

the plan

Planning is realised as repairing flaws in a partial 
plan
– go from one partial plan to another partial plan until 

a complete plan is found



Assume a partial plan with the following two actions:
– take(k1,c1,p1,l1)
– load(k1,c1,r1,l1)

Possible modifications of the plan:
– adding a new action

• to apply action load, robot r1 must be at location l1
• action move(r1,L,l1) moves robot r1 to location l1 from some location L

– binding the variables
• action move is used for the right robot and the right location

– ordering some actions
• the robot must move to the location before the action load can be used
• the order with respect to action take is not relevant

– adding a causal relation
• new action is added to move the robot to a given location that is a 

precondition of another action
• the causal relation between move and load ensures that no other action 

between them moves the robot to another location

Plan space planning: an example



The initial state and the goal are encoded using two 
special actions in the initial partial plan:

– Action a0 represents the initial state in such a way that 
atoms from the initial state define effects of the action and 
there are no preconditions. This action will be before all 
other actions in the partial plan.

– Action a¥ represents the goal in a similar way – atoms from 
the goal define the precondition of that action and there is 
no effect. This action will be after all other actions.

Planning is realised by repairing flaws in the partial 
plan.

Plan space planning: the initial plan



The search nodes correspond to partial plans.

A partial plan P is a tuple (A,<,B,L), where
– A is a set of partially instantiated planning 

operators {a1,…,ak}
– <  is a partial order on A (ai<aj)
– B is set of constraints in the form x=y, x¹y or xÎDi

– L is a set of causal relations (ai®paj)
• ai,aj are ordered actions ai<aj

• p is a literal that is effect of ai and precondition of aj

• B contains relations that bind the corresponding 
variables in p

Search nodes and partial plans



Partial plan: an example

action 
precondition

action 
effect

causal 
relations

partial 
ordering



Open goal is an example of a flaw.
This is a precondition p of some operator b in the partial 
plan such that no action was decided to satisfy this 
precondition (there is no causal relation ai®pb).

The open goal p of action b can be resolved by:
– finding an operator a (either present in the partial plan or a 

new one) that can give p (p is among the effects of a and a 
can be before b)

– binding the variables from p
– adding a causal relation a®pb

Open goals



Threats

Threat is another example of flaw.
This is action that can influence existing causal relation.

– Let  ai®paj be a causal relation and action b has among its 
effects a literal unifiable with the negation of p and action b 
can be between actions ai and aj. Then b is threat for that 
causal relation.

We can remove the threat by one of the following ways:
– ordering b before ai

– ordering b after aj

– binding variables in b 
in such a way that p
does not bind with
the negation of p



Partial plan P = (A,<,B,L) is a solution plan for the problem 
P = (S,s0,g) if:

– partial ordering < and constraints B are globally consistent
• there are no cycles in the partial ordering
• we can assign variables in such a way that constraints from B hold

– Any linearly ordered sequence of fully instantiated actions 
from A satisfying < and B goes from s0 to a state satisfying g.

Hmm, but this definition does not say how to verify that a 
partial plan is a solution plan!

Solution plan



How to efficiently verify that a partial plan is a 
solution plan?

Claim:
Partial plan P = (A,<,B,L) is a solution plan if:
– there are no flaws (no open goals and no threats)
– partial ordering < and constraints B are globally consistent

Proof by induction using the plan length
– {a0,a1,a¥} is a solution plan
– for more actions take one of the possible first actions and 

join it with action a0

Solution plan – a constructive view



Algorithm PSP

PSP = Plan-Space Planning

Notes:
• The selection of flaw is deterministic (all flaws must be resolved).
• The resolvent is selected non-deterministically (search in case of 

failure).



PSP – some details

Open goals can be maintained in an agenda of action 
preconditions without causal relations. Adding a causal 
relation for p removes p from the agenda.
All threats can be found in time O(n3) by verifying 
triples of actions or threats can be maintained 
incrementally: after adding a new action, check causal 
relations influenced (O(n2)), after adding a causal 
relation find its threats (O(n)).
Open goals and threats are resolved only by consistent 
refinements of the partial plan.

– consistent ordering can be detected by finding cycles or by 
maintaining a transitive closure of <

– consistency of constraints in B
• If there is no negation then we can use arc consistency.
• In case of negation, the problem of checking global consistency is 

NP-complete.



Properties of PSP

Algorithm PSP is complete and sound.
– soundness

• If the algorithm finishes, it returns a consistent plan with no flaws 
so it is a solution plan.

– completeness
• If there is a solution plan then the algorithm has the option to 

select the right actions to the partial plan.

Be careful about the deterministic implementation!
– The search space is not finite!
– A complete deterministic procedure must guarantee that it 

eventually finds a solution plan of any length – iterative 
deepening can be applied.



Plan-space planning: a running example

Initial state:
– At(Home), Sells(OBI,Drill), Sells(Tesco,Milk), Sells(Tesco,Banana)
– so action Start is defined as:

Precond: none
Effects: At(Home), Sells(OBI,Drill), Sells(Tesco,Milk), Sells(Tesco,Banana)

Goal:
– Have(Drill), Have(Milk), Have(Banana), At(Home)
– so action Finish is defined as:

Precond: Have(Drill), Have(Milk), Have(Banana), At(Home)
Effects: none

The following two operators are available:
– Go(l,m) ;; go from location l to m

Precond: At(l)
Effects: At(m), ¬At(l)

– Buy(p,s) ;; buy p at location s
Precond: At(s), Sells(s,p)
Effects: Have(p)



The initial (empty) plan

Sells(Tesco,Milk),   Sells(Tesco,Bananas)At(Home),   Sells(OBI,Drill),

Have(Bananas),   At(Home)Have(Drill),   Have(Milk),

action preconditions 
above the action

action effects 
below the action

Plan-space planning: a running example

Operators

Go(l,m)
   Precond: At(l)
     Effects: At(m), ¬At(l)
Buy(p,s)

     Precond: At(s), Sells(s,p)
     Effects: Have(p)



There is only one way to satisfy the 
open goals Have, and this is via 
actions Buy (no threats added).

At(s1),  Sells(s1,Drill) At(s2),  Sells(s2,Milk) At(s3),  Sells(s3,Bananas)

Buy(Drill, s1) Buy(Milk, s2) Buy(Bananas, s3)

Have(Drill),  Have(Milk),  Have(Bananas),  At(Home)

Plan-space planning: a running example

Operators

Go(l,m)
   Precond: At(l)
     Effects: At(m), ¬At(l)
Buy(p,s)

     Precond: At(s), Sells(s,p)
     Effects: Have(p)



There is again a single way to satisfy 
preconditions Sells and this is 
substituting the right constants.

Buy(Drill,OBI) Buy(Milk,Tesco) Buy(Bananas,Tesco)

At(Tesco), Sells(Tesco,Milk)At(OBI), Sells(OBI,Drill) At(Tesco), Sells(Tesco,Bananas)

Have(Drill),  Have(Milk),  Have(Bananas),  At(Home)

Plan-space planning: a running example

Operators

Go(l,m)
   Precond: At(l)
     Effects: At(m), ¬At(l)
Buy(p,s)

     Precond: At(s), Sells(s,p)
     Effects: Have(p)



The only way to satisfy open goals is 
by adding actions Go.

– There are new threats!

At(Tesco), Sells(Tesco,Milk)At(OBI), Sells(OBI,Drill) At(Tesco), Sells(Tesco,Bananas)

At(x)      

Buy(Milk,Tesco) Buy(Bananas,Tesco)

At(l2)

Go(l2, Tesco)
At(l1)    

Go(l1,OBI)

Buy(Drill,OBI)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Plan-space planning: a running example

Operators

Go(l,m)
   Precond: At(l)
     Effects: At(m), ¬At(l)
Buy(p,s)

     Precond: At(s), Sells(s,p)
     Effects: Have(p)



One threat can be solved by ordering 
Buy(Drill) before Go(Tesco)

– This solves all the threats!

At(Tesco), Sells(Tesco,Milk)At(OBI), Sells(OBI,Drill) At(Tesco), Sells(Tesco,Bananas)

At(x)      

Buy(Milk,Tesco) Buy(Bananas,Tesco)

At(l2)

Go(l2, Tesco)
At(l1)    

Go(l1,OBI)

Buy(Drill,OBI)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Plan-space planning: a running example

Operators

Go(l,m)
   Precond: At(l)
     Effects: At(m), ¬At(l)
Buy(p,s)

     Precond: At(s), Sells(s,p)
     Effects: Have(p)



Open goal At(l1) can be satisfied by 
assignment l1=Home taken from the 
action Start.

At(Tesco), Sells(Tesco,Milk)At(OBI), Sells(OBI,Drill) At(Tesco), Sells(Tesco,Bananas)

Buy(Milk,Tesco) Buy(Bananas,Tesco)

At(l2)

Go(l2, Tesco)
At(Home)    

Go(Home,OBI)

Buy(Drill,OBI)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Plan-space planning: a running example

Operators

Go(l,m)
   Precond: At(l)
     Effects: At(m), ¬At(l)
Buy(p,s)

     Precond: At(s), Sells(s,p)
     Effects: Have(p)



Open goal At(l2) can be satisfied by 
assignment l2=OBI from action 
Go(Home, OBI)

At(Tesco), Sells(Tesco,Milk)At(OBI), Sells(OBI,Drill) At(Tesco), Sells(Tesco,Bananas)

Buy(Milk,Tesco) Buy(Bananas,Tesco)

At(OBI)

Go(OBI, Tesco)

Buy(Drill,OBI)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

At(Home)    

Go(Home,OBI)

Plan-space planning: a running example

Operators

Go(l,m)
   Precond: At(l)
     Effects: At(m), ¬At(l)
Buy(p,s)

     Precond: At(s), Sells(s,p)
     Effects: Have(p)



Open goal At(Home) from Finish is 
satisfied by action Go

– new threats appear

At(l3)

Go(l3, Home)

At(Tesco), Sells(Tesco,Milk)At(OBI), Sells(OBI,Drill) At(Tesco), Sells(Tesco,Bananas)

Buy(Milk,Tesco) Buy(Bananas,Tesco)

At(OBI)

Go(OBI, Tesco)

Buy(Drill,OBI)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

At(Home)    

Go(Home,OBI)

Plan-space planning: a running example

Operators

Go(l,m)
   Precond: At(l)
     Effects: At(m), ¬At(l)
Buy(p,s)

     Precond: At(s), Sells(s,p)
     Effects: Have(p)



Threats for At(Tesco) are removed by 
ordering Go(Home) after both actions 
Buy

At(l3)

Go(l3, Home)

At(Tesco), Sells(Tesco,Milk)At(OBI), Sells(OBI,Drill) At(Tesco), Sells(Tesco,Bananas)

Buy(Milk,Tesco) Buy(Bananas,Tesco)

At(OBI)

Go(OBI, Tesco)

Buy(Drill,OBI)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

At(Home)    

Go(Home,OBI)

Plan-space planning: a running example

Operators

Go(l,m)
   Precond: At(l)
     Effects: At(m), ¬At(l)
Buy(p,s)

     Precond: At(s), Sells(s,p)
     Effects: Have(p)



Open goal At(l3) is satisfied by 
asignment l3=Tesco from action 
Go(OBI,Tesco).

Operators

Go(l,m)
   Precond: At(l)
     Effects: At(m), ¬At(l)
Buy(p,s)

     Precond: At(s), Sells(s,p)
     Effects: Have(p)

At(Tesco)
Go(Tesco, 
Home)

At(Tesco), Sells(Tesco,Milk)At(OBI), Sells(OBI,Drill) At(Tesco), Sells(Tesco,Bananas)

Buy(Milk,Tesco) Buy(Bananas,Tesco)

At(OBI)

Go(OBI, Tesco)

Buy(Drill,OBI)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

At(Home)    

Go(Home,OBI)

Plan-space planning: a running example



State space planning is much faster today thanks to heuristics 
based on state evaluation.
However, plan space planning:

– makes more flexible plans thanks to partial order
– supports further extensions such as adding explicit time and resources

State space planning Plan space planning

search space finite infinite

search nodes simple
(world states)

complex
(partial plans)

world states explicit not used

partial plan action selection and 
ordering done together

action selection and 
ordering separated

plan structure linear causal relations

Comparison



© 2023 Roman Barták
Charles University, Prague, Czech Republic

bartak@ktiml.mff.cuni.cz


