
Foundations of 
Automated Planning

Roman Barták
Charles University, Czech Republic

Lecture 03: Graphplan and compilation-based techniques



Classical planning
– search nodes correspond to partial plans
– a solution plan reachable from a given search node contains 

all the actions from the partial plan
• state-space planning
• plan-space planning

Neoclassical planning
– search nodes correspond to several partial plans
– not all actions from the partial plans appear in the solution 

plan reachable from the search node
• planning-graph planning

Introduction



Motivation

Problems of existing techniques
– choice of bad action, that is discovered late, causes 

exploration of large search space
– large branching factor is the source of such mistakes 

because it gives too many options

How to discover “promising” actions for the plan?
– solve a “relaxed” problem, whose solution set contains all 

solutions of the original problem
• relaxed problem = remove some constraints from the original 

problem (for example negative effects)
– use only the actions from the solution of the relaxed 

problem when selecting actions for the original problem
What do we need?

• a compact representation of several plans such that not all the 
actions has to be used in the solution plan



We will work with fully instantiated atoms and actions:

Atoms:
• r1, r2, q1, q2 – robot positions
• a1, a2, ar, aq, b1, b2, br, bq – container positions
• ur,uq – robot is empty
The initial state is {r1,q2,a1,b2,ur,uq}.

Actions:
• Mr12, Mr21, Mq12, Mq21 – robot moves
• Lar1, Lar2, Laq1, Laq2, Lbr1, Lbr2, Lbq1, Lbq2 – loading container to robot
• Uar1, Uar2, Uaq1, Uaq2, Ubr1, Ubr2, Ubq1, Ubq2 – unloading container from 

robot

Working example



Mr21

Nodes correspond to states and arcs to transitions

– root – initial state s0

– Reachability tree of depth d with 
the root s0 contains all solution 
plans for problems, where the 
goal is reachable from s0 with at 
most d actions.
• A plan exists if any goal state is in 

the reachability tree!

Problem:
The reachability tree contains O(kd) nodes, where k is #applicable 
actions per state.

Reachability tree



Reachability tree gives sufficient and necessary conditions for a 
reachability of a given state.
– a state is reachable if any only if it appears in the reachability tree

Planning graph will give only the necessary condition of 
reachability.
– if a state is reachable than it can be found in the planning graph
– however, not all the states in the planning graph are reachable

How to exploit a planning graph?
– If we can construct the planning graph fast with small memory 

consumption, it gives an estimate which actions are necessary to reach 
the goal state

– from the planning graph we still need to extract the solution plan

Relaxed reachability



How to relax the reachability tree?
– The nodes describe approximations of states at a given level 

of the reachability tree.

How to approximate the state?
Recall that a state is represented as a set of propositions.

– we can approximate all states at the same level by union of 
propositions from these states

– OK, but how to do it in practice?
• Apply all applicable actions in parallel to a given state and ignore 

negative effects of these actions.
• Consequence:  the number of propositions in approximated states 

will never decrease
• Remember which actions provide a given proposition and which 

actions want to delete it

Approximated states



Planning graph is a directed layered graph, where
– each layer contains (exclusively)

• instantiated propositions (a state layer) or
• instantiated actions (an action layer)

– state and action layers interleave
• the zero layer describes the initial state
• the next layer describes all actions applicable to the initial state
• the next layer contains positive effects of these actions

– an action layer with the following state layer forms a level
– arcs are between

• propositions and actions that use
them as preconditions

• actions and propositions that are
effects of the action

– special arcs for negative effects
– negative effects are not deleted!

Planning graph



Where are the plans in the planning graph?
• Instead of a single sequence of actions we will use a sequence 

of sets of actions – a layered plan.
– a set of actions at position j will be a subset of actions from 

j-th action layer

• The sequential plan is obtained from the layered plan by using 
any permutation of actions from each set.

Example:
A layered plan 〈{a1,a2},{a3,a4},{a5,a6,a7}〉 gives 2x2x6=24 
sequential plans.

A layered plan



How to ensure that actions selected to a layered plan can be 
ordered without influencing the resulting state?

– Such actions must be independent!

When is a pair of actions (a,b) dependent?
– When different orders of the actions give different states, in particular:

• a deletes some precondition of b (hence a cannot be right before b)
• a deletes some positive effect of b (hence the result depends on the 

order)
• symmetrically for b

A pair of actions (a,b) is independent if and only if:
– effects-(a) ∩ (precond(b) ∪ effects+(b)) = ∅
– effects-(b) ∩ (precond(a) ∪ effects+(a)) = ∅
Note:

Independence of actions is given by the planning domain and it is not 
influenced by a particular planning problem!

Independent actions



Let 𝜋 be a set of pairwise independent actions, then

• 𝜋 is applicable to a state s if and only if
– preconditions of all actions from 𝜋 are satisfied by s
– precond(𝜋) = ∪ {precond(a) | ∀a∈ 𝜋} ⊆ s

• The result of applying 𝜋 to state s is a state
– 𝛾(s, 𝜋) = (s - effects-(𝜋)) ∪ effects+(𝜋)

• effects-/+(𝜋) is a union of effects from 𝜋

Claim:
– If 𝜋 consists of pairwise independent actions and it is applicable to 

state s, then for any permutation of actions 〈a1,a2,…,ak〉 from 𝜋 we get
𝛾(s, 𝜋) = 𝛾(… 𝛾(𝛾(s,a1),a2)…ak).

This claim makes using layered graphs practical!

Applying a set of actions 



A layered plan Π=〈𝜋1, 𝜋2,…, 𝜋k〉 is a solution plan for 
problem (O,s0,g) if and only if:

– each set 𝜋I consists of pairwise independent actions,
– a set of actions 𝜋1 is applicable to state s0, 𝜋2 is applicable to 

state 𝛾(s0, 𝜋1) and so on,
– g ⊆ 𝛾(… 𝛾(𝛾(s0, 𝜋1), 𝜋2)… 𝜋k).

Claim:
If Π is solution plan for (O,s0,g), then any sequence of 
actions consisting of a permutation of actions from 𝜋1, 
followed by action permutation from 𝜋2 and so on 
transfers the state s0 to a state satisfying g.

A solution layered plan



How to do planning with the planning graph?

• First build a planning graph in such a way that the last 
propositional layer satisfies the goal condition.
– More precisely, we will require that all the goal propositions can be 

used together in the last propositional layer.

• From the action layers select subsets of independent actions
in such a way that they cover the goal propositions.
– This is realised by a backward run from the last level, where actions 

giving the goal are selected and then, in the previous level, we select 
actions giving preconditions of actions selected from the last level etc.

– Some goal proposition can be satisfied in the previous level (not the 
last one).
We ensure that each proposition is an effect of some action from the 
previous layer.

• Using a no-op action for each proposition: 𝛼p is a no-op action for p, iff
precond(𝛼p) = effect+(𝛼p) = {p}, effect-(𝛼p) = ∅

Planning with a planning graph



How to find if two propositions can be together in the same 
layer?

• All propositions can be together at the zero layer (this is the 
initial state).

• Two dependent actions cannot be used together in the first 
action layer so their positive effects cannot appear together in 
the next state unless they are given by another pair of 
independent actions.

• Two propositions cannot be together if they are positive and 
negative effects of a single action (again, unless they are given 
by another pair of independent actions).
– No-op actions are treated as other actions in these conditions (if b 

deletes p, then 𝛼p and b are dependent).

• An incompatible pair of propositions is called a propositional 
mutex (mutual exclusion).

Propositional mutex



Propositional mutexes can give further 
incompatibilities between actions in 
addition to action dependence.

• Two actions are mutex, if some of 
their preconditions are mutex.

• An action whose preconditions are 
mutex can be removed immediately.

Action mutes



Two actions a and b are mutex at level Ai, if:
– a and b are dependent, or
– precondition of a has a mutex with some precondition of b at 

level Pi-1.

The set of action mutexes for level Ai is denoted 𝜇Ai.

Two propositions p and q are mutex at level Pi, if:
– each action Ai giving p as its positive effect has a mutex with 

any action giving q as a positive effect, and
– there is no action in Ai having both p and q and as positive 

effects.

The set of propositional mutexes for level Pi is denoted 𝜇Pi.

Mutex – formal definitions



Mutex – some properties

Mutex is a symmetric relation.
Sets of mutexes in the planning graph are decreasing:

– if p and q are from Pi-1 and (p,q)∉ 𝜇Pi-1, then (p,q) ∉ 𝜇Pi
– if a and b are from Ai-1 and (a,b)∉ 𝜇Ai-1, then (a,b) ∉ 𝜇Ai
Proof:
– If two propositions are not mutex then their no-op actions are not 

mutex and hence they give these propositions in the next layer.
– If two actions are not mutex then they are independent and their 

preconditions are not mutex. As the preconditions will not become 
mutex in the next layer (see above) the actions will not be mutex in 
the next layer.

Note:
Sets of actions and propositions in the planning graph 
are increasing (Pi-1 ⊆ Pi and Ai-1 ⊆ Ai).



Graphplan

Graphplan is a planning system based on planning graph.
• It repeats graph expansion and plan extraction until a solution 

plan is found.

• Expansion:
– First construct a planning graph till the layer where there are all goal 

propositions and no pair of them is mutex (this is a necessary 
condition for plan existence).

– If plan extraction fails, add a new level (stop if some final condition 
holds, then no plan exists).

• Extraction:
– Extract a layered plan from the planning graph in such a way that the 

plan gives all the goal propositions.

A technical restriction:
we only assume actions with positive preconditions (can be 
ensured by modifying the planning domain)



Graph expansion

Planning graph is seen as a sequence of levels and mutex sets
G = 〈P0,A1, 𝜇A1,P1, 𝜇P1,…,Ai, 𝜇Ai, Pi, 𝜇Pi〉

Planning graph depends only on the planning operators O and on 
the initial state s0 (encoded in P0), but it does not depend on the 
goal g!
The procedure Expand(G) adds one level to the graph:



Fixed point

The number of different levels in the planning graph is 
restricted. Starting with some level, the graph is not 
changing – a fixed-point level.

A fixed-point level in the planning graph G is such a 
level k that ∀i, i>k levels i are identical to it, i.e., Pi=Pk, 
𝜇Pi =𝜇Pk, Ai=Ak, 𝜇Ai=𝜇Ak.

– Each planning graph G has a fixed-point level k, where k is 
the smallest number such that
|Pk-1|=|Pk| and |𝜇Pk-1|=|𝜇Pk|.

Proof is based on monotony and finiteness of the levels and mutex
sets.

– This claim also gives an efficient method how to detect the 
fixed-point level!



Plan extraction is done in the backward direction from 
level Pi containing all the non-mutex goal propositions 
(g2∩ 𝜇Pi=∅).

– First, find a set of non-mutex actions 𝜋i⊆ Ai that give all the 
goal propositions.

– Preconditions of actions from 𝜋i form a new goal for the 
previous level Pi-1.

– If the goal for a level Pj cannot be covered by actions then 
go back to level j+1 and explore an alternative set 𝜋j+1. 

– If level 0 is reached, the sequence〈𝜋1, 𝜋2,…, 𝜋k〉 is a 
solution.

This is basically AND/OR search:
– OR branches represent alternative actions giving the goal 

proposition
– AND branches connect the preconditions with actions

Plan extraction



• let {a2,b1} be the goal atoms
• bold actions are selected to the layered plan
• We get the layered plan
〈{Lar1,Lbq2}, {Mr12,Mq21}, {Uar2,Ubq1}〉

Plan extraction – an example



Nogoods

Mutex can capture incompatible pairs.

We may find that a given goal cannot be satisfied at a given 
level. Then the set of propositions forming the goal is together 
incompatible.

– If we explore the same level later with the same (or 
larger) goal, then we already know that such a goal 
cannot be satisfied and the algorithm can immediately 
backtrack.

Unsatisfied goals can be remembered for each each level in the 
form of a nogood table s.
– A goal that is nogood immediately fails and the algorithm 

can backtrack.



Extract tries to cover a goal 
at level i.

• uses and updates the 
nogood table s

GPSearch looks for a 
set 𝜋i of actions 
covering the goal.

• incrementally adds 
actions to 𝜋i such that 
the actions are non-
mutex

• after covering the 
goal continues to the 
previous level

Extraction algorithm



Graphplan algorithm 

• first find a planning 
graph satisfying goal 
condition g

• if it does not exist then 
stop (no solution)

• otherwise extract a 
layered plan

• if not successful
• add one more layer
• and again extract a 

layered plan
• stop when plan is found 

or no plan exists.



Graphplan - properties

Graphplan is sound, complete, and always finishes.

Proof:
– if the algorithm returns a plan, then it is a solution plan
– if the algorithm fails, then no plan exists

• Fixedpoint(G) and (g⊄Pi or g2∩ 𝜇Pi≠ ∅)
– If there is no level satisfying the goal before reaching the fixed point 

then no other level can cover the goal
• |si-1(k)| = |si(k)|

– nogood tables only increase – so we get si-1(k) = si(k)
– If the nogood table in the fixed point does not change then the goals 

from the fixed point cannot be ever satisfied – the nogood table just 
propagates to next levels in next steps si-1(k)= si(k+1)

– The algorithm always stops thanks to monotony and a finite 
number of atoms and actions (some layers start to repeat 
and the nogood tables become full).



Compilation-based  approaches

Classical approach
to problem solving

Compilation-based approach to problem solving
What is the idea?

exploit knowledge of others for solving own problems

How to do it?
by translating (compiling) the problem P to another problem Q

Why is it useful?
if anybody improves the solver for Q then we get an improved 
solver for P for free

Other names:
reduction techniques, re-formulation techniques

problem solver

problem Q solver 
for Q

problem P

compilation



Constraint satisfaction at glance

Constraint satisfaction problem consists of:
– a finite set of variables

• describe some features of the world state that we are looking for, for 
example position of queens at a chessboard

– domains – finite sets of values for each variable
• describe “options” that are available, for example the rows for queens

– a finite set of constraints
• a constraint is a relation over a subset of variables;

constraint can be defined in extension (a set of tuples satisfying the 
constraint) or using a formula (rowA ¹ rowB)

Example (N-queens problem):
the core decision: each queen is pre-allocated to its own column 

and we are looking for its row
variables: N variables r(i) with the domain {1,…,N}
constraints: no two queens attack each other

"i¹j r(i)¹r(j) ∧ |i-j| ¹ |r(i)-r(j)|



SAT/CSP encoding: core idea

In planning, we do not know the lengths of plans!
We can encode plans of a known length using a 
layered graph (temporally extended graph).
– each layer corresponds to one state
– transition between layers corresponds to application 

of (one) action



Abstract modeling approach

Iterative extension of the plan length
Formulating the problem of finding a plan of a 
given length as a CSP

Backward search
– instantiation of action variables
– only actions relevant to the (sub)goal are tried

A0

V01

An-1

V0n-1

… …

state transition constraints

V00

in
iti

al
 s

ta
te

go
al

 s
ta

te

pr
ec

on
di

tio
n

ef
fe

ct

frame



In classical representation, state is a set of logical atoms that are 
true in a given state.

Can be modelled as a vector of true/false values indicating which 
proposition is true in the state.

State-variable representation models a state as a vector of values 
of state variables.

Example (state variables):
• rloc(r) ∈	{l1,l2,l3}, r ∈	{r1,r2}
• rload(r) ∈	{c1,c2,c3,nil} , r ∈	{r1,r2}
• cpos(c) ∈ {l1,l2,l3,r1,r2}, c ∈	{c1,c2,c3}

Operators describe how values of certain variables change. 
Example (operator):

load(r, c, loc)  ;; robot r loads container c at location loc
Precond: rloc(r) = loc, cpos(c) = loc
Effects: cpos(c) <- r

State-variable representation



Straightforward model

constraint model
– action constraints

As = act® Pre(act)s , "act Î Dom(As)
As = act® Eff(act)s+1, "act Î Dom(As)

– frame constraint
As Î NonAffAct(Vi) ® Vis = Vis+1, "i Î á0, v-1ñ

problems
– disjunctive constraints do no propagate well

Ä do not prune well the search space
– a huge number of constraints (depend on the number 

of actions)
Ä the propagation loop takes a lot of time

Ghallab et al. (2004)

As = move21 ® rlocs = loc2
As = move21 ® rlocs+1 = loc1

As = move21® cposs = cposs+1



GP-CSP

for each state variable Vis there is a supporting action variable Sis
describing the action which sets the state variable (no-op action 
if the variable is not changed)

constraint model
– action constraints

As = act ® Pre(act)s , "act Î Dom(As)
Sis = act ® Vis = val, "act Î Dom(Sis)

– frame constraint
Sis+1 = no-op ® Vis = Vis+1. 

– channeling constraint
As Î AffAct(Vi) « Sis+1 = As, and
As Î NonAffAct(Vi) « Sis+1 = no-op

Do & Kambhampati (2000)

V0s

As

V0s+1S0s+1



CSP-PLAN

idea
– focus on modeling the reason for the value of a state 

variable (effect and frame constraints are merged)

constraint model
– precondition constraint

As = act ® Pre(act)s , "act Î Dom(As)
– successor state constraint

Vi
s = val « As-1 Î C(i,val) Ú (Vi

s-1 = val Ù As-1 Î N(i))
– C(i,val) = the set of actions containing Vi¬ val among their effects
– N(i) = NonAffAct(Vi) 

Lopez & Bacchus (2003)



Timelines

Planning can also be seen as synchronized changes of state variables.
Evolution of each variable is described using finite state automaton.
Planning is about finding synchronized paths in all automata.

move(
r,loc1,

loc2)

loc1 loc2

move
(r,loc

2,loc1
)

no-o
p(loc

2)

rloc

no-op
(loc1

) r

loc1 loc2

no-op(r)cpos

no-op(loc2)no-op(loc1)

load
(r,c,

loc2
)

un
lo
ad
(r,
c,l
oc
1)

un
lo
ad
(r,
c,l
oc
2)

load
(r,c,

loc1
)

loc1
loc2
loc1
loc2

r

rloc

cpos

move(r,loc1,loc2)

no-op(loc2)

no-op(loc2)

load(r,c,loc2)

move(r,loc2,loc1)

unload(r,c,loc1)

no-op(r)

no-op(loc1)

Barták (2011)

no-op action
= value of state 
variable is not 
changed

initial value

goal value



PaP: constraint model

timeline model
state and action variables organized to „layers“

…
…

state variables action variables

action sequencingsequencing synchronisation 
constraint

Barták (2011)



PaP-2: constraint model

timeline model
with action variables only

…
…

state variables action variables

action sequencingsequencing synchronisation 
constraint

Barták (2011)



Parallel actions

Which actions can be used in parallel in a single step?
"-step encoding

– only actions that do not share state variables in 
preconditions and effects (independent actions)

– any order of actions can be used to reach the same 
state

$-step encoding [Rintanen et al. 2006]
– action preconditions are satisfied in the previous layer
– actions effects do not destroy preconditions and 

effects of other actions in the step

Relaxed $-step encoding [Wehrle and Rintanen 2007]
– like $-step encoding but other actions in the step may 

provide preconditions

Relaxed2 $-step encoding [Balyo 2013]
– like relaxed $-step encoding but effects of some 

actions might be destroyed within the parallel step (if 
not needed in next layer)



© 2023 Roman Barták
Charles University, Prague, Czech Republic

bartak@ktiml.mff.cuni.cz


