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Abstract 
This paper presents PORSCE II, an integrated system that 
performs automatic semantic web service composition 
through planning. In order to achieve that, an essential step 
is the translation of the web service composition problem 
into a planning problem. The planning problem is then 
solved using external domain-independent planning 
systems, and the solutions are visualized and evaluated. The 
system exploits semantic information to enhance the 
translation and planning processes. 

1. Introduction 
Web services nowadays are essential parts of the World 
Wide Web, as they accommodate interoperability between 
heterogeneous systems. However, in many cases, the need 
for complex and integrated service functionality cannot be 
fulfilled by a simple atomic web service, leading to the 
requirement for web service composition. The task of web 
service composition becomes significantly difficult, time-
consuming and inefficient as the number of available 
atomic services increases continuously. Therefore, the 
possibility to automate the web service composition 
process is proved essential.  
 Automated web service composition is significantly 
facilitated by the development of the Semantic Web, since 
the existence of semantic information permits composition 
using intelligent techniques, such as AI Planning. Semantic 
description of web services is accommodated through the 
development of a number of standards such as OWL-S [6], 
WSMO [11], SAWSDL [13] and WSDL-S [12]. 
 PORSCE II aims at automated semantic web service 
composition through planning with semantic relaxation. 
The first and very significant step in this process involves 
translation of the web service composition problem to a 
planning problem. This translation takes place between the 
most prominent standards in each area: OWL-S [6] for 
semantic description of web services and PDDL [5] for 
definition of planning domains and problems. According to 
user preferences, the translation process may take into 
account semantics, resulting from the semantic analysis of 

the domain; if so, semantically equivalent or relevant 
concepts are also included, in order to cope with cases 
when no exact plans can be found. The result of the 
transformation process is a fully formulated planning 
problem which incorporates all the required semantic 
information. PORSCE II consequently exports the 
planning problem to PDDL and invokes external planning 
systems to acquire plans, which constitute descriptions of 
the desired complex service. Each plan is evaluated in 
terms of statistic and accuracy measures. Finally, the 
system integrates a visual component which accommodates 
plan visualization and modification.  
 The rest of the paper is organized as follows: Section 2 
discusses some related work, Section 3 provides an 
overview of the OWL-S standard, while Section 4 outlines 
the system architecture. Section 5 elaborates on the 
translation process, including semantic analysis and 
relaxation performed in the system. Section 6 presents the 
rest of the system operations. Section 7 presents a case 
study and performance evaluation and finally, Section 8 
concludes the paper and poses future directions. 

2. Related Work 
One of the first systems that attempted automatic web 
service composition is SHOP-2 [15]. The system uses 
services descriptions in DAML-S, the predecessor of 
OWL-S, and performs HTN planning to solve the problem. 
The disadvantage of this approach lies in the fact that the 
planning process, due to its hierarchical nature, requires 
given decomposition rules, or methods, as they are referred 
to, which have to be encoded in advance with the help of a 
DAML-S process ontology.  
 OWLS-Xplan [16] uses semantic descriptions of web 
services in OWL-S to derive planning domains and 
problems, and then invokes a planning module called 
Xplan to generate the complex services. The system is 
PDDL compliant, as the authors have developed an XML 
dialect of PDDL called PDDXML. However, semantic 
information provided from domain ontologies is not 
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utilized; therefore the planning module requires exact 
matching for service inputs and outputs.  
 Other approaches for automatic web service composition 
are not further discussed here either because they do not 
deal with the important issue of translating semantic web 
service descriptions into planning terms or because they 
require some prior, domain-specific knowledge of the 
composition issues.  
 The main advantage of the proposed framework with 
respect to the aforementioned systems is the extended 
utilization of semantic information, in order to perform 
planning under semantic relaxation and find approximate 
solutions. Furthermore, PORSCE II does not require any 
prior, domain-specific knowledge to form valid, desired 
complex services, apart from the OWL-S descriptions of 
the atomic web services and the corresponding ontologies. 
Finally, the system is able to handle cases of service failure 
through simple service replacement, without the obligation 
to perform planning again. 

3. OWL-S 
OWL-S is an upper ontology based on OWL [14], created 
in the context of the Semantic Web in order to describe 
knowledge concerning semantic web services. It is used in 
combination with additional ontologies, which organize the 
concepts appearing in the OWL-S descriptions. The use of 
OWL-S renders the semantics of the descriptions machine 
comprehensible; therefore it enables intelligent agents to 
discover, invoke and compose web services automatically.  
A web service description in OWL-S is comprised of three 
parts [6]: 

 Service Profile: describes what the service 
accomplishes, limitations on service applicability and 
quality, and requirements that the service requester 
must satisfy to use the service. 

 Process Model: describes the way a client can 
communicate and use the service. 

 Service Grounding: specifies the details of how an 
agent can access a service, such as a communication 
protocols and message formats. 

 The approach presented here utilizes the semantic 
information contained in the Service Profile of a specific 
web service, along with the corresponding ontologies, in 
order to translate the description in planning terms. An 
example of an OWL-S Profile and the correspondences 
between its elements of interest and the planning terms 
they are translated into is provided in Section 5.1. 

4. System Overview and Architecture 
PORSCE II is the evolution of the prototype system 
PORSCE [7]. The core translation component exists in 
both systems; however, PORSCE II aims at a higher 
degree of integration as it additionally contains a visual 
interface, more elaborate relevance metrics, complex 
service accuracy assessment and the ability to modify 

complex web services. Furthermore, PORSCE II adopts a 
different way of modeling the web service composition as 
a planning problem, which reduces the complexity of the 
planning problem, thus accelerating the planning process.  
In order to highlight the planner independency of PORSCE 
II, which enables the use of any domain independent 
planning system based on PDDL, another external planner 
has been included in addition to the original one.  
The main features of the integrated system are: 

 Translation of OWL-S atomic web service 
descriptions into planning operators. 

 Interaction with the user in order to acquire their 
preferences regarding the complex service and desired 
metrics for concept relevance. 

 Enhancing the planning domain and problem with 
semantically similar concepts.  

 Exporting the web service composition problem as a 
planning domain and problem in PDDL.  

 Providing solutions by invoking external planners.  
 Assessing the accuracy of the complex services.  
 Visualizing and modifying the solution. 

 PORSCE II comprises of the OWL-S Parser, the 
Transformation Component, the OWL Ontology Manager 
(OOM), the Visualizer and the Service Replacement 
Component. An overview of the architecture and the 
interactions among the components is depicted in Fig. 1. 
 

 
 

Fig. 1 The architecture of PORSCE II. 
 

 The OWL-S Parser is responsible for parsing a set of 
OWL-S web service profiles and determining the 
corresponding ontologies that the concepts appearing in the 
web service descriptions belong to. The OWL Ontology 
Manager (OOM), utilizing the Pellet DL Reasoner [2], 
applies the selected algorithm for discovering concepts that 
are similar to a query concept. The Transformation 
Component is responsible for a number of operations that 
result in the formulation of the planning problem from the 
initial web service composition problem, and its 
consequent solving. The purpose of the Visualizer is to 
provide the user with a visual representation of the plan, 
which in fact is the description of the complex service. 
Finally, the Service Replacement Component enables the 
user to replace a specific atomic web service in the 
complex service sequence. Details on the system 
functionality regarding the translation process and the rest 
of its operations are provided in Sections 5 and 6. 
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 PORSCE II is implemented in Java and it is available 
online, along with example problems, at 
http://www.dit.hua.gr/~raniah/porsceII_en.html 

5. Transformation Process 
The transformation process includes the translation of the 
web service composition problem into a planning problem 
and its possible enhancement with semantic information. 
The process starts at the OWL-S Parser, which parses the 
OWL-S profiles of the available atomic web services and 
forwards them to the Transformation Component. The 
Transformation Component is responsible for a number of 
operations, including translating the web service 
descriptions received from the OWL-S Parser to planning 
operators and enhancing them with similar concepts 
derived from the OOM. Moreover, it interacts with the user 
in order to formulate the planning problem, and exports 
both the planning domain and problem to PDDL. 

5.1. OWL-S to PDDL Translation 
A planning problem in PORSCE II, in accordance with the 
STRIPS notation [4], is a tuple <I,A,G> where I is the 
initial state, A is the set of available actions that can be 
used to modify states, and G is the set of goals. Each action 
Ai has three lists of facts containing the preconditions of 
Ai, the facts that are added to the state and the facts that are 
deleted from the state after the application of Ai, denoted 
as prec(Ai), add(Ai) and del(Ai) respectively 
 A straightforward solution adopted by PORSCE II for 
mapping the web service composition problem to a 
planning problem is the following: Let IC be the set of 
concepts that the user wishes to provide to the complex 
service and GC its desired outputs (goals). If O denotes the 
set of all the available concepts in the ontology, then 
IC⊆O, GC⊆O and IC∩GC≡∅. The inputs that the user 
wishes to provide formulate the initial state, while the 
desired outputs of the complex service formulate the goals 
of the problem: I = IC and G=GC. Both the input and 
output sets are provided externally by the user. 
 The available OWL-S web service profiles are used in 
order to obtain the planning operators: each web service 
description WSDi is translated to an operator Ai, using the 
information in the each profile (Fig. 2).  
 

 
Fig. 2 Mapping web services to planning. 

More specifically: 
 The name of the action is the rdf:ID of the profile:  

( )iname A .IDiWSD=  
 The preconditions of the action are formed based on 

the service’s input definitions (concepts):  

( ) i kWSD .hasInputi
1

prec A { }
n

k =

≡∪  

 The add effects of the action comprises of the 
service’s output definitions (concepts):  

( ) i kWSD .hasOutputi
1

add A { }
m

k =

≡∪  

 The delete list is left empty, since in the current study 
only services that do not have any negative effects in 
the world model are dealt with: ( )idel A ≡ ∅  

 An example of an OWL-S to PDDL transformation is 
presented in Fig. 3, where the mapping presented above is 
marked. The web service description at hand concerns a 
web service that accepts as input the activity Sightseeing 
and presents the user with areas that offer this activity.  

5.2. Semantic Analysis  
The step of semantic analysis, parallel to the 
transformation process, enables the system to translate the 
web service composition problem to a planning problem by 
taking into account semantic information. This step is 
implemented by the OWL Ontology Manager (OOM). 
During translation, the OOM is used extensively for 
performing semantic relaxation, which is useful in cases 
when an exact input/output matching plan is not available. 
The OOM locates equivalent and semantically relevant 
concepts; therefore, approximate plans can be created.  

In our approach, two ontology concepts are considered 
semantically similar if and only if  

 they have a hierarchical relationship 
 their semantic distance does not exceed a threshold 

As far as the hierarchical relationship is concerned, four 
hierarchical filters are used for its definition for two 
ontology concepts A and B:  

 exact(A, B): The two concepts should have the same 
URI or they should be equivalent, in terms of OWL 
class equivalence, i.e. A = B ∨ A ≡ B. 

 plugin(A, B): The concept A should be subsumed by 
the concept B, i.e. A  B. 

 subsume(A, B): The concept A should subsume the 
concept B, i.e. B  A. In both the plugin and the 
subsume filters the subsumption relationships of 
equivalent concepts are not considered.  

 sibling(A, B): The two concepts should neither have 
a hierarchical relationship, nor be disjoint; instead, 
they should have a common superclass T, such as A 

 T ∧ B  T. 
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Fig. 3 Example of an OWL-S to PDDL 

 
The semantic distance between two ontology concepts 

can be calculated in PORSCE II using two methods:  
The Edge-Counting Distance (ec) computes the 

distance of two concepts in terms of the number of edges 
found on the shortest path between them. An edge exists  
between two concepts A and B if A is the direct subclass of 
B, denoted as A d B. 

The implementation of the ec distance between two 
concepts, denoted as dec(A, B), returns a value between 0 
and 1, with 1 denoting absolute mismatch, and considers 
the following cases: 

 exact(A, B) ⇒ dec(A, B) = 0: equivalent concepts 
 A  B  ⊥ ⇒ dec(A, B) = 1: disjoint concepts 
 plugin(A, B) ∨ subsume(A, B) ⇒ dec(A, B) = p/pmax. 

If there is a hierarchical relationship between the two 
concepts, the distance is equal to the number of 
edges in their shortest path (p) normalized to [0..1] 
using the maximum ec distance (pmax) found in the 
ontology, which can be approximated as pmax = 2h - 
1, where h is the maximum edge distance from a leaf 
concept to the owl:Thing concept ( ). 

 

 
 sibling(A, B) ⇒ dec(A, B) = min[dec(A, T) + dec(B, 

T)]: the concepts have a sibling relationship and the 
ec distance is the minimum of the sum of the ec 
distances of each concept from the least common 
ancestor T. Note that the owl:Thing is not considered 
as a common ancestor, since ∀A, B : A   ∧ B   
and therefore, no special structural knowledge is 
provided. 

 The Upwards Cotopic Distance, denoted as duc(A, B), is 
defined in terms of the upwards cotopic measure, denoted 
as uc(A) that represents the set of the superclasses of the 
concept A, including A itself [10]. In PORSCE II, the 
upwards cotopic distance definition has been modified in 
order to incorporate the semantics of an ontology 
hierarchy. More specifically, the owl:Thing concept is not 
considered in the uc measure, while the union and 
intersection set operators take into account the concept 
equivalence semantics. In that way concept set multiplicity 
is ignored, that is, if A ≡ B, then {A, B, C} = {A, C} ∨ {B, 
C}, and the concept set membership is semantically 
checked, that is, if A ≡ B and D = {A}, then A ∈ D ∧ B ∈ 
D. Based on these remarks, the upwards cotopic distance is 
defined as 
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-1
-1

( ) ( )
( , ) =1-

( ) ( )uc
uc A uc B

d A B
uc A uc B

∩
∪

. 

If two concepts have only the owl:Thing class as the 
common superclass or they are disjoint, then their distance 
equals to 1; otherwise, if the two concepts have a 
hierarchical relationship, then duc(A, B) ∈ [0..1). 

5.3. Semantic Awareness and Relaxation  
The representation of the web service composition as a 
planning problem is empowered if the planning system is 
aware of semantic similarities among syntactically 
different concepts (semantic awareness). The solution 
adopted by PORSCE II involves enhancing the domain and 
problem description with all the required semantic 
information in a pre-processing phase and letting the 
planner handle it as a classical planning problem. PORSCE 
II adopts this solution in order to: a) be able to use any 
planner, compliant with PDDL, as the semantic 
enhancement applied to the domain remains transparent to 
the planner, and b) minimize the interactions between the 
planner and the OOM, which introduce an overhead on the 
planning time. 

In the pre-processing phase, the system uses the OOM 
in order to acquire all the semantically relevant concepts 
for both the facts of the initial state and the outputs of the 
operators, discovered by the semantic analysis process 
described in the previous section. The enhancement of the 
problem by PORSCE II is based on the following rules: 

 The original concepts of the initial state together with 
the semantically equivalent and similar concepts form 
a new set of facts noted as the Expanded Initial State 
(EIS).  

 The goals of the problem remain the same. 
 The Enhanced Operator Set (EOS) is produced, by 

altering the description of each operator, while 
preserving the initial size of the set. More specifically, 
the effects list of each operator is enhanced by 
including all the equivalent and semantically similar 
concepts for the concepts in the initial effects list. 

Suppose, for example, that the initial state I of the problem 
is the following: 

I = {Sightseeing, Dates} 

and that there are only the following two operators: 
CityHotelMapService:  
  prec={City, Hotel}, effect={Map} 
SightSeeingAreaService: 
  prec={Sightseeing}, effect={Area} 

The OOM for a given distance metric and threshold 
discovers the following relevant concepts:  

Dates ≈ Duration  
Area ≈ County,  
Map ≈ GPSRoute 

The pre-processor alters the problem definition to the 
following: 

EIS: {Sightseeing, Dates, Duration} 
EOS: CityHotelMapService:  

prec={City, Hotel}  
effect={Map, GPSRoute} 

SightSeeingAreaService:  
prec={Sightseeing} 
effect={Area, County} 

The new problem, namely <EIS,EOS,G> is encoded into 
PDDL and forwarded to the planning system in order to 
acquire a solution. Note that the semantic information is 
encoded in such a way that it is transparent to the external 
planning systems, which can solve the problem as any 
other classical planning problem. 

6. Solution and Integration 
PORSCE II aims at integrating the composition process, 
including solving the problem through invocation of  
external planning systems, visualization, evaluation and 
modification of the solutions. 

6.1. Acquiring Solutions  
Since the transformation process results in the export of 
both the planning domain and problem in PDDL, any 
PDDL-compliant domain independent external planning 
system can be used.  
 Currently, two different planning modules have been 
incorporated in the system: JPlan [1], which is an open-
source Java implementation of Graphplan and LPG-td [8]. 
Both planners proved to be remarkably fast and can handle 
a respectable number of operators, which is very important 
as the number of available web services is expected to 
increase significantly over time. After the planning process 
is completed, JPlan provides the plan, in its own format, 
which comprises of a simple sequential list of actions. 
LPG-td, on the other hand, provides the plan in a format 
that complies with PDDL+. The plan in this case might not 
be sequential, but structured in levels; actions belonging to 
the same level can be executed in an arbitrary sequence, 
however all actions of a certain level must be completed 
before any action of the following level can be executed. 
Subsequently, these plans are visualized and their accuracy 
is evaluated. 

6.2. Complex Service Accuracy Assessment  
Semantic relaxation and the use of multiple planners may 
produce a number of complex services, for which statistics 
and quality metrics have to be calculated. Such metrics 
include the number of actions and the number of levels in 
the plan, as well as a plan distance quality metric, which 
indicates the accuracy of the plan, when semantic 
relaxation takes place.  

For the calculation of the plan semantic distance, each 
concept appearing in the inputs or outputs of the actions of 
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the plan is annotated by the OOM with a semantic distance 
di with respect to the original concept it was derived from, 
using the selected similarity metric. A concept distance of 
0 reveals identical or equivalent concepts. Additionally, 
each concept is annotated with a weight wi, which 
represents the kind of hierarchical relationship to the 
original concept, as in some cases certain hierarchical 
relationships might be more desirable than others.  

These values are combined to form a plan semantic 
distance. For example, when the upwards cotopic distance 
metric is used, the plan semantic distance is calculated as a 
weighted product of these concepts, as the product 
represents better the semantic distance in this case: 

0

The plan accuracy metric in both cases is calculated as 1-
PSD; therefore, if there is exact input to output matching, 
or if only equivalent concepts are used, then the plan 
quality metric value is 1, while it decreases as the plan 
becomes less accurate.  

, 0
n

uc i i i
i

PSD w d d
=

= ≠∏  

6.3. Visualization and Modification  
The Visualizer enhances comprehensibility by 

providing a visual representation of the complex service 
and facilitates plan manipulation. The complex service is 
represented as a schema of simple service invocations, 
showing inputs and outputs (Fig. 7, 8). 
The Visualizer module invokes and interacts closely with 
another module of the system, the Service Replacement 
Component, which discovers all actions that could be used 
alternatively instead of the chosen one, using advice from 
the OOM for equivalent and relative concepts. An action A 
is considered an alternative for an action Q of the plan as 
far as it does not disturb the plan sequence and the 
intermediate states, that is prec(A) ⊆ prec(Q) and add(A) ⊇ 
add(Q). The selected alternative service substitutes the 
original one both in the plan and in the visualization. 
 

 
Fig. 4 The steps for the demonstration. 

7. Demonstration and System Evaluation 
This section aims at demonstrating the use and evaluating 
the performance of the system through a case study, 
following the general course depicted in Fig. 4. 
 The test sets used to perform experiments were obtained 
from the OWLS-TC version 2.2 revision 1 [3], while 
several service descriptions were modified or added to 
these domains, accommodating the demonstration of the 
capabilities of the system. The web services that were 
modified or added to the domain are depicted in Table 1. 
 

Table 1. The added / modified web services. 
Service Inputs Outputs 
BookToPublisher Book, 

Author 
Publisher 

CreditCardCharge OrderData, 
CreditCard 

Payment 

ElectronicOrder Electronic OrderData 
PublisherElectron
icOrder 

PublisherIn
fo 

OrderData 

ElectronicOrderIn
fo 

Electronic OrderInformat
ion 

Shipping Address, 
OrderData 

ShippingDate 

WaysOfOrder Publisher Electronic 
CustomsCost Publisher, 

OrderData 
CustomsCost 

 
The transformation of the web service composition 

problem to a planning problem includes translating all 
available OWL-S atomic web services, including the 
aforementioned ones, to PDDL operators. It also 
incorporates the representation of the requirements about 
the complex service, which the user can express through a 
dialog interface such as the one depicted in Fig. 5.  
 

 
Fig. 5. Defining initial and goal states and desired 

planners. 
 

The scenario implemented here concerns the electronic 
purchase of a book. The user provides as inputs a book title 
and author, credit card info and the address that the book 
will be shipped to, and requires a charge to credit card for 
the purchase, as well as the shipping dates and the customs 
cost for the specific item. The initial state corresponds to 
the inputs of the complex service, while the goal state 
represents the desired complex service outcome. 

The next step is optional semantic relaxation, 
performed through semantic enhancement. The user 
defines semantic metrics and thresholds through the 
interface depicted in Fig. 6.  
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Fig. 6. The semantic enhancement interface. 

 
At this point, the system exports the formulated (and 

possibly semantically enhanced) planning domain and 
problem to PDDL. Consequently, it invokes external 
planners to acquire solutions.  

The plans produced by JPlan and LPG-td for the 
specific case study using the operator set described above, 

without including any semantically relevant concepts are 
presented in Fig. 7.  

While exact matching of input to output concepts is 
obligatory in the classical planning domains, in the web 
services world the case can be different, as it is preferable 
to present the user with a complex service that 
approximates the required functionality than to present no 
service at all. The semantically similar concepts obtained 
from the OWL Ontology Manager enable the system to 
compose alternative services that approximate the desired 
one in case there are no exact matches, by performing 
semantically relaxed concept matching. Such an 
approximate service for the specific case study is presented 
in Fig. 8. The calculated accuracy of this service is 
different from the accurate ones presented in Fig. 7.

 

Fig. 7. The plans from JPlan (top) and LPG-td (bottom) for the specific case study. 
  

 
Fig. 8. Approximate complex service. 
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In order to study the behavior of the system as the 
number of available web services increases, web service 
profiles were added to the domain progressively in batches. 
The time performance results presented in Table 2 were 
obtained from a number of runs of the system on a 
machine with Dual-Core AMD Opteron Processor at 
2.20GHz with 1GB of RAM memory and concern times 
for preprocessing, transformation of the OWL-S service 
profiles to PDDL actions and planning using LPG-td. 

Measurements took place for domains of different 
sizes, namely 10, 100, 500 and 1000 OWL-S profiles. 
Some of the experiments were performed without semantic 
relaxation (X), while others were performed with semantic 
relaxation using either the edge-counting distance metric 
(E) or the upwards cotopic metric (C). The preprocessing 
time did not show significant fluctuation, as it depends 
only on the number and structure of the processed 
ontologies and not on the number of available web 
services. The total transformation time evidently increased 
as the number of available web services increased, 
however the average transformation time per web service 
profile converged to approximately 0.8 seconds for the 
exact matching and the edge-counting distance metric 
cases. In the upwards cotopic metric distance, the increase 
in the average transformation time is significant as 
available web services increase, due to the higher 
complexity of the algorithm used for the calculation of the 
upwards cotopic relevance between two concepts. As far as 
average planning time is concerned, LPG-td shows an 
increase in planning time as the number of actions 
increases, however it is still proved remarkably fast. 

 
Table 2. Time measurements in milliseconds. 

umber of web 
ervices 

10 100 500 1000 

Preprocessing time 5857 6104 5875 5703 
X 4594 70062 350836 792109 
E 4531 75725 335477 796797 

Total 
transformation 
time C 4585 74688 728633 3901141 

X 459 700 702 792 
E 453 671 757 797 

Transformation 
time per web 
service C 459 746 1457 3901 

X 1 13 16 17 
E 4 6 15 16 

Planning time 
(LPGtd) 

C 3 5 16 16 

8. Conclusions and Future Work 
This paper presented PORSCE II, which combines 

planning with semantic object relevance in order to 
approach the semantic web service composition problem. 
Each web service composition problem is translated into a 
planning problem, possibly enhanced with semantically 
relevant concepts and exported to PDDL. The system 
integrates external planning system which perform 
planning with the desired degree of semantic relaxation. 
The obtained plans, which represent descriptions of the 

desired complex web service, are evaluated, visualized and 
modified. 
 Future goals include the extension of the system in order 
to translate the plan describing the complex service into 
OWL-S so the complex web service can be invoked and 
provide feedback. In addition, another goal concerns 
incorporating the quality distance metric with plan 
statistics in a common metric. Furthermore, integration 
with the VLEPPO system [9] is a promising future 
direction, in order to accommodate design and solving of 
the web service composition problems. Finally, it lies in 
our immediate plans to study ways to enhance the services 
representation and explore the ability to produce various 
complex services according to non-functional properties. 
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