
Theory and Practice of Constraint Propagation

Roman Barták*

Charles University, Faculty of Mathematics and Physics
Malostranské námestí 2/25, 118 00 Praha 1, Czech Republic
e-mail: bartak@kti.mff.cuni.cz

Abstract: Despite successful application of constraint programming (CP) to solving many real-life
problems there is still an indispensable group or researchers considering (wrongly) CP as a simple
evaluation technique only. Even if sophisticated search algorithms play an important role in
solving constraint-based models, the real power engine behind CP is called constraint propagation
(domain filtering, pruning or consistency techniques).

In the paper we give a survey of common consistency techniques for binary constraints. We
describe the main ideas behind them, list their advantages and limitations, and compare their
pruning power. Then we briefly explain how these techniques can be extended to non-binary
constraints. Last part of the paper is devoted to modelling issues. We give some hints how the
constraint propagation can be exploited more when solving real-life problems. This part is based
on our experience with solving real-life programs and it is also supported by empirical
observations of other researchers.

Keywords: constraint propagation, filtering algorithms

* Supported by the Grant Agency of the Czech Republic under the contracts no. 201/99/D057 and 201/01/0942 and by the project
LN00A056 of the Ministry of Education of the Czech Republic.

1 Introduction
Thanks to many constraint satisfaction packages
available for end users, constraint programming
(CP) is becoming more widespread and CP
technology is used to solve various mostly
combinatorial problems. It means that there exists a
growing group of users without deep knowledge
how CP works inside but still able to model and
solve problems by means of constraints. However,
if difficulty of the problem increases then it is more
and more complicated to design an appropriate
constraint model that can then be successfully
solved. We believe that better understanding of
processes inside the constraint packages can help
their users to design better models and thus to
decrease development time (and expenses as well).

Constraint satisfaction problem is defined by a
finite set of variables, each variable has assigned a
finite domain, i.e. a finite set of possible values, and
by constraints restricting combinations of values
that the variables can take together. The task is to
find a value for each variable from its domain in
such a way that all the constraints are satisfied.
Usually, constraints are used actively to reduce
domains by filtering values that cannot take part in
any solution. This process is called constraint
propagation, domain filtering, pruning or
consistency technique, and it is the core of most

constraint satisfaction packages. Constraint
propagation can be used to solve fully the problem
but this is rarely done due to efficiency issues. It is
more common to combine an efficient but
incomplete consistency technique with non-
deterministic search. Such consistency technique
does not remove all inconsistent values from the
variables' domains, but it can still eliminate many
"obvious" inconsistencies and, thus, simplify the
problem and reduce the search space. To solve the
problem to full-extent, incomplete consistency
techniques are accompanied by non-deterministic
search that explores possible value assignments.

First, we show how a non-binary constraint can be
translated to a set of binary constraints giving an
equivalent solution set (Section2). Then, we survey
basic consistency techniques for binary constraints
(Section 3). In Section 4 we discuss some issues
concerning non-binary constraints and techniques
for solving them. Section 5 is devoted to some hints
about using consistency techniques in practice.

2 Binary Constraints
It is well known that a non-binary CSP, i.e., the
CSP with constraints of arity larger than 2, can be
translated to an equivalent binary CSP. This fact is
so absorbed that many research papers dealing with
constraint satisfaction methods assume binary

In J. Figwer (editor) Proceedings of the 3rd Workshop on Constraint Programming in Decision and Control, June 2001, Poland.

constraints only and sometimes these methods are
never extended to n-ary constraints.

Projection. N-ary constraint can be easily
approximated by binary constraints on the same set
of variables by projecting the non-binary constraint
onto the pairs of variables it contains [18]. For
some n-ary constraints like all-different, this gives a
set of binary constraints with the same solution set
as the original n-ary constraint. Unfortunately, in
general we get a network of binary constraints
having a set of solutions that is a superset of the set
of solutions of the original non-binary constraint as
Figure 1 shows. Still studying such binary
decomposition [13] is important because it allows
us to achieve some level of consistency on the n-ary
constraint, e.g. bound consistency, by making the
set of binary constraints consistent.

Figure 1: Projection of the n-ary constraint onto the pairs of
variables provides a superset of the original solution set.

There exist two basic general methods for
converting a non-binary CSP to an equivalent
binary CSP: the dual graph method and the hidden
variable method. Both these methods change the set
of variables of the original problem.

Dual encoding. The dual encoding is based on
swapping the variables for constraints and vice
versa. There is a dual variable vc for each n-ary
constraint c with the domain of consistent tuples of
this constraints. For each pair of constraints c and c'
sharing some variables in the original problem there
is a binary compatibility constraint between the
variables vc and vc'. This constraint restricts the dual
variables to tuples in which the original shared
variables take the same value.

Figure 2: The dual variable encoding for the 0-1 variables
x1…x6 and the constraint problem c1:x1+x2+x6=1, c2:x1-x3+x4=1,
c3:x4+x5-x6>0, c4:x2+x5-x6=0.

Hidden variable encoding. The hidden variable
encoding uses the same dual variables vc like the
dual encoding and, moreover, there are also the
original variables xi. The compatibility constraints

are defined between the dual variable vc and each
variable xi in the constraint c. This constraint
restricts the tuples assigned to vc to be consistent
with the value assigned to xi.

Figure 3: The dual variable encoding for the 0-1 variables
x1…x6 and the constraint problem c1:x1+x2+x6=1, c2:x1-x3+x4=1,
c3:x4+x5-x6>0, c4:x2+x5-x6=0.

Various levels of equivalence of these encoding
with the original non-binary problem are studied in
[22]. Because of any non-binary constraint network
can be polynomially converted into an equivalent
binary one, many works on filtering algorithms are
restricted to the binary case. However, in real-life
problems the binary conversion is sometimes/often
impracticable and therefore, recently several
researchers turn attention to studying efficiency of
such conversion [1], comparing and proposing new
binary encodings [24,26] as well as dealing with
non-binary constraints directly [5-8].

3 Consistency techniques - a survey
In the previous section, we showed that an arbitrary
CSP can be translated to an equivalent binary CSP.
For simplicity reasons we will use binary CSP to
explain ideas behind basic propagation algorithms.
If the CSP is binary then it can represented as an
undirected graph with the vertices corresponding to
the variables and the edges corresponding to the
constraints. Many names for the consistency
techniques are then derived from graph notions.

Node consistency. The easiest consistency
technique called node consistency (NC) removes
values inconsistent with unary constraints from the
variables' domains. The node consistency algorithm
is pretty straightforward: it goes though the
variables and removes values inconsistent with any
unary constraint on the variable.

Arc consistency. We say that a constraint is arc
consistent (AC) if for any value of the variable in
the constraint there exists a value for the other
variable in such a way that the constraint is
satisfied. CSP is arc consistent if all the constraints
are arc consistent. Usually, the constraint is made
AC by propagating the domain from one variable to
the other variable and vice versa. This is called
revision of the (oriented) arc in the graph. CSP is
made AC by repeated revisions of the arcs. The
simplest algorithm for achieving arc consistency
repeats the revisions until the domain of any

(0,0,1), (0,1,0),
(1,0,0)

(0,0,1), (0,1,0),
(1,0,0)

(0,0,1), (0,1,0),
(1,0,0)

(0,0,1), (0,1,0),
(1,0,0)

R21 & R33

R33 R22 & R33

R31

R11

v1

v2

v4

v3

(0,0,1), (0,1,0),
(1,0,0)

(0,0,1), (0,1,0),
(1,0,0)

(0,0,1), (0,1,0),
(1,0,0)

(0,0,1), (0,1,0),
(1,0,0)

r1
v1

v2

v4

v3

0,1 0,1 0,1 0,1 0,1 0,1x1 x2 x3 x4 x5 x6

r1

r1

r1

r2

r2 r2

r2
r3

r3 r3

r3

x1

x2

x3

variable is changed. This algorithm is called AC-1
and it suffers from the problem of non-necessary
repetition of revisions. In particular, if a domain of
any variable is changed then only the arcs going to
this variable are affected by this reduction.
Moreover the arc going from the variable that
caused the domain reduction does not need to be
revised again because it is not affected by this
domain reduction. Figure 4 shows which arcs
should be re-revised after domain reduction.

Figure 4: Only some arcs (bold) need to be re-revised after
domain reduction caused by another arc (dashed).

The idea of repeating only the necessary revisions
was included in the ancient Waltz algorithm for
scene labelling [30]. This algorithm was
generalised to solve arbitrary CSP and it is called
AC-2. A more efficient version of this algorithm
which keeps a single queue of arcs for re-revision is
called AC-3 and it is probably the most widely used
consistency algorithm.

Figure 5: AC-3 algorithm

AC-1 to AC-3 algorithms are described in [15], and
their complexity is studied in [16]. AC-3 still
repeats many constraint checks that can be avoided
by better bookkeeping. Therefore Mohr and
Henderson [17] proposed AC-4 algorithm that
maintains a support set for each value. In particular,
for each value of the variable i there is a counter
indicating how many supporters this value has in
the domain of the variable j, plus there is a structure
keeping the pairs (variable, value) which are
supported by the current value. By maintaining
these structures constraint checks can be fully
avoided during run of AC-4 algorithm.

Figure 6: Data structures used by AC-4

AC-4 is proved to have the optimal worst case
complexity, unfortunately, in many cases its
complexity is close to this worst case due to
complexity of initialisation of the data structures
(counters and support sets). Therefore Bessiere [4]
proposed AC-6 algorithm that improves both
memory consumption of AC-4 and average time
complexity. Instead of keeping the complete
support sets and counters, AC-6 algorithm
remembers only one supporter for each value. If
this supporter is lost by domain reduction then
another supporter is looked for. Thus, complexity
of the initialisation of AC-4 is spread over the
propagation phase of AC-6 algorithm and no large
data structures are necessary. AC-7 by Bessiere,
Freuder, and Regin [9] is an extension of AC-6 that
uses symmetry of the constraint: if the value v1

supports another value v2 then v2 supports v1 as
well.

In the previous text we skipped AC-5 algorithm
that was proposed by Hentenryck, Deville, and
Teng in [29]. AC-5 is a generic arc consistency
algorithm that can be reduced both to AC-3 with
good average complexity or to AC-4 with the best
worst complexity. Moreover, this algorithm may
exploit semantic information during constraint
revision, in particular it brings better complexity if
functional, anti-functional, or monotonic
constraints are used.

Arc consistency algorithms need to re-revise some
arcs after domain reduction due to non-directional
character of AC causing cycles in the constraint
network. If we order the variables in the constraint
network then we can keep consistent only the arcs
(i,j) where i<j. This is called directional arc
consistency (DAC). Making the CSP directional arc
consistent is much more efficient than full AC, each
arc is revised exactly once, no re-revisions are
necessary if the arcs are explored in a clever order
(arc (i,m) should be revised before any arc (j,n),
where m>n). DAC is strictly weaker than AC and,
in general, it is not possible to achieve AC by
making DAC in both directions (if the constraint
network has a tree shape then AC can be achieved
by two runs of DAC).

Path consistency. It is known that arc consistency
does not remove all inconsistencies from the
constraint network meaning that even if the graph is
AC then we still do not know if any solution exists.
Therefore stronger consistency techniques were
proposed and studied. A natural extension of arc
consistency is path consistency (PC).

We say that a path (V1,…,Vn) is path consistent if
for every pair v1,vn of consistent values (i.e., this
pair satisfies all binary constraints between V1 and
Vn) there exist values v2,…vn-1 such that all the
constraints Vi,Vi+1 are satisfied. Note, that this
definition says nothing about satisfaction of

procedure AC-3(G)
Q ←← {(i,j) | (i,j)∈∈arcs(G), i≠≠j}
while Q non empty do
select and delete (k,m) from Q
if REVISE((k,m)) then
Q ←← Q ∪∪ {(i,k) | (i,k)∈∈arcs(G), i≠≠k, i≠≠m}

end if
end while

end AC-3

counter

2

1

1

support set

(i,a1),(i,a2)

(i,a1)

(i,a2),(i,a3)

i

a1

a2

a3

j

b1

b2

b3

constraints between Vi and Vj for |i-j|>1. CSP is
path consistent if all paths are path consistent.
Nevertheless, as Montanary showed in [18] it is
enough to make paths of length two path consistent
to make the CSP path consistent. Therefore path
consistency algorithms work with paths of length
two only and, like AC algorithms, they make these
paths consistent by repeated revisions. Every
constraint is represented extensionally using 0-1
matrix and path revisions are performed using
multiplication and conjunction of these matrices as
Figure 7 shows.

Figure 7: Revision of path (A,B,C) where the initial domain for
the variables A,B,C is 1,…,3.

PC-1 repeatedly updates all paths until a domain of
any constraint is changed. Like AC-2 and AC-3, the
PC-2 algorithm repeats revisions of only the paths
affected by any previous revision and thus it
significantly improves performance. Both PC-1 and
PC-2 algorithms are described in [15] and their
complexity is studied in [16]. Mohr and Henderson
attempt to apply the AC-4 principle to a path
consistency algorithm and in [17] they proposed the
PC-3 algorithm. Visibly, this algorithm is not sound
because it can remove consistent values from
variables' domains. In [14] Han and Lee proposed a
correction of this algorithm called PC-4. In [23]
Singh proposes an extension of PC-4 called PC-5
using the same principle as AC-6 has to AC-4 (only
one support is computed and a new support is
looked for when the current support is lost).

Even if path consistency is strictly stronger than arc
consistency, it is rarely used in practice. This is
because PC suffers from several problems:

§ PC eliminates more inconsistencies then AC
but the performance/complexity ratio is much
worse than for AC,

§ PC requires an extensional representation of
constraints and thus it has huge memory
consumption even for small problems,

§ PC changes connectivity of the constraint
network by introducing derived constraints,
and, thus, solving methods exploiting the
network structure are not applicable,

§ finally, PC still does not remove all
inconsistencies.

Restricted path consistency. Because PC
algorithms suffer from many problems that
disqualify them for practical applications, Pierre
Berlandier proposed a mixture of AC and PC called
restricted path consistency (RPC) [3]. RPC keeps
the good features of AC, i.e., changing the domains
of variables (rather than the domains of
constraints), and increases pruning power of AC by
doing PC when the value has only one support in
the constraint. Algorithm for RPC is based on AC-4
algorithm that counts supports for individual
values. As soon as a value has only one support in
another variable, PC is evoked for this pair of
values, i.e., a support for this pair is looked for in
the domain of other variables. If no such support
exists then we can remove the value from the
domain. RPC removes at least the same amount of
inconsistent values as AC and also some values
beyond. Thus, RPC is strictly stronger than any AC
algorithm. However, because PC is called only
under the condition of having a single support, RPC
is weaker than full PC.

Figure 8: Restricted path consistency removes more inconsistent
values than arc consistency.

k-consistency. Node, arc, and path consistency are
instances of a general consistency notion k-
consistency. CSP is k-consistent if every consistent
(k-1)-tuple can be extended to a consistent k-tuple.
If the problem is j-consistent for every j≤k then we
are speaking about strong k-consistency. Note that
strong k-consistency implies k-consistency but not
vice versa. Node consistency corresponds to 1-
consistency, arc consistency to 2-consistency and
path consistency to 3-consistency. In fact, PC
algorithms include NC as well as AC so they
achieve strong path consistency (strong 3-
consistency). There exist algorithms for achieving
k-consistency for k>3 but they are even more
expensive than PC and thus they are not used in
practice. Moreover, achieving k-consistency for the
constraint network with n vertices where k<n does
not remove (in general) all inconsistent values. On
the other side, it is known that if the constraint
graph has the width w and its is strongly k-
consistent for k>w then a solution can be found
using backtrack-free search [11]. Unfortunately, k-
consistency for k≥3 changes the structure of the
problem so it is hard/impossible to keep a constant
width of the graph when achieving k-consistency.
So, only 2-consistency (i.e., arc consistency) can be
used in practice with trees (graphs of width 1) to
get a solution without backtracking.

V2

a

V1

b c
d

e f

V3

removed by RPC

011 100 000 110 000
001 & 010 * 010 * 111 = 001
000 001 001 111 000

A=B B>C-2

B>1

A
CA<C

(i,j)-consistency. k-consistency can be further
generalised to (i,j)-consistency. A binary CSP is
(i,j)-consistent if any consistent instantiation of i
different variables can be extended to a consistent
instantiation including any j additional variables.
Then k-consistency is equivalent to (k-1,1)-
consistency. It is also possible to define strong (i,j)-
consistency in an obvious way. The CSP is strongly
(i,j)-consistent if it is (k,j)-consistent for every k≤i.
Algorithms for achieving (i,j)-consistency needs to
keep tuples of i values so they are not practical for
i≥2 due to memory consumption and changes in the
constraint network.

Inverse consistency. If increasing i in the (i,j)-
consistency is not practical, then we can try to
increase j while keeping i=1. We get (1,k-1)-
consistency which is called k-inverse consistency
[11]. k-inverse consistency removes the values that
cannot be extended to a consistent instantiation
including k-1 additional variables. This technique
does not change the constraint graph so it is space
complexity is linear. The worst-case time
complexity is polynomial in k, so when k grows, the
inverse consistency becomes quickly prohibitive.
Note that there is no inverse consistency to arc
consistency (i.e., (1,1)-consistency) so the first
level removing more values than AC is path inverse
consistency (PIC). Growing k means more
pruningful k-inverse consistency but its not
practical due to time complexity. A good
compromise is to make sure that each value can be
extended to a consistent instantiation of its
neighbourhood. This techniques proposed by
Freuder and Elfe in [12] is called neighbourhood
inverse consistency. Unfortunately its exponential
worst-case time complexity cannot guarantee
reasonable time efficiency.

Singleton consistency. In the previous paragraphs
we illustrate several attempts to design an efficient
filtering algorithm that removes more
inconsistencies than AC. There exists a generic
technique that can improve pruning power of
arbitrary consistency algorithm, it is called
singleton consistency [10,20]. Let A is some level
of consistency, e.g., arc consistency. Then CSP is
singleton A-consistent if for any value v of any
variable X the problem reduced using X=v is A-
consistent. For example, we can define singleton
arc consistency (SAC) or singleton restricted path
consistency (SRPC). Even if singleton consistency
can be also expensive in cpu time, it is easy to
implement it provided that the underlying local
consistency algorithm is available.

Pruning power of some consistency techniques can
be compared easily using a generic notion of k-
consistency (higher k implies more pruning power).
However in case of inverse and singleton
consistencies the comparison is not so obvious. In

[10] these techniques were formally compared
concerning their pruning power. The paper [20]
concentrates on theoretical and empirical
comparison of singleton consistencies. Figure 9
summarise the results of these and other papers
concerning pruning power of basic consistency
techniques that are applicable to solving real-life
problems.

Figure 9: Comparison of pruning power of consistency
techniques. A→B means that A is strictly stronger than B (A
removes more inconsistencies than B), dashed line means
incomparable techniques.

4 Non-binary and global constraints
In Section 2 we mentioned that arbitrary CSP can
be translated to an equivalent binary CSP and the
filtering techniques surveyed in Section 3 were
designed for binary CSP. However, conversion to a
binary CSP is sometime/often impracticable and
thus consistency notions and techniques are being
extended to non-binary constraints [5-8].

Generalised arc consistency. The notion of arc
consistency can be simply extended to non-binary
constraints, then we are speaking about generalised
arc consistency. The constraint is generalised arc
consistent (GAC) if for any value of the variable in
the constraint there exist values for the other
variables in the constraint such that the tuple
satisfies the constraint.

AC-3 algorithm can be naturally extended to make
the constraint network generalised arc consistent
and, in fact, this is the most widely used technique
in the current constraint satisfaction packages.
Instead of revising the binary arc, this algorithm
revises the hyper-arcs. For example if the domain
of the variable A is changed then the revision of the
constraint A+B=C is done by calling the following
two functions: C←A+B, B←C-A. Usually, instead
of remembering the hyper-arcs in the queue for re-
revisions, this algorithm remembers the variables
that domain has been changed. Then, the algorithm
calls the revision procedures connected to these
variables. This approach gives the algorithm
enough flexibility necessary for integration of user
defined filtering algorithms and, therefore, it is the
most common algorithm provided by the constraint
satisfaction packages.

SRPC SAC ACRPCPIC

NIC

Strong PC

GAC-schema. Arc consistency algorithms
presented in Section 3 were designed for binary
constraints. In [5] a new schema for generalised arc
consistency were proposed based on AC-7
algorithm. In [8], an instantiation of this schema
was proposed to achieve arc consistency on global
constraints.

Global constraints. The disadvantage of
generalised arc consistency algorithms is
decreasing efficiency with growing cardinality of
the constraint. As shown in [21], special filtering
algorithms can be designed for particular
constraints that achieve the same level of
consistency but are more time and space efficient
thanks to exploiting semantic information about the
constraint. Such special constraints are usually
called global constraints. They can be often
decomposed to simpler (binary) constraints [13,18]
but then the same consistency technique, say AC,
has lower pruning power and therefore such
decomposition often does not pay-off. Several
groups of global constraints were proposed
motivated by real-life problems [2].

5 Propagation in practice
After surveying the basic filtering techniques used
to reduce domains of binary and non-binary
constraints, let us now describe some less obvious
techniques how the constraint propagation can be
improved and how the filtering techniques should
be applied to solve real-life problems. The
discussed techniques are derived from observations
of the author and others so they have more or less
experimental nature.

Disjunction. Appearance of the disjunctive
constraint in the problem formulation usually
causes problems because of weak propagation
through such constraint. Let us illustrate it with a
simple example. Assume that variable x has a
domain -10,…,10 and there is a disjunctive
constraint (x≤-5 ∨ x≥5). One may assume
(wrongly) that after posting this constraint, the
domain of the variable x is reduced to (-10,…,-5) ∪
(5,…,10). Unfortunately, in most constraint systems
this is not true and the domain of x stay -10,…,10.
This is because propagation through particular
constraint in the disjunction is activated only when
the other constraints are violated. For example, if
the domain of x is reduced to say -10,…,3 then x≥5
is not true so the other constraint x≤-5 is activated
and the domain of x is reduced further to -10,…, -5.
In this clear example, there is a simple solution to
increase propagation: instead of the disjunctive
constraint one may use the domain constraint
x in (inf..-5)\/(5..sup). However, in a more complex
disjunction such reformulation may be more
complicated or even impossible. Then the solution
could be to use a more expensive constructive

disjunction (the domain of the variable is reduced
to the union of domains after propagation through
the individual constraints in the disjunction) or to
design an ad-hoc propagation algorithm.

Disjunction in CLP. When constraint logic
programming (CLP) is used as an underlying
platform for constraint solving then problems with
disjunction become even harder. Logic
programming provides alternative clauses to model
disjunction and many CLP users apply this
approach when modelling problems with
constraints. For example the disjunctive constraint
from the previous paragraph is modelled using the
following CLP code:

disj(X):-X#=<-5.
disj(X):-X#>=5.

This means that a constraint X≤-5 is posted when
disj(X) is called and if we find later that this is not
good then the alternative constraint X≥5 is used.
However, the only way how to install the constraint
X≥5 is upon backtracking so everything that has
been done since the first call to disj(X) is lost. This
unwanted behaviour of CLP when defining
disjunctive constraint using alternative clauses was
first observed in [28] where a solution using the
cardinality operator has been proposed. In [26] the
idea of cardinality operator is further extended.
Nevertheless, note that cardinality operator still
suffers from the problem with non-constructive
disjunction described in the previous paragraph.

Singleton consistency. As mentioned in Section 3,
singleton consistency is a very powerful filtering
technique close in pruning power to path
consistency but resistant from path consistency
problems. Unfortunately like other more powerful
consistency techniques, achieving singleton
consistency is not cheap in terms of time.
Therefore, it is not practical to maintain full
singleton consistency during labelling. On the other
hand, implementation of singleton arc consistency
algorithm is almost for free, it is a combination of
labelling, achieving arc consistency, and tabling
variables' domains. Note also that opposite to many
other consistency techniques, the implementation of
SAC does not require changes inside the constraint
satisfaction engine but it can be done at a meta-
level.

We see several ways how singleton consistency can
be applied to improve domain filtering. First, it is
possible to make the constraint satisfaction problem
singleton consistent just once before labelling. This
reduces domains more than simple AC while
keeping reasonable time complexity. If achieving
full SAC is too expensive (and this could be pretty
often in large-scale real-life problems) then it is still
possible to use SAC in a limited way. In particular,
it is possible to apply SAC to selected variables that

somehow determine the solution space. Reducing
some domains using SAC can then be propagated
to other variables using standard AC. Note that this
limited SAC can be applied within labelling as well
to achieve a weaker form of maintaining singleton
consistency. Maintaining limited singleton
consistency can also be used during prototyping a
constraint model. It is much easier to implement
singleton consistency then to design a special
propagation algorithm (global constraint). Thus,
singleton consistency (SC) can be used to test if
applying stronger consistency over a particular set
of variables pays off. If the answer is yes then it is
possible to design a special ad-hoc filtering
algorithm with similar pruning power as SC but
more time efficient than SC.

Redundant constraints. Usually, when the user
formulates a problem, only the necessary
constraints are included in the model. Redundant
constraints, i.e., the constraints that can be derived
from other constraints are often avoided. This is
because redundant constraints do not contribute to
the solution set (their presence in the model does
not shrink the solution set), and moreover, they
increase overhead. On the other side, adding
redundant constraints may further reduce domains
and, consequently, speed up search. Let us illustrate
improved propagation with redundant constraints
using a simple CSP. Assume there are four
variables x1,x2,x3,x4 with domains 0,…,5, two
variables y1,y2 with domains 3,…,8 and constraints
x1+x2=y1, x3+x4=y2, x1+x2+x3+x4=z. Visible the
domain for z should be 6,…,16 but the propagation
infers the domain 0,…, 25. If a redundant constraint
y1+y2=z is added then we get the expected domain
for z.

Dual models. In Section 2 we discussed a dual
encoding when converting a non-binary CSP to a
binary CSP. In a real-life problem there also
typically exist two dual encodings modelling the
same problem. In these encodings the constraints
are swapped for the variables and vice versa. Let us
illustrate dual models using a well-known n-queens
problem, where the task is to place n queens onto a
n×n chessboard in such a way that the queens are
not in conflict. One may choose rows as variables
and the constraints describe consistent columns for
the queens. Or it is possible to use columns as
variables and the constraints describe the
compatible rows. Both encodings are fully
interchangeable and typically only one of then is
chosen to model the problem. However, if both
models are used in parallel, we can achieve better
pruning. Naturally, there must be special
constraints that connect the variables of both
models, e.g. in case of n-queens the following
constraint can be used: row(i)=j ⇔ column(j)=i.
Using both primal and dual model can significantly
improve domain reduction, e.g. we get a solution

five times faster for 200 queens when primal and
dual encoding was used together. However, one
must be very careful about combining both
encodings because adding more (redundant)
constraints increases overheads of propagation.
Sometime this overhead wipes the advantage of
better domain filtering and sometimes there is no
additional pruning when a dual model is used
together with the primal one.

Symmetries. Removing inconsistent values from
the variables' domains is the main task of constraint
propagation. Sometimes, we can improve this
propagation by removing symmetrical solutions,
i.e., the solutions that can be achieved from another
solution by swapping the values of some variables.
See Figure 10 for two symmetries in n-queens
problem (for simplicity reasons we do not discuss
rotation in the n-queens problem).

Figure 10: Horizontal (left) and vertical (right) symmetrical
solution to the n-queens problem achieved by mirroring the
chessboard over the horizontal and vertical axes.

Symmetry divides the set of possible assignments
into equivalence classes. If the search algorithm
proves that there is no solution in some class then
we do not need to explore the equivalent classes
because there is no solution as well. Thus, we can
exploit symmetry of the problem to improve
domain pruning. Assume that we found that the
queen in the first column could not be placed to the
first row. Using a horizontal symmetry we can
deduce that this queen cannot be placed to the last
row as well. This symmetry can be encoded using
the following constraint row(1)≤n/2, i.e., the queen
in the first column must be placed in the top half of
the board. Note that this constraint removes the
horizontal symmetry. The vertical symmetry can be
removed by using a constraint row(1)<row(n).
Notice also that information about forbidden first
row for the first queen implies that the last row is
forbidden for the last queen too. This combined
symmetry can be removed by the constraint
row(n)≤n-row(1).

Removing symmetries can significantly improve
domain reduction especially in highly symmetric
problems. Symmetries can also be used to get more
solutions from a single solution without wasting
time to find them via search. Some approaches to
reducing the symmetry, namely remodelling the
problem, adding constraints, and adding constraints
during search, are discussed in [25].

6 Conclusions
The paper is focused to practitioners using
constraint programming to solve various problems
as well as to theoreticians looking for a brief survey
of consistency techniques that can be used to solve
real-life problems. We also discuss some modelling
issues leading to improve propagation and thus to
find a solution faster.

7 References
[1] Bacchus F. and van Beek, P.: On the Conversion between

Non-Binary and Binary Constraint Satisfaction Problems,
in Proceedings of AAAI-98, pp 311-319, 1998.

 [2] Beldiceanu N. and Contejean E.: Introducing Global
Constraints in CHIP, in Mathematical Computer
Modelling 20 no. 12, pp. 97-123, 1994.

 [3] P. Berlandier. Improving Domain Filtering using
Restricted Path Consistency, in Proceedings of the IEEE
CAIA-95, Los Angeles CA, 1995.

[4] Bessiere Ch., Arc-consistency and arc-consistency again,
in Artificial Intelligence 65, pp. 179-190, 1994.

[5] Bessiere Ch., Régin J.-Ch.: Arc consistency for general
constraint networks: preliminary results, in Proceddings
of IJCAI97, pp. 397-404, 1997.

[6] Bessiere Ch.: Non-binary constraints, in Proceedings of
CP99, pp.24-27, Alexandria, USA, 1999.

[7] Bessiere Ch., Meseguer P., Freuder E., Larrosa J.: On
Forward Checking for Non-binary Constraint
Satisfaction, in Proceedings of CP99, pp. 88-102,
Alexandria, USA, 1999.

[8] Bessiere Ch. and Régin J.-Ch.: Enforcing arc consistency
on global constraints by solving subproblems on the fly,
in Proceedings of CP99, pp. 103-117, Alexandria, USA,
1999.

[9] Bessiere Ch., Freuder E., Régin J.-Ch.: Using Constraint
Metaknowledge to Reduce Arc Consistency Computation,
in Artificial Intelligence 107, pp. 125-148, 1999.

[10] Debruyne R. and Bessiere Ch.: Some Practicable
Filtering Techniques for the Constraint Satiscation
Problems, in Proceedings of IJCAI97, pp. 412-417, 1997.

[11] Freuder E.: A sufficient condition for backtrack-bounded
search, in Journal of the ACM 32(4), pp. 755-761, 1985.

[12] Freuder E. and Elfe Ch.: Neighborhood Inverse
Consistency Preprocessing, in Proceedings of the AAAI
National Conference, pp. 202-208, 1996.

[13] Gent I., Stergiou K., Walsh T.: Decomposable
Constraints, in Artificial Intelligence 123 (1-2), pp. 133-
156, 2000.

[14] Han C. and Lee C.: Comments on Mohr and Henderson's
path consistency algorithm, in Artificial Intelligence 36,
pp. 125-130, 1988.

[15] Mackworth, A.K.: Consistency in Networks of Relations,
in: Artificial Intelligence 8(1), pp. 99-118, 1977.

[16] Mackworth A.K., Freuder E.C.: The complexity of some
polynomial network consistency algorithms for constraint
satisfaction problems, in Artificial Intelligence 25, pp. 65-
74, 1985.

[17] Mohr R. and Henderson T.C.: Arc and path consistency
revised, in Artificial Intelligence 28, pp. 225-233, 1986.

[18] Montanary, U.: Networks of constraints: fundamental
properties and applications to picture processing, in:
Information Sciences 7:, pp. 95-132, 1974.

[19] Perlin M.: Arc consistency for factorable relations, in
Artificial Intelligence 53, pp. 329-342, 1992.

[20] Prosser P., Stergiou K., Walsh T.: Singleton
Consistencies, in Proceedings of CP2000, pp. 353-368,
Singapore, 2000.

[21] Régin, J.-Ch.: A filtering algorithm for constraints of
difference in CSPs, Research Report LIRMM 93-068,
Université Montepellier, France, 1993.

[22] Rossi F. and Dhar V.: On the Equivalence of Constraint
Satisfaction Problems, in Proceedings of ECAI90, pp.
550-556, Stockholm, Sweden 1990.

[23] Singh M.: Path Consistency Revised, in Proceedings of
IEEE International Conference on Tools with Artificial
Intelligence, pp. 318-325, 1995.

[24] Smith B., Stergiou K., Walsh T.: Using auxiliary
variables and implied constraints to model non-binary
problems, in Proceedings of AAAI2000, 2000.

[25] Smith B.: Reducing Symmetry in a Combinatorial Design
Problem, in Proceedings of CP-AI-OR2001, pp. 351-359,
Wye College, UK, 2001.

[26] Steggiou K., Walsh T.: Encodings of Non-Binary
Constraint Satisfaction Problems, in Proceedings of
AAAI-99, 1999.

[27] Van Der Linden A.S.J.: Dynamic Meta-Constraints: An
Approach to Dealing with Non-Standard Constraint
Satisfaction Problems, PhD Thesis, Oxford Brookes
University, 2000.

[28] Van Hentenryck P. Deville Y.: The Cardinality Operator:
A new Logical Connective for Constraint Logic
Programming, in Proceedings of ICLP91, pp. 745-759,
1991.

[29] Van Hentenryck P., Deville Y., Teng C.M.: A generic
arc-consistency algorithm and its specialisation, in
Artificial Intelligence 57, pp. 291-321, 1992.

[30] Waltz, D.L.: Understanding line drawings of scenes with
shadows, in: Psychology of Computer Vision, McGraw-
Hill, New York, 1975

