Programming

Logic and Constraints

Roman Bartak
Charles University, Prague (C2)

roman.bartak@mff.cuni.cz
http://ktiml _.mffF.cuni.cz/~bartak

~constraint programming represents
one of the closest approaches
computer science has yet made to
the Holy Grail of programming: the
user states the problem, the
computer solves it.“

Eugene C. Freuder, Constraints, April 1997

ESSLLI 2005 - Programming with Logic and Constraints

" EEEEEREEIYAGrail of Programming

> Computer, solve the SEND, MORE, MONEY problem!

> Here you are. The solution is
[9.5,6,7]+[1,0,8,5]=[1,0,6,5,2]

a Star Trek view

> Sol=[S,E,N,D,M,0,R,Y],
domain([E,N,D,0O,R,Y],0,9), domain([S,M],1,9),
1000*S + 100*E + 10*N + D +
1000*M + 100*0 + 10*R + E #=
10000*M + 1000*0 + 100*N + 10*E + Y,
all_different(Sol),
labeling([ff],Sol).

> Sol = [9,5,6,7,1,0,8,2]
today reality

ESSLLI 2005 - Programming with Logic and Constraints

" Application areas

All types of hard combinatorial problems:
m molecular biology

DNA sequencing

determining protein structures
m interactive graphic

web layout
m network configuration

m assignment problems r T
personal assignment |
stand allocation

m timetabling

m scheduling

m planning

ESSLLI 2005 - Programming with Logic and Constraints

A bit of histol

m Procedural Interpretation of Horn Clauses
(Kowalski)

axiom ,A if B* can be read as a procedure
A is a procedure head
B is a procedure body

m Prolog (Colmerauer)
Programation et Logique or Programming in Logic

specialised theorem prover for natural language
processing

m From unification to constraints (Gallaire 1985,
Jaffar, Lassez 1987)
unification is constraint solving over Herbrand universe

ESSLLI 2005 - Programming with Logic and Constraints

" JEE Course outline

® Programming with logic Monday
O foundations of Prolog
O facts, rules, and queries

Extensions to pure Prolog Tuesday
O lists and arithmetic
O cut, negation, and blackboard

From unification to constraints Wednesday
O consistency techniques
O programming filtering algorithms

Programming depth-first search Thursday
O incomplete search techniques
O branch and bound

Modeling with constraints
O modeling examples

ESSLLI 2005 - Programming with Logic and Constraints

© M Basic concept

Prolog is a deductive system that finds
answers to queries using a knowledge
base consisting of facts and rules.

Where is the programming?
writing the database of facts and rules

Prolog interpreter deduces the answer
automatically

% declarative programming

ESSLLI 2005 - Programming with Logic and Constraints

" Prolog architecture

I arc(a,b).
arcla)

member (X, [X]_1)-

m Prolog source files DL

delete([], X, [
*pl delete([X|T1,X,T)- re(X,Y).
delete([Y|T],X,[Y|NewT]):- re(Y,X).
deleie(T,X,NewT). re(X,Y).
rc(X,2),path(Z,Y).

m Prolog database @:I | 4

SICStus 3.11.0 (x86-win32-nt-4):
Mon Oct 20 00:38:10 WEDT 2003

Licensed to visopt.com
I ?-

= Queries IT—)

ESSLLI 2005 - Programming with Logic and Constraints

" N Facts

Prolog facts describe basic information
about the problem.

node(a) - arc(a,b).
node(b) . arc(a,c).-
node(c). (a) arc(b,c).
node(d). arc(b,d).
node(e). arc(c,d).

‘ - arc(d,e).

ESSLLI 2005 - Programming with Logic and Constraints

" N Simple queries
It is possible to ask queries about the facts
stored in the knowledge base:

| Prolog prompt | ’ .
oo 203
yeS node(d) -
?-node(bla). node(e) -
20 arc(a,b).
?-arc(a,c). arc(a,c).
yes arc(b,c).
?-arc(a,d). ::ggg’g; -
no arc(d:e) -
?-path(a,d). ,
no

ESSLLI 2005 - Programming with Logic and Constraints

Open queries

The query may contain variables whose
values will be found using stored facts:

?-node(X) . node(a) -
X=a ; a request for an noge(b) :
X=b ; alternative answer node(c).
X=c - noge(d) .
=d node(e) -
X=e ; ,b).
no J no more answers ::gg:,cg .

arc(b,c).
?-arc(a,X)- arc(b,d).
X=b : arc(c,d).
X=c - arc(d,e).

no y

ESSLLI 2005 - Programming with Logic and Constraints

" Compound queries

m List of facts is nothing more than a simple database.

m Is it possible to generate an answer that is not stored
directly as a fact but that can be combined from
several facts?

Yes. It is possible to query over a combination of
facts from the knowledge base:

node(a) -
— node(b) -
?-arc(a,Y),arc(Y,Z). IO
Y=b node(d) .
Z=c ; variables can be node(e) -
Y=b shared between arc(a.b)
7=d - simple open queries arc(a:c):
’ arc(b,c).
Y=c arc(b,d).
Z=d ; arc(c,d).
no arc(d,e).

ESSLLI 2005 - Programming with Logic and Constraints

" Syntax break

Atoms vs. variables

Data (and programs) are expressed using terms

m Atoms

words consisting of letters, numbers and underscores
that start with a non-capital letter

ma, arc, john_123, .
words enclosed in single quotas

s "Edinburgh™, ..

m Variables

words consisting of letters, numbers and underscores
that start with a capital letter or underscore

s X, Node, _noname, ..
__is an anonymous variable

m two occurences of _ are assumed to be different variables

= contents is not reported to the user

ESSLLI 2005 - Programming with Logic and Constraints

" Syntax break

Compound terms

Compound terms express structured
information

atoms and variables are terms
functor(argl,...,argn) is a (compound) term,
where functor is an atom and argl, ..., argn are
terms

m arc(a,c)

m path(a,path(b,path(d,e)))

m tree(tree(a,tree(b,c)),tree(d,e))

m arc(a,X)

ESSLLI 2005 - Programming with Logic and Constraints

" Deductive rules

m We can give a name to the query so it can be
used repeatedly

doubleArc(X,Z):-arc(X,Y),arc(Y,2).

This is called a rule.
m After defining the rule, we can query it like the

facts:
node(a) -
?-doubleArc(b,W). node(b) -
w=d - - node(c) -
- only variables from node(d) -
W=e ; the rule head are node(e) -
no returned to user ey
?-doubleArc(a,W). arc(a,c).
_ - arc(b,c).
W=c ; arc(b.d).
W=d ; arc(c,d).
w=d : arc(d,e).
no Z

ESSLLI 2005 - Programming with Logic and Constraints

" JEE How does it work?

?—dOUb I eArc(b . W)) Deductive rules

find a rule whose head matches the goal and
substitute variables accordingly.
doubleArc(b,W):-arc(b,Y),arc(Y,W).

substitute query by the body of the rule
?-arc(b,Y),arc(Y,W).

find a matching fact (arc(b,c)), substitute

variables, and remove the fact from the query S
?-arc(c,W). node(t).

do the same with the rest (arc(c,d)) zggzgg-
W:d ; . arc(a,b).

Try alternative facts (arc(b,d),arc(d,e)) | arc.c).

arc(b,c).
W=e : arc(b,d).

9 arc(c,d).

no arc(d,e).

ESSLLI 2005 - Programming with Logic and Constraints

" Alternative rules

m It is possible to define alternative rules
(disjunction)
edge(X,Y):-arc(X,Y).

edge(X,Y):-arc(Y,X). node(a) -

node(b) -

node(c) -

node(d) -

?-edge(W,b). node(e) .

W=a ; deduced using the

ﬁ first rule B EC(D))-

W=c - arc(a,c).-

? arc(b,c).

W=d ; deduced using the ::ggg'gg'
no second rule i:e):y

ESSLLI 2005 - Programming with Logic and Constraints

* JEE How does it work?

Alternative rules

Just like before, but more alternative rules matches the query.
?-edge(W,b).
find a rule whose head matches the goal, substitute variables

accordingly, and substitute query by the body of the rule
edge(W,b):-arc(W,b).

?-arc(W,b). e
. . . node(b) -
find all solutions to a query using facts node(c) .
W=a ; node(d).
try an alternative rule for the original query node(e) -
7 edge(W,b):-arc(b,W).)
?—arc(b,W). arc(a,c).
find all solutions to a query using facts arc(b,c)-
W=c - arc(b,d).
7 arc(c,d).
W=d ; arc(d,e).
no p

ESSLLI 2005 - Programming with Logic and Constraints

" Recursive rules

m It is possible to use the rule head in its
body, i.e., to use recursion
path(X,Y):-arc(X,Y).
path(X,Y):-arc(X,2),path(Z,Y).

node(a) -
node(b) -

?—path (C ,W) - noge(g).

Ww=d - deduced using the first ﬂgdigegj
7 rule and arc(c,d)

W=e ; arcga,bg-

arc(a,c).

no deduced using the arc(b,c).

second rule through d arc(b,d).

arc(c,d).
rc(d

a ,e).)

ESSLLI 2005 - Programming with Logic and Constraints

" JEE How does it work?

. Recursive rules
m Just like before, but
the rule may be used
several times.

m This is OK because

?-path(c,W)

path(c,W):-arc(c,W).

path(c,W):-arc(c,Z1),path(Z1,W).

?-arc(c,W)

’?—arc(c,Zl),path(Zl,W)‘

each time a rule is arece.d-| arc(e.d).
used, its copy with [w=d] 7-path(d.) |

»fresh” variables is path(d. D -arc(d.i).
generated (like calling
a procedure with local
Varlables) arc(d,e) .| arc(d,e).

v
path(X,Y):-arc(X,Y). W=e

path(c,W):-
arjc(c,Z2),path(z2,W).

2_arc(d,z2),path(z2,W) \

?-arc(d,W)

?-path(e,W)
path(X,Y):-arc(X,2),path(Z,Y). path(e,W):-arc(e,W). path(e,W):-
deca) @.b) arc(e,Z3),path(Z3,W).
node(a) - arc(a,b).
node(b) - arc(a,c). ?-arc(e,W) ’ ?—arc(e,ZS),path(ZS,W)‘
node(c) - arc(b,c).
node(d) - arc(b,d).
node(e) - arc(c,d).
arc(d,e). fail fail

'

ESSLLI 2005 - Programming with Logic and Constraints

10

" Prolog at glance

Prolog ,,program® consists of rules and facts.
Each rule has the structure Head:-Body.
Head is a (compound) term
Body is a query (a conjunction of terms)
= typically Body contains all variables from Head
rule semantics: if Body is true then Head can be deduced

Fact can be seen as a rule with an empty (true) body.

Query is a conjunction of terms: Q = Q1,Q2,...,0Qn.

m Find a rule whose head matches goal Q1.

If there are more rules then introduce a choice point and use
the first rule.

If no rule exists then backtrack to the last choice point and use
an alternative rule there.

m Use the rule body to substitute Q1.
For facts (Body=true), the goal Q1 disappears.

m Repeat until empty query is obtained.

ESSLLI 2005 - Programming with Logic and Constraints

" SN Prolog technology

Prolog = Unification + Backtracking

m Unification (matching)
to select an appropriate rule
to compose an answer substitution
How?
= make the terms syntactically identical by applying a substitution

m Backtracking (depth-first search)
to explore alternatives
How?
m resolve the first goal (from left) in a query
= apply the first applicable rule (from top)

ESSLLI 2005 - Programming with Logic and Constraints

11

" JEE Unification

m a basic mechanism for information passing
m syntactic equality of terms via substitution of terms

to variables
m ?-X=F(a). -> X/f(a)
m ?-T(X,a)=F(g(b),Y). -> X/g(b), Y/a
m ?-F(X,b,9(2))=F(a,Y,g(X)). ->x/avm
m ?_X:f(x) . -> infinite term

occurs check can forbid such structures

but cyclic structures might be very useful for modeling
pointer structures

f]-]

ESSLLI 2005 - Programming with Logic and Constraints

" Selecting rules

m Unification is used for rule selection.
?-path(f(a),0).
rule: path(X,Y):-arc(X,Y).
do unification: X=f(a),Y=G
?-arc(f(a),0).
m rule (fact): arc(a,b).
m do unification: f(a)=a, G=b -> fail
m rule (fact): arc(a,c).
m do unification: f(a)=a, G=c -> fail

ESSLLI 2005 - Programming with Logic and Constraints

12

" Computing results

m Unification is used for answer composition.

ath(X,Y,path(X,Y)):-)
g arc((X,Y)p-)
path(X,Y,path(X,PathzY)):- <
arC(X . Z) . node(a) -
path(Z,Y,PathzY). ey
node(d) -
2_path(a,d,P). 1o0e(
P=path(a,path(b,d)); arotais”
P=path(a,path(b,path(c,d))) ; | et
P=path(a,path(c,d)) ; arc(c.d).

arc(d,e)

no ' /7

ESSLLI 2005 - Programming with Logic and Constraints

- A I nformation passing

m How to obtain the result?

m Accumulator

Accumulate partial results in a parameter of the
procedure.

Requires additional parameter with initialization.
m Composition of substitutions

Compute the result from partial results to be
computed later.

Specific to Prolog and substitutions.

ESSLLI 2005 - Programming with Logic and Constraints

13

= JEE Accumulator

Symbolic addition of unary represented numbers
(0, s(0), s(s(0)), .).

Result is accumulated in a parameter of the procedure.

plus(0,X,X).
plus(s(X),Y,2):-plus(X,s(Y),2).

accumulator

?-plus(s(s(s(0))), s(0) ,Sum) .
?-plus(s(s(0)) , s(s(0)) ,Sum).
?-plus(s(0) , s(s(s@0))) ,Sum).
?-plus(0 ,S(s(s(s(0)))),Sum).
Q. T

ESSLLI 2005 - Programming with Logic and Constraints

" Composition

Symbolic addition of unary represented numbers.

Result is a composition of substitutions that will be
computed later.

plus2(0,X,X).
plus2(s(X),Y,s(2)):-plus2(X,Y,2).

argument for composing the result

?-plus2(s(s(s(0))),s(0),S1). %S1=s(S2)
?-plus2(s(s(0)) ,s(0),S2). %S2=s(S3)
?-plus2(s(0) ,s(0),S3). %S3=s(S4)
?-plus2(0 ,S(0),S4). %S4=s(0)

ESSLLI 2005 - Programming with Logic and Constraints

14

" Homework

m Propose a simple genealogy database:

facts
® Mman, woman, parent,

rules

= father, mother, son, daughter,
grandparent, uncle, aunt, siblings,
descendant, ..

m For example solution look at
http://kti .mfFfF._cuni.cz/bartak/prolog/genealogy.html

)

ESSLLI 2005 - Programming with Logic and Constraints

15

