
LOCM: A tool for acquiring planning domain models from action traces

Stephen Cresswell
School of Computing and Engineering

The University of Huddersfield, Huddersfield HD1 3DH, UK

Abstract

This paper describesLOCM, a system which carries out the
automated induction of action schema from an input language
describing sets of example action sequences. The novelty
of LOCM is that it can induce action schema without be-
ing provided with any information about predicates or initial,
goal or intermediate state descriptions for the example action
sequences. We envisageLOCM being applied in tasks for
which example sequences can easily be collected, e.g. by log-
ging workflows or moves in a computer game. In this paper
we describe the implementedLOCM algorithm, and analyse
its performance by its application to the induction of domain
models for several domains. To evaluate the algorithm, we
used random action sequences from existing models of do-
mains, as well as solutions to past IPC problems.

NB: this paper is an extended version of a short ICAPS
paper

Introduction
In this paper we describe a generic tool called (LOCM1)
which we believe can be used in a range of (rather than one
specific) application areas. For application areas in which
LOCM is effective, it inputs a sentence within an abstract
language of observed instances and outputs a solver-ready
PDDL domain model. The strength ofLOCM lies in the
simplicity of its input: its observed instances are descrip-
tions of plans or plan fragments within the application area.
LOCM relies on four assumptions:

• there are many observations for it to use;

• the observations are (sub)sequences of possible action ap-
plications within the domain;

• each action application is made up of an identifier, and
names of objects that it affects;

• objects in the application can be grouped into sorts, where
each object of each sort behaves in the same way as any
other.

Working under the assumptions of Simpson et al’s object-
centric view of domain models (Simpson, Kitchin, and Mc-
Cluskey 2007), we assume that a planning domain consists

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Learning Object-Centred Models

of sets (calledsorts) of object instances, where each object
behaves in the same way as any other object in its sort. In
particular, sorts have a defined set of states that their ob-
jects can occupy, and an object’s state may change (called
a state transition) as a result of action instance execution.
LOCM works by assembling the transition behaviour of in-
dividual sorts, the co-ordinations between transitions of dif-
ferent sorts, and the relationships between objects of dif-
ferent sorts. It does so by exploiting the idea that actions
change the state of objects, and that each time an action is
executed, the preconditions and effects on an object are the
same. Under these assumptions,LOCM can induce action
schema without the need for background information such
as specifications of initial/goal states, intermediate states,
fluents or other partial domain information. All other cur-
rent systems e.g.Opmaker(Richardson 2008), ARMS (Wu,
Yang, and Jiang 2005), and the system of (Shahaf and Amir
2006) require some of this background knowledge as essen-
tial to their operation.

This first version ofLOCM which we describe in this pa-
per is aimed at applications which have little structure. In
future work we aim to developLOCM to be effective in ap-
plications which have more complex static structures such as
maps, spatial rules or hierarchy. Currently, the kinds of ap-
plications domains we are experimenting with are in Games
and Workflow.

The LOCM System
LOCM Inputs and Outputs
The input toLOCM are a set of sound sequences of action
instances. An outline, abstract specification of the input lan-
guage toLOCM is as follows:
<SequenceList> ::=

{ "(" <SequenceId> "," <Sequence> ")" }

<SequenceId> ::= <Id>

<Sequence> ::= <ActionInstance>+

<ActionInstance> ::=

<ActionName> "(" <Obj> {"," <Obj>} ")" ";"

<ActionName> ::= <Id>

<Obj> ::= <Id>

Using the well knowntyre-worldas an example, the follow-
ing is a sequence containing four action instances, where an
action is a name followed by a sequence of affected objects:

open(c1); fetchjack(j,c1); fetchwrench(wr1,c1); close(c1);

1

These sequences, which are akin toworkflow event logs,
may be observed from an existing process or supplied by a
trainer. In the empirical evaluation below, we have tested
the approach using example sequences from existing solvers
and from a random walk generator. The output ofLOCM
(given sufficient examples) is a domain model consisting of
sorts, object behaviour defined by state machines, predicates
defining associations between sorts, and action schema in
solver-ready form.

The LOCMMethod
Phase 1: Extraction of state machines In our approach,
we assume that an object of any given sort occupies one
of a fixed set of states. Initially, we assume an object’s
state can be defined without reference to the associations it
has with any other specific objects.LOCM starts by first
collecting the set of all transitions occurring in the exam-
ple sequences. A transition is defined by a combination of
action name and action argument position. For example,
an actionfetchwrench(wr1,cntnr)gives rise to two transi-
tions: fetchwrench.1, and fetchwrench.2. Each transition
describes the state change of objects of a single sort in iso-
lation. For every transition occurring in the example data, a
separatestart andendstate are generated.

The trajectory of each object is then tracked through each
training sequence. For each pair of transitionsT1, T2, which
are consecutive for an objectOb, we assume thatT1.end =

T2.start.
Using a training set from the tyre world, suppose some

objectc1 goes through a sequence of transitions given in the
example used above:

open(c1); fetchjack(j,c1); fetchwrench(wr1,c1); close(c1);

Let us assign state names to the input and output states of
transitions affectingc1:

S1 =⇒ open.1 =⇒ S2

S3 =⇒ close.1 =⇒ S4

S5 =⇒ fetch jack.2 =⇒ S6

S7 =⇒ fetch wrench.2 =⇒ S8

Using the example action sequence, and the constraint on
consecutive pairs of transitions, we can then deduce that
S2 = S5, S6 = S7, S8 = S3.

Suppose our example set contains another action se-
quence:

open(c2); fetchwrench(wr1,c2); fetchjack(j,c2); close(c2);

We deduce thatS2 = S7, S8 = S5, S6 = S3, and hence
S2, S3, S5, S6, S7, S8 all refer to the same state. If addition-
ally we have the sequence:

close(c3); open(c3);

We deduce thatS4 = S1, hence we have tied together
individual states to partially construct a state machine for
containers (Fig. 1). A more formal description of the
algorithm follows2:

2Whereas our system is designed to use multiple training se-
quences, for simplicity the presentation here uses only a single se-
quence.

procedureLOCM I (Input action sequenceSeq)
For each combination of action nameA and

argument posP for actions occurring inSeq
Create transitionA.P , comprising

new state identifiersA.P.start andA.P.end
Add A.P to the transition setTS

Collect the set of objectsObs in Seq
For each objectOb occurring inObs

For each pair of transitionsT1, T2

consecutive forOb in Seq
Equate statesT1.end andT2.start

end
end
Return TS, transition set

OS, set of object states remaining distinct

At the end of phase 1,LOCM has derived a set of state ma-
chines, each of which can be identified with a sort.

Phase 2: Identification of state parameters Each state
machine describes the behaviour of a single object in isola-
tion, without consideration of its association with other ob-
jects, e.g. it can distinguish a state of a wrench correspond-
ing to beingin some container, but does not make provision
to describewhichcontainer it is in.

In the object-centred representation, the dynamic asso-
ciations between objects are recorded bystate parameters
embedded in each state. Phase 2 of the algorithm iden-
tifies parameters of each state by analysing patterns of
object references in the original action steps correspond-
ing to the transitions. For example, consider the state
wrenchstate0 for the wrench sort (Fig. 2). Consider-
ing the actions forputawaywrench(wrench,container), and
fetchwrench(wrench,container). For a given wrench, con-
secutive transitionsputawaywrench, fetchwrench, in any
example action sequence, always have the same value as
their containerparameter. From this observation, we can
induce that the statewrenchstate0has a state variable repre-
sentingcontainer. The same observation does not hold true
for wrenchstate1. We can observe instances in the training
data where the wrench is fetched from one container, and
put away in a different container.

This second phase of the algorithm performs inductive
learning such that the hypotheses can be refuted by the ex-
amples, but never definitely confirmed. This phase gener-
ally requires a larger amount of training data to converge
than Phase 1 above. Phase 2 is processed in three steps,
shown below in the algorithmic description. The first two
steps generate and test the hypothesised correlations in ac-

container_state0 container_state1
open.1
close.1

fetch_wrench.2
fetch_jack.2

Figure 1: An incomplete state machine for containers in
tyre-world

2

wrench_state0
[container]

wrench_state1
fetch_wrench.1

putaway_wrench.1

do_up.3
undo.3

tighten.3
loosen.3

Figure 2: Parameterised states of wrench.

tion arguments, which indicate the need for state parameters.
The third step generates the set of induced state parameters.

procedureLOCM II (Input action sequenceSeq,
Transition setTS, Object setObs)
Object state setOS)

Form hypotheses from state machine
For each pairA1.P1 andA2.P2 in TS

such thatA1.P1.end = S = A2.P2.start
For each pairA1.P

′

1 andA2.P
′

2 from TS andS in OS
with A1.P

′

1.sort = A2.P
′

2.sort
andP1 6= P ′

1, P2 6= P ′

2

(i.e. a pair of the other arguments
of actionsA1 andA2 sharing a common sort)
Store in hypothesis setHS the hypothesis

that when any objectob undergoes sequentially
the transitionsA1.P1 thenA2.P2,
there is a single objectob′,

which goes through both of the corresponding
transitionsA1.P

′

1 andA2.P
′

2

(This supports the proposition that stateS
has a state parameter which can record
the association ofob with ob′)

end
end
Test hypotheses against example sequence
For each objectOb occurring inObs

For each pair of transitionsA1.P1 andA2.P2

consecutive forOb in Seq
Remove from hypothesis setHS any hypothesis

which is inconsistent with example action pair
end

end
Generate and reduce set of state parameters
For every hypothesis remaining inHS

create the state parameter supported by the hypothesis
Merge state parameters on the basis that

a transition occurring in more than one transition pair
is associated with the same state parameter in each occurrence

end
return: state parameters and correlations with action arguments

Phase 3: Formation of action schema Extraction of an
action schema is performed by extracting the transitions cor-
responding to its parameters, similar to automated action
construction in the OLHE process in (Simpson, Kitchin, and
McCluskey 2007). One predicate is created to represent
each object state. The output of Phase 2 provides corre-
lations between the action parameters and state parameters

occurring in the start/end states of transitions. For example,
the generatedputawaywrenchaction schema in PDDL is:

(:action putaway_wrench

:parameters (?wrench1 - wrench ?container2 - container)

:precondition (and (wrench_state1 ?wrench1)

(container_state1 ?container2))

:effect (and (wrench_state0 ?wrench1 ?container2)

(not (wrench_state1 ?wrench1))))

The generated predicateswrenchstate0, wrenchstate1,
containerstate1 can be understood asin container,
havewrenchand openrespectively. The generated schema
can be used directly in a planner. It would also be simple
to extract initial and final states from example sequences,
but this is of limited utility given that solution plans already
exist for those tasks.

Evaluation of LOCM
LOCMhas been implemented in Prolog incorporating the al-
gorithm detailed above. In this paper we attempt to analyse
and evaluate it by its application to the acquisition of exist-
ing domain models. We have used example plans from two
sources:

• Existing domains built using GIPO III. In this case, we
have created sets of example action sequences by random
walk.

• Domains which were used in IPC planning competitions.
In this case, the example traces come from solution plans
in the publicly released competition solutions.

We have usedLOCM to create state machines, object as-
sociations and action schema for 4 domains. Evaluation of
these results is ongoing, but initial results show that state
machines can be deduced from a reasonably small number
of plan examples (30-200 steps), whereas inducing the state
parameters requires much larger training sets (typically>
1000 steps).

Tyre-world (GIPO version). A correct state machine is de-
rived, corresponding closely to the domain as constructed
in GIPO. The induced domain contains extra states for the
jacksort, but this model is valid. After training to conver-
gence there are 3 parameter flaws. See the end of this sec-
tion for a discussion of flaws and their automated repair,
and fig. 3 for a diagram of the repaired model, Appendix
A for action schema).

Blocks (GIPO version). A correct state machine is derived.
After training to convergence there are 3 parameter flaws.
The low number of steps needed to derive the state ma-
chine is due to there being only 2 sorts in the domain,
both of which are involved in every action.

Driverlog (IPC strips version). State machines and param-
eters are correct for all sorts except trucks. For trucks, the
distinction of states with/without driver is lost, and an ex-
tra state parameter (driver) is retained. The state machine
for driver is shown in fig. 4

Freecell (IPC strips version). This is a version of the well-
known patience card game used in the IPC3 competition.
There are three sorts discovered in the freecell domain -

3

hub1
[jack] hub0

[jack,wheel]

put_on_wheel.2
remove_wheel.2 hub2

[jack,nuts,wheel]

do_up.2

undo.2 hub3
[nuts,wheel]

jack_down.1

jack_up.1

tighten.2
loosen.2

jack1
[hub]

jack0
[hub]

put_on_wheel.3
remove_wheel.3

jack2
[hub]

do_up.4

undo.4

jack3
[]

jack_down.2

jack_up.2

jack4
[boot]

putaway_jack.1
fetch_jack.1

nuts0
[]

nuts1
[hub]

do_up.1

undo.1

nuts2
[hub]

tighten.1

loosen.1

wheel0
[hub]

wheel1
[]

remove_wheel.1

put_on_wheel.1

wheel2
[boot]

putaway_wheel.1

fetch_wheel.1

Figure 3: Other state machines induced from the tyre-world.

driver0
[place]

walk.1

driver1
[place,truck]

board_truck.1
disembark_truck.1

drive_truck.4

Figure 4: Induced state machine for driver in driverlog do-
main.

suits, cards and numbers. In the competition version of
the domain, number objects are used to represent denom-
inations of cards and to count free cells and free columns.
The state machine derived for the cards has 7 states. The
states (see fig. 5) can be understood as follows:

• card3 - in a column and covered by another card
• card4 - in a column and not covered
• card5 - in a free cell
• card0 - in a home cell
• card1, card2, card6 - in a home cell and covered

It is not helpful to distinguish the 3 final states, butLOCM
cannot determine that they are equivalent. Whilst the
LOCM results from Freecell are amongst the more in-
teresting we have found, there are a number of problems
which need to be overcome in future versions ofLOCM
to extract a usable domain model from freecell plans:

• The distinction is lost between cards which are the bot-
tom of a column and other cards which are in a column.
Solving this problem requires weakening of the strong
assumptions underpinning phase I.

• LOCM doesn’t detect background relationships be-
tween objects — the adjacency of pairs numbers, and
the alternation of black cards on red cards. This could
be achieved by inductive learning on the set of all ac-
tions which ever occur.

Randomly-generated example data can be different in
character from purposeful, goal-directed plans. In a sense,
random data is more informative, because the random plan is
likely to visit more permutations of action sequences which
a goal-directed sequence may not. However, if the useful,
goal-directed sequences lead to induction of a state machine
with more states, this could be seen as useful heuristic infor-
mation.

Where there is only one object of a particular sort (e.g.
gripper, wrench, container) all hypotheses about matching
that sort always hold, and the sort tends to become an in-
ternal state parameter of everything. For this reason, it is
important to use training data in which more than one object
of each sort is used.

The induced models may contain detectable flaws: the ex-
istence of a state parameter has been induced, but there are
one or more transitions into the state which do not set the
state parameter. The flaws usually arise because state pa-
rameters are induced only by considering pairs of consecu-
tive transitions, not longer paths.

The inconsistency may indicate that an object reference
is carried in from another state without being mentioned in
an action’s argument. In this case a repair to the model can
be proposed, which involves adding the “hidden” parameter
to some states, but a further cycle of testing against the ex-
ample data is required to check that the repair is consistent.
The parameters in the state machine shown in fig. 3 and
the example operators in Appendix A have been generated
from the algorithms described above, together with an initial
implementation of an algorithm for detecting, repairing and
testing parameter flaws. This was successful at completing a
correct and consistent model for the tyre domain. This will
be further developed in future work.

The most fundamental limitation is whether it is possible
to correctly represent the domain within the limitations of
the representation that we use for action schema.

• We assume that an action moves the objects in its argu-

4

card0

card1sendtohome.5

card2
sendtohome_b.4

card6

homefromfreecell.4

card3

card4

sendtonewcol.2

sendtofree.2

sendtohome.2

move.2

sendtohome.1

sendtohome_b.1

colfromfreecell.2

move_b.2

move.3

move.1
sendtonewcol.1

move_b.1

card5

sendtofree_b.1

sendtofree.1
homefromfreecell.1

colfromfreecell.1

newcolfromfreecell.1

Figure 5: Induced state machine for cards in Freecell domain.

ments between clearly-defined substates. Objects which
are passively involved in an action may make a transition
to the same state, but cannot be in adon’t carestate.

• Static background information, such as the specific fixed
relationships between objects (e.g. which places are con-
nected), is not analysed by the system. In general, this can
lead to missing preconditions. TheLOCM algorithm as-
sumes that all information about an object is represented
in its state and state parameters. In general, this form of
information may vary anyway between training examples.

Related Work
LOCM is distinct from other systems that learn action
schema from examples in that it requiresonly the action se-
quences as input; its success is based on the assumption that
the output domain model can be represented in an object-
centred representation. Other systems require richer input:
ARMS (Wu, Yang, and Jiang 2005) makes use of back-
ground knowledge as input, comprising types, relations and
initial and goal states, while the system of (Shahaf and Amir
2006) appears to efficiently build expressive actions schema,
but requires as input specifications of fluents, as well as par-
tial observations of intermediate states between action ex-
ecutions. TheOpmakeralgorithm detailed in (McCluskey
et al. 2009) relies on an object-centred approach similar to
LOCM but it too requires a partial domain model as input as
well as a training instance.

The TIM domain analysis tool (Fox and Long 1998) uses
a similar intermediate representation toLOCM (i.e. state
space for each sort), but in TIM, the object state machines
are extracted from a complete domain definition and prob-
lem definition, and then used to derive hierarchical sorts and
state invariants.

Learning expressive theories from examples is also a cen-
tral goal in the Inductive Logic Programming community.
We lack space to discuss this literature here, but work by for
example (Benson 1996) is very relevant to the induction of
planning domain models.

Conclusion
In this paper, we have described theLOCM system and
its use in learning domain models (comprising object sorts,
state descriptions, and action schema), from example action
sequences containing no state information.

Although it is unrealistic to expect example sets of plans
to be available for all new domains, we expect the technique
to be beneficial in domains where automatic logging of some
existing process yields plentiful training data, e.g. games,
workflow, online transactions.

The work is at an early stage, but we have already ob-
tained promising results on benchmark domains, and we
see many possibilities for further developing the technique.
In particular, we expect to be able demonstrateLOCM in
the competition acquiring usable domain models from ac-

5

tion traces of humans playing computer games such as card
games.

References
Benson, S. S. 1996.Learning Action Models for Reactive
Autonomous Agents. Ph.D. Dissertation, Dept of Computer
Science, Stanford University.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM.J. Artif. Intell. Res. (JAIR)9:367–
421.
McCluskey, T.; Cresswell, S.; Richardson, N.; and West,
M. M. 2009. Automated acquisition of action knowledge.
In International Conference on Agents and Artificial Intel-
ligence (ICAART), 93–100.
Richardson, N. E. 2008.An Operator Induction Tool Sup-
porting Knowledge Engineering in Planning. Ph.D. Disser-
tation, School of Computing and Engineering, University
of Huddersfield, UK.
Shahaf, D., and Amir, E. 2006. Learning partially observ-
able action schemas. InAAAI. AAAI Press.
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L.
2007. Planning Domain Definition Using GIPO.Journal
of Knowledge Engineering1.
Wu, K.; Yang, Q.; and Jiang, Y. 2005. ARMS: Action-
relation modelling system for learning acquisition models.
In Proceedings of the First International Competition on
Knowledge Engineering for AI Planning.

APPENDIX A
The operators induced for the tyre domain are shown below
in a simplified form of OCL syntax.

operator(close_container(Boot1),
[
tr(Boot1:boot,
boot_state0(Boot1) =>
boot_state1(Boot1)

]).

operator(do_up(Nuts1,Hub2,Wrench5,Jack3),
[
tr(Nuts1:nuts,
nuts_state0(Nuts1) =>
nuts_state1(Nuts1,Hub2))

tr(Hub2:hub,
hub_state0(Hub2,Jack3,Wheel4) =>
hub_state2(Hub2,Jack3,Nuts1,Wheel4))

tr(Wrench5:wrench,
wrench_state1(Wrench5) =>
wrench_state1(Wrench5))

tr(Jack3:jack,
jack_state0(Jack3,Hub2) =>
jack_state2(Jack3,Hub2)

]).

operator(fetch_jack(Jack1,Boot2),
[
tr(Jack1:jack,
jack_state4(Jack1,Boot2) =>
jack_state3(Jack1))

tr(Boot2:boot,
boot_state0(Boot2) =>
boot_state0(Boot2)

]).

operator(fetch_wheel(Wheel1,Boot2),
[
tr(Wheel1:wheel,
wheel_state2(Wheel1,Boot2) =>
wheel_state1(Wheel1))

tr(Boot2:boot,
boot_state0(Boot2) =>
boot_state0(Boot2)

]).

operator(fetch_wrench(Wrench1,Boot2),
[
tr(Wrench1:wrench,
wrench_state0(Wrench1,Boot2) =>
wrench_state1(Wrench1))

tr(Boot2:boot,
boot_state0(Boot2) =>
boot_state0(Boot2)

]).

operator(jack_down(Hub1,Jack2),
[
tr(Hub1:hub,
hub_state2(Hub1,Jack2,Nuts3,Wheel4) =>
hub_state3(Hub1,Nuts3,Wheel4))

tr(Jack2:jack,
jack_state2(Jack2,Hub1) =>
jack_state3(Jack2)

]).

operator(jack_up(Hub1,Jack4),
[
tr(Hub1:hub,
hub_state3(Hub1,Nuts2,Wheel3) =>
hub_state2(Hub1,Jack4,Nuts2,Wheel3))

tr(Jack4:jack,
jack_state3(Jack4) =>
jack_state2(Jack4,Hub1)

]).

operator(loosen(Nuts1,Hub2,Wrench4),
[
tr(Nuts1:nuts,
nuts_state2(Nuts1,Hub2) =>
nuts_state1(Nuts1,Hub2))

tr(Hub2:hub,
hub_state3(Hub2,Nuts1,Wheel3) =>
hub_state3(Hub2,Nuts1,Wheel3))

tr(Wrench4:wrench,
wrench_state1(Wrench4) =>
wrench_state1(Wrench4)

]).

operator(open_container(Boot1),
[
tr(Boot1:boot,
boot_state1(Boot1) =>
boot_state0(Boot1)

]).

6

operator(put_on_wheel(Wheel1,Hub2,Jack3),
[
tr(Wheel1:wheel,
wheel_state1(Wheel1) =>
wheel_state0(Wheel1,Hub2))

tr(Hub2:hub,
hub_state1(Hub2,Jack3) =>
hub_state0(Hub2,Jack3,Wheel1))

tr(Jack3:jack,
jack_state1(Jack3,Hub2) =>
jack_state0(Jack3,Hub2)

]).

operator(putaway_jack(Jack1,Boot2),
[
tr(Jack1:jack,
jack_state3(Jack1) =>
jack_state4(Jack1,Boot2))

tr(Boot2:boot,
boot_state0(Boot2) =>
boot_state0(Boot2)

]).

operator(putaway_wheel(Wheel1,Boot2),
[
tr(Wheel1:wheel,
wheel_state1(Wheel1) =>
wheel_state2(Wheel1,Boot2))

tr(Boot2:boot,
boot_state0(Boot2) =>
boot_state0(Boot2)

]).

operator(putaway_wrench(Wrench1,Boot2),
[
tr(Wrench1:wrench,
wrench_state1(Wrench1) =>
wrench_state0(Wrench1,Boot2))

tr(Boot2:boot,
boot_state0(Boot2) =>
boot_state0(Boot2)

]).

operator(remove_wheel(Wheel1,Hub2,Jack3),
[
tr(Wheel1:wheel,
wheel_state0(Wheel1,Hub2) =>
wheel_state1(Wheel1))

tr(Hub2:hub,
hub_state0(Hub2,Jack3,Wheel1) =>
hub_state1(Hub2,Jack3))

tr(Jack3:jack,
jack_state0(Jack3,Hub2) =>
jack_state1(Jack3,Hub2)

]).

operator(tighten(Nuts1,Hub2,Wrench4),
[
tr(Nuts1:nuts,
nuts_state1(Nuts1,Hub2) =>
nuts_state2(Nuts1,Hub2))

tr(Hub2:hub,
hub_state3(Hub2,Nuts1,Wheel3) =>
hub_state3(Hub2,Nuts1,Wheel3))

tr(Wrench4:wrench,

wrench_state1(Wrench4) =>
wrench_state1(Wrench4)

]).

operator(undo(Nuts1,Hub2,Wrench5,Jack3),
[
tr(Nuts1:nuts,
nuts_state1(Nuts1,Hub2) =>
nuts_state0(Nuts1))

tr(Hub2:hub,
hub_state2(Hub2,Jack3,Nuts1,Wheel4) =>
hub_state0(Hub2,Jack3,Wheel4))

tr(Wrench5:wrench,
wrench_state1(Wrench5) =>
wrench_state1(Wrench5))

tr(Jack3:jack,
jack_state2(Jack3,Hub2) =>
jack_state0(Jack3,Hub2)

]).

7

