

PORSCE II: Using Planning for Semantic Web Service Composition

Ourania Hatzi1 , Georgios Meditskos2, Dimitris Vrakas2, Nick Bassiliades2,
Dimosthenis Anagnostopoulos1, Ioannis Vlahavas2

1Department of Informatics and Telematics, Harokopio University of Athens, Greece

2Department of Informatics, Aristotle University of Thessaloniki, Greece
{raniah, dimosthe}@hua.gr, {gmeditsk, dvrakas, nbassili, vlahavas}@csd.auth.gr

Abstract
This paper presents PORSCE II, an integrated system that
performs automatic semantic web service composition
through planning. In order to achieve that, an essential step
is the translation of the web service composition problem
into a planning problem. The planning problem is then
solved using external domain-independent planning
systems, and the solutions are visualized and evaluated. The
system exploits semantic information to enhance the
translation and planning processes.

1. Introduction
Web services nowadays are essential parts of the World
Wide Web, as they accommodate interoperability between
heterogeneous systems. However, in many cases, the need
for complex and integrated service functionality cannot be
fulfilled by a simple atomic web service, leading to the
requirement for web service composition. The task of web
service composition becomes significantly difficult, time-
consuming and inefficient as the number of available
atomic services increases continuously. Therefore, the
possibility to automate the web service composition
process is proved essential.
 Automated web service composition is significantly
facilitated by the development of the Semantic Web, since
the existence of semantic information permits composition
using intelligent techniques, such as AI Planning. Semantic
description of web services is accommodated through the
development of a number of standards such as OWL-S [6],
WSMO [11], SAWSDL [13] and WSDL-S [12].
 PORSCE II aims at automated semantic web service
composition through planning with semantic relaxation.
The first and very significant step in this process involves
translation of the web service composition problem to a
planning problem. This translation takes place between the
most prominent standards in each area: OWL-S [6] for
semantic description of web services and PDDL [5] for
definition of planning domains and problems. According to
user preferences, the translation process may take into
account semantics, resulting from the semantic analysis of

the domain; if so, semantically equivalent or relevant
concepts are also included, in order to cope with cases
when no exact plans can be found. The result of the
transformation process is a fully formulated planning
problem which incorporates all the required semantic
information. PORSCE II consequently exports the
planning problem to PDDL and invokes external planning
systems to acquire plans, which constitute descriptions of
the desired complex service. Each plan is evaluated in
terms of statistic and accuracy measures. Finally, the
system integrates a visual component which accommodates
plan visualization and modification.
 The rest of the paper is organized as follows: Section 2
discusses some related work, Section 3 provides an
overview of the OWL-S standard, while Section 4 outlines
the system architecture. Section 5 elaborates on the
translation process, including semantic analysis and
relaxation performed in the system. Section 6 presents the
rest of the system operations. Section 7 presents a case
study and performance evaluation and finally, Section 8
concludes the paper and poses future directions.

2. Related Work
One of the first systems that attempted automatic web
service composition is SHOP-2 [15]. The system uses
services descriptions in DAML-S, the predecessor of
OWL-S, and performs HTN planning to solve the problem.
The disadvantage of this approach lies in the fact that the
planning process, due to its hierarchical nature, requires
given decomposition rules, or methods, as they are referred
to, which have to be encoded in advance with the help of a
DAML-S process ontology.
 OWLS-Xplan [16] uses semantic descriptions of web
services in OWL-S to derive planning domains and
problems, and then invokes a planning module called
Xplan to generate the complex services. The system is
PDDL compliant, as the authors have developed an XML
dialect of PDDL called PDDXML. However, semantic
information provided from domain ontologies is not

38

utilized; therefore the planning module requires exact
matching for service inputs and outputs.
 Other approaches for automatic web service composition
are not further discussed here either because they do not
deal with the important issue of translating semantic web
service descriptions into planning terms or because they
require some prior, domain-specific knowledge of the
composition issues.
 The main advantage of the proposed framework with
respect to the aforementioned systems is the extended
utilization of semantic information, in order to perform
planning under semantic relaxation and find approximate
solutions. Furthermore, PORSCE II does not require any
prior, domain-specific knowledge to form valid, desired
complex services, apart from the OWL-S descriptions of
the atomic web services and the corresponding ontologies.
Finally, the system is able to handle cases of service failure
through simple service replacement, without the obligation
to perform planning again.

3. OWL-S
OWL-S is an upper ontology based on OWL [14], created
in the context of the Semantic Web in order to describe
knowledge concerning semantic web services. It is used in
combination with additional ontologies, which organize the
concepts appearing in the OWL-S descriptions. The use of
OWL-S renders the semantics of the descriptions machine
comprehensible; therefore it enables intelligent agents to
discover, invoke and compose web services automatically.
A web service description in OWL-S is comprised of three
parts [6]:

 Service Profile: describes what the service
accomplishes, limitations on service applicability and
quality, and requirements that the service requester
must satisfy to use the service.

 Process Model: describes the way a client can
communicate and use the service.

 Service Grounding: specifies the details of how an
agent can access a service, such as a communication
protocols and message formats.

 The approach presented here utilizes the semantic
information contained in the Service Profile of a specific
web service, along with the corresponding ontologies, in
order to translate the description in planning terms. An
example of an OWL-S Profile and the correspondences
between its elements of interest and the planning terms
they are translated into is provided in Section 5.1.

4. System Overview and Architecture
PORSCE II is the evolution of the prototype system
PORSCE [7]. The core translation component exists in
both systems; however, PORSCE II aims at a higher
degree of integration as it additionally contains a visual
interface, more elaborate relevance metrics, complex
service accuracy assessment and the ability to modify

complex web services. Furthermore, PORSCE II adopts a
different way of modeling the web service composition as
a planning problem, which reduces the complexity of the
planning problem, thus accelerating the planning process.
In order to highlight the planner independency of PORSCE
II, which enables the use of any domain independent
planning system based on PDDL, another external planner
has been included in addition to the original one.
The main features of the integrated system are:

 Translation of OWL-S atomic web service
descriptions into planning operators.

 Interaction with the user in order to acquire their
preferences regarding the complex service and desired
metrics for concept relevance.

 Enhancing the planning domain and problem with
semantically similar concepts.

 Exporting the web service composition problem as a
planning domain and problem in PDDL.

 Providing solutions by invoking external planners.
 Assessing the accuracy of the complex services.
 Visualizing and modifying the solution.

 PORSCE II comprises of the OWL-S Parser, the
Transformation Component, the OWL Ontology Manager
(OOM), the Visualizer and the Service Replacement
Component. An overview of the architecture and the
interactions among the components is depicted in Fig. 1.

Fig. 1 The architecture of PORSCE II.

 The OWL-S Parser is responsible for parsing a set of
OWL-S web service profiles and determining the
corresponding ontologies that the concepts appearing in the
web service descriptions belong to. The OWL Ontology
Manager (OOM), utilizing the Pellet DL Reasoner [2],
applies the selected algorithm for discovering concepts that
are similar to a query concept. The Transformation
Component is responsible for a number of operations that
result in the formulation of the planning problem from the
initial web service composition problem, and its
consequent solving. The purpose of the Visualizer is to
provide the user with a visual representation of the plan,
which in fact is the description of the complex service.
Finally, the Service Replacement Component enables the
user to replace a specific atomic web service in the
complex service sequence. Details on the system
functionality regarding the translation process and the rest
of its operations are provided in Sections 5 and 6.

39

 PORSCE II is implemented in Java and it is available
online, along with example problems, at
http://www.dit.hua.gr/~raniah/porsceII_en.html

5. Transformation Process
The transformation process includes the translation of the
web service composition problem into a planning problem
and its possible enhancement with semantic information.
The process starts at the OWL-S Parser, which parses the
OWL-S profiles of the available atomic web services and
forwards them to the Transformation Component. The
Transformation Component is responsible for a number of
operations, including translating the web service
descriptions received from the OWL-S Parser to planning
operators and enhancing them with similar concepts
derived from the OOM. Moreover, it interacts with the user
in order to formulate the planning problem, and exports
both the planning domain and problem to PDDL.

5.1. OWL-S to PDDL Translation
A planning problem in PORSCE II, in accordance with the
STRIPS notation [4], is a tuple <I,A,G> where I is the
initial state, A is the set of available actions that can be
used to modify states, and G is the set of goals. Each action
Ai has three lists of facts containing the preconditions of
Ai, the facts that are added to the state and the facts that are
deleted from the state after the application of Ai, denoted
as prec(Ai), add(Ai) and del(Ai) respectively
 A straightforward solution adopted by PORSCE II for
mapping the web service composition problem to a
planning problem is the following: Let IC be the set of
concepts that the user wishes to provide to the complex
service and GC its desired outputs (goals). If O denotes the
set of all the available concepts in the ontology, then
IC⊆O, GC⊆O and IC∩GC≡∅. The inputs that the user
wishes to provide formulate the initial state, while the
desired outputs of the complex service formulate the goals
of the problem: I = IC and G=GC. Both the input and
output sets are provided externally by the user.
 The available OWL-S web service profiles are used in
order to obtain the planning operators: each web service
description WSDi is translated to an operator Ai, using the
information in the each profile (Fig. 2).

Fig. 2 Mapping web services to planning.

More specifically:
 The name of the action is the rdf:ID of the profile:

()iname A .IDiWSD=
 The preconditions of the action are formed based on

the service’s input definitions (concepts):

() i kWSD .hasInputi
1

prec A { }
n

k =

≡∪

 The add effects of the action comprises of the
service’s output definitions (concepts):

() i kWSD .hasOutputi
1

add A { }
m

k =

≡∪

 The delete list is left empty, since in the current study
only services that do not have any negative effects in
the world model are dealt with: ()idel A ≡ ∅

 An example of an OWL-S to PDDL transformation is
presented in Fig. 3, where the mapping presented above is
marked. The web service description at hand concerns a
web service that accepts as input the activity Sightseeing
and presents the user with areas that offer this activity.

5.2. Semantic Analysis
The step of semantic analysis, parallel to the
transformation process, enables the system to translate the
web service composition problem to a planning problem by
taking into account semantic information. This step is
implemented by the OWL Ontology Manager (OOM).
During translation, the OOM is used extensively for
performing semantic relaxation, which is useful in cases
when an exact input/output matching plan is not available.
The OOM locates equivalent and semantically relevant
concepts; therefore, approximate plans can be created.

In our approach, two ontology concepts are considered
semantically similar if and only if

 they have a hierarchical relationship
 their semantic distance does not exceed a threshold

As far as the hierarchical relationship is concerned, four
hierarchical filters are used for its definition for two
ontology concepts A and B:

 exact(A, B): The two concepts should have the same
URI or they should be equivalent, in terms of OWL
class equivalence, i.e. A = B ∨ A ≡ B.

 plugin(A, B): The concept A should be subsumed by
the concept B, i.e. A B.

 subsume(A, B): The concept A should subsume the
concept B, i.e. B A. In both the plugin and the
subsume filters the subsumption relationships of
equivalent concepts are not considered.

 sibling(A, B): The two concepts should neither have
a hierarchical relationship, nor be disjoint; instead,
they should have a common superclass T, such as A

 T ∧ B T.

40

Fig. 3 Example of an OWL-S to PDDL

The semantic distance between two ontology concepts

can be calculated in PORSCE II using two methods:
The Edge-Counting Distance (ec) computes the

distance of two concepts in terms of the number of edges
found on the shortest path between them. An edge exists
between two concepts A and B if A is the direct subclass of
B, denoted as A d B.

The implementation of the ec distance between two
concepts, denoted as dec(A, B), returns a value between 0
and 1, with 1 denoting absolute mismatch, and considers
the following cases:

 exact(A, B) ⇒ dec(A, B) = 0: equivalent concepts
 A B ⊥ ⇒ dec(A, B) = 1: disjoint concepts
 plugin(A, B) ∨ subsume(A, B) ⇒ dec(A, B) = p/pmax.

If there is a hierarchical relationship between the two
concepts, the distance is equal to the number of
edges in their shortest path (p) normalized to [0..1]
using the maximum ec distance (pmax) found in the
ontology, which can be approximated as pmax = 2h -
1, where h is the maximum edge distance from a leaf
concept to the owl:Thing concept ().

 sibling(A, B) ⇒ dec(A, B) = min[dec(A, T) + dec(B,

T)]: the concepts have a sibling relationship and the
ec distance is the minimum of the sum of the ec
distances of each concept from the least common
ancestor T. Note that the owl:Thing is not considered
as a common ancestor, since ∀A, B : A ∧ B
and therefore, no special structural knowledge is
provided.

 The Upwards Cotopic Distance, denoted as duc(A, B), is
defined in terms of the upwards cotopic measure, denoted
as uc(A) that represents the set of the superclasses of the
concept A, including A itself [10]. In PORSCE II, the
upwards cotopic distance definition has been modified in
order to incorporate the semantics of an ontology
hierarchy. More specifically, the owl:Thing concept is not
considered in the uc measure, while the union and
intersection set operators take into account the concept
equivalence semantics. In that way concept set multiplicity
is ignored, that is, if A ≡ B, then {A, B, C} = {A, C} ∨ {B,
C}, and the concept set membership is semantically
checked, that is, if A ≡ B and D = {A}, then A ∈ D ∧ B ∈
D. Based on these remarks, the upwards cotopic distance is
defined as

41

-1
-1

() ()
(,) =1-

() ()uc
uc A uc B

d A B
uc A uc B

∩
∪

.

If two concepts have only the owl:Thing class as the
common superclass or they are disjoint, then their distance
equals to 1; otherwise, if the two concepts have a
hierarchical relationship, then duc(A, B) ∈ [0..1).

5.3. Semantic Awareness and Relaxation
The representation of the web service composition as a
planning problem is empowered if the planning system is
aware of semantic similarities among syntactically
different concepts (semantic awareness). The solution
adopted by PORSCE II involves enhancing the domain and
problem description with all the required semantic
information in a pre-processing phase and letting the
planner handle it as a classical planning problem. PORSCE
II adopts this solution in order to: a) be able to use any
planner, compliant with PDDL, as the semantic
enhancement applied to the domain remains transparent to
the planner, and b) minimize the interactions between the
planner and the OOM, which introduce an overhead on the
planning time.

In the pre-processing phase, the system uses the OOM
in order to acquire all the semantically relevant concepts
for both the facts of the initial state and the outputs of the
operators, discovered by the semantic analysis process
described in the previous section. The enhancement of the
problem by PORSCE II is based on the following rules:

 The original concepts of the initial state together with
the semantically equivalent and similar concepts form
a new set of facts noted as the Expanded Initial State
(EIS).

 The goals of the problem remain the same.
 The Enhanced Operator Set (EOS) is produced, by

altering the description of each operator, while
preserving the initial size of the set. More specifically,
the effects list of each operator is enhanced by
including all the equivalent and semantically similar
concepts for the concepts in the initial effects list.

Suppose, for example, that the initial state I of the problem
is the following:

I = {Sightseeing, Dates}

and that there are only the following two operators:
CityHotelMapService:
 prec={City, Hotel}, effect={Map}
SightSeeingAreaService:
 prec={Sightseeing}, effect={Area}

The OOM for a given distance metric and threshold
discovers the following relevant concepts:

Dates ≈ Duration
Area ≈ County,
Map ≈ GPSRoute

The pre-processor alters the problem definition to the
following:

EIS: {Sightseeing, Dates, Duration}
EOS: CityHotelMapService:

prec={City, Hotel}
effect={Map, GPSRoute}

SightSeeingAreaService:
prec={Sightseeing}
effect={Area, County}

The new problem, namely <EIS,EOS,G> is encoded into
PDDL and forwarded to the planning system in order to
acquire a solution. Note that the semantic information is
encoded in such a way that it is transparent to the external
planning systems, which can solve the problem as any
other classical planning problem.

6. Solution and Integration
PORSCE II aims at integrating the composition process,
including solving the problem through invocation of
external planning systems, visualization, evaluation and
modification of the solutions.

6.1. Acquiring Solutions
Since the transformation process results in the export of
both the planning domain and problem in PDDL, any
PDDL-compliant domain independent external planning
system can be used.
 Currently, two different planning modules have been
incorporated in the system: JPlan [1], which is an open-
source Java implementation of Graphplan and LPG-td [8].
Both planners proved to be remarkably fast and can handle
a respectable number of operators, which is very important
as the number of available web services is expected to
increase significantly over time. After the planning process
is completed, JPlan provides the plan, in its own format,
which comprises of a simple sequential list of actions.
LPG-td, on the other hand, provides the plan in a format
that complies with PDDL+. The plan in this case might not
be sequential, but structured in levels; actions belonging to
the same level can be executed in an arbitrary sequence,
however all actions of a certain level must be completed
before any action of the following level can be executed.
Subsequently, these plans are visualized and their accuracy
is evaluated.

6.2. Complex Service Accuracy Assessment
Semantic relaxation and the use of multiple planners may
produce a number of complex services, for which statistics
and quality metrics have to be calculated. Such metrics
include the number of actions and the number of levels in
the plan, as well as a plan distance quality metric, which
indicates the accuracy of the plan, when semantic
relaxation takes place.

For the calculation of the plan semantic distance, each
concept appearing in the inputs or outputs of the actions of

42

the plan is annotated by the OOM with a semantic distance
di with respect to the original concept it was derived from,
using the selected similarity metric. A concept distance of
0 reveals identical or equivalent concepts. Additionally,
each concept is annotated with a weight wi, which
represents the kind of hierarchical relationship to the
original concept, as in some cases certain hierarchical
relationships might be more desirable than others.

These values are combined to form a plan semantic
distance. For example, when the upwards cotopic distance
metric is used, the plan semantic distance is calculated as a
weighted product of these concepts, as the product
represents better the semantic distance in this case:

0

The plan accuracy metric in both cases is calculated as 1-
PSD; therefore, if there is exact input to output matching,
or if only equivalent concepts are used, then the plan
quality metric value is 1, while it decreases as the plan
becomes less accurate.

, 0
n

uc i i i
i

PSD w d d
=

= ≠∏

6.3. Visualization and Modification
The Visualizer enhances comprehensibility by

providing a visual representation of the complex service
and facilitates plan manipulation. The complex service is
represented as a schema of simple service invocations,
showing inputs and outputs (Fig. 7, 8).
The Visualizer module invokes and interacts closely with
another module of the system, the Service Replacement
Component, which discovers all actions that could be used
alternatively instead of the chosen one, using advice from
the OOM for equivalent and relative concepts. An action A
is considered an alternative for an action Q of the plan as
far as it does not disturb the plan sequence and the
intermediate states, that is prec(A) ⊆ prec(Q) and add(A) ⊇
add(Q). The selected alternative service substitutes the
original one both in the plan and in the visualization.

Fig. 4 The steps for the demonstration.

7. Demonstration and System Evaluation
This section aims at demonstrating the use and evaluating
the performance of the system through a case study,
following the general course depicted in Fig. 4.
 The test sets used to perform experiments were obtained
from the OWLS-TC version 2.2 revision 1 [3], while
several service descriptions were modified or added to
these domains, accommodating the demonstration of the
capabilities of the system. The web services that were
modified or added to the domain are depicted in Table 1.

Table 1. The added / modified web services.
Service Inputs Outputs
BookToPublisher Book,

Author
Publisher

CreditCardCharge OrderData,
CreditCard

Payment

ElectronicOrder Electronic OrderData
PublisherElectron
icOrder

PublisherIn
fo

OrderData

ElectronicOrderIn
fo

Electronic OrderInformat
ion

Shipping Address,
OrderData

ShippingDate

WaysOfOrder Publisher Electronic
CustomsCost Publisher,

OrderData
CustomsCost

The transformation of the web service composition

problem to a planning problem includes translating all
available OWL-S atomic web services, including the
aforementioned ones, to PDDL operators. It also
incorporates the representation of the requirements about
the complex service, which the user can express through a
dialog interface such as the one depicted in Fig. 5.

Fig. 5. Defining initial and goal states and desired

planners.

The scenario implemented here concerns the electronic
purchase of a book. The user provides as inputs a book title
and author, credit card info and the address that the book
will be shipped to, and requires a charge to credit card for
the purchase, as well as the shipping dates and the customs
cost for the specific item. The initial state corresponds to
the inputs of the complex service, while the goal state
represents the desired complex service outcome.

The next step is optional semantic relaxation,
performed through semantic enhancement. The user
defines semantic metrics and thresholds through the
interface depicted in Fig. 6.

43

Fig. 6. The semantic enhancement interface.

At this point, the system exports the formulated (and

possibly semantically enhanced) planning domain and
problem to PDDL. Consequently, it invokes external
planners to acquire solutions.

The plans produced by JPlan and LPG-td for the
specific case study using the operator set described above,

without including any semantically relevant concepts are
presented in Fig. 7.

While exact matching of input to output concepts is
obligatory in the classical planning domains, in the web
services world the case can be different, as it is preferable
to present the user with a complex service that
approximates the required functionality than to present no
service at all. The semantically similar concepts obtained
from the OWL Ontology Manager enable the system to
compose alternative services that approximate the desired
one in case there are no exact matches, by performing
semantically relaxed concept matching. Such an
approximate service for the specific case study is presented
in Fig. 8. The calculated accuracy of this service is
different from the accurate ones presented in Fig. 7.

Fig. 7. The plans from JPlan (top) and LPG-td (bottom) for the specific case study.

Fig. 8. Approximate complex service.

44

In order to study the behavior of the system as the
number of available web services increases, web service
profiles were added to the domain progressively in batches.
The time performance results presented in Table 2 were
obtained from a number of runs of the system on a
machine with Dual-Core AMD Opteron Processor at
2.20GHz with 1GB of RAM memory and concern times
for preprocessing, transformation of the OWL-S service
profiles to PDDL actions and planning using LPG-td.

Measurements took place for domains of different
sizes, namely 10, 100, 500 and 1000 OWL-S profiles.
Some of the experiments were performed without semantic
relaxation (X), while others were performed with semantic
relaxation using either the edge-counting distance metric
(E) or the upwards cotopic metric (C). The preprocessing
time did not show significant fluctuation, as it depends
only on the number and structure of the processed
ontologies and not on the number of available web
services. The total transformation time evidently increased
as the number of available web services increased,
however the average transformation time per web service
profile converged to approximately 0.8 seconds for the
exact matching and the edge-counting distance metric
cases. In the upwards cotopic metric distance, the increase
in the average transformation time is significant as
available web services increase, due to the higher
complexity of the algorithm used for the calculation of the
upwards cotopic relevance between two concepts. As far as
average planning time is concerned, LPG-td shows an
increase in planning time as the number of actions
increases, however it is still proved remarkably fast.

Table 2. Time measurements in milliseconds.

umber of web
ervices

10 100 500 1000

Preprocessing time 5857 6104 5875 5703
X 4594 70062 350836 792109
E 4531 75725 335477 796797

Total
transformation
time C 4585 74688 728633 3901141

X 459 700 702 792
E 453 671 757 797

Transformation
time per web
service C 459 746 1457 3901

X 1 13 16 17
E 4 6 15 16

Planning time
(LPGtd)

C 3 5 16 16

8. Conclusions and Future Work
This paper presented PORSCE II, which combines

planning with semantic object relevance in order to
approach the semantic web service composition problem.
Each web service composition problem is translated into a
planning problem, possibly enhanced with semantically
relevant concepts and exported to PDDL. The system
integrates external planning system which perform
planning with the desired degree of semantic relaxation.
The obtained plans, which represent descriptions of the

desired complex web service, are evaluated, visualized and
modified.
 Future goals include the extension of the system in order
to translate the plan describing the complex service into
OWL-S so the complex web service can be invoked and
provide feedback. In addition, another goal concerns
incorporating the quality distance metric with plan
statistics in a common metric. Furthermore, integration
with the VLEPPO system [9] is a promising future
direction, in order to accommodate design and solving of
the web service composition problems. Finally, it lies in
our immediate plans to study ways to enhance the services
representation and explore the ability to produce various
complex services according to non-functional properties.

References
[1] JPlan: Java Graphplan Implementation,
http://sourceforge.net/projects/jplan
[2] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz,
Pellet: A Practical OWL DL Reasoner, J. Web Semantics, 2007
[3] OWLS-TC version 2.2 revision 1,
http://projects.semwebcentral.org/ projects/owls-tc/
[4] R. Fikes, N. J. Nilsson, "STRIPS: A new approach to the
application of theorem proving to problem solving", Artificial
Intelligence, Vol 2 (1971), 189-208.
[5] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A.
Ram, M. Veloso, D. Weld, D. Wilkins, "PDDL -- the Planning
Domain Definition Language". Technical report, Yale University,
New Haven, CT (1998).
[6] OWL-S 1.1. http://www.daml.org/services/owl-s/1.1/
[7] O. Hatzi, G. Meditskos, D. Vrakas, N. Bassiliades, D.
Anagnostopoulos, I. Vlahavas, A Synergy of Planning and
Ontology Concept Ranking for Semantic Web Service
Composition, IBERAMIA 2008, 11th Ibero-American
Conference on AI, Lisbon, Portugal, October 14-17, 2008.
Proceedings. Lecture Notes in Computer Science 5290 Springer
2008, pp 42-51.
[8] A. Gerevini, A. Saetti, I. Serina, LPG-TD: a Fully
Automated Planner for PDDL2.2 Domains" (short paper), in
International Planning Competition, 14th Int. Conference on
Automated Planning and Scheduling (ICAPS-04).
[9] O. Hatzi, D. Vrakas, N. Bassiliades, D. Anagnostopoulos, I.
Vlahavas, VLEPpO: A Visual Language for Problem
Representation, 26th Workshop of the UK Planning and
Scheduling Special Interest Group (PlanSIG 2007), Roman
Bartak (Ed.), pp. 60 – 66.
[10] A. Maedche and V. Zacharias, Clustering Ontology-Based
Metadata in the Semantic Web, European Conf. Principles of
Data Mining and Knowledge Discovery, 2002.
[11] WSMO, http://www.wsmo.org/
[12] WSDL-S, http://www.w3.org/Submission/WSDL-S/
[13] SAWSDL, http://www.w3.org/2002/ws/sawsdl/
[14] OWL, http://www.w3.org/TR/owl-ref/
[15] E. Sirin, B. Parsia, D. Wu, J. Hendler and D. Nau, 2004.
HTN planning for web service composition using SHOP2.
Journal of Web Semantics, 1(4) 377–396.
[16] M. Klusch, A. Gerber, M. Schmidt: Semantic Web Service
Composition Planning with OWLS-XPlan. AAAI Fall
Symposium on Semantic Web and Agents, USA, 2005.

45

