
Modeling E-Learning Activities in Automated Planning ∗

Antonio Garrido and Eva Onaindia
Universidad Politecnica de Valencia.

Camino de Vera s/n, 46071 (Valencia). Spain

Lluvia Morales and Luis Castillo
Universidad de Granada.

Granada. Spain

Susana Fernández and Daniel Borrajo
Universidad Carlos III de Madrid.

Leganés (Madrid). Spain

Abstract

This paper presents three approaches to generate learning de-
signs using existing domain-independent planners. All of the
approaches compile a course defined in a standard e-learning
language into a planning domain, and a file containing stu-
dent’s learning information into a planning problem. The
learning designs are automatically generated from the plans
that solve the problems. The approaches differ in the kind of
planning domain generated, thus increasing the possibilities
of using existing planners: i) hierarchical, ii) including PDDL
actions with conditional effects, and iii) including PDDL du-
rative actions. We also analyse the pros and cons on the
knowledge engineering procedures used in each approach.

Introduction
Sequencing of learning activities, according to different stu-
dent’s profiles and pedagogical theories, has been a widely
studied subject by planning community for at least a decade
(Brusilovsky & Vassileva 2003; Castillo et al. 2009; Vrakas
et al. 2007). This sequencing depends on temporal condi-
tions given by the needs of each student, the course duration,
the available resources and even collaboration between tu-
tors and students, which makes the problem very interesting
for the AI P&S community.

However, acquiring enough information on educational
domains to represent them as a planning domain is not an
easy work at practice. Until few years ago, there was no
standard language to represent most of the many aspects
involved in learning activities sequencing. Thanks to the
recent rise and widespread use of specification languages
based on XML schemata, such as IMS-MD, IMS-LIP, and
IMS-LD (IMS-GLC 2001 2009), the e-learning community
can now represent information on educational domains in
full detail. Despite this, designing generic translators from
the information of those standards into a planning domain
representation can be difficult because of two main reasons:
i) people give different meanings and uses to the fields of
the standards, given that the standards provide some flexi-
bility on how to represent knowledge, and ii) there is a great
variety of planning paradigms.

∗This work has been partially supported by the Spanish
MICINN under projects TIN2008-06701-C03-03 and TIN2005-
08945-C06-05, and the regional project CCG08-UC3M/TIC-4141.

This paper focuses on how to model learning sce-
narios (learning objects and students) as planning do-
mains+problems, and on the automated translation from
standard e-learning languages to planning models. More
particularly, the paper presents a general architecture which
consists of three translation approaches to compile learning
designs, based on IMS-MD and IMS-LIP standards (IMS-
GLC 2001 2009), into planning domains, as depicted in Fig-
ure 1. These domains, together with the file compilations
that contain students’ learning information, are later solved
by existing domain-independent planners. Thus, the result-
ing plans represent tailored sequences of learning activities
that students must follow. And this represents an important
advantage: each learning design comprises a personalised
plan that fully fits each student’s necessities and preferences,
learning styles and lets him/her work at his/her own pace.
Finally, the plan is translated into another standard represen-
tation, called IMS-LD, that displays the learning design on
different on-line learning platforms. In essence, this paper
contributes with:
• An automated translation of IMS-MD and IMS-LIP e-

learning templates into three different planning compi-
lations: i) hierarchical, ii) PDDL-conditional, and iii)
PDDL-temporal.

• An intuitive graphic tool that enriches the metadata la-
belling of the learning objects. This enrichment plays an
important role, as it serves to complete information that is
not always described from an educational point of view,
but still needed for AI planning.

• An effective use of planning technology to generate learn-
ing designs that best suit students’ learning goals, thus
promoting a more personalised access to the learning ob-
jects.

• An additional translator that parses the resulting plans,
and generates the input resources (learning objects) and
learning design to be included in state-of-the-art learning
platforms, such as dotLRN and Moodle, thus closing the
e-learning cycle.
The paper is organised as follows. First, we briefly de-

scribe the e-learning basis on which our work is based. Next,
we include some related work. After that, we analyse how
to model learning designs in planning, and present the trans-
lation section with the templates used to convert e-learning

18

Figure 1: Overview of our system’s architecture.

standards into planning domains. Then, we introduce our
graphic tool that allows us to enrich the courses from a plan-
ning standpoint. Later, we discuss the options to use the
resulting plans. Finally, we conclude the paper and motivate
the future work.

Basic Background on E-Learning
There are many standards that the e-learning community
uses to deal with learning activities and their sequencing.
The most famous one is SCORM (Wisher 2009) which in-
tegrates some of the IMS (IMS-GLC 2001 2009) familiy
standards but not those that model student profiles and se-
quencing personalization. The IMS family standards are
composed, among others of the following languages:

• IMS-MD, which is responsible for describing learning ac-
tivities and relations among them. It uses an XML schema
with nested labels such as title, resourceType, learning-
Time, etc.

• IMS-LIP, which integrates every student’s profile data in
a single document. The standard has also nested labels;
e.g. identifier, name, preferences, competencies, etc.

• IMS-LD, which includes the relations between informa-
tion and sequencing of learning activities, and one or sev-
eral students’ profiles.

These standards are supported by some learning manage-
ment systems (LMS). We have established an XML-RPC
and SOAP communication protocol with two of them, Moo-
dle and dotLRN respectively, capable to retrieve and provide
information about them in order to be used in the real world.
Moodle supports IMS-MD and IMS-LIP standards and has
an API that returns them in a special format shown in Fig-
ure 2. dotLRN can additionally display learning activities
sequences using the IMS-LD standard.

The first two standards are relatively easy to use and that
is the reason why its extensive spread over the past years.
However, despite the IMS-LD’s first stable version is al-
ready six years old, it has not been widely accepted in the

Figure 2: Two learning objects of an XML course in Moodle
format.

e-learning community. It is really difficult for one person
to design a plan that considers most of the variables to se-
quence learning activities in a course and adapt that se-
quence to every student’s profile. And this is the main moti-
vation for using P&S techniques, as they can be very power-
ful to automatically generate IMS-LD documents containing
sequences of learning activities fully adapted to the students.

Related Work
The application of integrated P&S techniques to improve the
sequencing of learning activities from Intelligent Tutoring
Systems was first introduced in (Peachy & McCalla 1986).
The underlying idea for using P&S techniques is to deal
with causal (planning) and temporal+resource constraints
(scheduling) capabilities in an e-learning setting. Since then,
some works have appeared but proposing ad-hoc approaches
that do not consider standard labellings of learning objects.
In (Mohan, Greer, & McCalla 2003), an exhaustive IMS-
MD standard labelling over learning objects for the defini-
tion of a domain model was proposed, which acted as a pre-
cursor for more standard approaches.

The approach proposed in (Camacho, R-Moreno, & Obi-
eta 2007) works over e-learning courses and adapts the plan
sequencing to the IMS-LD standard. However, it does not
take advantage of the entire standards for domain modelling.
Also, it does not support temporal constraints on particular
learning activities, but on the entire course. The PASER sys-
tem (Kontopoulos et al. 2008) uses ontologies over learn-
ing activities curricula, after the planning process, to simu-
late the lack of information about its causal relations. How-
ever, that system does not support scheduling features, such
as temporal reasoning, or adaptation capabilities to learning
styles and tutor interaction. On the other hand, the approach
presented in (Ullrich & Melis 2009) combines both IMS-
MD metadata for domain modelling and a set of competen-
cies required by the students. This approach generates an
activities sequence over a domain-dependent intelligent tu-
toring system, which unfortunately makes it lose the ability
to generalise the translation process and a further application
of its results.

The work presented in this paper shares the ideas on e-
learning standard usage and generation of sequence of activ-
ities. But, we address that by using a knowledge engineer-

19

ing algorithm to directly generate the planning domain of a
course in a standard Planning Domain Definition Language
(PDDL), so that we can easily use state-of-the-art planners
to solve the problem.

Modelling Learning Design in Planning
Learning designs keep a strong resemblance with AI plan-
ning models. After all, they both rely on the underlying idea
of using a sequence of activities that are linked by cause-
effect relations and make it possible to achieve some (learn-
ing) goals. From a general perspective, most learning de-
signs share the following features:

• A course is defined by a set of different learning activities,
also known as learning objects. Usually, they are repre-
sented as XML schemata (see Figure 2). For example,
in the definition of an AI course, there may be a generic
task for reading the introduction to planning. And, there
could be several learning objects to accomplish it, such as
viewing a slide presentation, reading the introduction text
from the text book, searching for the concept of Auto-
mated Planning in the Web and reading a couple of pages,
or seeing a graph about planning. It is enough for the stu-
dent to follow any one of them to accomplish the task,
but more than one can be performed as well. This set of
options is usually called the Metadata (MD) set.

• Each activity can be more or less appropriate to each stu-
dent depending on the student’s profile. Therefore, we
need mechanisms to determine this profile. There are
many theories that classify students into a set of pro-
files. Two well-known examples are the Felder’s learn-
ing styles1 (Felder 1996) and the Honey-Alonso ones
(HoneyAlonso 2002). These learning styles can be trans-
lated as order rules or utilities according to the planning
paradigm used.

• Learning activities can have dependency relations among
them. For instance, before reading about PDDL, the stu-
dent should have some knowledge on predicate logic.
More formally, we support four types of relations that in-
clude hierarchical structures and ordering relations based
on content dependencies. The hierarchical structures use
the IsPartOf IMS-MD relation, which represents a hi-
erarchical aggregation of learning objects. Additionally,
there are three types of causal dependencies, Requires, Is-
BasedOn and References, as in LOM terminology (LOM
2002). We interpret the first two relations as hard require-
ments. In the case of the Required elements, all of them
have to be completed before initiating a new learning ob-
ject. Let us assume that ’A Requires B’ and ’A Requires
C’. In this case, B and C need to be finished before do-
ing A. In the case of the IsBasedOn elements, at least one
of them has to be completed. Assuming ’A IsBasedOn
B’ and ’A IsBasedOn C’, only B or C must be completed

1The learning styles model developed by Richard Felder in-
corporates four dimensions: the Perception dimension (sensi-
tive/intuitive), the Processing dimension (active/reflective), the In-
put dimensions (visual/verbal) and the Understanding dimension
(sequential/global).

before initiating A. Intuitively, the Requires and IsBase-
dOn relations represent the idea of conjunctive and dis-
junctive requirements. On the other hand, the course de-
signer might also recommend other previous objects by
means of the References relation. This relation does not
denote a hard requirement but a recommendation (soft re-
quirement) to complete a learning object before proceed-
ing with the next one.

• Each activity takes a standard time (duration) to fulfill,
commonly known as typical learning time. In Figure 2,
however, ITEM-task3 has no duration (typicalLearning-
Time) as it is derived from its aggregated learning objects.
In other words, duration is only specified for primitive ac-
tivities.

• Each learning activity belongs to a source type, such as
a lecture, a diagram, an exercise, etc. Although this does
not seem to be very relevant for planning, it really has a
positive or negative impact in the outcome of the activity.
According to education experts, the source type highly in-
teracts with the student’s profile. For instance, a lecture is
very recommendable for Felder’s verbal students but not
for visual ones, and just the opposite holds for a diagram.

• The Metadata set of learning objects is translated into
a planning domain where each learning object is repre-
sented as one or several planning actions. As a general
rule, we can state that one planning domain is defined
per course, but we can use course composition and cre-
ate more general and larger domains, thus providing more
opportunities to reuse the learning objects in other con-
texts. The planning problem comprises one or more stu-
dents, where the students’ profiles and initial background
are encoded as propositions included in the initial state.
Finally, the goals usually consist in attaining some levels
of knowledge in particular topics or even in accomplish-
ing the whole course.

It is important to note that this information is part of the
IMS standard and not specially introduced for AI planning.
But, to the specific purpose of using planning techniques,
it is essential not to have missing components and to deal
always with coherent information. For instance, a situation
like ’A Requires B’ and ’B Requires A’ would entail a failure
to find a plan2.

As seen from above, learning objects, with their dura-
tion, student profile’s dependence and the relations defined
in their metadata can be metaphorically considered as tra-
ditional actions used in AI planning domains. In particular,
each learning object can be simply modelled as an action, its
dependency relations as preconditions, and its outcomes as
effects. For instance, the learning objects of Figure 2 could
be modelled by means of a PDDL-like structure similar to
the next one:

2The tool that we present below allows the user to visually no-
tice this situation and, therefore, helps validate metadata labelling.

20

(:action ITEM-task3 ;; Algorithms
:parameters (?s - student)
:duration ... ;; defined by its aggregated actions
:precondition (and (ITEM-action6)

(ITEM-task5)
student’s profile requirements...)

:effect (and (ITEM-task3-done)
other student’s profile-dependent effects...)

)

(:action ITEM-action6 ;; Basic Algorithms Lecture
:parameters (?s - student)
:duration 9
:precondition (student’s profile requirements...)
:effect (and (ITEM-action6-done)

other student’s profile-dependent effects...)
)

The basic elements of an action, such as preconditions,
duration and effects, are easily recovered from each learn-
ing object’s metadata and generated in the planning trans-
lation. However, there are other elements that are not easy
nor intuitive, such as the IsPartOf (hierarchical structure)
or References (soft preconditions) relations, the condition-
ality/interaction that appears when dealing with different
source types and students’ profiles, etc. All these elements
impose important challenges during the planning compila-
tion, which are more or less significant depending on the
planning approach to be used. This reflects the need of em-
phasising the knowledge engineering methods to perform
such compilations.

Translators
This section describes in detail the three different compila-
tions to be subsequently used by domain-independent plan-
ners. The most intuitive approach is the hierarchical one,
where a learning design is modelled as a task hierarchy con-
taining durative actions. Next one is the PDDL-conditional
that includes PDDL actions with conditional effects and, fi-
nally, the PDDL-temporal approach that models durative ac-
tions. We also analyse the pros and cons on the knowledge
engineering procedures used in each approach.

Hierarchical Domain Compilation
This hierarchical domain compilation is based on an ex-
tended version of PDDL for handling temporal knowledge
in HTN Planners described in (Castillo et al. 2006).

When using a hierarchical approach there are two main
structures to take into account, tasks and durative actions.
Their characteristics, according to the compilation of an e-
learning domain, are the following:

To define tasks, the main subject (also called the main
task of the course) is formed by ordered subsets of subtasks
that have an IsPartOf relation with the main one. These sub-
tasks contain others and so on until the subtasks are related
to learning activities which are represented as primitive du-
rative actions.

Each task has one or more methods that contain ordered
tasks and/or durative actions. Their order is given either by
the IsBasedOn relation or by additional preconditions based
on order rules according to the Honey-Alonso learning style
(HoneyAlonso 2002) of each student and its relation with the
resource types of the learning activities in the method. For
example, if a task is formed by three durative actions, not
ordered by IsBasedOn relation, and its resource types are

exercise, narrativeText and simulation, then we have two
methods with the next preconditions:
If the student’s learning style is Pragmatic then
the sequence order is: exercise, simulation and narrativeText

If the student’s learning style is Theoretical then
the sequence order is: narrativeText, simulation and exercise,

where Pragmatic and Theoretical are constants related to
the kinds of learning styles for a student according to the
Honey-Alonso theory.

In the next lines, we describe the compilation of the Al-
gorithms subject (with identifier item-TASK3 in Figure 2).
It is related by IsPartOf relation with a subject identified as
item-TASK5 that Requires the durative action item-action6
which is part of Algorithms too. As they are completely re-
lated through a Requires relation, then item-TASK3 has a
unique method with no preconditions and tasks in the ex-
plicit order mentioned later.
(:task item_TASK3 (:task Optional_item_action12
:parameters(?id - stId) :parameters(?id - stId)
(:method unique (:method yes
:precondition() :precondition(availability ?id much)
:tasks(:tasks((item_action12 ?id)))
(item_action6 ?id) (:method no
(item_TASK5 ?id)))) :precondition()

:tasks()))

On the other hand, and taking into account that this
paradigm is based on temporal deadlines, if any of the ac-
tions aggregated in the task is related to it through the Refer-
ences relation, then an auxiliar task with two methods is cre-
ated. As in Optional item action12, the first method
does not contain any action or subtask and has no precondi-
tions. The second method must ’invoke’ the referenced ac-
tion only if the student has enough time according to his/her
profile.

Finally, to define durative actions we consider that each
of them has also conditions related to the student’s profile,
e.g. a required language level, a high performance, or mul-
timedia availability. Usually, these conditions are assigned
to actions with soft preconditions or with the same name but
different preconditions and durations. They help adapt a se-
quence according to the deadlines for each student, which
are imposed to each action related to the goal of the course
in the problem definition.

PDDL-Conditional Domain Compilation
This approach assumes each learning activity has an util-
ity value that depends on two factors: the student’s pro-
file and the learning source type of the activity. Accord-
ing to pedagogical theories, each learning source type is
related to the Felder’s learning styles, represented in the
student’s profile (Baldiris et al. 2008). So, for each pair
<student learning style,activity source type> there is a cor-
responding utility. We represent learning styles with predi-
cates and the activity utility with a fluent, as it is explained
next. The model also assumes that there is a learning
object named fictitious-finish-course-name that
contains the tasks required to fulfil the entire course.

We use one predicate for each Felder’s learning style. For
example, (sequential ?s - student ?p - profile level type).
The profile level type can take the value strong, moderate
or balanced. If the system determines that the student is, for

21

example, strong sensitive and strong active we would add in
the initial state of the PDDL problem the propositions (ac-
tive student1 strong) and (sensitive student1 strong).

Each learning object is translated into a PDDL action in
the following way 3:

• The XML label <title> is used as the action name.
• We define a predicate with the same action name, but ad-

joining the prefix task and the suffix done. It is added to
the action effects and represents the fact that the student
has performed such activity and prevents him/her from re-
peating it.

• The XML label <typicallearningtime> represents the ac-
tivity duration. We use a fluent to represent the time, (to-
tal time student ?s), that is increased in the amount of this
label in the action effects.

• The XML label <learningsourcetype> represents the ac-
tivity source type. Its possible values are lecture, nar-
rativetext, slide, table, index, diagram, figure, graph, ex-
ercise, simulation, experiment, questionnaire, problem-
statement, selfassessment and exam. We have used the
fluent (reward student ?s) to represent the activity utility.
Given that it depends on both the student’s learning style
and the activity source type, we use conditional effects.
For example, when the learning source of an activity is
a lecture, Felder’s pedagogical theory says that it is very
good for reflective, intuitive and verbal students. So we
add the following conditional effects to the PDDL action:
(when (reflective ?s strong)

(increase (reward_student ?s) 40))
(when (intuitive ?s strong)

(increase (reward_student ?s) 40))
(when (verbal ?s strong)

(increase (reward_student ?s) 40))

To compute the increasing values of the reward student
fluent, we base on a table defined in (Baldiris et al. 2008),
where rows represent learning source types, columns are
the Felder’s learning styles, and intersections can take the
values: very good, good or indifferent, depending on how
the source type adapts to the Felder’s style. And, we have
converted them into numbers, by some kind of normaliza-
tion.

• The XML label <relation> defines a relation between
two learning activities. We use two of the four types of
causal relations defined in the IMS-MD: Requires and
IsBasedOn, with the meaning defined above. In fact, a
learning object with an IsBasedOn relation is considered
as a fictitious action, because the student has to perform
only one of the actions in the or-condition and both the
reward and the total time remain the same.

Figures 3 and 4 show PDDL actions translated from
learning objects with relations of type Requires and Is-
BasedOn respectively. The first action describes the ac-
tivity simulates-strips-problem. It requires that the student
has already performed activity reads-classical-planning, it
takes 30 minutes, and it adds the corresponding rewards.
The learning source type is problem that is very good for

3This compilation takes as input an IMS-MD Metadata set.

strong active, sensitive and visual students and good for
strong global students. We add the precondition (not
(task strips done ?s)) to avoid including twice the
same action in the plan. The second action represents
that a student could perform the activity simulates-strips-
problem or experiments-strips-problem to accomplish the
task task strips done.

(:action simulates-strips-problem
:parameters (?s - student)
:precondition (and (task_reads-classical-planning_done ?s)

(not (task_simulates-strips-problem_done ?s)))
:effect (and (task_simulates-strips-problem_done ?s)

(increase (reward_student ?s) 5)
(increase (total_time_student ?s) 30)
(when (active ?s strong)

(increase (reward_student ?s) 30))
(when (sensitive ?s strong)

(increase (reward_student ?s) 30))
(when (global ?s strong)

(increase (reward_student ?s) 15))
(when (visual ?s strong)

(increase (reward_student ?s) 30))))

Figure 3: Example of a PDDL action translated from a learn-
ing object with a Requires relation.

(:action OR-fictitious-strips
:parameters (?s - student)
:precondition (and (not (task_strips_done ?s))

(or (task_simulates-strips-problem_done ?s)
(task_experiments-strips-problem_done ?s)))

:effect (and (task_strips_done ?s)))

Figure 4: Example of a PDDL action translated from a learn-
ing object with a IsBasedOn relation.

As we said before, the fictitious-finish-course-
name learning object contains, as a Requires relations, the
tasks required to fulfill the course. This learning object
is translated into a fictitious PDDL action with one effect,
(task course-name done ?s), and its preconditions are the
tasks required to complete the course, plus the predicate (<
(total time student ?s) (time threshold student ?s)), to avoid
the plan to exceed the time limit. This threshold is defined in
the planning problem and represents the total time the stu-
dent can devote to the course. The planning problem has
only the goal (task course-name done ?s).

This representation allows that any planner that supports
full ADL extension (including conditional effects) and flu-
ents can find a solution.

PDDL-Temporal Domain Compilation
This approach follows the same thread presented in the pre-
vious conditional compilation w.r.t. a non-hierarchical rep-
resentation of actions in PDDL. However, there are some
differences w.r.t. the action model:

• As conditional effects are not supported by all existing
planners, we do not generate actions with unbound pa-
rameters, but fully grounded actions. That is, actions
where all the parameters have been instantiated. This
means that the name of each predicate needs to include
now information about the student. All this process is
done automatically. Although this entails rather larger

22

domains when dealing with many students (only one op-
erator for all the students vs. as many grounded ac-
tions as students), it simplifies the generation of both pre-
conditions and effects that depend on the student’s pro-
file. Now, we do not need preconditions like (active
?s strong) nor conditional effects because the ac-
tion (with all its effects) is generated only if the student
is strong in the active dimension of the learning style.
In other words, through a previous automated ground-
ing process, the planning domain will be formed only by
those actions that are actually applicable for each student.

• All predicates are generalised to numeric fluents, i.e. all
the variable information in the domain is encoded as func-
tions. This means that, instead of using a STRIPS model
of actions where preconditions and effects are bi-valued
(true/false) predicates, now we can deal with a broader
domain of values that allows to keep different levels of
knowledge. This increases the expressivity of the model,
by allowing us not only metric rewards (e.g. (increase
(reward Student1) 30), like in the conditional
compilation) but also having preconditions such as (>=
(Task Reads-classical-planning Student1)
50). This represents better the fact of: i) achieving marks
after executing the tasks, and ii) requiring successful
scores before executing tasks.

• This model encodes durations as defined in PDDL2.1, and
its successors, by using the :duration. This value is di-
rectly taken from the typical learning time metadata of
the learning object. Thus, the PDDL domain can be sub-
sequently used by any temporal planner. Nevertheless,
this compilation also has the ability to model time as in
the conditional compilation; that is, by means of an artifi-
cial fluent (total time) that represents the time-line.
The advantage of doing this is that this approach provides
a domain compilation valid for existing temporal and non-
temporal metric planners.

• The hierarchical structure is flatly encoded by means of
two dummy actions, Start and End, that represent the
aggregation activity. Start contains the preconditions of
the aggregation activity and End its effects. On the other
hand, the actions generated for all the aggregated objects
have that Start as precondition. Obviously, both Start and
End have duration 0. Recalling the example depicted in
Figure 2, Figure 5 shows an example of the three actions
that are generated when encoding the hierarchical rela-
tions in a flat structure.

• The utilisation of numeric fluents in actions makes the in-
clusion of metric resources and their cost easier, as tradi-
tionally used in P&S. Particularly, this approach can also
model the cost of each action, in terms of the resources
used, by simply adding a new effect such as (increase
(resource cost Computer) value). The inclu-
sion of the resources cost will later allow the user to de-
fine more flexible metrics to be optimised in the planning
problem.

(:durative-action Start_ITEM-task3_Std1 ;; Algorithms
:parameters ()
:duration (= ?duration 0)
:condition (and (at start (= (Start_ORG-s2ctest2_Std1_done) 1))

(at start (= (Start_ITEM-task5_Std1_done) 1))
(at start (= (Start_ITEM-task3_Std1_done) 0)))

:effect (and (at end (increase (Start_ITEM-task3_Std1_done) 1))))

(:durative-action End_ITEM-task3_Std1 ;; Algorithms
:parameters ()
:duration (= ?duration 0)
:condition (and (at start (= (Start_ITEM-task3_Std1_done) 1))

(at start (= (Start_ITEM-task6_Std1_done) 1))
(at start (= (End_ITEM-task3_Std1_done) 0)))

:effect (and (at end (increase (End_ITEM-task3_Std1_done) 1))
increase other numeric expressions or resource_costs))

(:durative-action ITEM-action6_Std1 ;; Basic Algorithms Lecture
:parameters ()
:duration (= ?duration 9)
:condition (and (at start (= (Start_ITEM-task3_Std1_done) 1))

(at start (= (ITEM-action6_Std1_done) 0)))
:effect (and (at end (increase (ITEM-action6_Std1_done) 1))

increase other numeric expressions or resource_costs))

Figure 5: Durative actions generated for the learning objects
of Figure 2.

Problems Compilation
Once the domain is generated, we need to define problems
in such a way that, when the planner solves them, each plan
represents a learning design for a particular student. That
is, the sequence of learning actions a student should per-
form in order to complete the course. Usually, LMS have
mechanisms based on standards to access the relevant stu-
dent information for the designs. IMS-LIP has become a
standard for storing such student information. But, again,
this standard is too generic and tries to cover too many as-
pects. Therefore, it is necessary to select the relevant stu-
dent’s characteristics required for our planning problems and
the XML fields that contain them.

This section describes a proposal of IMS-LIP schema for
translating it into a planning problem. The proposal is valid
for the hierarchical domain and the PDDL domain with flu-
ents and conditional effects, although the translated propo-
sitions, obviously, differ in each domain in relation to the
domain predicates. So far, the planning problems for the
temporal domain must be defined separately because the
grounded domain makes an automatic translation difficult.
After all, when working with grounded actions, both the
planning domain and problem are packed together as the
grounded actions in the domain are only valid for that par-
ticular planning problem.

On the one hand, planning problems include propositions
to represent the objects, the initial state, the goals and a met-
ric to optimise. In our domains, the objects represent the stu-
dent’s information for the learning design. The initial state
represents the student’s profile, the initial values of the flu-
ents, the previous knowledge of the student, the language of
the course, and some other information (e.g. performance,
equipment, availability, etc.). The goal is usually to pass the
entire course or a part of it.

On the other hand, the core structures of the IMS-LIP
are based upon: accessibility information, activities, affili-
ations, competencies, goals, identifications, interests, qual-
ifications, certifications and licences, relationship, security

23

keys, and transcripts. Within each category several data ele-
ments and structures are defined. Some of these are specified
explicitly as data types (language strings, for the most part)
and others are defined as recursive hierarchical structures.
Thus, the question is how to match both structures, the IMS-
LIP and the planning problem ones, so that, an automatic
translation compiles an IMS-LIP file into a planning prob-
lem. Table 1 shows the XML fields we have used to allow
this compilation. The first column represents the IMS-LIP
code and the second column represents the corresponding
translation into the planning problem.

IMS-LIP Planning Problem
<identification><name>
<contentype><referential>
<indexid>student1 :objects student1

<accessibility> <preference>
<typename><typevalue>
Learner_Style_Processing

<prefcode>reflective.strong :inits (reflective student1 strong)
<accessibility><preference>
<typename><typevalue>
Learner_Style_HoneyAlonso

<prefcode>theoretical.strong :inits (honeyAlonso student1 theoretical)
<goal><typename>
<tyvalue>AI-course
<contentype><temporal>
<typename>Time_Threshold
<temporalfield>3881 :inits (= (time threshold student1) 3811)

:goals (task AI-course done student1)
<activity><typename>
<tyvalue>Task
<learningactivityref>

<text>graph_theory :inits (task graph theory done student1)
<accessibility><language>
<typename><tyvalue>English :inits (language level English student1 high)
<competency><contentype>
<referential><indexid>
performanceLevel
<description>

<short>High :inits (performance level student1 high)

Table 1: Example of a problem compilation from an IMS-
LIP. Irrelevant information has been eliminated.

Approaches Comparison
Table 2 shows the differences between the three approaches
regarding some characteristics. The first rows represent
where or how each planning feature is defined. For exam-
ple, the Hierarchical domain is translated from a course de-
fined in Moodle format and the PDDL-Temporal one can be
defined either in Moodle or in IMS-MD format. The trans-
lation is fully automated in all cases. ’Tool’ means that the
characteristic is defined through the Tool we have imple-
mented. The planning goals in the Hierarchical approaches
are defined in the IMS-LIP, while in the PDDL-Conditional
one are defined in a learning object of the Metadata set. The
row Deadline definition represents where the time limit each
student can devote to the course is defined. For example,
in the Hierarchical and PDDL-Conditional approaches, it
is a field in the IMS-LIP that is automatically translated.
The row Prerequisite definition refers to the previous knowl-
edge the student should have in order to follow the course.
The row LOM relations means the types of relations, ac-
cording to LOM terminology, supported for the approaches.
Soft preconditions refers to the fact that the learning design
can contain activities that, without being mandatory, pro-
vide some benefit to the student. This is possible through the
methods in the Hierarchical approaches and through the pre-

condition (< (total time student ?s) (time threshold student
?s)) in the PDDL-Conditional representation. Time manage-
ment represents how the approaches deal with time. The Hi-
erarchical and PDDL-Temporal approaches use durative ac-
tions while the PDDL-Conditional uses fluents. The PDDL-
Temporal can also compile the domain using a fluent to rep-
resent time instead of durative actions. The row Metrics
means whether the approach can manage quality metrics or
not. The last row represents the planner required to solve
the problems modelled by the approach. SIADEX (Castillo
et al. 2006) is the only planner able to generate learning
designs in the Hierarchical approach, because of the input
language. So far, there is no standard language for repre-
senting hierarchical domains in PDDL. The other two ap-
proaches compile the domains into PDDL, so any planner
that supports fluents, metrics, and conditional effects, in the
case of PDDL-Conditional, or durative actions in the case of
PDDL-Temporal, can solve the problems.

Characteristic Hierarchical PDDL-Conditional PDDL-Temporal
Domain definition Moodle IMS-MD Both
Problem definition Moodle and IMS-LIP IMS-LIP Tool
Goal definition IMS-LIP LO in MD Problem (Tool)
Deadline definition IMS-LIP IMS-LIP Problem (Tool)
Prerequisite definition IMS-LIP IMS-LIP Problem (Tool)
LOM relations All IsBasedOn All

Requires
Students’ profile Honey-Alonso Felder Both
Soft preconditions Method Domain -
Time management Durative actions Fluent Both
Metric No Yes Yes
Planner SIADEX Conditional effect Temporal

Metrics Metrics

Table 2: Approaches comparison.

The Hierarchical approach permits modelling more learn-
ing features, including durative actions, but only the planner
SIADEX can solve the problems. Also, the methods have to
be manually defined. Also, it cannot deal with quality met-
rics. The other approaches use PDDL and can deal with met-
rics such as minimizing the total time the student devotes to
the course. However, current state-of-the-art planners can-
not manage maximizing metrics, so a metric for maximizing
the total utility that the learning activities report to the stu-
dent is not easily applicable. The PDDL-Temporal approach
automatically generates grounded domains avoiding the use
of conditional effects, but it makes ulterior domain modi-
fications difficult, as, for example, trying to find ways for
maximizing the utility.

Tool
Once the three translation modules have been presented, we
describe the tool that supports the user on generating the
planning files. As indicated in Figure 1, the tool comprises
two parts and its main goals are twofold. First, the tool acts
as an interface for the translators, thus making this process
simple and transparent to the user. Second, the tool provides
a graphic visualization of the learning objects and their rela-
tions, and also allows the designer to modify and tune them
by means of intuitive drag&drop graphic components and
user-friendly input forms.

24

Support Interface for Translation

The tool contains options for both importing and exporting
files in standard e-learning formats, together with transla-
tion support to planning files. Particularly, we can easily
import/export the learning objects encoded as IMS-MD in
dotLRN or in Moodle XML files. As an example, Figure 6
shows a snapshot of the tool when importing a simple Moo-
dle course with the objects depicted in Figure 2. The possi-
bility of importing learning objects from common standards
is very convenient as it allows the designer to reuse many
of the objects available in web repositories. After that, the
tool uses the three different compilation methods described
in the previous section to generate the planning domains and
problems accordingly.

Graphic Visualization and Tuning of the Learning
Objects

The second part of the tool focuses on modelling e-learning
courses, acting as a complementary module to specify and
facilitate the completion and extension of metadata records
of learning objects, specially those related to the struc-
tural and logical relationships that are essential for planning.
Loosely speaking, the tool offers a much more intuitive rep-
resentation of the learning objects by using graphic elements
(see Figure 6) rather than the XML files (see Figure 2). This
is interesting as we can see at a glance the hierarchical struc-
ture, the aggregated objects, the students’ profiles, their re-
lationships and also helps notice some inconsistencies, such
as circular dependencies between learning objects (e.g. A
and B Require each other).

A clear advantage of our tool is that it can be used to
improve the quality of the learning objects, at least from
the planning perspective. The e-learning standards include
much information within the objects, in the form of meta-
data, but they are not always directly usable in planning. Ac-
tually, some of the items are not concerned with planning,
like the keywords, the format or the source of the objects.
Others are not equivalent to the same named items in plan-
ning, such as the resources: a resource in e-learning may be a
URL the student needs to visit, but not a shared resource that
imposes additional constraints and costs to the plan. Conse-
quently, we can use the tool to complete and tune the meta-
data labelling of the learning objects, making them more ac-
curate w.r.t. i) information about the student’s profile, ii)
required resources, iii) typical learning time, i.e. duration,
and iv) relationships among objects and their types. After
all, the more accurate the metadata of the objects is, the bet-
ter for the planner —it will have more opportunities to find
a plan better adapted to the student. Figure 7 shows one
of the forms that allow to input basic information about the
learning object (from the planning point of view), min and
max duration, requirements on profiles and previous con-
cepts, necessary resources, etc. With all this information,
and once the students’ information is modelled, the tool per-
forms a temporal domain compilation and generates both the
domain and the problem files in PDDL format, ready to use
by any existing domain-independent planner.

Figure 7: Input form with information about the learning
object ’Basic Algorithms Lecture’.

Use of Plans
Each plan generated by a domain-independent planner, us-
ing a domain and a problem as described above, represents
the learning design that best suits the student whose char-
acteristics are modeled in the problem. Learning platforms
include tools for executing the designs when the design is
represented in a specific language. For example, dotLRN
interprets IMS-LD, whereas Moodle has its own templates.
We have implemented two more translators: from the plans
of non-hierarchical planners to IMS-LD and from the plans
of a hierarchical planner to the Moodle templates.

The first translator compiles a plan into an IMS-LD that
dotLRN is able to execute. This is a zip file that contains the
input resources (learning objects), as well as the learning
design (output of the planner). The first part is basically
a copy of the input resources that is usually contained in a
directory. The second part consists of an XML file. Next, we
describe the main fields of this file (some others are easily
filled in from this information) and how they are generated
from the domain, problem and plan:

• Objectives: these are filled with the name of the goals
of the problem. The problem goals are always the main
effects of the final action of any domain.

• Prerequisites: these are the initial conditions on previous
knowledge that is required to follow this course. They are
the links to learning objects of other courses, or objectives
of other courses. This will allow us to perform multiple
course planning in the future.

• Roles: in this case, the only role is that of the learner, the
student for whom the learning design is generated.

25

Figure 6: Snapshot of the tool.

• Activities: for each action in the plan, an IMS-LD activ-
ity entry is generated. This field is just an enumeration of
those actions, and each one also includes a link to the cor-
responding learning object. Fictitious actions are omitted.

• Activity-structure: this IMS-LD concept relates to the
plan itself. So, here the sequence of actions in the plan
is represented as such. Given that the standard allows
other control structures, such as conditional plans with
branches, in the future we will study how to generate con-
ditional plans and the effect it has on the fact that students
follow different alternatives.

• Resources: for each learning object in the input IMS-MD,
a resource, that can be or not used by the plan, is defined.

Once the translator generates the zip file, it can be up-
loaded to dotLRN and be used by any student after a se-
quence of bookkeeping activities: defining the student’s
preferences, defining relevant roles of the course, initiating
the execution of the course and so on.

The second translator compiles the hierarchical plan into
a Moodle template. This template describes an XML file
which is automatically related with a course by Moodle. The
XML document contains several items with a student’s iden-
tifier and a related action, as in next lines.
<item>
<studentId> student1 </studentId>
<actionId> ITEM-action1 <actionId>

</item>
<item>
<studentId> student1 </studentId>
<actionId> ITEM-action6 <actionId>

</item>

The actions related with each student’s identifier are not
subjects of a course, but learning activities, i.e. durative ac-
tions which were previously stored in Moodle database us-
ing IMS-MD standard. The order in which items appear in
the document correspond to the plan with the learning ac-
tivities sequencing obtained for each student. Internally, hi-
erarchy of subjects is provided by Moodle according to the
information previously stored.

Moodle permits us to deal with collaborative plans. If
items of several students are interspersed, then dependency
between actions of a previous student and the next one must
be taken into account by the platform. Obtaining collabora-
tive plans to take advantage of this characteristic is a task to
be done in a short future.

Conclusions and Future Work
E-learning is about designing a sequence of learning activi-
ties a student needs to perform in order to complete a course.
Principally, this involves three main issues: course defini-
tion, student’s learning information and learning design ex-
ecution. There are languages to represent all of them based
on XML schemata, but an important effort needs to be done
to be fully automated.

This paper has proposed a three-approach procedure to
interpret and translate e-learning tasks into automated plan-
ning. A course definition is represented as a planning do-
main, the student’s learning information as a planning prob-
lem for that domain and the learning design as the plan gen-
erated by a domain-independent planner when solving that

26

problem. We have implemented translators from the cor-
responding e-learning languages into three different kinds
of planning domains and problems. These three domain
reasoners allow different planners to automatically generate
valid learning designs in a few seconds. However, we have
detected three main drawbacks. First, e-learning languages
are too generic and try to cover too many aspects, making
the implementation of general and suitable translators for all
LMS very difficult. Second, in spite of the expressive power
of e-learning languages, there are still few aspects that can-
not be represented and are essential in P&S. For example,
the definition of the resources involved in tasks, their costs,
the temporal constraints on availability and how these re-
sources are to be managed are important lacks in e-learning
languages. Finally, our domain modelling allows us to gen-
erate valid learning designs, but they cannot guarantee opti-
mal plans in terms of utility to the student.

In the future we want to find solutions to overcome the
previous drawbacks by addressing two parallel lines. Firstly,
we are interested in coming up with more expressive mod-
els of actions for planning e-learning activities. This will
increase the opportunities to: i) deal with course composi-
tion, and ii) validate and resolve courses with similar but
incommensurate learning objects. Secondly, we want to ex-
tend the tool to assist the course designer in making sure
that the same naming conventions are used. As one of the
anonymous reviewers suggested, the adoption of a common
ontology can be very useful (Kontopoulos et al. 2008).

References
Baldiris, S.; Santos, O.; Barrera, C.; J.G., J. B.; Velez, J.;
and Fabregat, R. 2008. Integration of educational specifica-
tions and standards to support adaptive learning scenarios
in adaptaplan. Special Issue on New Trends on AI tech-
niques for Educational Technologies. International Jour-
nal of Computer Science and Applications (IJCSA).
Brusilovsky, P., and Vassileva, J. 2003. Course Sequencing
Techinques for Large-Scale Web-Based Education. Inter-
national Journal Continuing Engeenering Education and
Lifelong Learning 13(1/2):75–94.
Camacho, D.; R-Moreno, M.; and Obieta, U. 2007.
CAMOU: A Simple Integrated e-Learning and Planning
Techniques Tool.
Castillo, L.; Fernández-Olivares, J.; Garcı́a-Pérez, O.; and
Palao, F. 2006. Efficiently handling temporal knowledge
in an htn planner. In Proceedings of the Sixteenth Interna-
tional Conference on Automated Planning and Scheduling,
ICAPS 2006, 63–72.
Castillo, L.; Morales, L.; Gonzalez-Ferrer, A.; Fdez-
Olivares, J.; Borrajo, D.; and Onaindia, E. 2009. Au-
tomatic generation of temporal planning domains for e-
learning problems. Journal of Scheduling. Accepted.
Felder, R. M. 1996. Matters of style. ASEE Prism 6(4):18–
23.
HoneyAlonso. 2002. Honey alonso learning
style theoretical basis in spanish. Available at
http://www.estilosdeaprendizaje.es/menuprinc2.htm.

IMS-GLC. 2001-2009. Ims specifications. Available at
http://www.imsglobal.org.
Kontopoulos, E.; Vrakas, D.; Kokkoras, F.; Bassiliades, N.;
and Vlahavas, I. 2008. An ontology-based planning system
for e-course generation. Expert Systems with Applications
35:398–406.
LOM. 2002. Draft standard for learning object meta-
data. IEEE. 15 july 2002. 6 oct. 2007. Available at
http://ltsc.ieee.org/wg12/files/LOM 1484 12 1 v1 Final Draft.pdf.
Mohan, P.; Greer, J.; and McCalla, G. 2003. Instructional
Planning with Learning Objects.
Peachy, D., and McCalla, G. 1986. Using Planning Tech-
niques in Intelligent Tutoring Systems. International Jour-
nal of Man-Machine Studies 24(1):77–98.
Ullrich, C., and Melis, E. 2009. Pedagogically Founded
Courseware Generation Based on HTN-planning. Expert
Systems with Applications 36(5):9319–9332.
Vrakas, D.; Tsoumakas, G.; Kokkoras, F.; Bassiliades, N.;
Vlahavas, I.; and Anagnostopoulos, D. 2007. PASER:
a curricula synthesis system based on automated problem
solving. Int. Journal on Teaching and Case Studies, Spe-
cial Issue on ”Information Systems: the New Research
Agenda, the Emerging Curriculum and the New Teaching
Paradigm” 1(1/2):159–170.
Wisher, R. 2009. Sharable Content Object Reference
Model(SCORM) 2004 4th Edition Documentation Suite.
ADL.

27

