
JABBAH: A Java Application Framework for the Translation Between Business
Process Models and HTN

Arturo González-Ferrer
Centro de Enseñanzas Virtuales

University of Granada
c/ Real de Cartuja 36-38, Spain 18071

arturogf@ugr.es

Juan Fernández-Olivares and Luis Castillo
Departamento de Ciencias de la Computación e IA

University of Granada
c/ Periodista Daniel Saucedo s/n, Spain 18071

{faro, l.castillo}@decsai.ugr.es

Abstract

HTN planning paradigm has been widely used dur-
ing the last decade to model and solve planning and
scheduling problems. Even so, little research have
been oriented to represent and generate these plan-
ning domains automatically with the help of software
tools. In this paper we present an extensible software
framework directed to cover this goal, proposing an
innovative knowledge engineering method that trans-
form a workflow graph into an equivalent nested pro-
cess model, which simplifies the subsequent mapping
to HTN-PDDL. Some results in the field of e-learning
management are also exposed.

1. Introduction
The difficulty of writing Planning and Scheduling (P&S) do-
mains is well known by the AI community, and usually a
lot of human effort is necessary to explore the real prob-
lems that are likely to be modeled, capturing the acquired
knowledge with accuracy into a planning domain, that is
usually coded using non-intuitive languages as PDDL (Long
and Fox 2003) or any of its flavours. Despite being a diffi-
cult task, still little work has focused in helping to do it in a
convenient way. However, this kind of problem is specially
suitable for the Knowledge Engineering (KE) discipline.

Even though there are already some approaches (Simp-
son, Kitchin, and McCluskey 2007; Vaquero et al. 2007;
Bouillet et al. 2007) devoted to the field of KE for P&S,
they are rather directed to be helpful for planning experts
(dealing with the modeling of world objects and actions).
The approach here presented is more aligned with (Barták et
al. 2008), and deals with the automatic generation of plan-
ning domains from expert knowledge introduced by using
existing tools and standard languages that are close to IT ar-
chitects and organization stakeholders.

Concretely, we propose in this paper the development of
a software framework that is able to automatically map this
acquired knowledge into P&S domain and problem defini-
tions. Our work is focused on the reuse of Business Process
Modeling (BPM) tools (Havey 2005). They are able to deal
with goals and tasks specification, environmental analysis,

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

design, implementation, enactment, monitoring and evalua-
tion of business processes (Muehlen and Ho 2006).

Exploiting the common field between BPM and P&S is
interesting, not only because we could use robust, formal
and mature software tools to capture the knowledge we want
to represent into the corresponding P&S domain (data, activ-
ities, rules, performers, etc), but also because we could reuse
existing process models that have already been designed by
software architects for a specific problem, offering P&S as a
possible solution for a very wide range of application fields,
taking as input a pre-existing process model. Moreover, in-
troducing an automated P&S system into the BPM life cy-
cle (Muehlen and Ho 2006) of a company, capable of both
interpreting and reasoning about an initial workflow model
representation, can provide support for decision making on
key issues like tasks organization, resources allocation, or
even requirement and use cases analysis.

The work here presented is based on the hypothesis that
the process structure, the ordering constraints and the con-
trol flow structures of a BPM model, can be captured by an
HTN knowledge representation language. Hence, we could
use an state-of-art HTN planner that takes this domain repre-
sentation as input and use its output in order to obtain action
plans helpful for management tasks. This existing equiv-
alence between both BPM and HTN made us consider the
development of a software tool to carry on the transforma-
tion of one model into the other.

So, the contribution of this paper is that, having a BPM
design of any organizational process, modeled under some
previous requirements, we can extract the corresponding
HTN planning domain and problem files directly from the
original process diagram without the interaction from any
planning expert. Moreover, this is done keeping the process
control-flow restrictions as well as the data model reflected
on it. Furthermore, some experiments have been carried on
to support the organization and management of e-learning
course development requests, allowing to check the useful-
ness of our approach.

The paper is structured as follows. Section 2 introduces
some concepts and technical background about the problem.
Section 3 details the Knowlegde Engineering procedure de-
veloped. Section 4 exposes some requirements on the input
process diagram. Section 5 exposes some results and Sec-
tion 6 describes some conclusions and lessons learned.

28

2. Technical Background
In this section we introduce the BPMN/XPDL business
modeling languages, which has been chosen for our work.
We also introduce workflow patterns, in order to convey why
we decide to use them as the main background concept for
our transformation, and which are also the basis for choosing
the Hierarchical Task Network (HTN) paradigm to model
the resulting planning domain.

2.1 BPMN/XPDL
XPDL stands for XML Process Definition Language. The
goal of XPDL (WfMC 2008) is to store and exchange a pro-
cess definition, offering an XML serialization of the Busi-
ness Process Management Notation (BPMN) graphical rep-
resentation of the process diagram. The main advantage of
using XPDL as modeling language is that it is commonly
used among business analysts, and it can be used to represent
the organization activity easily. There are a lot of modeling
tools that already incorporate XPDL natively or as an addi-
tional plug-in. Although some used directly BPEL (Busi-
ness Process Execution Language) (Garcı́a-Bañuelos 2008)
to design the process diagram, ideally this should be done
in XPDL, as it was thought for modeling, not for execution
(Palmer 2007). Next, an overview of the XPDL entities and
attributes considered in our work is exposed:

Process
(W. Process)

Type Declaration

Data Field

Pool

W. Relevant Data

System and
environmental data

Activity Set
(Embedded Subprocess)

Application

Transition
(Sequence Flow)ActivityParticipant

Block activity

SubFlow

Event

Task/Tool

Route

Gateway

Lane

Resource Repository
or Organization Model

performer

performer

uses
uses

uses

uses

Figure 1: XPDL metamodel

Activities. They comprise a logical, self-contained unit
of work, which will be carried out by participants and/or
computer applications. Activities are related to one another
via transitions.

Gateways. Special activities used to implement decisions
that affect the sequence flow path through the process.

Transitions. Transitions may be either conditional (in-
volving expressions which are evaluated, driving the se-
quence flow path) or unconditional, and may result in the
sequential or parallel operation of individual activities.

Lanes. They denote areas or departments of the organi-
zation or process, and every activity contained within that
particular lane will be done within that area. So, we can use

them to establish a way to define capabilities that a particu-
lar activity requires. So, a participant also needs to belong to
a specific lane, in order to be able to complete this activity.

Participants. They can be differentiated by their defini-
tion scope: a) Those defined at process level can be con-
sidered as possible resources that can be allocated to one or
more activities. They will have associated precondition def-
initions, established by the lanes the participant belongs to.
This membership can be specified as an extendedAttribute
tag for every participant at modeling time. b) Those defined
at activity level will force that specific activity to be done by
the participant specified.

Parameters and DataFields. These entities are used to
define the process data model. We can control flow from a
gateway by creating a parameter (which has an associated
data type) and values to be used in an associated rule. On
a conditional transition exiting the gateway, we can specify
that the transition will be followed only when parameter val-
ues match the expression specified in the rule. Information
that is internal to the process is represented as Data Fields
and information required outside the process is represented
by Parameters.
XPDL modeling tool We have used TIBCO Business Stu-
dio, a modeling tool that use the BPMN graphical notation,
is offered for free and includes support for latest release of
XPDL v2.1.

Taking advantage of our expertise on e-learning man-
agement, we have analyzed a specific organisational pro-
cess to manage the collaborative creation of e-learning
courses within the virtual learning center of the University
of Granada. This process implies the participation and in-
teraction of different roles (instructional designers, graphic
designers, HTML developers, sysadmins, tutors, etc.), and
it has an explicit activity time ordering (see figure 2). The
transformation of this process into a P&S domain will help
to make the most of the e-learning center workload, also of-
fering an estimation (to both managers and customers) about
the time needed to deploy the requested course.

2.2 Workflow Patterns

Workflow Patterns (van der Aalst et al. 2003) are those
generic structures found in a graph representation that cap-
ture frequently-used relationships between tasks in a pro-
cess, and that are typically nested to form the whole process
model. The XPDL language can represent some of them, al-
though it lacks of some power for the correct representation
of complex patterns (van der Aalst 2003). Therefore, only
the most basic ones are going to be considered throughout
the paper, those that can be well represented and are expres-
sive enough for the definition of most processes: serial, par-
allel split-join, and parallel exclusive-OR (usually used to
capture conditional structures). As shown later, our map-
ping process will work by detecting these workflow patterns
in a process model and translating each of them to its corre-
sponding HTN structure.

29

Training authors
on Instructional

Design

Content
Authoring

Authors Revision

Training tutors
on LMS use

Content
Processing

Media
opt imizat ion

Media
creation

CSS
adaptat ion

Flash
animations

Qualit iy revision

Content
assembly into

LMS

Notif ication
to

students

Students
registrat ion

A1

A3

A2 A9

A6

A11

A5 A7 A8

A10

A12

A13

A4

Start

End

optimize?

yes no

Training
Department

Authoring
Department

HTML Devel
Department

Graphic Design
Department

Sysadmin
Department

Quality
Department

Figure 2: An example organisational process modeled using the BPMN graphical notation, describing the development of
courses in a specific e-learning center. On the right side, text annotations boxes show the lane represented with point lines
on the left; the boxes, named A1-A13, represent the activities; the arrows represent the transitions; the elements with the
symbols ’x’ and ’+’ are the exclusive-OR and parallel gateways; the participants are not represented graphically, and can only
be explored within the BPM modelling tool. This model can be serialized as a XPDL stream, and later analyzed by JABBAH.

30

2.3 Hierarchical Task Network Planning
HTN planning domains are designed in terms of a hierarchy
of compositional activities. Lowest level activities, named
actions or primitive operators, are non-decomposable activ-
ities which basically encode changes in the environment of
the problem. On the other hand, high level activities, named
tasks, are compound actions that may be decomposed into
lower level activities. Every task may be decomposed fol-
lowing different schemas, or methods, into different sets
of sub-activities. These sub-activities may be either tasks,
which could be further decomposed, or just actions. HTN
paradigm is able to represent the hierarchical structure of
the domain and it is also expressive enough to capture the
expert knowledge in order to drive the planner to a desirable
solution.

HTN-PDDL notation The HTN planning domain lan-
guage used in this work is a hierarchical extension of PDDL
(Long and Fox 2003) that uses the following notation.

Types, constants, predicates, functions, and durative-
actions are used in the same way that in original PDDL lan-
guage. In addition, the task element is introduced to express
compound tasks. Its definition can include parameters, dif-
ferent decomposition methods with associated preconditions
(that must hold in order to apply the decomposition method)
as well as tasks to represent its corresponding lowest level
task decomposition.

At the problem definition, objects is used to define objects
that are present in the problem, init conditions to define the
set of literals that are initially true, and task-goals to define
the set of high level tasks to achieve.

Compound tasks, decomposition methods and primitive
actions represented in a planning domain mainly encode the
procedures, decisions and actions that are represented in the
original BPM model. More concretely, the knowledge rep-
resentation language, as well as the planner used, are also
capable of representing and managing different workflow
patterns present in any BPM process model. A knowledge
engineer might then represent control structures that define
both, the execution order (sequence, parallel, split or join),
and the control flow logic of processes (conditional and iter-
ative ones). For this purpose the planning language allows
sub-tasks in a method to be either sequenced, and then they
appear between parentheses (T1,T2) , or splitted, appearing
between braces [T1,T2].

We have used the IACTIVE
TM

planner for this paper, as
it is already known how to translate workflow patterns for
semantic web services composition (J.Fernandez-Olivares et
al. 2007), as well as its adaptation to temporal knowledge
(Castillo et al. 2006). In addition, it has already been used
in several applications (Castillo et al. 2007; Fdez-Olivares
et al. 2008).

Next section describes the KE procedure needed to extract
the P&S domain and problem from a process diagram.

3. Translation Overview
Roughly speaking, what we want to do is to identify com-
mon patterns in a workflow model (which can be clearly
seen as a graph), so that we can generate a tree-like structure,

much similar to HTN domains. This entails the resolution of
two main problems: a) analyze the workflow model to get a
corresponding graph, b) interpret the resulting graph, map-
ping it to a tree-like structure. To do this, a collateral chal-
lenge, out of AI Planning scope but necessary, is the trans-
formation of the graph into a tree-like structure, which has
been done using an algorithm described later at section 3.2.

So, our Knowledge Engineering proposal consists of three
different stages (see figure 3) which are necessary in order
to develop a sound approach for the problem of capturing
knowledge from a BPM model that will finally be repre-
sented into an HTN planning domain:

XPDL file
XPATH
Parsing

START

Intermediate DS

Graph Model

Branch
water-mark NPM BuildBlock Detection Equivalent

Tree Model

HTN-PDDL
code generation

domain

problem

AI Planner

Gantt diagram

Figure 3: The different stages of the translation process

a) Firstly, we need to parse the source XPDL document,
storing it into an intermediate data structure and graph model
that can be easily managed throughout the next stages.

b) Then, we need to detect the different blocks of work-
flow patterns (parallel and serial blocks), distinguishing their
kind from the knowledge acquired in the previous parsing
stage, and build up an equivalent tree-like model. This is
carried on by arranging those workflow patterns hierarchi-
cally, but also keeping the semantic information (about con-
trol flow and decisions) present in the process diagram.

c) Finally, we need to do a code generation phase, where
we analyze the tree model that has been populated previ-
ously, trying to generalize common patterns found in the
graph (i.e. serial or parallel split-joins patterns are always
coded in the same way), and writting the HTN-PDDL code
that corresponds to the tree-graph fragment analyzed.

Next, we proceed to give further insights on the develop-
ment of these 3 steps.

3.1 Mapping to an Intermediate Graph Model
This step takes as input a standard XPDL file (previously
exported from the BPM modeling tool used), reading it by
using XPATH(W3C 1999) parsing technology, which allows
searching only the XML entities we are interested in. Then,
it obtains as result a graph in which every node represents

31

an activity (or gateway) and every edge represents a transi-
tion between two activities (conditional or unconditional, as
exposed previously at BPMN/XPDL subsection). Further-
more, we will keep all the relevant information about par-
ticipants, lanes, parameters, etc. by using an associated data
structure that will be used throughout the mapping process.

It’s important to note that both gateways and transitions
elements are the main elements that drive the control flow
in XPDL workflow graphs. They are also the main elements
considered for our work and, from a workflow patterns per-
spective, they will define how to map organizational pro-
cesses into planning and scheduling domains, so that the fu-
ture plans developed by our software framework will mainly
act according to their definition in the process diagram.

At this point, we have developed a graph model of the
original process diagram that can be further worked out in
order to achieve our goal.

3.2 Block Detection: Mapping to a Tree Model
The goal of this stage is to build an equivalent tree model
from the graph obtained in the previous phase. Our work for
this level of the mapping process is based on previous re-
search done in (Bae et al. 2004), where an algorithm was de-
veloped to generate a tree representation of a workflow pro-
cess which was later used to derive ECA (event-condition-
action) rules, helpful for controling the workflow execution.

S

E

A1

A3

A2

AND

A4

ORA5 A6

OR

A7 A8

A9

AND

A10

AND A11

AND

A12

A13

1.0

0.5

0.5

0.5

0.250.25

0.5 0.5

0.25

0.25

0.5

1.0

1.0

Parallel block B1

Parallel block B2

Figure 4: Part of the block detection algorithm applied to
graph of figure 2. We can appreciate the branch-water mark
procedure as well as the workflow pattern detection.

The tree representation obtained is called a nested process
model (NPM) (Bae et al. 2004). It describes how to build
up a process model in a top-down manner, representing a
root node which is decomposed into a set of subprocesses
and tasks, and so on. It adopts and generalizes a hierarchi-
cal model, allowing to express a parent-child relationship
between subprocesses. We adapted this tree-like model to
our particular problem, the representation of P&S domains,
taking into account the control-flow information included in

gateways and transitions, as expressed before, adding adi-
tional information about the process and data model as well.
Thus, the algorithm for block detection described has the
next three steps:

1. The first step is to mark every node of the graph with
a weight, based on a branch-water procedure (see figure 4).
It simulates a pipeline network carrying water, being 1.0 the
quantity of water poured at the start node, and branching the
quantity through the pipe. If the water-level at a specific
node is l, and the flow is branched into k alternatives, then
l/k quantity of water is propagated through every alternative
node. The water-level measure is the method used to identify
the most inner block in the graph, which is important for
the next steps. It allows to build a NPM in a bottom-up
approach, as exposed next.

2. The second step is to identify serial and parallel work-
flow patterns (we call them blocks here) consecutively, using
the weight to identify the most inner block. Every time we
identify a serial or parallel block, we substitute all the nodes
that constitutes that block with a special SERIAL BLOCK
(SB) node or PARALLEL BLOCK (PB) node, obviously
linking the new node with the preceeding and succesors
nodes, in order to keep the graph being connected and two-
terminal (it has an unique start and end node). If the work-
flow graph fulfills the requirements commented before, it is
easy to see that this process ends having an unique SB or
PB block node that constitutes the root node for the nested
process model we want to build up.

3. Finally, if the root node is now expanded using the
nodes it grouped originally, placing them as children, and
we do this operation recursively with every SB or PB block
node, we can draw the new tree-like structure that we were
searching for. This is done as a typical breadth-first search
algorithm. The result of the procedure constitutes what we
called the nested process model (NPM) of the original BPM
diagram, using a bottom-up approach (see figure 5). Ob-
serve that those nodes with mininum weight lay at the lower
levels, and go up consecuently as their weight increase (this
is the reason to look first for the most-inner blocks).

Figure 5: An example of a Nested Process Model gener-
ated from the previous BPMN process model. Note that
leaf nodes correspond to activities and non-leaf nodes corre-
spond to serial and parallel blocks

32

There are some considerations we must stress on. Firstly,
we need to keep all the knowledge acquired in the parsing
stage (lanes, participants, parameters and its association to
gateways, etc.), being important to have custom implemen-
tations of graph nodes and edges. Second, we must keep the
nodes that gave rise to the new special block nodes, intro-
duced in the second step. And last, the knowledge present
in gateways must be transferred to the new parallel block
nodes (i.e., we must transfer the type of gateway, the param-
eters/rules that drives the flow, etc...), as soon as those gate-
ways nodes are not going to be present on the new built NPM
(but their semantic is maintained, including the relevant in-
formation mentioned into the newly created PB nodes). The
algorithm complexity is O(n2), being n the number of edges
of the workflow graph (Bae et al. 2004).

3.3 HTN-PDDL Code Generation
Now we give specific details about how we generate the
HTN planning domain and problem files, taking as basis
both the tree-like structure (the NPM, figure 5) and inter-
mediate data structures, already developed in the previous
phases.

As opposite to the bottom-up approach followed to cre-
ate the NPM, the generation of HTN-PDDL code is going
to follow a top-down approach. It is clear to see that, as
we already have a tree-like model, all we need to do is a
breadth-first search over the NPM, considering the informa-
tion relevant to every node (described along this section),
and considering also some patterns related with some kind
of nodes (see figure 6).

Next, we expose how to express the different elements of
an HTN-PDDL domain and file definitions. We also expose
the underlying conceptual mapping from XPDL source ele-
ments, reflecting both the process and data models.

Domain name and requirements. These HTN-PDDL
blocks are encoded as const strings (the requirements section
is considered always the same).

Types. The basic types considered are those that are going
to be useful in any planning domain: activity, participant
and lane. Of course, parameters data types must be also
generated (see the corresponding item below).

Constants. XPDL activities and lanes will be mapped
as HTN-PDDL constants, which are going to be used later
throughout the domain and problem files. This is automati-
cally extracted from the intermediate data structure obtained
in section 3.1, and they will be coded in lowercase characters
(i.e. activities will be coded as ax, being x the activity id).

Predicates. We must include, at least, two default predi-
cates, useful in almost any process model mapping:

1) (belongs to lane ?p - participant ?l - lane) . This pred-
icate is used to express which lanes the participant belongs
to, in other words, what abilities correspond to every par-
ticipant. It will be used to encode both initial conditions of
the problem (one predicate instance for every ability a par-
ticipant posess) and preconditions for the durative actions (a
precondition for every activity within a lane).

2) (completed ?a - activity) . This predicate will encode
initial conditions of the problem as well as preconditions and
effects for durative actions.

There are also some predicates that should be added dy-
namically, those that are related to parameters/rules match-
ing pairs (described later at parameters item).

Durative Actions. Every activity of the process diagram
corresponds to a leaf-node in the NPM and it is mapped as a
primitive durative action on the planning domain, as a frag-
ment following the next pattern:

(:durative-action Ax
:parameters(?w - participant)
:duration (= ?duration D)
:condition(belongs_to_lane ?w L)
:effect (completed ax))

For every k, being k an activity of the NPM, a correspond-
ing durative action Ax is generated, being x the id number,
whose effect is the completion of the activity ax (which was
coded as a constant previously, and the associated predicate
named completed). The duration of the activity, D, which
is coded in XPDL using an extendedAttribute tag, and the
lane the activity belongs to, L, are mapped directly from the
corresponding XML attributes present on the XPDL activity.

Realize that order constraints among activities, in non-
hierarchical planning paradigms, are coded through the use
of preconditions in durative actions, being necessary an
extra cause-effect analysis. However, in HTN planning
paradigm, order constraints are directly mapped into the cor-
responding syntactic structures developed to that end. So,
our approach does not need to abuse of precondition defini-
tion, simplifying the process, as exposed next in the defini-
tion of compound tasks.

Figure 6: Different patterns identified in the NPM represen-
tation that are mapped as HTN compound tasks. (a) a serial
block, (b) a split-join block, (c) a exclusive-OR block

Compound Tasks. The HTN-PDDL compound tasks are
mapped from those intermediate nodes (non leaf-nodes) of
the Nested Process Model. These nodes always correspond
to workflow pattern blocks (see figure 6), that are actually
specifications of different tasks with control flow mecanisms
that are coded as order constraints (sequential/parallel) or as
alternatives (if-then):

33

1. Serial Blocks. One activity must be executed after
other, following a sequence in time. This can be expressed
in HTN-PDDL as a sequence of primitive actions and/or
tasks surrounded by parentheses. Next example represents
the fragment of figures 6(a) and 7:

(:task SB1
:parameters ()
(:method blsb1
:precondition ()
:tasks ((A2 ?w1) (A4 ?w2)
(PB1 ?optimize) (A7 ?w3)
(A8 ?w4) (PB2)
(A11 ?w5))))

Figure 7: a serial block fragment

Note that, on one hand, durative actions Ax must be gen-
erated with the corresponding parameter ?wy which express
a resource that has to be allocated at planning-time (the par-
ticipant y is assigned the activity x). On the other hand, com-
pound tasks that are also part of the decomposition can be
generated with or without parameter, representing the for-
mal parameter which drives the flow in the original XPDL
process diagram (i.e. the parameter ’optimize’ in the exam-
ple above controls which flow to follow, as exposed next).

2. Parallel Split-Join Blocks. They represent a branch of
the process flow into two or more flows (split) that are car-
ried on simultaneously (without specifying which of them
should be executed first), and that finally converge into the
same flow again (join). These parallel split-join blocks are
represented in HTN-PDDL enclosed by square brackets, as
the following case, that represents the fragment of figures
6(b) and 8:

(:task PB3
:parameters ()
(:method blpb3
:precondition ()
:tasks ([(A3 ?w1)(SB1)]
(A12 ?w2))))

Note that A12, the right brother node of PB3 in figure
6(b), is the activity executed after the join gateway. This
scheme repeats for every parallel split-join block detected in
the nested process model.

A3

A2 A4 A11

BlockSB1

Figure 8: a parallel split-join block fragment

A6

A5

opt imize

= t rue

= false

Figure 9: a parallel exclusive-OR block fragment

3. Parallel Exclusive-OR Blocks. They represent blocks
which flow is controlled by a gateway node which has asso-
ciated both a formal parameter and a corresponding logical
expression that controls which alternative flow must be fol-
lowed. We generate a method for every possible alternative
to follow, using the expression as precondition of the defined
method, as the next example, that represents the fragment of
figures 6(c) and 9:

:task PB1
:parameters (?x - parameter)
(:method ifA5

:precondition (value ?x true)
:tasks (A5 ?w1))

(:method elseA6
:precondition (value ?x false)
:tasks (A6 ?w1))

It’s clear that we should also map the parameters and
expressions in such a way that different kind of parame-
ters/expressions pairs and its associated data types can be
added to the framework in a future. We have already done it
for boolean data type, as described next.

Parameters. Parameters are usually associated to
Exclusive-OR parallel blocks, and they can be initially ex-
pressed as follows, as soon as they have been modeled as
boolean parameters:

a) add an HTN-PDDL type ’parameter’.
b) add a HTN-PDDL constant for every parameter (i.e.

the parameter named optimize).
c) add a predicate (i.e. named value) to check boolean

values (true, false).
d) pass the corresponding parameter to the Exclusive-OR

block wherever it is used, as done in previous example with
parameter optimize. This is very easy, as the parameters have
been already stored in the intermediate data structure.

e) in the problem file, define the parameter as an initial
condition of the problem. Note that parameter values should
be passed to the AI planner somehow before interpreting the
domain and problem files generated (i.e. it can be given by
the user outside the framework).

Other data types could be included using a similar
methodology, but adding more powerful rule expressions
(step c) is still one of the features to be improved in the JAB-
BAH framework. Besides this mapping, we also tried refer-
ring to an external organizational data model stored in UML,
using some of the capabilities of the BPM modeller, as the
XPDL standard supposedly supports it, but this feature was
somehow experimental in the modeller and we could not

34

complete it. Using UML for storing the data model would be
ideal, as there are already authors (Vaquero et al. 2007) that
worked out a methodology to express this model in PDDL.

Objects. Every participant is going to be defined at the
problem file as an object (of ’participant’ data type). Init
Conditions. Besides parameter values mentioned above, we
must include the abilities that every participant (previously
defined as object) possesses, in other words, what lane the
participant belongs to (using the predicate belongs to lane
described before). Goals. The goal of the problem definition
file will be the root node of the NPM, which is always a
compound task, that can be iteratively decomposed in order
to generate all the process plan.

So we have described in previous sections the whole KE
process followed to map a BPM model to its corresponding
P&S domain and problem definitions. In the next section,
we introduce some restrictions on the input process model,
necessary to guarantee the correctness of our solution.

4. Input process model requirements
For the sake of the framework usability, we need to establish
some requirements on the input process model, owing to the
fact that not always the designed diagrams have the desired
properties for later processing (any BPM expert knows about
this circumstance). Thus, we have considered the next three
conditions on the input process model:

a) The input process model must include an unique start
node s and an unique end node e. Extrapolating this property
to the equivalent graph model, it must be two-terminal.

b) All the gateway nodes that split the flow in the input
process model, must have a corresponding gateway node
that joins the flow again. Extrapolating this property to the
equivalent graph model, it must be well-structured.

c) The input process model must be connected between
elements from start to end nodes, so that for every node,
always exists a path from s to e that goes through that node.
Extrapolating this property to the equivalent graph model, it
must be directed and connected.

The proposed requirements are demanded in order to
guarantee that the workflow pattern detection stage is car-
ried on correctly (b), as well as the branch water-mark pro-
cedure included in that stage (a, c). Some inspiring works
for the establishment of these requirements have been the
SESE (single-entry single-exit) regions of a graph (Garcı́a-
Bañuelos 2008), and the process structure tree (Vanhatalo,
Volzer, and Koehler 2009). It seems natural to delimit the
sort of process models that can be worked out, as usually
done in other research related to BPM (van der Aalst 1999).

Maybe, the most demanding requirement for the user are
(a, b), but fortunately some transformations have been al-
ready developed in order to obtain well-structured graphs
from unstructured ones (Vanhatalo et al. 2008) (which also
eliminates the need for an unique end node).These trans-
formations could be introduced either into BPM modeling
tools or into the JABBAH framework itself, in order to in-
crease the number of models it can analyze, being unneces-
sary to modify the diagram manually. Although no valida-
tion checking about the input has been developed yet in our

software tool, we would like to include it in a near future, so
that it can be helpful to the IT architects during the design
process by giving tips at design-time, similarly to any other
simulation engine included within traditional BPM tools.

5. Experiments
The JABBAH framework described above has been devel-
oped following an object-oriented methodology. It is based
on the Java graph library jgrapht, which provides a com-
plete and customizable library, covering to a large extent
our needs for creating graph data structures, with fully cus-
tomized nodes and edges implementation. Furthermore, its
corresponding visualization libraries, jgraph and jgraphlay-
out help us to develop a visual interface, allowing to see the
original graph extracted from the source XPDL document as
well as its corresponding NPM.

We have done some experiments by using JABBAH over
the process shown at figure 2. It represents the whole pro-
cess to develop and deploy a specific course within the e-
learning center at the University of Granada. Having an in-
coming course request, as well as some available workers
with different capabilities each, we want to assign an activ-
ity to every worker, so that we can have a plan over time that
tells the e-learning managers information about the workers
allocation as well as the end time of the whole course devel-
opment, which allows to do an anticipated decision-making
upon the course request.

Figure 10: Screenshot of JABBAH framework running over
the example process

The first thing to do is to design the process diagram (fig-
ure 2) with the help of the TIBCO Business Studio pro-
cess modeler. The only inputs the managers have to pro-
vide once the process model has been designed are a) the
estimated duration of every activity and b) the abilities ev-
ery specific worker posesses. Both requirements are usually
known by managers. Then, we export the diagram as an
XPDL file, and import that file using JABBAH, which will
show both the process diagram (on the left) and the corre-
sponding nested process model (on the right), as shown in
figure 10. Figures 4, 5 and 6 described the first two stages
of our KE procedure applied to the mentioned process, and
how the NPM is built up. At the same time, the HTN-PDDL

35

translation process is carried on over the NPM, saving the
domain and problem files in an output directory. We can
then interpret those files by using the IACTIVE

TM
planner,

and get the corresponding plan.
Using different abilities assignment for real workers at the

e-learning center, as well as estimated activities duration, we
have checked the viability of the output plans. An exam-
ple assignment as the following: Emilio (training), Storre
(authoring), Miguel (html), JoseBa (graphic), Arturo (ad-
min) and FMoreno (quality), would result on the output plan
shown as a Gantt diagram at figure 11.

Figure 11: Output plan as a Gantt diagram

So, we end up checking that the KE procedure developed
is useful within this particular scenario, and it can be extrap-
olated to multiple scenarios, as soon as the process diagram
is represented in the terms specified in this paper.

6. Conclusions and Lessons Learned
This paper has made some innovative contributions in or-
der to overcome the traditional drawbacks of P&S modeling,
specifically for the HTN paradigm. Mainly, a sound KE pro-
cedure has been developed in order to express BPM process
diagrams as HTN P&S domain, building up an intermediate
data structure that organises the source process diagram as a
nested process model, simplifying the subsequent transfor-
mation into HTN-PDDL code. This is very useful, not only
by the number of application areas it can give support to, but
also because most of the processes are being modeled with
BPM tools, what increases the usability of JABBAH.

What’s more, our paper hints at a future direction to fol-
low on the automatic capture and generation of HTN plan-
ning problems from organizational processes, and it could
give rise to any other profitable approaches, at least in the
area of Enterprise Resource Planning (ERP) and Supply
Chain Management (SCM), which has already been part of
previous research in P&S (Pardoe and Stone 2006). Some
results were obtained in the field of e-learning management,
which was very useful and interesting for the IT personal at
the e-learning center of the University of Granada. What’s
more, JABBAH can fill some existing gaps in BPM tools, as
exposed next.

6.1 Business Prospects
Understanding and estimating the time and cost to complete
a product development process is a key business challenge.

Typically, managers have relied in project management tools
(PMT) for planning purposes, but the interdependencies be-
tween time and resource constraints make it very difficult to
analyze activity costs and resource requirements using tradi-
tional PMTs . The introduction of computed-aided Business
Process Simulation (BPS) tools traditionally helped to cap-
ture the resource constraints, decisions rules and stochastic
behaviour of real situations. But, while the strength of BPS
tools relay in their ability to incorporate stochastic situations
in the model, their use imply that, to find the best resource
allocation scenario, the manager has to determine various
scenarios and simulate them (Tumay 1996). First, this is
not very realistic, as the simulation relays on subruns for
a specific scenario which is usually not repeatable, as the
constraints evolve in time. Second, BPS tools are based on
trial-and-error mecanisms that don’t help the manager to do
the correct allocation of resources to activities. Sometimes
this circumstance can be a serious problem as the constraints
get harder, making difficult to find a correct assignment.

It’s important to note that the resource allocation feature
is still a requirement to be improved in BPM/BPS tools
(Castellanos et al. 2006). The JABBAH framework directly
tackle both BPS inconvenients exposed above. On the one
hand, JABBAH would be used every time that a new order
request was received, being more realistic, as it would eval-
uate the existing constraints at that specific moment. On the
other hand, the traditional trial-and-error mecanism will be
replaced by JABBAH, as it helps the manager to decide a
good scenario, while keeping all the constraints defined in
the process.

Furthermore, the results obtained by the JABBAH frame-
work could be incorporated back into the BPM simulation
engine (usually, the simulation scenario is expressed using
an XPDL extension), so that the manager could simulate the
process with the obtained assignment. Hence, after some ex-
ecutions, workflow mining tools could be used to investigate
how much the processes have improved by using the new
tecnique (in terms of resources under-utilization or over-
utilization, in terms of production and benefits, etc).

JABBAH could be useful at project-based and customer
service-based processes, that is, processes where there are
customers which ask for a product which, after the corre-
sponding development process carried on by a collabora-
tive teamwork made up of different humans, departments or
roles (and why not, software applications or web services), is
finally supplied to the customer. This could be expanded to
other kind of projects as long as we improve the representa-
tion of the data model, which is one of our future challenges.

6.2 Future Work
The expression of temporal dependencies is surprisingly
poorly addressed by the different BPM standards, and can
be very difficult to introduce not only on the modeling side,
but also in the enactment side. A specific extension called
Time-BPMN (Gagné and Trudel 2009) has been created re-
cently to, on the one hand, simplify the temporal constructs
of the original BPMN, and on the other hand, allow the
specification of temporal constructs that were not possible
in the original BPMN. Specifically, the temporal constructs

36

of time points, intervals/durations, temporal constraints and
temporal dependencies have been considered in this exten-
sion, which is based on Allen’s interval algebra. As exposed
in (Castillo et al. 2006), the HTN-PDDL extension used in
JABBAH is able to correctly represent these temporal con-
structs. So, it seems reasonable that the next step of our work
will be the consideration of this extension, and the automatic
translation into HTN-PDDL of the temporal constructs that
can be depicted through Time-BPMN, so that our tool ac-
quire a better capability to express other complex scenarios.

Furthermore, we must emphasize that, though we used
XPDL in our work, the JABBAH framework has been de-
veloped with the idea of extensibility in mind, taking into
consideration future growth. That means that if we would
like to use the next BPMN 2.0 specification, that suppos-
edly will include an XML serialization itself, we could im-
plement a different parsing method, keeping the same inter-
mediate data structure populated correctly, as exposed pre-
viously at section 3.1. Similarly, the block detection algo-
rithm used (Bae et al. 2004), could be substituted by other
similar approaches. We would like to add the RPST (Van-
hatalo, Volzer, and Koehler 2009), in order to improve the
efficiency of the block detection method (O(n)), checking
also its behaviour for P&S domain generation. Last but not
least, since we used a language independent tree-like output
model, we could introduce a plug-in for any differen plan-
ning language, as long as they respect the HTN paradigm.

This would provide us a sandbox environment where we
could test different techniques, measuring how they behave
and how far will their capacity of expression go, in terms of
P&S modeling. The JABBAH framework has just started
and hopefully it can be tested over some other different
process models, so that we can enrich its design, which
still needs stressing on the improvement of the process data
model, as soon as the process model and control-flow per-
spective have been the ones that got an intense dedication at
this early stage of development.

References
Bae, J.; Bae, H.; Kang, S.; and Y.Kim. 2004. ”Automatic
Control of Workflow Processes Using ECA Rules”. IEEE
Transactions on Knowlegde and Data Engineering 16(8).
Barták, R.; Little, J.; Manzano, O.; and Sheahan, C. 2008.
”From enterprise models to scheduling models: bridging
the gap”. Journal of Intelligent Manufacturing.
Bouillet, E.; Feblowitz, M.; Liu, Z.; Ranganathan, A.; and
Riabov, A. 2007. ”A Knowledge Engineering and Planning
Framework based on OWL Ontologies”. In ICKEPS 2007.
Castellanos, M.; Casati, F.; Sayal, M.; and U.Dayal. 2006.
LNCS 3811. Springer. chapter ”Challenges in Business
Process Analysis and Optimization”, 1–10.
Castillo, L.; Fdez-Olivares, J.; Garcı́a-Pérez, O.; and Palao,
F. 2006. ”Efficiently handling temporal knowledge in an
HTN planner”. In Proceedings of 16th ICAPS, 63–72.
Castillo, L.; Fdez-Olivares, J.; Garcı́a-Pérez, O.; and
A. González, F. P. 2007. ”Reducing the impact of AI Plan-
ning on end users”. In Workshop on Moving P&S Systems
into the Real World (Keynote talk).

Fdez-Olivares, J.; Castillo, L.; Cózar, J.; and Garcı́a-Pérez,
O. 2008. ”Supporting clinical processes and decisions by
hierarchical planning and scheduling”. In Proceedings of
SPARK 08.
Gagné, D., and Trudel, A. 2009. ”Time-BPMN”. In Pro-
ceedings of 1st International Workshop on BPMN.
Garcı́a-Bañuelos, L. 2008. ”Pattern Identification and
Classification in the Translation from BPMN to BPEL”. In
Proceedings of OTM 2008, 436–444. Springer.
Havey, M. 2005. ”Essential Business Process Modeling”.
O’Reilly.
J.Fernandez-Olivares; Garzón, T.; Castillo, L.; O.Garcı́a-
Pérez; and Palao, F. 2007. ”A Middleware for the au-
tomated composition and invocation of semantic web ser-
vices based on HTN planning techniques”. In LNAI, vol-
ume 4788, 70–79. Springer.
Long, D., and Fox, M. 2003. ”PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains”. Jour-
nal of Artificial Intelligence Research 20:61–124.
Muehlen, M., and Ho, D. T.-Y. 2006. Business Process
Management Workshops, LNCS 3812. Springer. chapter
”Risk Management in the BPM Lifecycle”, 454–466.
Palmer, N. 2007. BPM and Workflow Handbook. Work-
flow Management Coallition. chapter ”Workflow and BPM
in 2007: Business Process standards see a new global im-
perative”, 9–14.
Pardoe, D., and Stone, P. 2006. ”Predictive Planning for
Supply Chain Management”. In Proceedings of ICAPS.
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L.
2007. ”Planning domain definition using GIPO”. The
Knowledge Engineering Review 22:117–134.
Tumay, K. 1996. ”Business Process Simulation”. In Pro-
ceedings of Winter Simulation Conference, 93–98.
van der Aalst, W.; ter Hofstede, A.; Kiepuszewski, B.; and
Barros, A. 2003. ”Workflow Patterns”. Distributed and
Parallel Databases 14(1):5–51.
van der Aalst, W. 1999. ”Formalization and Verification of
Event-Driven Process Chains”. Information and Software
Technology 41(3):639–650.
van der Aalst, W. M. 2003. ”Patterns and XPDL: A criti-
cal Evaluation of the XML Process Definition Language”.
QUT Technical report FIT-TR-2003-06 1–30.
Vanhatalo, J.; Volzer, H.; Leymann, F.; and Moser, S.
2008. ”Automatic Workflow Graph Refactoring and Com-
pletion”. In LNCS, volume 5364. Springer. 100–115.
Vanhatalo, J.; Volzer, H.; and Koehler, J. 2009. ”The Re-
fined Process Structure Tree”. Data & Knowledge Engi-
neering 9(68):793–818.
Vaquero, T.; Romero, V.; Tonidandel, F.; and Silva, J.
2007. ”itSIMPLE 2.0: An Integrated Tool for Designing
Planning Domains”. In Proceedings of 17th ICAPS.
W3C. 1999. ”XML Path Language, v1.0”.
http://www.w3.org/TR/xpath.
WfMC. 2008. ”XML Process Definition Language Speci-
fication, v2.1”. WFMC-TC-1025 1–216.

37

