
Foundations of
Automated Planning

Roman Barták
Charles University, Czech Republic

Lecture 04: Planning with time and resources

The conceptual model of planning assumes implicit time:
– actions and events are instantaneous (no duration)
– goals are verified at the end of the plan

This restricted view of planning is appropriate for
studying the “logic” behind planning (situation calculus)
and for formal complexity studies.

In practice the situation is slightly different:
– actions take some time (duration) to be executed
– action preconditions may be required also during action

duration (not just at the beginning)
– action effects may happen before the end of the action, they

may be true during action duration, or even they may become
true sometime later

– effects of more actions may be combined
– goals may be required during execution of plans

Planning and time

What is time?
The core mathematical structure for describing time is a set with
transitive and asymmetric ordering relation.
The set can be continuous (real numbers) or discrete (integer
numbers).

The planning system will use a database of temporal references
with a procedure for verifying consistency and an inference
mechanism (to deduce new information).

We can model time in two ways:
• qualitative

relative relations (A finished before B)
• quantitative

metric (numerical) relations (A started
23 minutes after B)

Time - basic principles

Qualitative approach

Based on relative temporal relations between
temporal references.
“I read newspapers during breakfast and after
breakfast I walked to my office”

Having a breakfast

Walking to o!ceReading newspapers

Having a breakfast

Walking to o!ce

Reading newspapers

right before

du
rin

g

(a) (b)

bs be

rs re ws we

bs be
<

ws we
<

rs re
<

=

≤ ≤

time

Having a breakfast

Walking to o!ceReading newspapers

Having a breakfast

Walking to o!ce

Reading newspapers

right before

du
rin

g

(a) (b)

bs be

rs re ws we

bs be
<

ws we
<

rs re
<

=

≤ ≤

time

Temporal intervals (activities) Time points (important events)

When modeling time we are interested in:
– temporal references

(when something happened or hold)
• time points (instants) when a state is changed

instant is a variable over the real numbers
• time periods (intervals) when some proposition is true

interval is a pair of variables (x,y) over the real numbers, such that x<y

– temporal relations between temporal references
• ordering of temporal references

Typical problems solved:
– verifying consistency of the temporal database
– asking queries (“Did I read newspapers when entering the

office?”)
– finding minimal networks to deduce inevitable relations

Qualitative frameworks

Symbolic calculus modelling qualitative relations between instants.
• There are three possible primitive relations between instants t1

and t2:
– [t1 < t2]
– [t1 > t2]
– [t1 = t2]
Relations P = {<,=,>} are called primitive relations.

• Partially known relation between two instants can be modelled
using a set (disjunction) of primitive relations:
– {}, {<}, {=}, {>}, {<,=}, {>,=}, {<,>}, {<,=,>}

• Relation r between temporal instants t and t‘ is denoted
[t r t‘]

• Point algebra allows us to work with relative relations without
placing the instants to particular (numeric) times.

Point algebra - foundationsVilain & Kautz (1986)

Let R be a set of all possible relations between two instants
– {{}, {<}, {=}, {>}, {<,=}, {>,=}, {<,>}, {<,=,>}}

Symbolic operations over R:
– set operations ∩, ∪

• they express conjunction and disjunction of relations
– composition operation ∘

• transitive relation for a pair of connected relations
• [t1 r t2] and [t2 q t3] gives [t1 r ∘ q t3]

using the table

The most widely used operations are ∩ and ∘, that allow combining
existing and inferred relations:

– [t1 r t2] and [t1 q t3] and [t3 s t2] gives [t1 r ∩ (q ∘ s) t2]

∘ < = >
< < < P
= < = >
> P > >

Point algebra - operations

Point algebra – inference

“I read newspapers during breakfast and after
breakfast I walked to my office”

Query: “Did I read
newspapers when
entering the office?”
[rs < we] ∧ [we < re]

(rre,be ∘ rbe,ws ∘ rws,we) ∩ (rre,we)
= ({=,<} ∘ {=} ∘ {<}) ∩ {>}
= {<} ∩ {>} = {}

Having a breakfast

Walking to o!ceReading newspapers

Having a breakfast

Walking to o!ce

Reading newspapers

right before

du
rin

g

(a) (b)

bs be

rs re ws we

bs be
<

ws we
<

rs re
<

=

≤ ≤

time

∘ < = >
< < < P
= < = >
> P > >

A set of instants X together with the set of (binary) temporal
relations ri,j∈R over these instants C forms a PA network (X,C).

– If some relation is not explicitly assumed in C, then we assume
universal relation P.

The PA network consisting of instants and relations between them is
consistent if it is possible to assign a real number to each instant in
such a way that all the relations between instants are satisfied.

Claim:
The PA network (X,C) is consistent if and only if there exists a set
of primitive relations pi,j ∈ ri,j such that for any triple of such
relations pi,j ∈ pi,k ∘ pk,j holds.

Efficient consistency checking:
To make the PA network consistent it is enough to make its
transitive closure, for example using techniques of path
consistency.
– for each k: for each i,j: do ri,j ← ri,j ∩ (ri,k ∘ rk,j)
– obtaining {} means that the network is inconsistent

Point algebra - consistency

Symbolic calculus modelling relations between intervals
(interval is defined by a pair of instants i- and i+, [i-<i+])
There are thirteen primitive relations:

x before y x+<y-

x meets y x+=y-

x overlaps y x-<y-<x+ ∧ x+<y+

x starts y x-=y- ∧ x+<y+

x during y y-<x- ∧ x+<y+

x finishes y y-<x- ∧ x+=y+

x equals y x-=y- ∧ x+=y+

bi,mi,oi,si,di,fi symmetrical relations

x y

x y

x y

x

y
x

y
x

y
x
y

Interval algebraAllen (1983)

Primitive relations can be again combined in sets (213 relations).
Sometimes we select only a subset of possible relations that are useful for a
particular application.

• for example {b,m,bi,mi} means no-overlaps and it is useful to model
unary resources

set operations ∩, ∪ and the composition operation ∘
The IA network is consistent when it is possible to assign real numbers to xi

-,xi
+

of each interval xi in such a way that all the relations between intervals are
satisfied.

Claim:
The IA network (X,C) is consistent if and only if there exists a set of primitive
relations pi,j ∈ ri,j such that for any triple of such relations pi,j ∈ pi,k ∘ pk,j holds.

Notes:
– Path consistency is not a complete consistency

technique for interval algebra.
– Consistency-checking problem for IA networks

is an NP-complete problem.
– Intervals can be converted to instants but some interval

relations will not be binary relations among the instants.

Interval algebra – consistency

i j

l

k

{f,!}

{d,di} {d,di}

{s,m}

{o}

{s,m}

Quantitative approach

“I got up at 6 o’clock. I read newspapers for 30 minutes during the
breakfast. After the breakfast I walked to my office which took me one
hour. I entered the office at 8:00AM”.
When did I start my breakfast?

• 360 =< bs, “I got up at 6
o’clock”

• bs =< rs, re =< be, “I read
newspapers during breakfast”

• re-rs = 30, “I read newspapers
for 30 minutes”

• be = ws, “after breakfast I
walked to my office”

• we-ws = 60, “[walking] took
me one hour”

• we = 480, “I entered the office
at 8:00AM”

bs =< rs = re-30 =< be-30 = ws-30 = (we-60)-30 = 390
I started my breakfast between 6:00AM and 6:30AM.

(a) (b)

bs be
[1,∞]

ws we
[60,60]

rs re
[30,30]

[0,0]

[0,∞] [0,∞]

t0

[360,∞]
[480,480]

bs be
-1

ws we
60

rs re
30

0

0 ∞

t0

-360

480
-480

∞

-60

0
∞

∞

-30

0

The basic temporal primitives are again time points, but
now the relations are numerical.
Simple temporal constraints for instants ti and tj:

– unary: ai ≤ ti ≤ bi

– binary: aij ≤ ti–tj ≤ bij,
where ai, bi, aij, bij are (real) constants

Notes:
– Unary relation can be converted to a binary one, if we use

some fix origin reference point t0.
– [aij,bij] denotes a constraint between instants ti a tj.
– It is possible to use disjunction of simple temporal constraints.

Quantitative framework

Simple Temporal Network (STN)
– only simple temporal constraints rij= [aij,bij] are used
– operations:
• composition: rij ∘ rjk = [aij+ajk, bij+bjk]
• intersection: rij ∩ r’ij = [max{aij,a’ij}, min{bij,b’ij}]

– STN is consistent if there is an assignment of values
to instants satisfying all the temporal constraints.

– Path consistency is a complete technique making STN
consistent (all inconsistent values are filtered out,
one iteration is enough). Another option is using all-
pairs minimal distance Floyd-Warshall algorithm.

STNDechter et al. (1991)

Temporal planning involves reasoning on time.
Actions do not describe state transitions only but they specify how

the state variables evolve in time and what are the prevailing
conditions:
– actions have duration

• going from A to B takes some time
– preconditions must hold at specific time of action execution

• place B must be free right before arrival
– similarly action effects happen at specific times of the action

• place A is made empty right after leaving it
– actions can interfere to achieve a joint effect

• to open doors we need to press the handle and push (or pull) the doors
– goals and known intermediate states can be spread in time

• a dock is closed for a given time interval due to maintenance so vessels cannot
use it

• customer A will be served before the customer B

Temporal planning

Planning with temporal operators
– Action specification contains information when the

preconditions must hold, when the effects become active
and there are temporal relations between the time points
and intervals.

Planning with chronicles
– Actions describe partially defined functions how the state

variables are being changed in time.

Planning graph and time
– Actions are split into three parts – start, middle, and end –

and state layers have duration.

B

Approaches to temporal planning

Multi-valued state variables describe some properties depending
on world states.

– rloc: robots x S → locations
Now state variables will depend on exact time:

– rloc: robots x time → locations

Example:
– At time t1 robot r1 entered place loc1, where it stayed till time t2 and

then left.
– At time t3, t2<t3, robot r1 arrived to place loc2, where it stayed till time

t4 and then left.
– At time t5, t4<t5, robot r1 arrived to some not-yet specified place l.

State variables and time

The evolution of a state variable can be specified partially with
”holes” where the value is unknown.

– During planning, this evolution will be concretised.
We will restrict to piecewise constant functions that can be
described using two types of temporal assertions:

– event x@t:(v1,v2) specifies the instantaneous change of the value of x
from v1 to v2 (v1≠v2) at time t
• x@t:(v1,v2) ≡ (∃t0 ∀t’ (t0< t’<t) x(t’)=v1) ∧ x(t)=v2

– persistence condition x@[t1,t2):u specifies that the value of x persists
as being equal to u over the interval [t1,t2)
• x@[t1,t2):u ≡ ∀t (t1≤t<t2) x(t)=u

There is the following relation between events and persistence
conditions:

x@t:(v1,v2) ≡ v1 ≠ v2 ∧ ∃t1, t2 (t1<t<t2) x@[t1,t):v1 ∧ x@[t,t2):v2

Events and persistence conditions

A chronicle for a set of state variables is a pair Φ=(F,C),
where:

– F is a set of temporal assertions over the state variables
(i.e. events and persistence conditions)

– C is a set of constraints of two types:
• object constraints, i.e., constraints connecting object variables in

the form of x∈D, x=y, x≠y and rigid relations
• temporal constraints, i.e., constraints

over the temporal variables using
the point algebra (<,=,>)

Timeline is a chronicle for a single
state variable.

({ rloc(r1)@t1: (l1,loc1),
rloc(r1)@[t1,t2) : loc1,
rloc(r1)@t2: (loc1,l2),
rloc(r1)@t3: (l3,loc2),
rloc(r1)@[t3,t4) : loc2,
rloc(r1)@t4: (loc2,l4),
rloc(r1)@t5: (l5,l) }

{ adjacent(l1,loc1),
adjacent(loc1,l2),
adjacent(l3,loc2),
adjacent(loc2,l4),
adjacent(l5,l),
t1<t2<t3<t4<t5 })

Chronicle

To ensure that the timeline can specify a valid evolution of a state variable,
there must not be any two conflicting temporal assertions – temporal
assertions that allow different values of the state variable at the same time.
Temporal conflicts can be avoided by requiring a timeline to contain, either
explicitly or implicitly, separation constraints that make each pair of assertions
non-conflicting.
The separation constraint for a pair of assertions is defined as follows:

– for x@[t1,t2):v1 a x@[t3,t4):v2 there are three possible separation constraints:
• t2≤t3, t4 ≤ t1, v1=v2

– for x@t:(v1,v2) a x@[t1,t2):v there are four possible separation constraints:
• t<t1, t2<t, (t1=t ∧ v=v2), (t2=t ∧ v=v1)

– for x@t:(v1,v2) a x@t’:(v1’,v2’) there are two possible separation constraints:
• t≠t’, (v1=v1’ ∧ v2=v2’)

Note:
– Assertions can also be separated by constraints on difference of the object

variables in the assertions (or example assertions for state variables rloc(r) and
rloc(r’) can be separated by a constraint r ≠ r’).

Separation constraints

Timeline Φ=(F,C) for the state variable x is consistent iff C
is consistent (there is a solution) and for each pair of
temporal assertions from F there is a separation
constraint entailed by C.

– the separation constraint can be a part of C
– or it can be entailed by C (to be true in any solution of C)

A chronicle is consistent iff all its timelines are
consistent.

Note:
– Consistency requires the separation constraints to be

entailed by C; it is not enough if the separation constraints
can be added to C without a conflict.

Consistency

A consistent chronicle Φ =(F,C) supports an assertion 𝛼 (𝛼 being
either x@t:(v,v’) or x@[t,t’):v) iff there is in F an assertion b that
asserts a value w for 𝛼 (𝛽 is either x@𝝉:(w’,w) or x@[𝝉’, 𝝉):w) and
there exists a set of separation constraints c such that
Φ ∪ ({𝛼, x@[𝝉,t):v}, {w=v, 𝝉 <t} ∪ c) is a consistent chronicle.

– Φ∪ Φ’ = (F ∪ F’, C ∪ C’), Φ ⊆Φ’ ≡ (F ⊆ F’ ∧ C ⊆ C’),
– 𝛽 is called a support for 𝛼 in 𝛼
– the pair 𝛿 = ({𝛼, x@[𝝉,t):v}, {w=v, 𝝉 <t} ∪ c) is called

an enabler for 𝛼 in Φ

Notes:
– The chronicle must be consistent before enabling 𝛼.
– The enabler is a chronicle.
– The support for 𝛼 is looked only for value v, that is before the time t. This is

because the support will be used as a causal explanation for 𝛼.
– There can be several ways to enable an assertion 𝛼 in Φ.

x@[𝝉,t):v

t t’

𝛼
v

v’

𝝉𝝉’

𝛽w

w’

Support for assertion

A consistent chronicle Φ =(F,C) supports a set of assertions 𝜀 iff each
assertion 𝛼i ∈ 𝜀 is supported by (F	∪ 𝜀 -{𝛼i}, C) with an enabler 𝛿i

such that Φ∪ 𝜙 is a consistent chronicle, where 𝜙 = ∪i 𝛿i.

Notes:
• The definition allows an assertion 𝛼i ∈ 𝜀 to support another

assertion 𝛼j ∈ 𝜀 with respect to Φ as long as the union of the
enablers is consistent with Φ. This allows synchronisation of several
actions with interfering effects.

• 𝜙 is called an enabler for 𝜀 (again, the enabler is not unique)

Let Φ’=(F’,C’) be a chronicle such that Φ supports F’ and let 𝜃(Φ’/ Φ) =
{𝜙 ∪ (∅,C’) | 𝜙 is enabler for F’} be a set of all possible enablers.
Then a consistent chronicle Φ =(F,C) supports chronicle Φ’=(F’,C’),
iff Φ supports F’ and there is an enabler 𝜙 ∈ 𝜃(Φ’/ Φ) such that
Φ∪ 𝜙is consistent chronicle.

Φ entails Φ’ iff Φ supports Φ’ and there is an enabler 𝜙 ∈ 𝜃(Φ’/ Φ)
such that 𝜙 ⊆Φ.

Support for chronicle

A chronicle planning operator is a pair o = (name(o), (F(o),C(o))):
– name(o) is a syntactic expression of the form o(ts,te,t1,…,v1,v2,…)

containing all temporal and object variables in the operator (o is an
operator symbol)

– (F(o),C(o)) is a chronicle

Example (simplified):
move(ts,te,t1,t2,r,l,l’) =

{rloc(r)@ts : (l,routes),
rloc(r)@[ts,te) : routes,
rloc(r)@te : (routes,l’),
contains(l)@t1 : (r,empty),
contains(l’)@t2 : (empty,r),
ts < t1 < t2 < te,
adjacent(l,l’) }

The differences from classical planning operators are
– no distinction between preconditions and effects
– an operator is applied not to a state but to a chronicle
– the result of applying an instance of operator to a chronicle is not unique

Planning operators

An action is a partially instantiated operator.

Action a=(F(a),C(a)) is applicable to a chronicle Φ iff Φ
supports the chronicle (F(a),C(a)).

The result of applying a to Φ is not unique but a set
of chronicles 𝛾(Φ,a) = {Φ ∪ 𝜙 | 𝜙 ∈ 𝜃(a/ Φ)}.

A set of actions 𝜋={a1,…,an} is applicable to Φ iff Φ
supports Φ𝜋= ∪i (F(ai),C(ai)).

The result of applying 𝜋 to Φ is the set of chronicles
𝛾(Φ,𝜋) = {Φ ∪ 𝜙| 𝜙 ∈ 𝜃(Φ𝜋/ Φ)}.

Action application

A temporal planning problem is a triple P=(O, Φ0, Φg),
where

– O is a set of chronicle planning operators
– Φ0 is a consistent chronicle that represents an initial

scenario describing the rigid relations, the initial state, and
the expected evolution that will take place independently
of the actions to be planned

– Φg is a consistent chronicle that represents the goals

A solution plan for a problem P is a set of actions
𝜋={a1,…,an}, each being an instance of operator in O,
such that that there is a chronicle in 𝛾(Φ0, 𝜋) that
entails Φg.

Planning problem

The planning procedure is derived from plan-space planning.
For a planning problem P=(O, Φ0, Φg) we start with the chronicle
Φ=(F0,C0∪Cg), a set of open goals G=Fg, an empty plan 𝜋=∅, and an empty set
of threats K= ∅.

Open goal
– is either supported by Φ,

then its enablers are
added to K

– otherwise, a resolver is an
action that supports the
goal and this action is
added to the system

Threats is a pending set of
enablers.

– From each set of enablers
we need to select one
that is consistent with Φ
and its added to Φ.

{ }

Planning with chronicles

Now we know how to use time in planning
– planning with chronicles

We already have some resources in planning
– for example a hand or a crane

A state variable with two values occupied/empty is not
an efficient model to describe several identical
resources – it does not matter which hand is used to
pick up the block (the hands are symmetrical).
We can model a set of identical unary resources using a
single multi-valued state variable describing the
number of available resources.

– the domain for the variable is numeric (the number of
resources)

– changes of values are relative (the resources are taken and
returned)

Resources in planning

A state variable describes how some property of the
object changes in time.

– the changes are absolute (location changed from loc1 to
loc2)

Similarly we can describe the capacity profile of the
resource, i.e., how the available capacity changes with
time, using a capacity variable.

– resources x time → {0,1,…,Q},
where Q is a maximal capacity

– the domain is numeric
– the changes of values are relative

(available capacity is increased
or decreased by some amount)

Note:
we assume instant changes

Capacity variable

We can describe changes of capacity variables using
temporal assertions for resources.

– decrease of capacity z@t:-q
– increase of capacity z@t:+q
– borrowing of capacity z@[t,t’):q

Notes:
– this is a description of relative changes
– z@[t,t’):q ≡ z@t:-q ∧ z@t’:+q
– z@t:-q ≡ z@[t,∞):q
– z@t:+q ≡ z@0:+q ∧ z@[0,t):q

• at the beginning we increase the capacity from Q to Q+q
and we borrow the increased capacity till time t

– it is necessary to specify the maximal capacity for each
capacity variable in the problem description

Temporal assertions and capacity variables

Planning operator is a chronicle with temporal assertions
and constraints.
To work with resources we need to add to a chronicle
just the temporal assertions for resources.

Operators and resources

We will only assume actions that borrow resource capacity so
the assertions have the form z@[t,t’):q.
We need to extend the notion of consistency to cover assertions
for resources, i.e., to assume capacity limits.
A set of temporal assertions Rz for resource z is conflicting iff
there is a subset {z@[ti,ti’):qi | i∈I} ⊆ Rz such that:

– assertions from this subset overlap in time, i.e., it is possible to assign
times ti such that ∩i∈I [ti,ti’)≠ ∅

– Σi∈I qi > Q

Notes:
– Resource conflict means a possible exceeding of resource capacity.
– The resource conflict can only appear between the assertions for the

same resource variable.

A chronicle is consistent iff all temporal assertions over all state
variables are consistent and there is no conflicting set of
assertions for capacity variables.

Resource conflicts

How to discover resource conflicts?

Claim:
Intervals from a set I can overlap iff any pair of intervals from I
can overlap.
(∩i∈I [ti,ti’)≠ ∅⟺	∀i,j∈I: [ti,ti’) ∩[tj,tj’)≠ ∅)

The set of intervals/assertions can be represented using a graph:
– nodes describe

intervals/assertions
– edges connect nodes

with overlapping
intervals

We will look for a clique U in the graph such that Σi∈U qi > Q.
More precisely, we will look for smallest (inclusion) cliques with this
property – minimal critical sets (MCS)

Critical set

How to find all minimal critical sets?
• index all nodes (in any order)
• for each node, explore in the DFS style all cliques containing this node and

the nodes with smaller indexes
• all cliques exceeding the resource capacity are remembered (and not further

extended)

• The algorithm starts with a clique found so far (at the beginning it is empty)
and a set of pending candidates to be included in the clique (at the beginning
contains all nodes).

• We look for possible extensions of the clique by a node vi (and then nodes
with index smaller than i).

e
e

so-far found part of clique

pending candidates to be included in the clique
(they are connected with every node in p)

not finding identical cliques

Resource conflict detection

clique(n)
pending(n)

MCS

Q= 100

Resource conflict detection: an example

How to remove a resource conflict?
• Let U= {z@[ti,ti’):qi | i∈I} be a minimal critical set then any temporal

constraint ti ’< tj for i,j∈I removes the resource conflict.
– this constraint removes edge (i,j) from the graph so U is no more a clique
– any larger clique U’: U⊆U’ is no more a clique
– no smaller clique U’: U’ ⊆ U was conflicting

• Some of suggested temporal constraints can be in temporal conflict with
other constraints.
– Example: t4’<t7 is in conflict with t7’<t4’ and t7<t7’
– Such resolvers are not used!

• Some suggested constraints are too strong (force removal of other edges
from the graph).
– Example: t4’<t3 is too strong as it forces t7’<t3 (via t7’<t4’)
– The planning algorithm will select one

resolver to repair MCS so it is better to
use only the necessary resolvers so
they do not force other resolvers.

MCS

Resolving resource conflicts

We just extent the
algorithm for planning
with chronicles to
work with minimal
conflict sets (in M) to
resolve resource
conflicts

Planning with resources

© 2023 Roman Barták
Charles University, Prague, Czech Republic

bartak@ktiml.mff.cuni.cz

