
Foundations of
Automated Planning

Roman Barták
Charles University, Czech Republic

Lecture 05: Heuristics, Control Rules, Hierarchical Task Networks

So far, we studied general planning algorithms.
Now we will look at several approaches for
improving the efficiency of planning.
–heuristics

• domain independent search guide

– control rules
• domain dependent pruning

–hierarchical task networks
• domain dependent recipes

Improving efficiency

Heuristics are used to select next search node to be explored
(recall, that we described the planning algorithms using non-
determinism).

– Note: If we know, which node to select to get a solution, then we use
oracle. With oracle we will find the solution deterministically.

Naturally, we prefer the heuristic to be as close as possible to
oracle while being computed efficiently.
A typical way to obtain (admissible) heuristics is via solving a
relaxed problem (some problem constraints are relaxed – not
assumed).

– solve the relaxed problem for the successor nodes
– select the node with the best solution of the relaxed problem

For optimisation problems the heuristic h(u) estimates the real
cost h*(u) of the best solution reachable via node u.

– the heuristic is admissible, if h(u) ≤ h*(u) (for minimization)
– the search algorithms using admissible heuristics are optimal

Heuristics

State-space heuristics

Heuristic estimates the number of actions to reach a goal state from a
given state or to reach a given predicate or a set of predicates.
Based on solving a “relaxed” problem:

– assume only positive effects
– assume that different atoms can be reached independently

Zero attempt:
– ∆0(s,p) = 0 if p∈s
– ∆0(s,g) = 0 if g⊆s
– ∆0(s,p) = ∞ if p∉s and ∀a∈A, p∉effects+(a)
– ∆0(s,p) = mina{1+ ∆0(s,precond(a)) | p∈effects+(a)}
– ∆0(s,g) = Σp∈g ∆0(s,p)

This heuristic is not admissible
(for optimal planning) because it
does not provide a lower bound
for the plan length!

A first attempt to admissible heuristic
– …
– ∆1(s,g)= max{∆0(s,p) | p∈g}
– If the heuristic value is greater than the best so-far solution then we can cut-off

the search branch.
– Based on experiments, heuristic ∆1 is less informed than ∆0.

A second attempt to admissible heuristic
Let us try to explore reachability of pairs of atoms together.

– …
– ∆2(s,p)=mina{1+ ∆2(s,precond(a)) | p∈effects+(a)}
– ∆2(s,{p,q})=min{

mina{1+ ∆2(s,precond(a)) | {p,q}	⊆	effects+(a)},
mina{1+ ∆2(s,{q}∪precond(a)) | p ∈ effects+(a)},
mina{1+ ∆2(s,{p}∪precond(a)) | q ∈ effects+(a)}}

– ∆2(s,g)= maxp,q{∆2(s,{p,q}) | {p,q} ⊆ g}

We can generalise the above idea to larger sets of atoms, but for k>2 this heuristic is
computationally expensive.
What about the Graphplan?

– The above principles resemble the expansion stage of Graphplan, but Graphplan
also provides mutexes.

– Heuristic ∆2 can be modified to be closer to Graphplan by assuming reachability
of two atoms by independent actions as a single step

State-space admissible heuristics

State-space planning with heuristics

Forward planning
• Prefer the action leading to a

state with smaller heuristic
distance to a goal.

• Heuristic is computed in every
search step.

Backward planning
• First, compute the heuristic

distance from the initial state s0
to all atoms: ∆(s0,p)
– can be done incrementally

• Prefer the action whose
regression set is heuristically
closer to the initial state.

Plan-space planning is based on AND-OR search.
There are two types of choices:

– the choice of flaw (AND node)
– the choice of resolver (OR node)

Flaw-selection heuristic
– This is a form of serialization of

the AND/OR tree, in particular
the AND node is split into several nodes.

– Which serialization is better?

– Better serialization leads to a smaller number of nodes in the graph.
– FAF (fewest alternatives first) heuristic

• first repair the flaws with fewer ways for repair

Plan-space heuristics

Which resolver for a flaw should be tried first?
Let {𝜋1,…, 𝜋m} be partial plans obtained by applying different flaw resolvers
and g𝜋 be a set of open goals in 𝜋.
• Zero attempt

prefer a partial plan with fewer open goals
c 𝜂0(𝜋) = |g 𝜋|
– However, this does not really estimate the size of the plan.

• Next attempt
Generate an AND-OR graph for 𝜋 till given depth k and count the number
of new actions and the number of open goals not in s0
c 𝜂k(𝜋)
– This is too computationally expensive.

• One more improvement
Construct a planning graph (once) for the original goal. Then find an open
goal p in 𝜋, that was added last to the graph and on the path from s0 to p
count the number of actions that are not in 𝜋
c 𝜂(𝜋)

Resolver-selection heuristic

Heuristics guide the planner towards a goal state by ordering
alternative plans. They do not solve the problem with the large
number of alternatives.
Can we detect and prune bad alternatives?

Example (blockworld)
– If a block is placed correctly (consistent with the goal) then any action

that moves that block just enlarges the plan.
– If a block is on a wrong place and there is an action that moves it to

the correct place then any action that moves the block elsewhere just
enlarges the plan.

Domain dependent information can prune the search space, but
the open question is how to express such information for a
general planning algorithm.

– control rules

Pruning

Blocksworld: domain knowledge

When do we need to move block x?
Exactly in one of the following situations:

– s contains ontable(x) and g contains on(x,y)
– s contains on(x,y) and g contains ontable(x)
– s contains on(x,y) and g contains on(x,z) for some y≠z
– s contains on(x,y) and y must be moved

initial state goal

e

d

d

ba
c c

a
b

Fast planning for blocksworld

Position is consistent with block c if there is no reason to move c.

c
a b

Initial state

c

a b

ca b

ca

b

ca
b

c

a
b

c

a
b

c

a
b

Goal

unstack(c,a)

putdown(c)

pickup(b)

stack(b,c)

pickup(a)

stack(a,b)

We need a formalism to express relations between the
current world state and future states.

Simple temporal logic
– extension of first-order logic by modal operators

• 𝜙1 ∪ 𝜙2 (until) 𝜙1 is true in all states until the first state (if any)
in which 𝜙2 is true

• ¨ 𝜙 (always) 𝜙 is true now and in all future states
• ¯ 𝜙 (eventually) 𝜙 is true now or in any future state
• ¡ 𝜙 (next) 𝜙 is true in the next state
• GOAL(𝜙) 𝜙 (no modal operators) is true in the goal state

– 𝜙 is a logical formula expressing relations between the objects
of the world (it can include modal operators)

Temporal logics

The interpretation of modal formula involves not just the current state but
we need to work with a triple (S, si, g):

– S = 〈s0, s1,… 〉 is an infinite sequence of states
– si∈ S is the current state
– g is a goal formula

Plan 𝜋 = 〈a1, a2,…, an〉 gives a finite sequence of states S𝜋 = 〈s0, s1,…, sn 〉
where si+1 = 𝛾(si,ai+1), that can be made infinite 〈s0, s1,… ,sn-1, sn, sn, sn,… 〉

(S, si, g) ╞ 𝜙 is defined as follows:
• (S, si, g) ╞ 𝜙 iff si ╞ 𝜙 for atom 𝜙
• (S, si, g) ╞ 𝜙1 ∧ 𝜙2 iff (S, si, g) ╞ 𝜙1 and (S, si, g) ╞ 𝜙2
• …
• (S, si, g) ╞ 𝜙1 ∪ 𝜙2 iff there exists j ≥ i st. (S, sj, g) ╞ 𝜙2

and for each k: i≤k<j (S, sk, g) ╞ 𝜙1
• (S, si, g) ╞¨ 𝜙 iff (S, sj, g) ╞ 𝜙 for each j ≥ i
• (S, si, g) ╞¯ 𝜙 iff (S, sj, g) ╞ 𝜙 for some j≥ i
• (S, si, g) ╞¡ 𝜙 iff (S, si+1, g) ╞ 𝜙
• (S, si, g) ╞ GOAL(𝜙) iff 𝜙 ∈	g

Semantics of modal operators

Goodtower is a tower such that
no block needs to be moved.
Badtower is a tower that is not good.

Control rule:

goodtower
badtower

goodtower remains goodtower

do not put anything on
badtower

do not take a block from a table until you
can put it on a goodtower

Control rules: an example

To use control rules in planning we need to express how the formula changes when we
go from state si to state si+1.

– We look for a formula progr(𝜙, si) that is true in si+1, if 𝜙 is true in state si
• 𝜙 does not contain any modal operator

– progr(𝜙, si) = true if si╞ 𝜙
= false if si╞ 𝜙 does not hold

• 𝜙 with logical connectives
– progr(𝜙1 ∧ 𝜙2, si) = progr(𝜙1, si) ∧ progr(𝜙2, si)
– progr(¬ 𝜙, si) = ¬progr(𝜙, si)

• 𝜙 with quantifiers (no function symbols, just k constants cj)
– progr(∀x 𝜙, si) = progr(𝜙{x/c1}, si) ∧ … ∧ progr(𝜙{x/ck}, si)
– progr(∃ x 𝜙, si) = progr(𝜙{x/c1}, si) ∨ … ∨ progr(𝜙{x/ck}, si)

• 𝜙 with modal operators
– progr(𝜙1 ∪ 𝜙2, si) = ((𝜙1 ∪ 𝜙2) ∧ progr (𝜙1, si)) ∨ progr (𝜙2, si)
– progr(¨ 𝜙, si) = (¨ 𝜙) ∧ progr(𝜙, si)
– progr(¯ 𝜙, si) = (¯ 𝜙) ∨ progr(𝜙, si)
– progr(¡ 𝜙, si) = 𝜙

Technical notes:
– progress(𝜙, si) is obtained from progr(𝜙, si) by cleaning (true ∧ d → d, ¬true → false, …)
– Can be extended to a sequence of states 〈s0, … ,sn〉

progress(𝜙, 〈s0, … ,sn 〉) = 𝜙 if n = 0
= progress(progress(𝜙, 〈s0, … ,sn-1 〉), sn) otherwise

Progression

Forward state-space planning guided by control rules.
– If a partial plan S𝜋 violates the control rule progress(𝜙, S𝜋),

then the plan is not expanded.

a partial plan violates the control rule 𝜙

a complete plan found

actions applicable to state s

control rule progression 𝜙

a new state after the action

Planning with control rules

Hierarchical Task Network Planning

Classical planning assumes primitive actions
connected via causal relations.
In real-life we can frequently use “recipes” to solve
a particular task.
– recipe is a set of operations to achieve a sub-goal

HTN planning is based on performing a set of tasks
(instead of achieving goals).
– primitive task: performed by a classical planning

operator
– non-primitive task: decomposed by a method to

other tasks (can use recursion)

Task networks

How to describe a recipe to perform a given task?
– specify sub-tasks and their relations

A task network is a pair (U,C), where U is a set of
tasks and C is a set of constraints.
– tasks are named similarly to operators: t(r1,…,rn)
– constraints are in the form:

• precedence constraint: u < v (task u is performed before
task v)

• before-constraint: before(U’,l) (literal l is true right before
the set of tasks U’)

• after-constraint: after(U’,l) (literal l is true right after the set
of tasks U’)

• between-constraint: between(U’,U’’,l) (literal l must be true
right after U’, right before U’’ and in all states in between)

HTN methods

To perform non-primitive tasks, we need to
decompose them to other tasks using a method.
An HTN method is a tuple
m = (name, task, subtasks, constr)
– name is n(x1,…,xn), where {x1,…,xn} are all variables

in m and n is a unique name of the method,
– task is a non-primitive task,
– (subtasks, constr) is a task network.

There may be more methods for a single non-
primitive task.

Task decomposition

precedence constraint

non-primitive task

primitive task (operator)

method

HTN Problem

Now, the planning problem is specified somehow
differently from classical planning as a process to
obtain a plan from decomposition of tasks in a
given task network.

An HTN planning domain is a pair (O,M)
– O is a set of operators
– M is a set of HTN methods

An HTN planning problem is a 4-tuple (s0,w,O,M)
– s0 is the initial state
– w is the initial task network
– (O,M) is the HTN planning domain

Solution plan

When is a plan π a solution for problem P?
• If w = (U,C) is primitive then π = <a1,…,ak> is a

solution for P, if (U’,C’) is a ground instance of (U,C)
with total ordering <u1,…,uk> of nodes in U’:
– the names of tasks <u1,…,uk> are actions <a1,…,ak>
– the plan π is executable in the state s0
– all constraints C’ are satisfied by <a1,…,ak>

• If w = (U,C) is non-primitive then π is a solution for
P if there is a sequence of task decompositions
applied to w and giving a primitive task network
w’ (all tasks are primitive) that is a solution for P.

HTN Planning

decomposition of a task

performing application-
specific computations

Topics
1. problem formalization
2. classical planning (STRIPS)

• state-space and plan-space planning

3. neo-classical planning (Graphplan)
• compilation to SAT and CSP

4. planning with time and resources
• scheduling task inside planning

5. Heuristics, control knowledge, and hierarchical planning
• speeding-up planners

Where to learn more?
M. Ghallab, D. Nau, P. Traverso: Automated Planning: Theory and Practice,
Morgan Kaufmann

Course summary

© 2023 Roman Barták
Charles University, Prague, Czech Republic

bartak@ktiml.mff.cuni.cz

