
1

Roman Barták
Charles University, Prague (CZ)

roman.bartak@mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak

Programming
Logic and Constraints

with

4

ESSLLI 2005 – Programming with Logic and Constraints

Consistency and SearchConsistency and Search
Consistency techniques are (usually) incomplete.

We need a search algorithm to resolve the rest!

LabelingLabeling
depth-first search

assign a value to the variable
propagate = make the problem
locally consistent
backtrack upon failure

X in 1..3 ≈ X=1 ∨ X=2 ∨ X=3 (enumeration)

In general, search algorithm resolves remaining disjunctions!
X=1 ∨ X≠1 (step labeling)
X<3 ∨ X≥3 (bisection)
X<Y ∨ X≥Y (variable ordering)



2

ESSLLI 2005 – Programming with Logic and Constraints

EnumerationEnumeration

Domain enumeration
try to assign a (minimal) value to the variable
in case of failure try the next value

enum([]).
enum([H|T]):-
indomain(H), % enumerate domain
enum(T).

Choice point
indomain works like member
assign first value from the domain and 
upon backtracking try another value

ESSLLI 2005 – Programming with Logic and Constraints

Step labelingStep labeling

When a solution for a selected value is not 
found, the value is removed from the domain.

step([]).
step([H|Rest]):-
fd_min(H,Value),
(H#=Value ; H#\=Value),
(var(H) ->

step([H|Rest])
; step(Rest)).

disjunction
can be seen as a shortcut for rules

try(H,Value):-H#=Value.
try(H,Value):-H#\=Value. 



3

ESSLLI 2005 – Programming with Logic and Constraints

BisectionBisection

Split the domain into two parts until the domain 
becomes singleton.

bisection([]).
bisection([H|Rest]):-
fd_min(H,Min), fd_max(H,Max),
Middle is integer((Min+Max)/2),
(H#=<Middle ; H#>Middle),
(var(H) ->

bisection([H|Rest])
; bisection(Rest)).

ESSLLI 2005 – Programming with Logic and Constraints

Branching schemesBranching schemes

Which variable should be assigned first?
fail-first principle

prefer the variable whose instantiation will lead to a failure 
with the highest probability
variables with the smallest domain first
most constrained variables first

defines the shape of the search tree

Which value should be tried first?
succeed-first principle

prefer the values that might belong to the solution with the 
highest probability
values with more supporters in other variables
usually problem dependent

defines the order of branches to be explored 



4

ESSLLI 2005 – Programming with Logic and Constraints

Generic searchGeneric search

label([]).
label(Variables):-
select_variable(Variables,V,Rest),!,
choice_point(V),
(var(V) ->

label([V|Rest])
; label(Rest)).

Simple enumeration:
select_variable([H|T],H,T).
choice_point(V):-indomain(V).

ESSLLI 2005 – Programming with Logic and Constraints

Constraint optimizationConstraint optimization
So far we have looked for feasible assignments only.

In many cases the users require optimal assignments 
where optimality is defined by an objective function.

Definition:
Constraint Optimization Problem (COP) consists of the standard 
CSP P and an objective function f mapping feasible solutions of P to 
numbers.

Solution to COP is a solution of P minimizing / maximizing the 
value of the objective function f.

To find a solution of CSOP we need in general to explore all 
the feasible valuations. Thus, the techniques capable to 
provide all the solutions of CSP are used.



5

ESSLLI 2005 – Programming with Logic and Constraints

Branch and boundBranch and bound
Branch and bound is perhaps the most widely used 
optimisation technique based on cutting sub-trees where 
there is no optimal (better) solution.

It is based on the heuristic function h that approximates
the objective function.

a sound heuristic for minimisation satisfies h(x)≤f(x)
[in case of maximisation f(x)≤h(x)]

a function closer to the objective function is better

During search, the sub-tree is cut if
there is no feasible solution in the sub-tree
there is no optimal solution in the sub-tree

bound ≤ h(x), where bound is max. value of feasible solution

How to get the bound?
It could be an objective value of the best solution so far.

ESSLLI 2005 – Programming with Logic and Constraints

Simple optimizationSimple optimization
Minimize/maximize a value of a selected variable

typically, there is a constraint X#=ObjectiveFunction
propagation from ObjectiveFunction to X corresponds to 
the heuristics function h

Straightforward method for minimization of X:
try to find a solution with a minimal value of X
in case of failure increase the minimal value of X by one

minimizeSimple(Vars,X):-
fd_min(X,X),
label(Vars),!.

minimizeSimple(Vars,X):-
fd_min(X,Min),
X#>Min,
minimizeSimple(Vars,X).

note
finds single solution such that the value 
of the objective function is minimal



6

ESSLLI 2005 – Programming with Logic and Constraints

B&B in PrologB&B in Prolog
Enumeration can be modified into branch and bound.

The bound is stored on blackboard and checked after every assignment.

minimizeBB(Vars,X,InitialBound):-
bb_put(bound,InitialBound), % save upper bound
minBB(Vars,Vars,X).

minimizeBB(Vars,_,_):-
bb_get(best,Vars). % restore best solution

minBB([],AllVars,X):- % all variables known
bb_put(bound,X), % save new upper bound
bb_put(best,AllVars), % save best solution
fail. % explore alternatives

minBB([H|Rest],AllVars,X):-
indomain(H), % assign a value
bb_get(bound,Bound),
fd_min(X,MinX),
MinX<Bound, % check bound
minBB(Rest,AllVars,X).

ESSLLI 2005 – Programming with Logic and Constraints

B&B with splittingB&B with splitting

If the domain of the minimized variable is bounded 
then we can use domain splitting over this variable.

minimizeBBsplit(Vars,X):-
(var(X) ->

fd_min(X,MinX),fd_max(X,MaxX),
Middle is integer((MinX+MaxX)/2),
((X#=<Middle, \+ \+ label(Vars)) ->

true
; X#>Middle
),!,
minimizeBBsplit(Vars,X)

;
label(Vars)

).

double negation
find out whether it is possible to label 
variables but do not bound them 

note
finds all optimal solutions, i.e., solutions 
with the same value of objective function



7

ESSLLI 2005 – Programming with Logic and Constraints

Incomplete searchIncomplete search

A cutoff limit to stop exploring a (sub-)tree
some branches are skipped → incomplete search

When no solution found, restart with enlarged cutoff limit.

Bounded Backtrack Search (Harvey, 1995)
restricted number of backtracks

Depth-bounded Backtrack Search (Cheadle et al., 2003)
restricted depth where alternatives are explored

Iterative Broadening (Ginsberg and Harvey, 1990)
restricted breadth in each node
still exponential!

Credit Search (Beldiceanu et al., 1997)
limited credit for exploring alternatives
credit is split among the alternatives

ESSLLI 2005 – Programming with Logic and Constraints

BBS(8)

1 2 3 4 5 67 8 9

DBS(3)

1 3 5 72 4 6 8

IB(2)

1 3 5 72 4 6 8

CS(7)

1 3 5 72 4 6

4 3

2 2 2 1

1 1 1 1 1 1

Incomplete searchIncomplete search

credit



8

ESSLLI 2005 – Programming with Logic and Constraints

BBSBBS
Bounded Backtrack Search

restricted number of backtracks

bbs_search(Variables,Limit):-
bb_put(limit,Limit),
bb_put(stage,fw),
bbs(Variables).

bbs([]).
bbs([X|RestVariables]):-

(bbs_assign_value(X) ; bb_put(stage,bw),fail),
bbs(RestVariables).

bbs_assign_value(X):-
assign_value(X),
bb_update(stage,Stage,fw),
(Stage=fw -> true
; bb_get(limit,L), NL is L-1, bb_put(limit,NL),

(NL>0 -> true ; !,fail)
).

assign_value(X):-
indomain(X).

trick
indicate on the blackboard that we started 
to backtrack

ESSLLI 2005 – Programming with Logic and Constraints

DBSDBS

Depth-bounded Backtrack Search
restricted depth where alternatives are explored

dbs_search([],_).
dbs_search([X|RestVariables],Depth):-

(Depth>0 ->
NewDepth is Depth-1,
assign_value(X)

;
NewDepth = 0,
once(assign_value(X))

),
dbs_search(RestVariables,NewDepth).

forbidden alternatives
only the first solution is returned (if any), 
no alternatives are allowed



9

ESSLLI 2005 – Programming with Logic and Constraints

IBIB
Iterative Broadening

restricted breadth in each node

ib_search(Variables,Width):-
bb_put(width,Width),
ib(Variables,Width).

ib([],_).
ib([X|RestVariables],Width):-

bb_update(width,TW,Width),
(ib_assign_value(X) ; bb_put(width,TW),!,fail),
ib(RestVariables,Width).

ib_assign_value(X):-
assign_value(X),
bb_get(width,RestWidth),
(RestWidth=0 -> !,fail
; NewW is RestWidth-1, bb_put(width,NewW)
).

trick
the number of remaining values for the 
previous variable is kept by the next variable

ESSLLI 2005 – Programming with Logic and Constraints

Heuristics in searchHeuristics in search
Observation 1:
The search space for real-life problems is so huge that it cannot be 
fully explored.

Heuristics - a guide of search
they recommend a value for assignment
quite often lead to a solution

What to do upon a failure of the heuristic?
BT cares about the end of search (a bottom part of the search tree)
so it rather repairs later assignments than the earliest ones
thus BT assumes that the heuristic guides it well in the top part

Observation 2:
The heuristics are less reliable in the earlier parts of the search 
tree (as search proceeds, more information is available).

Observation 3:
The number of heuristic violations is usually small.



10

ESSLLI 2005 – Programming with Logic and Constraints

DiscrepanciesDiscrepancies
Discrepancy

= the heuristic is not followed

Basic principles of discrepancy search:
change the order of branches to be explored

prefer branches with less discrepancies

prefer branches with earlier discrepancies

heuristic = go left

heuristic = go left

is before

is before

ESSLLI 2005 – Programming with Logic and Constraints

Limited Discrepancy Search (Harvey & Ginsberg, 1995)
restricts a maximal number of discrepancies in the iteration 

Improved LDS (Korf, 1996)
restricts a given number of discrepancies in the iteration

Depth-bounded Discrepancy Search (Walsh, 1997)
restricts discrepancies till a given depth in the iteration

…

Discrepancy searchDiscrepancy search

1 2345

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

678910

* heuristic = go left



11

ESSLLI 2005 – Programming with Logic and Constraints

HomeworkHomework

Try different search strategies (enum, split, bisect) for N 
queens problem. Which one is the best?

Write a procedure select_variable for generic search 
modeling fail-first strategy (a variable with the smallest 
domain is selected first).

fd_size(Variable,DomainSize) gives actual size 
of the variable domain

Write procedures choice_point for generic search in 
such a way that split and bisection strategies are obtained.


