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Abstract

Advances in human-instructable computing are con-
tributing to a new breed of computer systems that can
be taught by natural instruction rather than requiring di-
rect programming. The current approach in the MABLE
“electronic student” emphasizes the interface that maps
different modes of instruction to machine learning al-
gorithms that can learn the concepts and task knowl-
edge being taught. While the interface provides more
natural interaction with the system, there are still many
constraints put on how the teacher teaches, in particular
in what the teacher can assume about MABLE’s ability
to compose previously learned concepts. We present a
method for automatically translating MABLE’s learned
task knowledge into a STRIPS planning domain, and
planner-generated plans back into MABLE’s knowledge
representation. In this way, existing planning technol-
ogy is used to augment MABLE’s problem solving abil-
ity. This allows us to relax the requirement that the
teacher explicitly teach every composite procedure and
also provides a role for planning to contribute directly
to learning in a more capable student.

Introduction
Human-instructable computing aims to build computational
systems that can be taught through natural instruction rather
than requiring programming by specially-trained engineers.
We are currently working in the DARPA Bootstrapped
Learning Project to build a human-instructable “electronic
student” called MABLE, the Modular Architecture for Boot-
strapped Learning Experiments (Mailler et al. 2009).
MABLE consists of a set of learning strategies designed
to interpret different instruction methods naturally used by
humans. These instruction methods include giving declar-
ative definitions and descriptions, providing examples and
demonstrations, and giving feedback based on student ac-
tions. MABLE interacts with a teacher that provides instruc-
tion by using these methods to teach concepts that build on
one another – bootstrap – to more complex concepts and
skills. These concepts, in turn, are represented in MABLE’s
knowledge representation language, Interlingua.
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However, there are still a number of unnatural require-
ments placed on the teacher of MABLE. In the current sys-
tem, lessons teach self-contained concepts, such as the ac-
tions corresponding to steps in a procedure. The lessons,
however, tend to be specific to what is involved in execut-
ing the action and do not always include information about
the action’s effects and preconditions. For MABLE to under-
stand how to compose its previously learned actions into a
composite procedure, the teacher must give an explicit later
lesson that wraps the actions as steps in an HTN-like proce-
dure.

We have developed a learning strategy called Learning by
Noticing (LbN) whose job is to identify patterns in teach-
ing and concept use that might be otherwise implicit – i.e.,
not directly included in the teacher’s utterances or part of
the target concept being taught in the lesson. By observing
the lessons that teach atomic steps in a procedure, LbN con-
structs action models that fill in action effects and in some
cases preconditions of actions. These action models provide
the raw materials for defining planning operators.

To make full use of these nascent planning operators, we
have developed a process that translates these action mod-
els into the PDDL planning language (McDermott and the
AIPS’98 Planning Competition Committee 1998) so that
compound procedures using the component actions as steps
can be identified through planning. We target planning
for the STRIPS domain and use an implementation of the
Graphplan planning algorithm as our planner (Blum and
Furst 1997). When planning is successful, the plan produced
by the planner is translated back into Interlingua and incor-
porated into MABLE’s knowledge base. In this way, LbN ac-
tion model construction combined with planning technology
relaxes the need for the teacher to necessarily teach every
compound procedure through an additional explicit lesson.

For the purposes of the ICKEPS competition, our method
is best viewed as a service translating concepts taught
in MABLE’s Interlingua (IL) knowledge representation to
PDDL and PDDL-expressed plans back to IL. A key con-
tribution of our method is that it is not merely translating
IL to and from PDDL but also performs inference to fill in
the action models for the learned Interlingua task knowl-
edge. From a broader perspective, although we are trans-
lating from IL to PDDL, the vision is for translating from
human interaction to formal concept representation and pro-
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cess languages like PDDL, in a human-instructable comput-
ing framework. We believe our tool demonstrates the ben-
efits of both action model learning as well as the benefits
of light weight planning for instructable computing, and the
potential for instructable computing to provide a natural hu-
man interface for teaching planning knowledge.

The following sections present a brief overview of the
MABLE architecture and its learning environment, followed
by a description of IL, the language underlying MABLE’s
knowledge representation. We then present how LbN con-
structs action models, followed by a discussion of our
method for translating from IL to PDDL, and planner-
generated plans back into IL for MABLE’s use. We conclude
with a discussion of future directions for exploiting the syn-
ergy between instructable computing and planning.

MABLE and the Learning Environment
MABLE is currently being developed within a larger interac-
tion framework that includes a simulated Environment and
Teacher. All three components interact with each other on a
message Timeline.

The Environment simulates a perceivable world, keeping
track of its state and any changes produced by actions from
the Teacher or MABLE. The Environment posts perceptual
update messages representing the current world state to the
Timeline. A variety of simulators are currently available for
use as the Environment. These include a version of the clas-
sic “blocks world”, the 2-dimensional robocup soccer sim-
ulator (Kitano et al. 1997), a simulation of an unmanned
aerial vehicle in a 3-dimensional world, a 2-dimensional
tactics-level wargame simulation, and a simulation of the
system control for the International Space Station. For ex-
position, we take the bulk of our examples from the more
familiar blocks world simulator.

A set of structured curricula have been authored by hu-
mans to teach various concepts in each of the different sim-
ulator domains. Some concepts depend on others, so the
curricula are decomposed into sets of lessons that depend on
one another. Each lesson aims to teach one concept. These
lessons form “rungs” in a partially-ordered curriculum “lad-
der”, with some lessons making use of the concepts taught
in earlier lesson rungs. Lessons themselves also have struc-
ture. They begin with a set of teaching epochs, in which the
Teacher teaches a concept according to one of the natural in-
struction methods. These are followed by a testing epoch, in
which the Teacher sends messages including an imperative
for MABLE to answer questions or perform actions. A grade
is assessed according to MABLE’s performance in a test.

The simulated Teacher itself executes teaching and testing
epochs as a script, with some allowance for interaction based
on MABLE’s possible response messages. The scripts man-
age initializing the Environment state and the generation of
Teacher messages. Teacher messages include utterances and
imperatives, as well as action messages that induce changes
in the Environment world state.

MABLE’s task is to observe the messages that come across
the Timeline and use them to build a model of the cur-
rent state of teaching (and testing), using the messages from
the Teacher and percept updates from the Environment to

learn. The Mable architecture itself consists of a set of
modules that work together to incrementally learn concepts
from the Timeline messages. A set of learning strategies
provide component interfaces to the different methods the
teacher uses for teaching concepts. For example, the Pro-
cedureByTelling strategy interprets declarative teacher ut-
terances to construct the component steps in a procedure;
on the other hand, the ConditionByExample strategy iden-
tifies how the teacher is providing examples of a rule. In
all cases, learning strategies extract, interpret and repackage
data from the Teacher and Environment messages to con-
struct concepts. Learned concepts are represented in IL and
stored in MABLE’s knowledge repository. When appropri-
ate, strategies invoke learning services, dedicated machine
learning algorithms that can help with concept learning. For
example, (i) a predicate learning service is driven by induc-
tive logic programming, (ii) regression algorithms can learn
numeric functions, and (iii) reinforcement learning is used to
learn policies by feedback. All module activities are coordi-
nated by a control module, which has the job of identifying
learning targets, ensuring the appropriate learning strategies
and services are invoked, and ensures that progress is being
made toward learning the target concept in order to perform
well in the testing epoch. Finally, MABLE’s execution en-
gine is used to execute IL and monitor procedure execution,
for example when a learning strategy requests to evaluate an
IL expression, or in order to answer an imperative messages
sent by the Teacher. We will return to the execution engine
in the next section.

Interlingua
The Interlingua (IL) language has been designed to accom-
modate a broad spectrum of duties (Oblinger 2008). IL pro-
vides the building blocks necessary to construct the variety
of concepts MABLE will need to represent as background
knowledge and as the result of learning. These include rules,
a type hierarchy of classes, functions, and procedures. IL
is also expressive enough to define other languages as ex-
tensions within IL. In particular, the Interaction Language
(ITL) is a specialized IL extension that is used to represent
all messages that appear on the Timeline between MABLE,
the Teacher and the Environment. Here we present the com-
ponents of IL and ITL that we need as background to ex-
plain how models of actions are constructed and how we
will translate the models and problem instances into PDDL.

Core IL consists of three component languages. The first
of these is the syntax language and is used to define types,
using the is construct, and properties, using the arg con-
struct. For example, the expression
is Dog Animal;

defines a type called Dog that is a sub-type of Animal.
Properties associate values with instances of a type (called
the property’s host type). They are named and also impose a
constraint on the type of values that may be bound to them.
For example, the expression
arg Dog age Integer;

defines a property of a Dog called age, and only Integers
can be associated with a Dog’s age. All IL types that have
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properties associated with them are called composites; Dog
is therefore a composite. IL also defines a set of atomic types
that have no properties associated with them (and therefore
no property-based composite structure); IL provides familiar
atomic types such as Numbers, Integers, Floats, Booleans,
Strings and Symbols. All property values can also be bound
to a special atomic Null value, irrespective of the type con-
straints placed on the property value; this is a feature of IL
that we will return to, below.

Like many other typed object-oriented programming lan-
guages (e.g., Java), properties associated with inherited
types are also inherited and associated with the new type. A
new type may have new properties associated with it, which
are then added to the list of properties inherited, or a prop-
erty of a new type may restrict inherited properties by giv-
ing them new, compatible type restrictions. In the case of
restriction, the new type restriction must be a subtype of the
type restriction of the inherited property.

Unlike many languages, however, IL also allows for mul-
tiple inheritance. That is, a type A might inherit from types
B and C. More formally, the is type assertion is reflexive
and transitive, but not symmetric, and combined with the
possibility of multiple inheritance, this means the overall
type hierarchy structure is that of a directed acyclic graph
(DAG). Figure 1 shows a portion of the type hierarchy for
the blocks world domain. Here, the Object type inherits
from both the Composite and Percept types. Multiple
inheritance poses a critical challenge to translating IL con-
cepts into typical planning domain representations such as
PDDL; we will address this in our translation, below.

Composite
Symbol name

Object

Percept

PhysicalObject
Symbol color

FlatObject

TableBlock
FlatObject support

Claw
Block blockGrasped
PhysicalObject objectBeneath

Figure 1: Portion of the blocks world type hierarchy; prop-
erty definitions are displayed below their host type, with
the property value type constraint followed by the property
name.

For convenience, IL defines a “macro” called
defSyntax that combines type inheritance and property
associations of a type in one expression. For example,
defSyntax Dog extends Animal (
Integer age
Symbol color );

defines our Dog with its age property, and also includes the
property color, which is a Symbol; a defSyntax may in-
clude multiple extensions for multiple inheritance.

The second core IL language, the instance encoding lan-
guage, is used to express ground instances and their property

value bindings, as they exist in real or simulated worlds at a
particular time. For example
Dog(name=Rover, color=black, age=3)

describes a Dog named Rover that is age 3 and is black in
color.

Finally, the third core language of IL is the code body
language. This language specifies functions and procedures
that can be executed. An expression defining a code body
includes specification of a code body interpreter which han-
dles executing the code body. IL provides several code in-
terpreters, including one for evaluating functions, another
for running recursive procedures that are formed with com-
binations of control statements such as “if” and “while”, and
an interpreter for evaluating predicates defined in first-order
predicate logic.

The following example defines a function to add 1 to an
input integer:
defSyntax Add1 extends Function

(Integer arg);
defCode Add1 FunctionEngine

FunctionBody(Return(Plus(arg,1)));

The defSyntax defines a new type of Function called
Add1, and it has the property arg that is an Integer.
The corresponding defCode specifies that the body of
the code will be interpreted and executed by the
FunctionEngine. The FunctionEngine knows how to
execute the Plus function, which takes two argument; the
reference to arg is interpreted as whatever value is bound
to the arg property in an instance of the Add1 type. In this
sense, properties and their values are treated by the code in-
terpreters as arguments for the code body. The return value
of Plus is then returned as the value of executing Add1.

c
b

a
d

claw Percept(Block(name=a,color=blue,support=d),
        Block(name=b,color=green,support=c),
        Block(name=c,color=red,support=d)
        Table(name=d,color=black),
        Claw(name=claw,color=white,
             objectBeneath=a,
             blockGrasped=Null))

Figure 2: Example blocks world state and its IL Percept rep-
resentation.

Interaction Language
We finish this summary of IL by presenting components of
the Interaction Language (ITL) we will use in our discussion
below. ITL is a specialized language built within IL that de-
fines the composite terms used for interaction between the
Teacher, Environment and MABLE. Percept expressions
are generated by the Environment simulator and describe the
current state of the environment. Percepts wrap ground IL
instance expressions that describe the state of the world. Fig-
ure 2 depicts an example blocks world state and the corre-
sponding Percept message describing it.1

1In order to make our examples of IL instance expressions more
concise, we will often drop properties/value pairs that would other-
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Observations of the execution of actions that affect the
Environment simulator are presented in a different form.
First, in addition to the specialized executable language
terms (such as Plus), MABLE is also provided with a set
of primitive simulator commands. These are defined in the
same way as other executables (with defSyntax and def-
Code), but their execution interpreter specifies the Environ-
ment simulator and they are interpreted as direct commands
to the simulator. While the defSyntax tells MABLE what ar-
guments the action takes and their general type constraints, it
does not say how the actions are to be used, i.e., what values
should be bound to arguments; these bindings are taught by
the Teacher or acquired by observation (by the LbN learning
service).

MABLE observes the Teacher executing an action when
a Timeline message contains a special ITL term, like the
following:
TeacherAction(action=Grasp());

This indicates that the Grasp action has been executed.
Only primitive simulator actions will show up in these mes-
sages. In order for the Teacher to specify that a non-
primitive action is being executed (e.g., one that the Teacher
is currently teaching MABLE), an utterance like the follow-
ing is used:
Utter(utterance=WatchMe(DoWith(

MoveOnto(Block(name=a),
Block(name=b)))));

Finally, ITL imperatives are used to direct an agent to exe-
cute some command or code body. The Teacher and MABLE
can both send messages with imperatives to the Environment
in order to execute simulator commands. When an impera-
tive is directed from the Teacher to MABLE, it is a request
for MABLE to execute a code body. In most cases the im-
perative request directly names the action the Teacher ex-
pects MABLE to have learned a code body for and to exe-
cute. However, the Teacher can also use the special impera-
tive MakeSo to specify a world state the Teacher would like
MABLE to achieve.

The Limits of Execution
We can now state precisely what MABLE is missing that the
LbN learning service partially provides and that our plan-
ning language translation service completes. MABLE’s exe-
cution engine executes IL code bodies either when prompted
by a learning strategy or service, or when the Teacher re-
quests MABLE to do so. In general, these calls specify, in
the instance encoding language, the name of the form to
be executed along with any values bound to properties (in
this case, treated as arguments). The execution engine does
not itself know how to select which action to execute with-
out this information.2 The procedure interpretation language

wise be present in the expression. For example, the contents of the
Percept in Figure 2 would also include the Percept instance
name, and the list of objects would be enclosed as a list bound to
the perceptsGained property).

2Internally, MABLE’s knowledge repository keeps track of mul-
tiple hypothesized learned code definitions, and a process guided
by control selects the “best” current hypothesis.

does include control flow constructs and recursive procedure
and function calling, but this machinery only works once the
procedure has been selected for execution. The execution
engine itself does not have a mechanism for determining
that one or more executable code bodies could be used to
achieve some specified state or result, such as that specified
in a MakeSo imperative. In the next section, we describe
how the LbN learning strategy learns action models that can
answer Teacher MakeSo imperatives.

Learning by Noticing
In general, MABLE’s learning strategies respond to and do
their work based on specific classes of messages and per-
cepts from the Teacher and world. A notable exception is
the Learning by Noticing (LbN) learning strategy. LbN’s
primary job is to analyze incoming messages and mine them
for patterns that may indicate information relevant to learn-
ing that is not otherwise explicitly expressed in teacher ut-
terances or world percepts. When LbN identifies such pat-
terns, it makes them explicit by posting the findings in spe-
cial Relevant messages and as hypothesized new con-
cepts, both made available to the other learning strategies
in MABLE.

LbN cannot look for all patterns, so it relies on a set of
heuristics to decide what kinds of patterns to search for. One
of LbN’s core heuristics is to look for changes in the world
state that result from observed actions. This requires build-
ing a transition model of world states. For the purpose of
building models of actions, this transition model is based on
Percept messages describing world state changes. (Other
heuristics also use Teacher utterances and imperatives.)

LbN treats the sequence of Perceptmessages that come
over the Timeline as a time series of structured objects. To
construct pattern identifiers, LbN decomposes this set of
structured objects into a set of atomic events over which ran-
dom variables are defined. For our presentation here, we fo-
cus on representing instances of properties and their value
binding. Each atomic event is defined as a pattern consisting
of four pieces of information: the type of the host composite
(the composite the property is associated with), the compos-
ite’s unique identifier (its name), the property name, and the
value currently bound to the property.3 If the property value
is itself another composite object (as opposed to an atomic
value), then the value is represented by the name of the com-
posite. For example, the following instance

Block(name=block-47,
support=Table(name=table-3)),

is represented as the property-binding event

[Block, block-47, support] <= table-3

These events are also used to build generalized patterns, for
example by “wild-carding” the name of the object instance:

[Block, *, support] <= table-3

3We ignore here two other classes of random variables: repre-
senting how many instances of a type exist at a given time, and
the values of derived relations resulting from other functions and
predicates, such as Near and Distance.
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This pattern matches any instance of a Block who’s
support property is bound to table-3. These event pat-
terns are used to define random variables whose values can
be tracked over time as well as used to define probabilities.

The final representation of random variables resembles a
discrete-time sensor readout, where the “sensors” are ran-
dom variables determined by the event patterns that exist in
the world at each time they are sampled.

For building models of the effects of actions, LbN keeps
track of how the random variables change when actions are
executed. A minor complication here is that there may be
several Perceptmessage updates about the world state be-
tween each action. To handle this, LbN divides the Timeline
of Percept messages into chunks based on the boundaries
of lessons and the time ticks at which actions are executed:
the first chunk consists of the percepts between the start
of the lesson and the first action; the second chunk between
that first action and the second, and so on, with the effects
of the last action being the world state updates between the
last action execution and end of the lesson. Although mul-
tiple Percept updates may happen within the chunk, LbN
only pays attention to the state of the world by the end of the
chunk.4 In this work, all primitive actions are atomic and
their effects are assumed to occur within the chunk directly
after the action. An action a taken at time t is denoted at.
The world state just prior to the action is represented by the
world state changes of the previous chunk of Percept up-
dates up to time t, and is denoted st. The world state after
executing at is st+1 and is represented by the world state at
the end of the Percept update chunk after t, but before action
at+1 (or the end of the lesson).

The random variables defined for st and their changes
from st to st+1 provide for a variety of models of how ac-
tions effect changes in the world. LbN makes use of sev-
eral heuristics to identify whether actions may be relevant to
some aspect of the unfolding world state. However, in order
to meet the demands of constructing action models that con-
form to the semantics of STRIPS planning operators, LbN
uses the following two-stage construction process.

First, LbN keeps track of the values of each property-
binding event before and after an action is taken and then
looks for cases where taking an action consistently causes
the properties to change from one value to another. LbN col-
lects statistics for such transitions, and when the probability
of change, P (Xt+1 6= u|at, Xt = u), exceeds a threshold,
the random variable involved in the transition is treated as
a candidate effect of the action. These candidate random
variables are collected for each action.

In the second phase, LbN then analyzes for each action
the set of random variables identified as candidate effects.
The random variables denote properties that are believed
to be consistently affected by the execution of the action.

4Because a number of Percept updates might have occurred
since the start of the chunk, this means LbN may be ignoring im-
portant information about the dynamics of world changes between
any two actions. This is a topic of ongoing research; in the work
we present here, this information loss has not affected LbN’s over-
all ability to construct action models, but we expect it may in the
future.

For these candidate effects to be considered as a model
of a STRIPS operator, the properties themselves must be
“hosted” by (i.e., belong to) a composite instance that sat-
isfies one of the following identifiability criteria:

1. The host instance is always unique in every situation in
which the action is taken (e.g., there is always one and
only one Claw in the blocks world simulation). LbN
identifies this condition by counting the number of in-
stances of a type it observes; if there is always one and
only one, then the host instance of the property satisfies
this criterion.

2. The host instance is the value of one of the arguments to
the action.

3. The host instance appears as one of the values bound to
another property in the set of candidate effects.

The purpose of this test is to ensure we can always identify
the relevant properties that are changing as a result of the
action, even if their host composite changes from one action
execution to another (as in criteria 2 and 3).

If this test is satisfied for each candidate effects property,
then LbN can lift the representation of the candidate effects,
replacing the (non-Null) ground values in the specific ac-
tion execution instances with variables (leaving Null val-
ues in place); host composites are also consistently replaced
with variables. The same variables are used within the set
of candidate effects properties when the following condition
holds: Across all of the instances of the action being taken,
the (non-Null) value of candidate effect property A in state
st always appears bound in state st+1 to candidate effect
property B. All other ground values are assigned different
random variables.

As an example, suppose LbN identifies that the Release
action affects the random variables representing the property
bindings for the support property of a Block and the
blockGrasped and objectBeneath properties of the
Claw, so that for a particular instance, the changes to the
properties are as follows:
Block(name=a) support :
Null -> Table(name=d)

Claw blockGrasped :
Block(name=a) -> Null

Claw objectBeneath :
Table(name=d) -> Block(name=a)

Each of the properties satisfies one of the identifiability cri-
teria. If this same pattern of properties and value changes
consistently occurs for all instances of the Release action,
then the following lifted representation of the action model
is produced:
?a support :
Null -> ?b

?c blockGrasped :
?a -> Null

?c objectBeneath :
?b -> ?a

The variables are also typed. Variables that replace host
composites of properties are given the type of the host com-
posite, and variables replacing property values are given the
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type of the property’s value type constraint. In the above
example, this means that ?a is of type Block and c is
of type Claw, according to the type hierarchy and prop-
erty assignments in Figure 1. ?b poses a conflict because
as the outcome of the change in the support property,
it is constrained to be a Block, but as the prior value of
objectBeneath, it is a PhysicalObject. As long
as the IL type definitions are consistent, then one type will
always be a subtype of another. In such cases, we always
choose the more restrictive type, so ?b is constrained to be
of type Block.

Identifying the effects of MoveClaw provides another il-
lustration. In this case, MoveClaw takes a single argument,
constrained to be a PhysicalObject, which according
to the type hierarchy in Figure 1 includes Blocks, Tables
and even the Claw itself. LbN, however, has already identi-
fied that the argument always ends up being the value bound
to the Claw’s objectBeneath property after the action
MoveClaw arg1 = Block(name=a)
Claw objectBeneath :
Table(name=d) -> Block(name=a)

Again, the property satisfies one of the identifiability cri-
teria. In this case, Block(name=a) is replaced in two
places by the same variable, but the Table(name=d) gets
a unique variable:
MoveClaw arg1 = ?a
?b objectBeneath :
?c -> ?a

Again, the variables are typed according to the roles they
play in the property definition. And as with variables ?b of
Release, the conflict between possible type constraints for
variable ?a is chosen to be the more restrictive Block.

LbN can identify and construct these models only when
effects are consistently produced by an action, and only
when enough data are presented in the form of action ex-
ecutions with observed prior and outcome world states. But
when the data is available and LbN does identify these tran-
sitions, then LbN can provide lifted action models that can
be used for STRIPS planning.

A PDDL Translation Service for Interlingua
After teaching a set of actions through a series of lessons,
the Teacher may request that MABLE MakeSo some world
state. IL provides a variety of terms that can be used to de-
scribe a world state, but here we focus on two: SameAs and
Of. SameAs is a predicate that asserts that two arguments
are the same. Of also takes two arguments, where the first
gives the symbol name of a property, and the second gives
the name of a composite instance. In this way, Of is used to
refer to the value of a property of a composite instance. The
following example combines these terms:
MakeSo(SameAs(Of(support,a),b))

This imperative requests that MABLE transform the current
state (which for the following example we will assume is
that depicted in Figure 2) into the state where the support of
a, which happens to be a Block, is b, which also happens
to be a Block.

This triggers MABLE’s control module to execute the IL-
to-PDDL translation service. The first task this service en-
gages is to create the domain model, translating from IL con-
cepts and action models into a PDDL domain model. The
translation service executes the following steps:

STEP 1: Identify action models and associated types
and properties. We do not need to translate the entire
MABLE knowledge repository; nor do we need to translate
all of the elements currently observed within the world state.
Instead, what we translate will be driven by the current set of
action models provided by LbN. For this working example,
we assume that in addition to the action models defined for
Release and MoveClaw, LbN has also formed a model
for Grasp:

?a support :
?b -> Null

?c blockGrasped :
Null -> ?b

?c objectBeneath :
?b -> ?a

The translation service takes these definitions and collects
all of the different types and properties referenced. Only
these types and properties need to be translated to the PDDL
domain definition, and only current world objects that are
members of these types need to be translated to the PDDL
problem definition. Any other objects in the world and any
other types in the MABLE knowledge base are irrelevant
– they play no role in the current action effects model, so
won’t help in planning.

STEP 2: Translate IL types into PDDL. The IL multiple
inheritance type system is not directly compatible with most
standard planning domain representations, such as PDDL,
because they are restricted to single inheritance. There is an
active strand of research that is looking at various methods
for translating multiple inheritance into single inheritance
systems (Dao et al. 2004; Crespo, Marquès, and Rodriguez
2002). However, for our purposes here, rather than using the
PDDL :types features, instead we treat types as a property
of objects in the PDDL domain, and therefore translate types
as PDDL domain predicates. In order to ensure there are no
accidental name clashes in the translation from existing IL
type and object names, the following naming convention is
used: each IL type is translated to a PDDL domain predicate
by appending t- to the IL type name to create the predicate
name. For example, the IL type Block is translated as:
( t-Block ?t) (The variable name doesn’t matter here).

In the PDDL problem domain, types must then be as-
serted for each object, in the :init clause. Each ob-
ject is not just an instance of its base type, but also
every ancestor type the base type inherits from. A
predicate assertion is added for each ancestor. Thus,
a Block object named b will have the following list
of type assertions: ( t-Block b), ( t-FlatObject
b), ( t-PhysicalObject b), ( t-Object b),
( t-Percept b), and ( t-Composite b).

STEP 3: Translate IL properties into PDDL. IL
Properties naturally translate to PDDL predicates in the
:predicates domain definition. For example, the prop-
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erty support associated with Block is translated as
(again using a special naming convention): ( p-support
?b ?f). However, this definition does not itself put con-
straints on the two variables. Type checking will now be
moved into the action precondition clause, and it is up to
the translation process to keep track of the appropriate type
constraints. For example, if the support predicate is
asserted in an action precondition as ( p-support ?b
?f), then the translation process must also include the type
constraint assertions on ?b and ?f: ( t-Block ?b),
( t-FlatObject ?f).

All properties can be bound to the special Null value.
Rather than reify Null as a special object, instead we treat
it as a predicate, one for each property. For example, the
condition of the support property being set to Null is
translated as: ( isNull-support ?s).

STEP 4: Translate Action Models into PDDL. The ba-
sic building blocks for translating IL action models to PDDL
have already been defined. The lifted action models con-
structed by LbN specify the properties that change. Each
component property change model specifies four things: the
property that changes, the host composite the property is as-
sociated with, and the value of property before the action (at
st) and after (st+1). For example, the support property in the
Release action model has been lifted so that the host com-
posite is represented by variable ?a, which is constrained to
by of type Block, and in st it is Null, and then in st+1 be-
comes set to the value of variable ?b, which is constrained
to be type Block. To represent this change, the prior value
of support is asserted in the :precondition clause
of Release as an instance of the p-support predicate
with its associated action-model-assigned value. If the value
assignment was a variable, that would be asserted along
with the host composite variable. But in this case, the sup-
port is Null, so the isNull-support predicate is as-
serted: ( isNull-support ?a). For the effect out-
come, the resulting value of support at st+1 is asserted
as ( p-support ?a ?b) in the :effect clause for
Release. We also need to negate the isNull predicate:
(not ( isNull-support ?a)). Once these precon-
dition and effect predicate assertions are made, we assert
the type constraint predicates for any variables mentioned
in the precondition clause, in this case for ?a and ?b. Fi-
nally, any variables we have mentioned so far are added to
the :parameters clause. We repeat the above translation
for each of the property effects components of Release, in
this case for blockGrasped and objectBeneath. The
final translated action definitions is as follows:
(:action Release

:parameters (?a ?b ?c)
:precondition

(and (_t-Block ?a)
(_t-Block ?b)
(_t-Block ?c)
(_isNull-support ?a)
(_p-blockGrasped ?c ?a)
(_p-objectBeneath ?c ?b))

:effects
(and (not (_isNull-support ?a))

(_p-support ?a ?b)
(not (_p-blockGrasped ?c ?a))
(_isNull-blockGrasped ?c)
(not (_p-objectBeneath ?c ?b))
(_p-objectBeneath ?c ?a) ))

The above steps are repeated for each action model provided
by LbN. This, along with the prior steps, completes the do-
main definition.

STEP 5: Complete Problem Definition. The final step
in the translation process is to complete the problem defini-
tion. First, all of the objects that are of the types identified
in STEP 1 are added as to the :objects clause; objects
are added according to the name. For the world state repre-
sented in Figure 2, this would include: a, b, c, d and claw.
As described in STEP 2, ground type predicates are asserted
for all of the types these objects inherit.

Finally, the MakeSo request is translated as described at
the beginning of the section and asserted as the ground for-
mula in the :goal clause.

This completes the the translation to PDDL. The PDDL
form is then provided to a planner (in our case, an imple-
mentation of Graphplan), and a plan is produced. The plan
produced by the planner consists of a sequence of ground
actions. For the example we have constructed throughout
this section, the plan is:

(((MoveClaw C Claw Table))
((Grasp C Claw Table))
((MoveClaw A Claw Table))
((Release Claw C A)))

The translation schemes between the IL and PDDL versions
of the actions make the translation back to IL simple, pro-
ducing:

MoveClaw(C)
Grasp()
MoveClaw(A)
Release()

This ground plan may solve the particular problem instance
defined in the problem. However, we generalize this solution
using the same lifting technique we used above.

This new capability also opens the possibility for the
Teacher to make use of MABLE’s planning ability to teach
compound actions whose defcode procedure consists of the
steps in the plan. To do this, the Teacher can provides an
explicit name and syntax for the action to be learned, along
with arguments corresponding to the arguments the teacher
expects the action would take to achieve the MakeSo re-
quest. For example:

DoWith(MoveOnto(a,b))

Combined with the lifted solution plan, the next composite
procedure learned by MABLE is as follows:

MoveOnto(?x, ?y)
Do(InSequence(
MoveClaw(?x),
Grasp()
MoveClaw(?y),
Release() ));
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Of course, this learned procedure is not necessarily gen-
eral enough. For example, there are a number of precondi-
tions not represented here:

1. The Claw may already be above the block to be moved,
so the initial move isn’t needed.

2. The Claw may currently grasp an object, so need to first
release the currently held block, and do so not above the
block that is to be moved.

3. The Claw may already have the target block grasped.

These conditions still need to be learned (either through trial
and error or further instruction)

Conclusion
Our ability to successfully create a plan, execute it and have
it successfully achieve the target goal given the current state,
is based entirely on how complete and accurate our current
action models are.

There are (at least) two places where our action models
may fail us: (1) An incomplete model for planning: our ac-
tion models may not be complete in the sense that they may
not provide enough information for the planner to identify a
sequence of actions that will transform the world state to the
goal state; and (2) an incomplete or incorrect model of the
world: our action models may also be inaccurate with re-
spect to the world: we may think an action will bring about
some change in the world when in fact it either doesn’t, or
the effect is conditional on other world states being true or
other actions taken, or our actions may have other effects we
haven’t represented. Also, successfully constructing a plan
and achieving the world state does not mean our action mod-
els are correct, as pointed out at the end of the last section.

All of these are possibilities and we won’t know without
trying to form a plan and executing it. In this sense, form-
ing a planning model for a given problem description in IL,
attempting to build the plan, and then attempting to execute
the plan, are all components of an experiment. Failure at
any step of the process from translation, to planning, to exe-
cution can be very informative: (1) Failure during planning
may provide information about deficits in the completeness
of action models, and could lead to questions and other tests
or explorations to fill out our action models. This is a topic
for future work, likely including looking a plan-generation
traces and analyzing the partial plan graph; and (2) Suc-
cessfully generating a plan but then failing during execution
provides information about where things might go wrong.
Here, we will want to look at the execution trace and analyze
where the world appears to have diverged from the expected
plan execution model.

The translation framework we have presented here (in de-
tail!) still leaves quite a number of questions unanswered
and many directions for improvement. The following are
directions for future work:

1. Augment the planner to analyze a partial plan graph or
plan trace in cases of planning failure.

2. Handle conditional plans: take different actions depend
on results of a test

3. Handle planning with objects that may be “created” and
“destroyed” by actions. For example, the action of “cut-
ting” a piece of paper in half in a sense “destroys” the
original paper and now produces two separate objects.
This is a deep issue in planning domain knowledge en-
gineering, but one that will have to be addressed in full
human-instructable computing in the real world.

4. Handle numeric values; MABLE learns numeric functions
and many of the domains involve numeric property values
that are affected by actions.

5. Finally, handling IL lists. They will likely be handled sim-
ilar to how other composite objects are manipulated, but a
special set of list manipulation actions need to be defined
and appropriately represented.
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