LOCM: A tool for acquiring planning domain models from action traces

Stephen Cresswell
School of Computing and Engineering
The University of Huddersfield, Huddersfield HD1 3DH, UK

Abstract

This paper describesOCM, a system which carries out the
automated induction of action schema from an input language
describing sets of example action sequences. The novelty
of LOCM is that it can induce action schema without be-
ing provided with any information about predicates or initial,
goal or intermediate state descriptions for the example action
sequences. We envisai®©CM being applied in tasks for
which example sequences can easily be collected, e.g. by log-
ging workflows or moves in a computer game. In this paper
we describe the implementédCM algorithm, and analyse

its performance by its application to the induction of domain
models for several domains. To evaluate the algorithm, we
used random action sequences from existing models of do-
mains, as well as solutions to past IPC problems.

NB: this paper is an extended version of a short ICAPS
paper

Introduction

In this paper we describe a generic tool calle®CM?)

which we believe can be used in a range of (rather than on
specific) application areas. For application areas in which
LOCM is effective, it inputs a sentence within an abstract

language of observed instances and outputs a solver-ready

PDDL domain model. The strength &fOCM lies in the
simplicity of its input: its observed instances are descrip-
tions of plans or plan fragments within the application area.
LOCMrelies on four assumptions:

o there are many observations for it to use;

¢ the observations are (sub)sequences of possible action ap

plications within the domain;

e each action application is made up of an identifier, and
names of objects that it affects;

e objects in the application can be grouped into sorts, where

each object of each sort behaves in the same way as any

other.

Working under the assumptions of Simpson et al’'s object-
centric view of domain models (Simpson, Kitchin, and Mc-

of sets (calledorts) of object instances, where each object
behaves in the same way as any other object in its sort. In
particular, sorts have a defined set of states that their ob-
jects can occupy, and an object’s state may change (called
a state transition) as a result of action instance execution.
LOCM works by assembling the transition behaviour of in-
dividual sorts, the co-ordinations between transitions of dif-
ferent sorts, and the relationships between objects of dif-
ferent sorts. It does so by exploiting the idea that actions
change the state of objects, and that each time an action is
executed, the preconditions and effects on an object are the
same. Under these assumptioh®CM can induce action
schema without the need for background information such
as specifications of initial/goal states, intermediate states,
fluents or other partial domain information. All other cur-
rent systems e.@pmakerRichardson 2008), ARMS (Wu,
Yang, and Jiang 2005), and the system of (Shahaf and Amir
2006) require some of this background knowledge as essen-
tial to their operation.

This first version oLOCM which we describe in this pa-

o Per is aimed at appllcat|0ns which have little structure. In

future work we aim to developOCMto be effective in ap-
plications which have more complex static structures such as
maps, spatial rules or hierarchy. Currently, the kinds of ap-
plications domains we are experimenting with are in Games
and Workflow.

The LOCM System

LOCM Inputs and Outputs
The input toLOCM are a set of sound sequences of action

instances. An outline, abstract specification of the input lan-

guage td_OCM is as follows:

<SequencelLi st >

<Sequencel d> ", "
<| d>
<Acti onl nst ance>+

{ " <Sequence> ")" }
<Sequencel d> :
<Sequence>

<Actionl nstance> ::

<ActionName> "(" <Cbj> {"," <Qoj>} ")" ";"
<Act i onNanme> = <l d>
<bj > = <l d>

Cluskey 2007), we assume that a planning domain consists Usmg the well knowrtyre -worldas an example, the follow-

Copyright(© 2009, Assaciation for the Advancement of Atrtificial
Intelligence (www.aaai.org). All rights reserved.
Learning Object-Centred Models

ing is a sequence containing four action instances, where an
action is a name followed by a sequence of affected objects:

open(cl); fetchack(j,cl); fetchwrench(wrl,cl); close(cl);

These sequences, which are akimrkflow event logs
may be observed from an existing process or supplied by a
trainer. In the empirical evaluation below, we have tested

procedurd.OCM _I (Input action sequencgeq)
For each combination of action nardeand
argument pog® for actions occurring irfeq

the approach using example sequences from existing solvers Create transitionl. P, comprising

and from a random walk generator. The outpul &fCM
(given sufficient examples) is a domain model consisting of

sorts, object behaviour defined by state machines, predicates
defining associations between sorts, and action schema in

solver-ready form.

The LOCM Method

Phase 1: Extraction of state machines In our approach,
we assume that an object of any given sort occupies one
of a fixed set of states. Initially, we assume an object’s

state can be defined without reference to the associations it

has with any other specific object& OCM starts by first
collecting the set of all transitions occurring in the exam-
ple sequences. A transition is defined by a combination of
action name and action argument position. For example,
an actionfetchwrench(wrl,cntnr)gives rise to two transi-
tions: fetchwrench.1 andfetchwrench.2 Each transition
describes the state change of objects of a single sort in iso-
lation. For every transition occurring in the example data, a
separatestart andendstate are generated.

The trajectory of each object is then tracked through each
training sequence. For each pair of transitidisT, which
are consecutive for an obje@b, we assume thal;.end =
Ts.start.

Using a training set from the tyre world, suppose some
objectcl goes through a sequence of transitions given in the
example used above:

open(cl); fetchack(j,c1); fetchwrench(wrl,cl); close(cl);

new state identifiersl. P.start and A.P.end
Add A.P to the transition set’S
Collect the set of object®bs in Seq
For each objea®b occurring inObs
For each pair of transitiorig;, 75
consecutive foOb in Seq
Equate state®.end andT».start
end
end
Return T'S, transition set
OS, set of object states remaining distinct

At the end of phase 1,0CM has derived a set of state ma-
chines, each of which can be identified with a sort.

Phase 2: Identification of state parameters Each state
machine describes the behaviour of a single object in isola-
tion, without consideration of its association with other ob-
jects, e.g. it can distinguish a state of a wrench correspond-
ing to beingin some containgtbut does not make provision

to describavhichcontainer it is in.

In the object-centred representation, the dynamic asso-
ciations between objects are recordeddtgte parameters
embedded in each state. Phase 2 of the algorithm iden-
tifies parameters of each state by analysing patterns of
object references in the original action steps correspond-
ing to the transitions. For example, consider the state
wrenchstateO for the wrench sort (Fig. 2). Consider-
ing the actions foputawaywrench(wrench,containerand
fetchwrench(wrench,container)For a given wrench, con-

Let us assign state names to the input and output states ofsecutive transitionputawaywrench fetchwrench in any

transitions affecting1:

S — open.l = So
Ss3 = close.l] = Sa
S5 = fetch_jack.2 = Se
S7 = fetch.wrench.2 — Sy

example action sequence, always have the same value as
their containerparameter. From this observation, we can
induce that the statgrenchstateChas a state variable repre-
sentingcontainer The same observation does not hold true
for wrenchstatel We can observe instances in the training
data where the wrench is fetched from one container, and

Using the example action sequence, and the constraint on put away in a different container.

consecutive pairs of transitions, we can then deduce that
Sz = 85, 8¢ = S7, Sg = Ss3.

This second phase of the algorithm performs inductive
learning such that the hypotheses can be refuted by the ex-

Suppose our example set contains another action se-amples, but never definitely confirmed. This phase gener-

qguence:
open(c2); fetchwrench(wrl,c2); fetchack(j,c2); close(c2);

We deduce thaby, = S;, S = S5, S¢ = S3, and hence
Ss, S3, 55, S, S7, Sg all refer to the same state. If addition-
ally we have the sequence:

close(c3); open(c3);

We deduce thatS, = S, hence we have tied together

individual states to partially construct a state machine for
containers (Fig. 1). A more formal description of the

algorithm follows?:

2Whereas our system is designed to use multiple training se-
quences, for simplicity the presentation here uses only a single se-
quence.

ally requires a larger amount of training data to converge
than Phase 1 above. Phase 2 is processed in three steps,
shown below in the algorithmic description. The first two
steps generate and test the hypothesised correlations in ac-

fetch_jack.2

container_state(

Figure 1: An incomplete state machine for containers in
tyre-world

occurring in the start/end states of transitions. For example,
the generatedutawaywrenchaction schema in PDDL is:

loosen.3 (:action putaway_w ench
:paraneters (?wenchl - wench ?container2 - container)
:precondition (and (wench_statel ?w enchl)
(contai ner_statel ?container2))
ceffect (and (wrench_stateO ?w enchl ?contai ner2)
(not (wrench_statel ?wenchl))))

fetch_wrench.1
putaway_wrench.1

wrench_state0
[container]

wrench_statel

The generated predicat@gsenchstateQ wrenchstatel
containerstatel can be understood adn_container
havewrenchand openrespectively. The generated schema
can be used directly in a planner. It would also be simple
to extract initial and final states from example sequences,

tion arguments, which indicate the need for state parameters, Put this is of limited utility given that solution plans already
exist for those tasks.

The third step generates the set of induced state parameters.

Figure 2: Parameterised states of wrench.

procedurd.OCM _II (Input action sequencgeq, i
Transition sefl’S, Object seDbs) Evaluatlon O_f LOCM. .
Object state saDS) LOCMhas been implemented in Prolog incorporating the al-
Form hypotheses from state machine gorithm detailed above. In this paper we attempt to analyse
For each paird;.P; andAs. P, in T'S and evaluate it by its application to the acquisition of exist-
such thatd;.P1.end = S = As.P».start ing domain models. We have used example plans from two
For each paird;.P; andA,.P, from T'S andS in OS sources:
with A1.P{.sort = As.Pj.sort -
andPllyé }31790;;2 £ Pj 2-507 e Existing domains built using GIPO llI. In this case, we
(i.e. a pair of the other arguments have created sets of example action sequences by random
of actionsA; and A, sharing a common sort) walk.
Store in hypothesis sé{ S the hypothesis o Domains which were used in IPC planning competitions.

that when any objecib undergoes sequentially
the transitionsd:.P; thenAs. P,
there is a single objeet’,

In this case, the example traces come from solution plans
in the publicly released competition solutions.

which goes through both of the corresponding We have usetlOCMto create state machines, object as-
transitionsA;. P/ and A». P; sociations and action schema for 4 domains. Evaluation of
(This supports the proposition that state these results is ongoing, but initial results show that state
has a state parameter which can record machines can be deduced from a reasonably small number
the association afb with ob') of plan examples (30-200 steps), whereas inducing the state
en%nd parameters requires much larger training sets (typically
Test hypotheses against example sequence 1000 steps).
For each objeaDb occurring inObs Tyre-world (GIPO version). A correct state machine is de-
For each pair of transitiond, ., andAs. P rived, corresponding closely to the domain as constructed
consecutive foDb in Seq in GIPO. The induced domain contains extra states for the

Remove from hypothesis s&tS any hypothesis

which is inconsistent with example action pair jacksort, but this model is valid. After training to conver-

gence there are 3 parameter flaws. See the end of this sec-

end ! ; .) .
end tion for a discussion of flaws and their automated repair,
Generate and reduce set of state parameters and fig. 3 for a diagram of the repaired model, Appendix
For every hypothesis remaining S A for action schema).

create the state parameter supported by the hypothesis Blocks (GIPO version). A correct state machine is derived.

Merge state parameters on the basis that

o A "y . After training to convergence there are 3 parameter flaws.
a transition occurring in more than one transition pair

is associated with the same state parameter in each occurrence Th_e lOW number of steps needed to derlv_e the state ma-
end chine is due to there being only 2 sorts in the domain,

return: state parameters and correlations with action arguments both of which are involved in every action.
Driverlog (IPC strips version). State machines and param-
eters are correct for all sorts except trucks. For trucks, the

Phase 3: Formation of action schema Extraction of an oS X h . .
distinction of states with/without driver is lost, and an ex-

action schema is performed by extracting the transitions cor- . _ . .
responding to its parameters, similar to automated action U@ State parameter (driver) is retained. The state machine
construction in the OLHE process in (Simpson, Kitchin, and ~ for driveris shown in fig. 4

McCluskey 2007). One predicate is created to represent Freecell (IPC strips version). This is a version of the well-
each object state. The output of Phase 2 provides corre- known patience card game used in the IPC3 competition.
lations between the action parameters and state parameters There are three sorts discovered in the freecell domain -

wheel0 remove wheel.1 @ putaway wheel.1 [/ wheel2

L

[hub] put_on_wheel.1 { fetch_wheel.1 [boot]

tighten.1

putaway jack.1_
fetch_jack.1

put_on_wheel.2
remove_wheer:2 hubO hub3
[iack,wheel] m [iack,nuts,wheel

[nuts,wheel]

Figure 3: Other state machines induced from the tyre-world.

walk.1 drive_truck.4 Randomly-generated example data can be different in
character from purposeful, goal-directed plans. In a sense,
random data is more informative, because the random plan is
likely to visit more permutations of action sequences which
a goal-directed sequence may not. However, if the useful,
goal-directed sequences lead to induction of a state machine
with more states, this could be seen as useful heuristic infor-
mation.

Where there is only one object of a particular sort (e.qg.
gripper, wrench, container) all hypotheses about matching
) N) that sort always hold, and the sort tends to become an in-
suits, cards and numbers. In the competition version of ternal state parameter of everything. For this reason, it is

the domain, number objects are used to represent denom-jimportant to use training data in which more than one object
inations of cards and to count free cells and free columns. of egch sort is used.

The state machine derived for the cards has 7 states. The
states (see fig. 5) can be understood as follows:

driverl
[place,truck]

driverO
[place]

board_truck.l _
disembark_truck.1

Figure 4: Induced state machine for driver in driverlog do-
main.

The induced models may contain detectable flaws: the ex-
istence of a state parameter has been induced, but there are

e card3 - in a column and covered by another card one or more transitions into the state which do not set the
e card4 - in a column and not covered state parameter. The flaws usually arise because state pa-
e card5 - in a free cell rameters are induced only by considering pairs of consecu-

. tive transitions, not longer paths.
e card0-inahome ceII. The inconsistency may indicate that an object reference
e cardl, card2, card6 - in a home cell and covered is carried in from another state without being mentioned in
It is not helpful to distinguish the 3 final states, h@CM an action’s argument. In this case a repair to the model can

cannot determine that they are equivalent. Whilst the be proposed, which involves adding the “hidden” parameter
LOCM results from Freecell are amongst the more in- to some states, but a further cycle of testing against the ex-
teresting we have found, there are a number of problems ample data is required to check that the repair is consistent.
which need to be overcome in future versiond.GfCM The parameters in the state machine shown in fig. 3 and
to extract a usable domain model from freecell plans: the example operators in Appendix A have been generated
from the algorithms described above, together with an initial
implementation of an algorithm for detecting, repairing and
testing parameter flaws. This was successful at completing a
correct and consistent model for the tyre domain. This will
be further developed in future work.

The most fundamental limitation is whether it is possible
to correctly represent the domain within the limitations of
the representation that we use for action schema.

e The distinction is lost between cards which are the bot-
tom of a column and other cards which are in a column.
Solving this problem requires weakening of the strong
assumptions underpinning phase I.

e LOCM doesn't detect background relationships be-
tween objects — the adjacency of pairs numbers, and
the alternation of black cards on red cards. This could
be achieved by inductive learning on the set of all ac-
tions which ever occur. e We assume that an action moves the objects in its argu-

colfromfreecell.2

sendtonewcol.2

sendtofree.2

sendtohome.5

sendtohome b.4
——(card2
homefromfreecell.4

sendtohome.1

sendtohome_b.1
sendtofree_b.1 »

homefromfreecell.

sendtofree.1

colfromfreecell.1

newcolfromfreecell.

Figure 5: Induced state machine for cards in Freecell domain.

ments between clearly-defined substates. Objects which The TIM domain analysis tool (Fox and Long 1998) uses

are passively involved in an action may make a transition a similar intermediate representationt®@CM (i.e. state

to the same state, but cannot be idam’t carestate. space for each sort), but in TIM, the object state machines
« Static background information, such as the specific fixed '€ €xtracted from a complete domain definition and prob-

relationships between objects (e.g. which places are con- lem definition, and then used to derive hierarchical sorts and

nected), is not analysed by the system. In general, this can state mvgrlants. . . .

lead to missing preconditions. Th&®CM algorithm as- Learning expressive theories from examples is also a cen-

sumes that all information about an object is represented tral goal in the Ind_uctlve Logic Programming community.

in its state and state parameters. In general, this form of We lack space to discuss this literature here, but work by for

information may vary anyway between training examples. exam_ple (Bens_on 1996) is very relevant to the induction of
planning domain models.

Related Work Conclusion
LOCM is distinct from other systems that learn action . .
schema from examples in that it requicedy the action se- In this paper, we have described th©®CM system and

guences as input; its success is based on the assumption thals use in learning domain models (comprising object sorts,

the output domain model can be represented in an object- state descriptions, and action schema), from example action
centred representation. Other systems require richer input: Sequences containing no state information.

ARMS (Wu, Yang, and Jiang 2005) makes use of back- Although it is unrealistic to expect example sets of plans

ground knowledge as input, comprising types, relations and to be available for all new domains, we expect the technique
initial and goal states, while the system of (Shahaf and Amir to be beneficial in domains where automatic logging of some

2006) appears to efficiently build expressive actions schema, existing process yields plentiful training data, e.g. games,

but requires as input specifications of fluents, as well as par- workflow, online transactions.

tial observations of intermediate states between action ex- The work is at an early stage, but we have already ob-

ecutions. TheéOpmakeralgorithm detailed in (McCluskey tained promising results on benchmark domains, and we
et al. 2009) relies on an object-centred approach similar to see many possibilities for further developing the technique.

LOCM but it too requires a partial domain model as inputas In particular, we expect to be able demonstia@CM in

well as a training instance. the competition acquiring usable domain models from ac-

tion traces of humans playing computer games such as card t r (Boot 2: boot ,
games. boot _st at eO(Boot 2) =>
boot _st at e0(Boot 2)

References 1).

Benson, S. S. 199d.earning Action Models for Reactive oper at or (f et ch_wheel (Weel 1, Boot 2),
Autonomous Agent®h.D. Dissertation, Dept of Computer |
Science, Stanford University. tr(Weel 1: wheel ,

Fox, M., and Long, D. 1998. The automatic inference of ~ Wheel _state2(\Weel 1, Boot 2) =>

state invariants in TIM.J. Artif. Intell. Res. (JAIRD:367— wheel _stat el(Vheel 1))
421 tr (Boot 2: boot,

boot _st at e0(Boot 2) =>
McCluskey, T.; Cresswell, S.; Richardson, N.; and West, boot _st at e0(Boot 2)

M. M. 2009. Automated acquisition of action knowledge. 1).

In International Conference on Agents and Artificial Intel-

ligence (ICAART,)93-100. operator (fetch_wench(Wenchl, Boot 2),
Richardson, N. E. 2008An Operator Induction Tool Sup- tr(Wenchl: wench

porting Knowledge Engineering in Planningh.D. Disser- wrench_st at eO(W énchl, Boot 2) =>
tation, School of Computing and Engineering, University wrench_st at e1(W ench1))

of Huddersfield, UK. tr (Boot 2: boot ,

Shahaf, D., and Amir, E. 2006. Learning partially observ- ~ boot_state0(Boot2) =>

able action schemas. WAAI. AAAI Press. D boot _st at e0(Boot 2)

Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L. '

2007. Planning Domain Definition Using GIPQournal oper at or (j ack_down(Hub1, Jack2),

of Knowledge Engineering.

Wu, K.; Yang, Q.; and Jiang, Y. 2005. ARMS: Action- t'(Hubl: hub, ~
relation modelling system for learning acquisition models. ESE—Z: g: :gg ﬂﬂgi ‘ﬂlﬁfg w;zm;’\;"eel 4 =
In Proceedings of the First International Competition on tr(Jack2:j ack ' '
Knowledge Engineering for Al Planning j ack_st at e2(:]ack2, Hub1) =>
j ack_st at e3(Jack?2)
APPENDIX A 1).

The operators induced for the tyre domain are shown below

in a simplified form of OCL syntax. operator (jack_up(Hubl, Jack4),

oper at or (cl ose_cont ai ner (Boot 1), tr(Hubl: hub,
[hub_st at e3(Hub1, Nut s2, Wheel 3) =>
tr (Boot 1: boot, hub_st at e2(Hub1, Jack4, Nut s2, Weel 3))
boot _stateO(Bootl) => tr(Jack4:j ack,
boot _st at e1(Boot 1) jack_state3(Jackd) =>
1). j ack_state2(Jack4, Hubl)
1).
oper at or (do_up(Nut s1, Hub2, W ench5, Jack3),
[oper at or (1 oosen(Nut s1, Hub2, W ench4),
tr(Nutsl:nuts,
nuts_stateO(Nutsl) => tr(Nutsl:nuts,
nuts_statel(Nutsl, Hub2)) nuts_stat e2(Nutsi, Hub2) =>
tr(Hub2: hub, nuts_statel(Nutsl, Hub2))
hub_st at eO(Hub2, Jack3, Wheel 4) => tr(Hub2: hub,
hub_st at e2(Hub2, Jack3, Nut s1, Weel 4)) hub_st at e3(Hub2, Nut s1, Weel 3) =>
tr (Wench5: wench, hub_st at e3(Hub2, Nut s1, Weel 3))
wrench_statel(Wenchb5) => tr(Wench4: wrench,
wrench_st atel(Wenchb)) wrench_statel(Wench4) =>
tr(Jack3:j ack, wr ench_st at el(W ench4)
jack_stateO(Jack3, Hub2) => 1).
jack_state2(Jack3, Hub2)
1). oper at or (open_cont ai ner (Boot 1),
operator (fetch_jack(Jackl, Boot 2), tr(Boot 1: boot,
boot _statel(Bootl) =>
tr(Jackl:j ack, boot _st at eO(Boot 1)
j ack_state4(Jackl, Boot 2) => 1).

jack_state3(Jackl))

oper at or (put _on_wheel (Weel 1, Hub2, Jack3),

tr (Wheel 1: wheel ,
wheel _st at el(Weel 1) =>
wheel _st at eO(Wheel 1, Hub2))
tr(Hub2: hub,
hub_st at e1(Hub2, Jack3) =>
hub_st at e0O(Hub2, Jack3, Weel 1))
tr(Jack3:j ack,
jack_statel(Jack3, Hub2) =>
jack_stateO(Jack3, Hub2)
1.

oper at or (put away_j ack(Jack1, Boot 2),

tr(Jackl:j ack,
jack_state3(Jackl) =>
jack_state4(Jackl, Boot 2))
tr (Boot 2: boot,
boot _st at e0(Boot 2) =>
boot _st at e0(Boot 2)

1.
oper at or (put away_wheel (Wheel 1, Boot 2),

[
tr (Wheel 1: wheel ,
wheel _st at el(Weel 1) =>
wheel _st at e2(Wheel 1, Boot 2))
tr (Boot 2: boot ,
boot _st at e0(Boot2) =>
boot _st at e0O(Boot 2)

1.
oper at or (put away_wr ench(W enchl, Boot 2),

tr(Wenchl: wench,
wrench_statel(Wenchl) =>
wr ench_st at eO(W enchl, Boot 2))
tr (Boot 2: boot ,
boot _st at e0(Boot 2) =>
boot _st at e0(Boot 2)

1).
oper at or (renove_wheel (Wieel 1, Hub2, Jack3),

tr (Wheel 1: wheel ,
wheel _st at eO(Wheel 1, Hub2) =>
wheel _statel(Weel 1))

tr(Hub2: hub,
hub_st at e0(Hub2, Jack3, Weel 1) =>
hub_st at e1(Hub2, Jack3))

tr(Jack3:j ack,
jack_stateO(Jack3, Hub2) =>
jack_statel(Jack3, Hub2)

1.

operator (tighten(Nutsl, Hub2, Wench4),

tr(Nutsl:nuts,
nuts_statel(Nutsl, Hub2) =>
nuts_state2(Nutsl, Hub2))
tr(Hub2: hub,
hub_st at e3(Hub2, Nut s1, Wheel 3) =>
hub_st at e3(Hub2, Nut s1, Weel 3))
tr(Wench4: wench,

wrench_statel(Wench4) =>
wrench_st atel(Wench4)

).
oper at or (undo(Nut s1, Hub2, Wenchb5, Jack3),

tr(Nutsl:nuts,
nuts_statel(Nutsl, Hub2) =>
nuts_stateO(Nutsl))
tr(Hub2: hub,
hub_st at e2(Hub2, Jack3, Nut s1, Weel 4) =>
hub_st at e0O(Hub2, Jack3, Weel 4))
tr (Wench5: wrench,
wrench_st atel(Wench5) =>
wrench_statel(Wenchb))
tr(Jack3:j ack,
jack_state2(Jack3, Hub2) =>
jack_stateO(Jack3, Hub2)

1).

