
20th International Joint Conference on  
Artificial Intelligence 
Hyderabad, India - January 6-12, 2007 

 
 
 

 
 

IJCAI-07 Tutorial on 
 

Constraint Processing 
 
 
 
 
 

Roman Barták 
 

Charles University (Czech Republic) 
 
 



 
 
Preface 
 
 
Solving combinatorial optimization problems like planning, scheduling, design, or 
configuration is a non-trivial task being attacked by many solving techniques. 
Constraint satisfaction, that emerged from AI research and nowadays integrates 
techniques from areas like operations research and discrete mathematics, provides a 
natural modeling framework for description of such problems supported by general 
solving technology. Though it is a mature area now, surprisingly many researchers 
outside the CSP community do not use the full potential of constraint satisfaction and 
frequently put equality between constraint satisfaction and simple enumeration. A 
nice example demonstrating the power of constraints are popular Sudoku problems 
that can be solved almost trivially by means of constraints, if proper technology is 
known. 
 
The tutorial gives an introduction to mainstream constraint satisfaction techniques 
available in existing constraint solvers, namely constraint propagation combined with 
depth-first search, and answers the questions “How does constraint satisfaction 
work?” and “How to efficiently model problems using constraints?”. The tutorial 
explains methods like arc consistency and shows how filtering algorithms are 
designed for constraints (this is a way how algorithms from other areas can be easily 
integrated into constraint solvers). Then it presents how consistency techniques are 
integrated with depth-first search algorithms and, finally, several modeling examples 
are given to demonstrate how constraints can be used in problem solving (including 
the popular Sudoku problems). 
 
The tutorial is targeted to a broad AI community, in particular to everyone who is not 
familiar with the details of constraint satisfaction technology. It introduces novices as 
well as expert non-specialists to one of the major topics of AI. The tutorial also 
provides instructions how to use constraint satisfaction in problem solving. No prior 
knowledge of constraint satisfaction is required. 
 
 
 
 
Author: 
 

Name: Roman Barták 
Address: Charles University in Prague, Faculty of Mathematics and Physics 
 Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic 
Phone: +420 221 914 242 
Fax: +420 221 914 323 
e-mail:  roman.bartak@mff.cuni.cz 
WWW: http://ktiml.mff.cuni.cz/~bartak 

 



Roman Barták
Charles University, Prague (CZ)

roman.bartak@mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak

Constraint Constraint 
ProcessingProcessing

IJCAI 2007 - Constraint Processing 2

Logic-based puzzle, whose
goal is to enter digits 1-9 in
cells of 9×9 table in such a way,
that no digit appears twice
or more in every row, column,
and 3×3 sub-grid.

A bit of history
1979: first published in New York

under the name „Number Place“
1986: became popular in Japan

Sudoku – from Japanes "Sudji wa dokushin ni kagiru"
"the numbers must be single" or "the numbers must occur once"

2005: became popular in the western world

SudokuSudoku??

1



IJCAI 2007 - Constraint Processing 3

How to find out which digit to fill in?
Use information that each digit 
appears exactly once
in each row and column. 

What if it is not enough?
If rows and columns do not
provide enough information
then annotate each cell with
possible digits that can be
filled there.

Solving Solving SudokuSudoku

IJCAI 2007 - Constraint Processing 4

SudokuSudoku in generalin general

We can see every
cell as a variable
with possible values
from domain {1,…,9}.

There is a binary inequality constraint between 
all pairs of variables in every row, column, and 
sub-grid.

Such formulation of the problem is called
a constraint satisfaction problem.

2



IJCAI 2007 - Constraint Processing 5

TTutorialutorial outlineoutline
Introduction

terminology, history, and application areas

Consistency techniques
(aka constraint propagation or domain filtering)

node, arc, and path consistencies
global constraints
design of filtering algorithms

Search techniques
maintaining consistency during search
heuristics and discrepancy search
branch-and-bound for optimization

Modelling techniques
how to effectively describe problems as CSPs

Conclusions
constraint solvers

IntroductionIntroduction

3



IJCAI 2007 - Constraint Processing 7

CSPCSP

Constraint satisfaction problem consists of:
a finite set of variables

describe decision points of the problem, like the start time of 
activity

domains - a finite set of values for each variable
describe possible options for the decisions, like a time window for 
the start time of activity
sometimes a single super domain is assumed and domains for 
variables are defined via unary constraints (0 ≤ start ≤ 9)

a finite set of constraints
constraint is an arbitrary relation over the set of variables, like
startA + 15 ≤ startB
can be defined extensionally (a set of compatible tuples) or 
intentionally (formula)

IJCAI 2007 - Constraint Processing 8

Solution of a CSPSolution of a CSP

A feasible solution of a constraint satisfaction 
problem is a complete consistent assignment of 
variables.

complete = a value is assigned to every variable
consistent = all the constraints are satisfied

An optimal solution of a CSP is a feasible solution 
minimizing/maximizing a given objective function.

4



IJCAI 2007 - Constraint Processing 9

A bit of historyA bit of history
Scene labelling (Waltz 1975)

feasible interpretation of 3D lines in a 2D drawing

Interactive graphics (Sutherland 1963, Borning 1981)
geometrical objects described using constraints

Logic programming (Gallaire 1985, Jaffar, Lassez 1987)
from unification to constraint satisfaction

+
+ +

+

+
+

+ +

+

+

- -

-

-

IJCAI 2007 - Constraint Processing 10

Application areasApplication areas
Bioinformatics

DNA sequencing
3D protein structures

Planning
Autonomous planning of spacecraft 
operations
(Deep Space 1)

Production scheduling
Saving after applying CSP:
US$ 0.2 to 1 million per day

5



IJCAI 2007 - Constraint Processing 11

CP and othersCP and others

Floating point
variables

Integer
variables

Li
ne

ar
co

ns
tr

ai
nt

s
Lo

gi
ca

l
co

ns
tr

ai
nt

s

LinearLinear
ProgrammingProgramming

Mixed IntegerMixed Integer
ProgrammingProgramming

DiscreteDiscrete
MathematicsMathematics

Constraint
Programming
ConstraintConstraint

ProgrammingProgramming

• various domains
• arbitrary constraints
• heterogeneous problems

• various domains
• arbitrary constraints
• heterogeneous problems

ConsistencyConsistency

6



IJCAI 2007 - Constraint Processing 13

Active constraintsActive constraints
How can any constraint contribute to solving a CSP?

By actively removing inconsistencies (values, value tuples) that 
violate the constraint(s).

Example:
A in 3..7, B in 1..5 the variables’ domains
A<B the constraint 

many inconsistent values can be removed
we get A in 3..4, B in 4..5
Note: it does not mean that all the remaining combinations of the values are 

consistent (for example A=4, B=4 is not consistent)

How to remove the inconsistencies from the constraint network?
Note:

Constraint network is a graph where nodes correspond to variables and 
(multi) arcs describe constraints.

IJCAI 2007 - Constraint Processing 14

Node consistency (NC)Node consistency (NC)
Unary constraints are converted into variables’ domains.

Definition:
The vertex representing the variable X is node consistent iff every value in 
the variable’s domain Dx satisfies all the unary constraints imposed on the 
variable X.
CSP is node consistent iff all the vertices are node consistent.

Algorithm NC

procedure NC(G)
for each variable X in nodes(G) do

for each value V in the domain DX do
if unary constraint on X is inconsistent with V then

delete V from DX
end for

end for
end NC

7



IJCAI 2007 - Constraint Processing 15

Arc consistency (AC)Arc consistency (AC)
Since now we will assume binary CSPs only

i.e. a constraint corresponds to an arc (edge) in the constraint network.

Definition:
The arc (Vi,Vj) is arc consistent iff for each value x from the domain Di there 
exists a value y in the domain Dj such that the assignment Vi =x and
Vj = y satisfies all the binary constraints on Vi, Vj.

Note: The concept of arc consistency is directional, i.e., arc consistency of (Vi,Vj) 
does not guarantee consistency of (Vj,Vi).

CSP is arc consistent iff every arc (Vi,Vj) is arc consistent (in both directions).

Example:

3..7 1..5
A<B

no arc is consistent

A B 3..4 1..5
A<B

(A,B) is consistent

A B 3..4 4..5
A<B

(A,B) and (B,A) are consistent

A B

IJCAI 2007 - Constraint Processing 16

AArcrc revisionsrevisions
How to make (Vi,Vj) arc consistent?

Delete all the values x from the domain Di that are 
inconsistent with all the values in Dj (there is no value y in Dj
such that the assignment Vi = x, Vj = y  satisfies all the binary 
constrains on Vi a Vj).

Algorithm of arc revision

procedure REVISE((i,j))
DELETED ← false
for each X in Di do

if there is no such Y in Dj such that (X,Y) is consistent, i.e.,
(X,Y) satisfies all the constraints on Vi, Vj then

delete X from Di
DELETED ← true

end if
end for
return DELETED

end REVISE

The procedure also
reports the deletion
of some value.

8



IJCAI 2007 - Constraint Processing 17

Algorithm ACAlgorithm AC--11
How to establish arc consistency among the constraints?

Doing revision of every arc is not enough!

Example: X in [1,..,6], Y in [1,..,6], Z in [1,..,6], X<Y, Z<X-2

X in [1,..,6]
Y in [1,..,6] 
Z in [1,..,6]

X in [1,..,5]
Y in [2,..,6] 
Z in [1,..,6]

X<Y
X in [4,5]
Y in [2,..,6] 
Z in [1,2]

Z<X-2
X in [4,5]
Y in [5,6] 
Z in [1,2]

X<Y

Make all the constraints consistent until any domain is changed.

Algorithm AC-1

procedure AC-1(G)
repeat

CHANGED ← false
for each arc (i,j) in G do

CHANGED ← REVISE((i,j)) or CHANGED
end for

until not(CHANGED)
end AC-1

Mackworth (1977)

IJCAI 2007 - Constraint Processing 18

What is wrong with ACWhat is wrong with AC--1?1?
If a single domain is pruned then revisions of all the arcs are 

repeated even if the pruned domain does not influence most of 
these arcs.

What arcs should be reconsidered for revisions?

The arcs whose consistency is affected by the domain pruning,
i.e., the arcs pointing to the changed variable.

We can omit one more arc!

Omit the arc running out of
the variable whose domain
has been changed
(this arc is not affected by
the domain change).

Variable with
pruned domain

The arc whose
revision caused

the domain reduction

×

9



IJCAI 2007 - Constraint Processing 19

Algorithm ACAlgorithm AC--22
A generalised version of the Waltz’s labelling algorithm.
In every step, the arcs going back from a given vertex are 

processed (i.e. a sub-graph of visited nodes is AC)
Algorithm AC-2

procedure AC-2(G)
for i ← 1 to n do % n is a number of variables

Q ← {(i,j) | (i,j)∈arcs(G), j<i} % arcs for the base revision
Q’ ← {(j,i) | (i,j)∈arcs(G), j<i} % arcs for re-revision
while Q non empty do

while Q non empty do
select and delete (k,m) from Q
if REVISE((k,m)) then

Q’ ← Q’ ∪ {(p,k) | (p,k)∈arcs(G), p≤i, p≠m }
end while
Q ← Q’
Q’ ← empty

end while
end for

end AC-2

Mackworth (1977)

IJCAI 2007 - Constraint Processing 20

Algorithm ACAlgorithm AC--33
Re-revisions can be done more elegantly than in AC-2.
1) one queue of arcs for (re-)revisions is enough
2) only the arcs affected by domain reduction are added to 

the queue (like AC-2)
Algorithm AC-3

procedure AC-3(G)
Q ← {(i,j) | (i,j)∈arcs(G), i≠j} % queue of arcs for revision
while Q non empty do

select and delete (k,m) from Q
if REVISE((k,m)) then

Q ← Q ∪ {(i,k) | (i,k)∈arcs(G), i≠k, i≠m}
end if

end while
end AC-3

AC-3 schema is the most widely used consistency algorithm
but it is still not optimal (time complexity is O(ed3)).

Mackworth (1977)

10



IJCAI 2007 - Constraint Processing 21

Looking for Looking for aa supportsupport
Observation (AC-3):

Many pairs of values are tested for consistency in every arc 
revision.
These tests are repeated every time the arc is revised.

a
b
c
d

a
b
c
d

a
b
c
d

V1 V2 V3

1. When the arc V2,V1 is revised, the value a 
is removed from domain of V2.

2. Now the domain of V3, should be 
explored to find out if any value a,b,c,d 
loses the support in V2.

Observation:
The values a,b,c need not be checked again because they still 
have a support in V2 different from a.

The support set for a∈Di is the set {<j,b> | b∈Dj , (a,b)∈Ci,j}

Cannot we compute the support sets once and then use them during
re-revisions? 

×1

×2

IJCAI 2007 - Constraint Processing 22

Computing support setsComputing support sets
A set of values supported by a given value (if the value disappears then these 

values lost one support), and a number of own supports are kept.

procedure INITIALIZE(G)
Q ← {} , S ← {} % emptying the data structures
for each arc (Vi,Vj) in arcs(G) do

for each a in Di do
total ← 0
for each b in Dj do

if (a,b) is consistent according to the constraint Ci,j then
total ← total + 1
Sj,b ← Sj,b ∪ {<i,a>}

end if
end for
counter[(i,j),a] ← total
if counter[(i,j),a] = 0 then

delete a from Di
Q ← Q ∪ {<i,a>}

end if
end for

end for
return Q

end INITIALIZE

Sj,b - a set of pairs <i,a> such that
<j,b> supports them

counter[(i,j),a] - number of supports
for the value a from Di
in the variable Vj

Sj,b - a set of pairs <i,a> such that
<j,b> supports them

counter[(i,j),a] - number of supports
for the value a from Di
in the variable Vj

11



IJCAI 2007 - Constraint Processing 23

UsingUsing supportsupport setssets
Situation:

we have just processed the arc (i,j) in INITIALIAZE

Using the support sets:
1. Let b3 is deleted from the domain of j (for some reason).
2. Look at Sj,b3 to find out the values that were supported by b3

(i.e. <i,a2>,<i,a3>).
3. Decrease the counter for these values (i.e. tell them that they lost one 

support).
4. If any counter becomes zero (a3) then delete the value and repeat the 

procedure with the respective value (i.e., go to 1).

counter(i,j),_
2
2
1

Sj,_
<i,a1>,<i,a2>
<i,a1>
<i,a2>,<i,a3>

i
a1
a2
a3

j
b1
b2
b3

counter(i,j),_
2
2
1

Sj,_
<i,a1>,<i,a2>
<i,a1>
<i,a2>,<i,a3>

i
a1
a2
a3

j
b1
b2
b3×1×2

1
00

IJCAI 2007 - Constraint Processing 24

Algorithm ACAlgorithm AC--44
The algorithm AC-4 has optimal worst case time complexity O(ed2)!

Algorithm AC-4
procedure AC-4(G)

Q ← INITIALIZE(G)
while Q non empty do

select and delete any pair <j,b> from Q
for each <i,a> from Sj,b do

counter[(i,j),a] ← counter[(i,j),a] - 1
if counter[(i,j),a] = 0 & "a" is still in Di then

delete "a" from Di
Q ← Q ∪ {<i,a>}

end if
end for

end while
end AC-4

Unfortunately the average time complexity is not so good
… plus there is a big memory consumption!

Mohr, Henderson (1986)

12



IJCAI 2007 - Constraint Processing 25

Other AC algorithmsOther AC algorithms

AC-5 (Van Hentenryck, Deville, Teng, 1992)
generic AC algorithm covering both AC-4 and AC-3

AC-6 (Bessière, 1994)
improves AC-4 by remembering just one support

AC-7 (Bessière, Freuder, Régin, 1999)
improves AC-6 by exploiting symmetry of the constraint

AC-2000 (Bessière & Régin, 2001)
an adaptive version of AC-3 that either looks for a support or propagates 
deletions

AC-2001 (Bessière & Régin, 2001)
improvement of AC-3 to get optimality (queue of variables)

AC-3.1 (Zhang & Yap, 2001)
improvement of AC-3 to get optimality (queue of constraints)

…

IJCAI 2007 - Constraint Processing 26

ACAC--3.1: 3.1: optimaloptimal ACAC--33
Some observations:

AC-3 is not (theoretically) optimal
AC-4 is (theoretically) optimal but (practically) slow
AC-6/7 are (practically) faster than AC-4, but quite complicated

What is inefficient in AC-3?
Looking for supports in REVISE starts from scratch!
if „there is no such Y in Dj such that (X,Y) is consistent“ then

ACAC--3.1 (3.1 (ZhangZhang, , YapYap))
same run as AC-3
but for each value, it remembers
the last support in the constraint
and the next time, it starts
looking for a support at this value

procedure EXIST((i,x),j)
y ← last((i,x),j)
if y∈Dj then return true
while y←next(y,Dj) & y≠nil do

if (x,y)∈C(i,j) then
last((i,x),j) ← y
return true

end while
return false

end EXIST

13



IJCAI 2007 - Constraint Processing 27

Is arc consistency enough?Is arc consistency enough?
By using AC we can remove many incompatible values

Do we get a solution?
Do we know that there exists a solution?

Unfortunately, the answer to both above questions is NO!

Example:
X

Y
Z

X≠ZX≠Y

Y≠Z

{1,2}

{1,2} {1,2}

CSP is arc consistent
but there is no solution

So what is the benefit of AC?
Sometimes we have a solution after AC 

• any domain is empty → no solution exists
• all the domains are singleton → we have a solution

In general, AC prunes the search space.

IJCAI 2007 - Constraint Processing 28

Path consistency (PC)Path consistency (PC)
How to strengthen the consistency level?

More constraints are assumed together!

Definition:
The path (V0,V1,…, Vm) is path consistent iff for every pair  of values 
x∈D0 a y∈Dm satisfying all the binary constraints on V0,Vm there exists an 
assignment of variables V1,…,Vm-1 such that all the binary constraints 
between the neighbouring variables  Vi,Vi+1 are satisfied.

CSP is path consistent iff every path is consistent.

Some notes:
only the constraints between the neighboring variables
must be satisfied
it is enough to explore paths of length 2 (Montanary, 1974)

V0
V1

V2 V3

V4

???

14



IJCAI 2007 - Constraint Processing 29

Relation between PC and ACRelation between PC and AC
Does PC subsume AC (i.e. if CSP is PC, is it AC as well)?

the arc (i, j) is consistent (AC) if the path (i,j,i) is consistent (PC)
thus PC implies AC

Is PC stronger than AC (is there any CSP that is AC but it is
not PC)?
Example:

X in {1,2}, Y in {1,2}, Z in {1,2},    X≠Z, X≠Y, Y≠Z

it is AC, but not PC (X=1, Z=2 cannot be extended to X,Y,Z)

AC removes incompatible values from the domains,
what will be done in PC?

PC removes pairs of values
PC makes constraints explicit (A<B,B<C ⇒ A+1<C)
a unary constraint = a variable’s domain

IJCAI 2007 - Constraint Processing 30

Path revisionPath revision
Constraints represented extensionally via matrixes.
Path consistency is realized via matrix operations

Example:
A,B,C in {1,2,3}, B>1
A<C, A=B, B>C-2

B>C-2
A=B

B>1

A<C C

A

& * *
011
001
000

100
010
001

000
010
001

110
111
111

=
000
001
000

15



IJCAI 2007 - Constraint Processing 31

Algorithm PCAlgorithm PC--11
How to make the path (i,k,j) consistent?

Rij ← Rij & (Rik * Rkk * Rkj) 

How to make a CSP path consistent?
Repeated revisions of paths (of length 2) while any domain changes.

procedure PC-1(Vars,Constraints)
n ← |Vars|, Yn ← Constraints
repeat

Y0 ← Yn

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do
Yk

ij ← Yk-1
ij & (Yk-1

ik * Yk-1
kk * Yk-1

kj)
until Yn=Y0

Constraints ← Y0

end PC-1

Mackworth (1977)

If we use
Yk

ii ← Yk-1
ii & (Yk-1

ik * Yk-1
kk * Yk-1

ki)
then we get AC-1

If we use
Yk

ii ← Yk-1
ii & (Yk-1

ik * Yk-1
kk * Yk-1

ki)
then we get AC-1

IJCAI 2007 - Constraint Processing 32

How to improve PCHow to improve PC--1?1?
Is there any inefficiency in PC-1?

just a few „bits“
it is not necessary to keep all copies of Yk

one copy and a bit indicating the change is enough
some operations produce no modification (Yk

kk = Yk-1
kk)

half of the operations can be removed (Yji = YT
ij)

the grand problem
after domain change all the paths are re-revised
but it is enough to revise just the influenced paths

Algorithm of path revision

procedure REVISE_PATH((i,k,j))
Z ← Yij & (Yik * Ykk * Ykj)
if Z=Yij then return false
Yij ← Z
return true

end REVISE_PATH

If the domain is pruned
then the influenced

paths will be revised.

If the domain is pruned
then the influenced

paths will be revised.

16



IJCAI 2007 - Constraint Processing 33

IInfluenced nfluenced pathspaths
Because Yji = Yt

ij it is enough to revise only the paths (i,k,j) where i≤j.
Let the domain of the constraint (i,j) be changed when revising (i,k,j):

Situation a: i<j
all the paths containing (i,j) or (j,i) must be re-revised
but the paths (i,j,j), (i,i,j) are not revised again (no change)
Sa = {(i,j,m) | i ≤ m ≤ n & m≠j}

∪ {(m,i,j) | 1 ≤ m ≤ j & m≠i}
∪ {(j,i,m) | j < m ≤ n}
∪ {(m,j,i) | 1 ≤ m < i}

| Sa | = 2n-2

Situation b: i=j
all the paths containing i in the middle of the path are re-revised
but the paths (i,i,i) and (k,i,k) are not revised again
Sb = {(p,i,m) | 1 ≤ m ≤ n & 1 ≤ p ≤ m} - {(i,i,i),(k,i,k)}
| Sb | = n*(n-1)/2 - 2

i j

IJCAI 2007 - Constraint Processing 34

Algorithm PCAlgorithm PC--22
Paths in one direction only (attention, this is not DPC!)
After every revision, the affected paths are re-revised

Algorithm PC-2

procedure PC-2(G)
n ← |nodes(G)|
Q ← {(i,k,j) | 1 ≤ i ≤ j ≤ n & i≠k & j≠k}
while Q non empty do

select and delete (i,k,j) from Q
if REVISE_PATH((i,k,j)) then

Q ← Q ∪ RELATED_PATHS((i,k,j))
end while

end PC-2

procedure RELATED_PATHS((i,k,j))
if i<j then return Sa else return Sb

end RELATED_PATHS

Mackworth (1977)

17



IJCAI 2007 - Constraint Processing 35

Other Other PCPC algorithmsalgorithms
PC-3 (Mohr, Henderson 1986)

based on computing supports for a value (like AC-4)
If the pair (a,b) at the arc (i,j) is not supported by another 
variable, then a is removed from Di and b is removed from 
Dj.

this algorithm is not sound!

PC-4 (Han, Lee 1988)
correction of the PC-3 algorithm
based on computing supports of pairs (b,c) at arc (i,j)

PC-5 (Singh 1995)
uses the ideas behind AC-6
only one support is kept and a new support is looked for when 
the current support is lost

IJCAI 2007 - Constraint Processing 36

Drawbacks of Drawbacks of PCPC
memory consumption

because PC eliminates pairs of values, we need to keep all the compatible 
pairs extensionally, e.g. using {0,1}-matrix

bad ratio strength/efficiency
PC removes more (or same) inconsistencies than AC, but the 
strength/efficiency ratio is much worse than for AC

modifies the constraint network
PC adds redundant arcs (constraints) and thus it changes connectivity of 
the constraint network
this complicates using heuristics derived from the structure of the constraint 
network (like density, graph width etc.)

PC is still not a complete technique
A,B,C,D in {1,2,3}
A≠B, A≠C, A≠D, B≠C, B≠D, C≠D
is PC but has no solution

1,2,3 1,2,3

1,2,3 1,2,3

≠

≠

≠

≠
≠ ≠

18



IJCAI 2007 - Constraint Processing 37

kk--consistencyconsistency
Is there a common formalism for AC and PC?

AC: a value is extended to another variable
PC: a pair of values is extended to another variable
… we can continue

Definition:
CSP is k-consistent iff any consistent assignment of (k-1) 
different variables can be extended to a consistent 
assignment of one additional variable.

1,2,3 1,2,3 1,2,3 4

≠

≠

≠ ≠ ≠

4-consistent graph

IJCAI 2007 - Constraint Processing 38

Strong kStrong k--consistencyconsistency

Definition:
CSP is strongly k-consistent iff it is j-consistent for every j≤k.

Visibly: strong k-consistency ⇒ k-consistency
Moreover: strong k-consistency ⇒ j-consistency ∀j≤k
In general: ¬ k-consistency ⇒ strong k-consistency 

NC = strong 1-consistency = 1-consistency 
AC = (strong ) 2-consistency 
PC = (strong ) 3-consistency 

sometimes we call NC+AC+PC together strong path 
consistency

1,2 1,2 1,2,3= =

=

3-consistent graph

but not 2-consistent graph!

19



IJCAI 2007 - Constraint Processing 39

What kWhat k--consistency is enough?consistency is enough?
Assume that the number of vertices is n. What level of 
consistency do we need to find out the solution?
Strong n-consistency for graphs with n vertices!

n-consistency is not enough - see the previous example
strong k-consistency where k<n is not enough as well

1,2,..,n-1

1,2,..,n-1

1,2,..,n-1

1,2,..,n-1

≠

≠

≠
≠

≠

≠ ≠

≠

…

…

graph with n vertices
domains 1..(n-1)

It is strongly k-consistent for k<n
but it has no solution

1,2 1,2,3=

<

<

1,2,31,2,3

And what about this graph?

AC is enough!
Because this a tree..

IJCAI 2007 - Constraint Processing 40

BacktrackBacktrack--free searchfree search
Definition:

CSP is solved using backtrack-free search if for some order of variables 
we can find a value for each variable compatible with the values of already 
assigned variables.

How to find out a sufficient consistency level for a given graph?

Some observations:
variable must be compatible with all the “former” variables
i.e., across the „backward“ edges
for k „backward“ edges we need (k+1)-consistency
let m be the maximum of backward edges for all the vertices,

then strong (m+1)-consistency is enough
the number of backward edges is different for different variable order
of course, the order minimising m is looked for

1, 2 1, 2,3=

<

<

1, 2, 31, 2, 3
1 2 3 4

20



IJCAI 2007 - Constraint Processing 41

Think globallyThink globally
CSP describes the problem locally:

the constraints restrict small sets of variables
+ heterogeneous real-life constraints
- missing global view

weaker domain filtering

Global constraints
global reasoning over a local sub-problem
using semantic information to improve efficiency

Example:
local (arc) consistency deduces no 
pruning
but some values can be removed

a  b

a  b

a  b  c

≠

≠

≠

X1

X2

X3XX

IJCAI 2007 - Constraint Processing 42

a set of binary inequality constraints among all variables
X1 ≠ X2, X1 ≠ X3, …, Xk-1 ≠ Xk

all_different({X1,…, Xk}) = {( d1,…, dk) | ∀i  di∈Di & ∀i≠j di ≠ dj}
better pruning based on matching theory over bipartite graphs

Inside allInside all--differentdifferent

a

b

c

X1

X2

X3

Initialisation:
1) compute maximum matching
2) remove all edges that do not belong to 

any maximum matching

Propagation of deletions (X1≠a):
1) remove discharged edges
2) compute new maximum matching
3) remove all edges that do not belong to 

any maximum matching

××

X1

X2

X3

a

b

c

×

×

Régin (1994)

21



IJCAI 2007 - Constraint Processing 43

a set of disjunctions (A+PA≤B ∨ B+PB ≤ A) modeling an exclusive resource

min(startmin(start((ΩΩ)) + p()) + p(ΩΩ) + ) + p(Ap(A) > ) > max(endmax(end((ΩΩ ∪∪ {A})) {A})) ⇒⇒ A<<A<<ΩΩ

4 16

7 15

6 16

Inside eInside edge findingdge finding

A (2)

B (4)

C (5)

A (2)
4 7

7 15

6 16
B (4)

C (5)

Baptiste, Le Pape (1996)

IJCAI 2007 - Constraint Processing 44

Design of filtersDesign of filters
Users can often define code of the REVISE procedures for new constraints.
How to define new filters and integrate them into solvers?

1) decide about the event to evoke the filtering algorithm
when the domain of involved variable is changed

whenever the domain changes (arc-consistency)
when minimum/maximum bound is changed (arc-B-consistency)
when the variable becomes singleton (constraint checking)

different events (suspensions) for different variables
Example:

filtering for A<B is evoked after change of min(A) or max(B)

2) design the filtering algorithm for the constraint
the result of filtering is the change of variables’ domains
more filtering procedures for a single constraint are allowed

Example: A<B
min(A): B in min(A)+1..sup max(B): A in inf..max(B)-1

Schulte (2002)

22



IJCAI 2007 - Constraint Processing 45

Design of filtersDesign of filters
integration into solverintegration into solver

It is necessary to specify when the filtering algorithm is evoked and what
global information is available to it.

Some algorithms are incremental – describe how to react to a change in domain 
of a particular variable.

evoke the algorithm after the particular change happens

Many algorithms for global constraints are proposed as non-incremental –
filtering is run from scratch independently of the change.

evoke the algorithm after any change of constrained variables

Example (installation of filtering rule(s) for A<B)
arc-B-consistency is identical to full arc-consistency!
filtering can be realised incrementally

less_then(A,B):-
fd_global(a2b(A,B),no_state,[min(A)]),
fd_global(b2a(A,B),no_state,[max(B)]).

name of the filter 
with arguments

name of the filter 
with arguments

initial state (local data) 
of the filter

initial state (local data) 
of the filter

events when the 
filter is called

events when the 
filter is called

IJCAI 2007 - Constraint Processing 46

Design of filtersDesign of filters
filtering algorithmfiltering algorithm

The filtering algorithm has access to current domains and it proposes how to 
restrict the domains (list of changes to domains).

some solvers provide information about the change that invoked the filter

Example (definition of filtering rule(s) for A<B)

dispatch_global(a2b(A,B),S,S,Actions):-
fd_min(A,MinA), fd_max(A,MaxA),
fd_min(B,MinB),
(MaxA<MinB ->

Actions = [exit]
; LowerBoundB is MinA+1,

Actions = [B in LowerBoundB..sup]).

dispatch_global(b2a(A,B),S,S,Actions):-
fd_max(A,MaxA),
fd_min(B,MinB), fd_max(B,MaxB),
(MaxA<MinB ->

Actions = [exit]
; UpperBoundA is MaxB-1,

Actions = [A in inf..UpperBoundA]).

identification 
of the filter

identification 
of the filter

states before/after 
running the filtering
states before/after 
running the filtering

list of proposed changes 
to domains

list of proposed changes 
to domains

filtering finished, don’t 
call the filter anymore

filtering finished, don’t 
call the filter anymore

access to current 
domains of variables

access to current 
domains of variables

23



SearchSearch

IJCAI 2007 - Constraint Processing 48

Consistency and SearchConsistency and Search
Consistency techniques are (usually) incomplete.

We need a search algorithm to resolve the rest!

LabelingLabeling
depth-first search

assign a value to the variable
propagate = make the problem
locally consistent
backtrack upon failure

X in 1..3 ≈ X=1 ∨ X=2 ∨ X=3 (enumeration)

In general, search algorithm resolves remaining disjunctions!
X=1 ∨ X≠1 (step labeling)
X<3 ∨ X≥3 (bisection)
X<Y ∨ X≥Y (variable ordering)

24



IJCAI 2007 - Constraint Processing 49

Labeling skeletonLabeling skeleton

Search is combined with filtering techniques 
that prune the search space.
Look-ahead technique (MAC)
procedure labeling(V,D,C)

if all variables from V are assigned then return V
select not-yet assigned variable x from V
for each value v from Dx do

(TestOK,D’) ← consistent(V,D,C∪{x=v})
if TestOK=true then

R ← labeling(V,D’,C)
if R ≠ fail then return R

end for
return fail

end labeling

procedure labeling(V,D,C)
if all variables from V are assigned then return V
select not-yet assigned variable x from V
for each value v from Dx do

(TestOK,D’) ← consistent(V,D,C∪{x=v})
if TestOK=true then

R ← labeling(V,D’,C)
if R ≠ fail then return R

end for
return fail

end labeling

IJCAI 2007 - Constraint Processing 50

CP is not enumeration!CP is not enumeration!

Backtracking is not very good
19 attempts

MAC combining search and arc 
consistency

2 attempts

4 queens problem

25



IJCAI 2007 - Constraint Processing 51

Variable orderingVariable ordering
Variable ordering in labelling influence significantly efficiency of 

solvers (e.g. in a tree-structured CSP).
What variable ordering should be chosen in general?
FAIL FIRST principle

„select the variable whose instantiation will lead to a failure“
it is better to tackle failures earlier, they can be become even harder

prefer the variables with smaller domain (dynamic order)
a smaller number of choices ~ lower probability of success 
the dynamic order is appropriate only when new information appears during 
solving (e.g., in look ahead algorithms) 

„solve the hard cases first, they may become even harder later“
prefer the most constrained variables

it is more complicated to label such variables (it is possible to assume 
complexity of satisfaction of the constraints)
this heuristic is used when there is an equal size of the domains

prefer the variables with more constraints to past variables
a static heuristic that is useful for look-back techniques

IJCAI 2007 - Constraint Processing 52

Value orderingValue ordering
Order of values in labelling influence significantly efficiency (if we choose the right 

value each time, no backtrack is necessary).
What value ordering for the variable should be chosen in general?
SUCCEED FIRST principle

„prefer the values belonging to the solution“
if no value is part of the solution then we have to check all values
if there is a value from the solution then it is better to find it soon

Note: SUCCEED FIRST does not go against FAIL FIRST !
prefer the values with more suppors

this information can be found in AC-4
prefer the value leading to less domain reduction

this information can be computed using singleton consistency
prefer the value simplifying the problem

solve approximation of the problem  (e.g. a tree)
Generic heuristics are usually too complex for computation.
It is better to use problem-driven heuristics that propose the value!

26



IJCAI 2007 - Constraint Processing 53

Heuristics in searchHeuristics in search
Observation 1:
The search space for real-life problems is so huge that it cannot be fully 
explored.

Heuristics - a guide of search
they recommend a value for assignment
quite often lead to a solution

What to do upon a failure of the heuristic?
BT cares about the end of search (a bottom part of the search tree)
so it rather repairs later assignments than the earliest ones
thus BT assumes that the heuristic guides it well in the top part

Observation 2:
The heuristics are less reliable in the earlier parts of the search tree (as 
search proceeds, more information is available).

Observation 3:
The number of heuristic violations is usually small.

IJCAI 2007 - Constraint Processing 54

DiscrepanciesDiscrepancies
So how to do search better than BT?

BT is „heuristics blind“

Discrepancy = the heuristic is not followed

Basic principles of discrepancy search:
change the order of branches to be explored

prefer branches with less discrepancies

prefer branches with earlier discrepancies

heuristic = go left

heuristic = go left

is before

is before

27



IJCAI 2007 - Constraint Processing 55

Limited Discrepancy Search (Harvey & Ginsberg, 1995)
restricts a maximal number of discrepancies in the iteration 

Improved LDS (Korf, 1996)
restricts a given number of discrepancies in the iteration

Depth-bounded Discrepancy Search (Walsh, 1997)
restricts discrepancies till a given depth in the iteration

…

Discrepancy searchDiscrepancy search

1 2345

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

678910

* heuristic = go left

IJCAI 2007 - Constraint Processing 56

Algorithm LDSAlgorithm LDS
procedure LDS(Variables,Constraints)

for D=0 to |Variables| do % D is the number of allowed discrepancies
R ← LDS-PROBE(Variables,{},Constraints,D)
if R≠ fail then return R

end for
return fail

end LDS

procedure LDS-PROBE(Unlabeled,Labeled,Constraints,D)
if Unlabelled = {} then return Labeled
select X in Unlabelled
ValuesX ← DX - {values inconsistent with Labeled using Constraints}
if ValuesX = {} then return fail
else select HV in ValuesX using heuristic

if D>0 then % some discrepancy still allowed
for each value V from ValuesX -{HV} do

R ← LDS-PROBE(Unlabeled-{X}, Labeled∪{X/V}, Constraints, D-1)
if R≠ fail then return R

end for
return LDS-PROBE(Unlabeled-{X}, Labeled∪{X/HV}, Constraints, D)

end if
end LDS-PROBE

Harvey, Ginsberg (1995)

28



IJCAI 2007 - Constraint Processing 57

Incomplete searchIncomplete search

A cutoff limit to stop exploring a (sub-)tree
some branches are skipped → incomplete search

When no solution found, restart with enlarged cutoff limit.

Bounded Backtrack Search (Harvey, 1995)
restricted number of backtracks

Depth-bounded Backtrack Search (Cheadle et al., 2003)
restricted depth where alternatives are explored

Iterative Broadening (Ginsberg and Harvey, 1990)
restricted breadth in each node
still exponential!

Credit Search (Beldiceanu et al., 1997)
limited credit for exploring alternatives
credit is split among the alternatives

IJCAI 2007 - Constraint Processing 58

BBS(8)

1 2 3 4 5 6 7 8 9

DBS(3)

1 3 5 72 4 6 8

IB(2)

1 3 5 72 4 6 8

CS(7)

1 3 5 72 4 6

4 3

2 2 2 1

1 1 1 1 1 1

Incomplete searchIncomplete search

creditcredit

29



IJCAI 2007 - Constraint Processing 59

Constraint optimizationConstraint optimization

Constraint optimization problem (COP)
= CSP + objective function
Objective function is encoded in a constraint v=obj(Xs) 
and the value of v is optimized

Algorithm Branch & Bound
procedure BB-Min(Variables, V, Constraints)

Bound ← sup
NewSolution ← fail
repeat

Solution ← NewSolution
NewSolution ← Solve(Variables,Constraints ∪ {V<Bound})
Bound ← value of V in NewSolution (if any)

until NewSolution = fail
return Solution

end BB-Min

IJCAI 2007 - Constraint Processing 60

NNotes on otes on B&BB&B
Efficiency dependents on:

good propagation of the objective function
a good first feasible solution (a good bound)

The optimal solution can be found fast
but proof of optimality can be long

A good enough solution is frequently OK.
BB can stop when it reaches a given limit for objective
or when the solution is close to optimum

Dichotomic version of B&B
repeat

Middle ← (UpperBound+LowerBound) /  2
NewSolution ← Solve(Variables, Constraints ∪ {V ≤ Middle})
if NewSolution=fail then

LowerBound ← Middle+1
Constraints ← Constraints ∪ {LowerBound ≤ V})

else
UpperBound ← Middle

until LowerBound = UpperBound

bounds of the “objective”
variable v

bounds of the “objective”
variable v

30



ModellingModelling

IJCAI 2007 - Constraint Processing 62

Constraint modellingConstraint modelling

How to describe the problem as a CSP that can 
be effectively solved?
Seesaw problem

starting simple with CLP
symmetries and global constraints

Assignment problem
almost a real-life problem
optimization and dual models

Golomb rulers
small but hard problem 
implied constraints

31



IJCAI 2007 - Constraint Processing 63

Using all-different constraints applied to every row, 
column, and sub-grid, we can solve most Sudoku
problems, but not all.
There are some Devil Sudoku Problems, which we 
do not know how to solve using logical inference only.

1 6 4 9 5 7 2 8 3 
3 8 5 6 2 1 9 7 4 
7 2 9 4 3 8 6 5 1 
5 3 7 2 8 9 4 1 6 
4 1 2 7 6 3 8 9 5 
6 9 8 5 1 4 3 2 7 
8 4 3 1 9 5 7 6 2 
9 5 6 3 7 2 1 4 8 
2 7 1 8 4 6 5 3 9

1     9   7     3 
8           7   

9       6     
7 2   9 4     

4 1           9 5 
8 5   4 3     
3       7     

5           4   
2     8   6     9 

6 8 9 3 4 2 5 1 7 
1 5 2 7 9 8 4 3 6 
3 4 7 1 6 5 8 9 2 
9 1 8 6 2 7 3 4 5 
5 7 4 9 3 1 2 6 8 
2 6 3 5 8 4 1 7 9 
4 9 5 2 7 3 6 8 1 
8 2 6 4 1 9 7 5 3 
7 3 1 8 5 6 9 2 4

3   2       
5   7 9 8   3   

7       8     
8 6   7 3     

7           6   
3 5   4 1     
5       6     

2   4 1 9   5   
8   6      

Back to Back to SudokuSudoku

IJCAI 2007 - Constraint Processing 64

Seesaw problemSeesaw problem
The problem:

Adam (36 kg), Boris (32 kg) and Cecil (16 kg)
want to sit on a seesaw with the length 10 foots
such that the minimal distances between them are more than 2 
foots and the seesaw is balanced.

A CSP model:
A,B,C in -5..5 position
36*A+32*B+16*C = 0 equilibrium state
|A-B|>2, |A-C|>2, |B-C|>2 minimal distances

-5 -4 -3 -2 -1 0 1 2 3 4 5

32



IJCAI 2007 - Constraint Processing 65

Seesaw problemSeesaw problem
implementationimplementation

Symmetry breaking
important to reduce search space

:-use_module(library(clpfd)).

seesaw(Sol):-
Sol = [A,B,C],

domain(Sol,-5,5),
36*A+32*B+16*C #= 0,
abs(A-B)#>2, abs(A-C)#>2, abs(B-C)#>2,

labeling([ff],Sol).

:-use_module(library(clpfd)).

seesaw(Sol):-
Sol = [A,B,C],

domain(Sol,-5,5),
A #< 0,
36*A+32*B+16*C #= 0,
abs(A-B)#>2, abs(A-C)#>2, abs(B-C)#>2,

labeling([ff],Sol).

?- seesaw(X).

X = [-4,2,5] ? ;
X = [-4,4,1] ? ;
X = [-4,5,-1] ? ;
X = [4,-5,1] ? ;
X = [4,-4,-1] ? ;
X = [4,-2,-5] ? ;

no

?- seesaw(X).

X = [-4,2,5] ? ;
X = [-4,4,1] ? ;
X = [-4,5,-1] ? ;

no

IJCAI 2007 - Constraint Processing 66

Seesaw problemSeesaw problem
a different perspectivea different perspective

A set of similar constraints typically indicates a structured sub-problem 
that can be represented using a global constraintglobal constraint.

We can use a global constraint describing allocation of activities to 
exclusive resource.

domain([A,B,C],-5,5),
A #< 0,
36*A+32*B+16*C #= 0,
abs(A-B)#>2,
abs(A-C)#>2,
abs(B-C)#>2

A in -4..0
B in -1..5
C in -5..5

domain([A,B,C],-5,5),
A #< 0,
36*A+32*B+16*C #= 0,
serialized([A,B,C],[3,3,3],[]) A in -4..0

B in -1..5
C in (-5..-3) \/ (-1..5)start timesstart times durationsdurations precedencesprecedences

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
A B C

33



IJCAI 2007 - Constraint Processing 67

Assignment problemAssignment problem
The problem:

There are 4 workers and 4 products and a table describing the 
efficiency of producing the product by a given worker. The task is 
assign workers to products (one to one) in such a way that the 
total efficiency is at least 19.

A CSP model:
W1,W2,W3,W4 in 1..4 a product per worker
all_different([W1,W2,W3,W4]) different products
T1,W1+T2,W2+T3,W3+T4,W4 ≥ 19 total efficiency

3613W4
2734W3
1528W2
4317W1

P4P3P2P1

IJCAI 2007 - Constraint Processing 68

Assignment problemAssignment problem
implementationimplementation

Optimization using B&B

How does it work?
find first feasible instantiation of variables
find better instantiation of variables
repeat until some instantiation of variables exists

:-use_module(library(clpfd)).

assignment_p(Sol):-
Sol = [W1,W2,W3,W4],

domain(Sol,1,4),
all_different(Sol),
element(W1,[7,1,3,4],EW1),
element(W2,[8,2,5,1],EW2),
element(W3,[4,3,7,2],EW3),
element(W4,[3,1,6,3],EW4),
EW1+EW2+EW3+EW4 #>= 19,

labeling([ff],Sol).

?- assignment_p(X).

X = [1,2,3,4] ? ;
X = [2,1,3,4] ? ;
X = [4,1,2,3] ? ;
X = [4,1,3,2] ? ;

no

EW1+EW2+EW3+EW4 #= E,

maximize(labeling([ff],Sol),E).

?- assignment_p(X).

X = [4,1,2,3] ? ;

no

19
19
21
20

34



IJCAI 2007 - Constraint Processing 69

Assignment problemAssignment problem
a dual modela dual modelWhy do we assign products to workers?

Cannot we do it in an opposite way, that is, to assign a worker to
a product?

Of course, we can swap the role of values and variablesswap the role of values and variables!
This new model is called a dual modeldual model.

Which model is better?
In this particular case, the dual model propagates earlier (thus it is assumed 
to be better).

:-use_module(library(clpfd)).

assignment_dual(Products):-
Products = [P1,P2,P3,P4],

domain(Products,1,4),
all_different(Products),
element(P1,[7,8,4,3],EP1),
element(P2,[1,2,3,1],EP2),
element(P3,[3,5,7,6],EP3),
element(P4,[4,1,2,3],EP4),
EP1+EP2+EP3+EP4 #>= 19,

labeling([ff],Products).

P1 in 1..2
P2 in 1..4
P3 in 2..4
P4 in 1..4

Number of choice points

Primal model 15

Dual model 11

IJCAI 2007 - Constraint Processing 70

Assignment problemAssignment problem
composing modelscomposing models

a primal model

a dual model (redundant)

a channelling constraint

labelling one model is enough

:-use_module(library(clpfd)).

assignment_combined(Workers):-
Workers= [W1,W2,W3,W4],
domain(Workers,1,4),
all_different(Workers),
element(W1,[7,1,3,4],EW1),
element(W2,[8,2,5,1],EW2),
element(W3,[4,3,7,2],EW3),
element(W4,[3,1,6,3],EW4),
EW1+EW2+EW3+EW4 #>= 19,

Products = [P1,P2,P3,P4],
domain(Products,1,4),
all_different(Products),
element(P1,[7,8,4,3],EP1),
element(P2,[1,2,3,1],EP2),
element(P3,[3,5,7,6],EP3),
element(P4,[4,1,2,3],EP4),
EP1+EP2+EP3+EP4 #>= 19,

assignment(Workers,Products),

labeling([ff],Workers).

We can combine both primal and dual model
in a single model to get better domain pruning.

P1 in 1..2
P2 in 1..4
P3 in 2..4
P4 in 1..4

W1 in (1..2)\/{4}
W2 in 1..4
W3 in 2..4
W4 in 2..4

35



IJCAI 2007 - Constraint Processing 71

GolombGolomb rulerruler
A ruler with M marks such 
that distances between any two 
marks are different.

The shortest ruler is the 
optimal ruler.

Hard for  M≥16, no exact 
algorithm for M ≥ 24!

Applied in radioastronomy.

Solomon W. Golomb
Professor
University of Southern California
http://csi.usc.edu/faculty/golomb.html

0 1 4 9 11

IJCAI 2007 - Constraint Processing 72

GolombGolomb rulerruler
CSP modelCSP modelA base model:

Variables X1, …, XM with the domain 0..M*M

X1 = 0 ruler start
X1< X2<…< XM no permutations of variables
∀i<j Di,j = Xj – Xi difference variables
all_different({D1,2, D1,3, … D1,M, D2,3, … DM,M-1})

Model extensions:

D1,2 < DM-1,M symmetry breaking
better bounds (implied constraints) for Di,j

Di,j = Di,i+1 + Di+1,i+2 + … + Dj-1,j

so Di,j ≥ Σj-i = (j-i)*(j-i+1)/2 lower bound
XM = XM – X1 = D1,M = D1,2 + D2,3 + … Di-1,i + Di,j + Dj,j+1 + … + DM-1,M

Di,j = XM – (D1,2 + … Di-1,i + Dj,j+1 + … + DM-1,M)

so Di,j ≤ XM – (M-1-j+i)*(M-j+i)/2 upper bound

0 1 4 9 11

0    2 7 10 11

36



IJCAI 2007 - Constraint Processing 73

What is the effect of different constraint models?

What is the effect of different search strategies?

GolombGolomb rulerruler
some resultssome results

11

10

9

8

7

size

time in milliseconds on Mobile Pentium 4-M 1.70 GHz, 768 MB RAM

2 480 216

120 363

13 690

1 462

220

base model

985 237

49 971

5 438

611

80

base model
+ symmetry

170 495

7 011

1 001

190

30

base model
+ symmetry
+ implied constraints

leftmost firstfail firstsize

11

10

9

8

7

906 323

17 545

2 384

370

60

step

1 004 515

20 870

2 664

390

40

enum

779 851

14 982

2 113

350

40

bisect

170 495

7 011

1 001

190

30

step

209 251

8 782

1 182

220

30

enum

159 559

6 430

921

200

30

bisect

time in milliseconds on Mobile Pentium 4-M 1.70 GHz, 768 MB RAM

IJCAI 2007 - Constraint Processing 74

Modeling rulesModeling rules
Determining the efficiency of different models is a difficult 
problem and one which relies upon an understanding of 
the underlying constraint solver.
Usually, the best model will be the one in which information 
is propagated first.

Some rules of thumb for constraint modelling:
global constraints

(+) strengthen propagation with good efficiency

symmetry breaking
(+) reduce search space

implied constraints
(+) strengthen propagation
(–) but add overhead

37



ConclusionsConclusions

IJCAI 2007 - Constraint Processing 76

Constraint solversConstraint solvers
It is not necessary to program all the presented techniques 
from scratch!
Use existing constraint solvers (packages)!

provide implementation of data structures for modeling variables’
domains and constraints
provide a basic consistency framework
provide filtering algorithms for many constraints (including global 
constraints)
provide basic search strategies
usually extendible (new filtering algorithms, new search strategies)

Some systems with constraint satisfaction packages:
Prolog: CHIP, ECLiPSe, SICStus Prolog, Prolog IV, GNU Prolog, 
IF/Prolog
C/C++: CHIP++, ILOG Solver, Gecode
Java: JCK, JCL, Koalog
Oz: Mozart

38



IJCAI 2007 - Constraint Processing 77

ResourcesResources
Books

P. Van Hentenryck: Constraint Satisfaction in Logic Programming, MIT Press, 
1989
E. Tsang: Foundations of Constraint Satisfaction, Academic Press, 1993
K. Marriott, P.J. Stuckey: Programming with Constraints: An Introduction, MIT 
Press, 1998
R. Dechter: Constraint Processing, Morgan Kaufmann, 2003
Handbook of Constraint Programming, Elsevier, 2006

Journals
Constraints, An International Journal. Kluwer Academic Publishers
Constraint Programming Letters, free electronic journal

On-line materials
On-line Guide to Constraint Programming (tutorial)
http://kti.mff.cuni.cz/~bartak/constraints/
Constraints Archive (archive and links)
http://4c.ucc.ie/web/archive/index.jsp
Constraint Programming online (community web)
http://www.cp-online.org/

IJCAI 2007 - Constraint Processing 78

SummarySummary
Constraints

arbitrary relations over the problem variables
express partial local information in a declarative way

Basic constraint satisfaction framework:
local consistency connecting filtering algorithms for individual constraints
depth-first search resolves remaining disjunctions
local search can also be used

Problem solving using constraints:
declarative modeling of problems as a CSP
dedicated algorithms can be encoded in constraints
special search strategies

It is easy to state combinatorial problems in terms of a CSP
… but it is more complicated to design solvable models.

39



References 
 
 

Surveys 

Constraint Programming - What is Behind? 
R. Barták, in Proceedings of CPDC99 
Workshop, pp. 7-16, Gliwice, 1999. 

Theory and Practice of Constraint 
Propagation 
R. Barták, in Proceedings of CPDC2001 
Workshop, pp. 7-14, Gliwice, 2001. 

Modelling Soft Constraints: A Survey 
R. Barták, Neural Network World, Vol. 12, 
Number 5, pp. 421-431, 2002. 

Incomplete Depth-First Search Techniques: 
A Short Survey 
R. Barták, in Proceedings of CPDC2004 
Workshop, pp. 7-14, Gliwice, 2004. 

Constraint Logic Programming – A Survey 
J. Jaffar & M.J. Maher, J. Logic 
Programming, 19/20:503-581, 1996. 

Algorithms for Constraint Satisfaction 
Problems: A Survey 
V. Kumar, AI Magazine 13(1): 32-44, 1992. 

A Tutorial on Constraint Programming 
B.M. Smith, TR 95.14, University of Leeds, 
1995. 

 

The Origins 

The Programming Language Aspects of 
ThingLab, A Constraint-Oriented Simulation 
Laboratory 
A. Borning, in ACM Transactions on 
Programming Languages and Systems 3(4): 
252-387, 1981. 

Logic Programming: Further Developments 
H. Gallaire, in: IEEE Symposium on Logic 
Programming, Boston, IEEE, 1985. 

Constraint Logic Programming 
J. Jaffar & J.L. Lassez, in Proc. The ACM 
Symposium on Principles of Programming 
Languages, ACM, 1987. 

Networks of constraints fundamental 
properties and applications to picture 
processing 
U. Montanary, in: Information Sciences 7: 95-
132, 1974. 

Sketchpad: a man-machine graphical 
communication system 
I. Sutherland, in Proc. IFIP Spring Joint 
Computer Conference, 1963. 

Understanding line drawings of scenes with 
shadows 
D.L. Waltz, in Psychology of Computer 
Vision, McGraw-Hill, New York, 1975. 

 

Consistency techniques 

Edge-finding constraint propagation 
algorithms for disjunctive and cumulative 
scheduling 
P. Baptiste, and  C. Le Pape. Proceedings of 
the Fifteenth Workshop of the U.K. Planning 
Special Interest Group (PLANSIG), 1996. 

Improving Domain Filtering using Restricted 
Path Consistency 
P. Berlandier, in Proceedings of the IEEE 
CAIA-95, Los Angeles CA, 1995.  

Arc-consistency and arc-consistency again 
C. Bessiere, in Artificial Intelligence 65, 
pages 179-190, 1994.  

Using constraint metaknowledge to reduce 
arc consistency computation 
C. Bessiere, E.C. Freuder, and J.-R. Régin, 
in Artificial Intelligence 107, pages 125-148, 
1999.  

Refining the Basic Constraint Propagation 
Algorithm 
Ch. Bessière  and J.-Ch. Régin. In 
Proceedings of IJCAI-01, 309-315, (2001). 

Some practicable filtering techniques for the 
constraint satisfaction problem 
R. Debruyne and C. Bessiere, in Proceedings 
of the 15th IJCAI, pages 412-417, 1997.  

40



Neighborhood inverse consistency 
preprocessing 
E. Freuder and C. D. Elfe, in Proceedings of 
the AAAI National Conference, pages 202-
208, 1996.  

Comments on Mohr and Henderson's path 
consistency algorithm 
C. Han and C. Lee, in Artificial Intelligence 
36, pages 125-130, 1988.  

Consistency in networks of relations 
A.K. Mackworth, in Artificial Intelligence 8, 
pages 99-118, 1977. 

The complexity of some polynomial network 
consistency algorithms for constraint 
satisfaction problems 
A.K. Mackworth and E.C. Freuder, in Artificial 
Intelligence 25, pages 65-74, 1985.  

Arc and path consistency revised 
R. Mohr and T.C. Henderson, in Artificial 
Intelligence 28, pages 225-233, 1986. 

Arc consistency for factorable relations 
M. Perlin, in Artificial Intelligence 53, pages 
329-342, 1992.  

Singleton Consistencies 
P. Prosser, K. Stergiou, T. Walsh, in Proc 
Principles and Practice of Constraint 
Programming (CP2000), pages 353-368, 
2000.  

A filtering algorithm for constraints of 
difference in CSPs 
J.C. Régin, in AAAI-94, in Proceedings of the 
Twelfth National Conference on Artificial 
Intelligence, pages 362-367, 1994. 

Path Consistency Revised 
M. Singh, in Proceedings of the 7th IEEE 
International Converence on Tolls with 
Artificial Intelligence, pages 318-325, 1995.  

A generic customizable framework for 
inverse local consistency 
G. Verfaillie, D. Martinez, and C. Bessiere, in 
Proceedings of the AAAI National 
Conference, pages 169-174, 1999.  

A generic arc-consistency algorithm and its 
specializations 
P. Van Hentenryck, Y. Deville, and C.-M. 
Teng, in Artificial Intelligence 57, pages 291-
321, 1992.  

Making AC-3 an Optimal Algorithm. 
Y. Zhang and R. Yap. In Proceedings of 
IJCAI-01, 316-321, (2001). 

Search 

Partial Search Strategy in CHIP 
N. Beldiceanu, E. Bourreau, P. Chan, D. 
Rivreau, D.  In 2nd International Conference 
on Metaheuristics (MIC 97), 1997. 

ECLiPSe: An Introduction 
Andrew M. Cheadle, Warwick Harvey, 
Andrew J. Sadler, Joachim Schimpf, Kish 
Shen and Mark G. Wallace.   IC-Parc, 
Imperial College London, Technical Report 
IC-Parc-03-1, 2003. 

Backtracking algorithms for constraint 
satisfaction problems; a survey 
R. Dechter, D. Frost, in Constraints, 
International Journal, 1998.  

Performance Measurement and Analysis of 
Certain Search Algorithms 
Gaschnig, J., CMU-CS-79-124, Carnegie-
Mellon University, 1979. 

Iterative Broadening 
M.L. Ginsberg, W.D. Harvey, In AAAI 
Proceedings, 1990.  

Increasing tree search efficiency for 
constraint satisfaction problems 
Haralick, R.M., Elliot, G.L., in: Artificial 
Intelligence 14:263-314, 1980. 

Limited Discrepancy Search 
W.D. Harvey and M.L. Ginsberg, in 
Proceedings of IJCAI95, pages 607-613, 
1995. 

Nonsystematic backtracking search 
W. D. Harvey.  PhD thesis, Stanford 
University, 1995. 

Improved Limited Discrepancy Search 
Richard E. Korf. In Proceedings of National 
Conference on Artificial Intelligence (AAAI-
96). AAAI Press, pp. 286-291, 1996. 

Interleaved Depth-First Search 
Pedro Meseguer. In Proceedings of 15th 
International Joint Conference on Artificial 
Intelligence, pp. 1382-1387, 1997. 

Interleaved and Discrepancy Based Search 
Pedro Meseguer and Toby Walsh.  In 
Proceedings of 13th European Conference 
on Artificial Intelligence, Wiley, pp. 239-243, 
1998. 

Depth-bounded Discrepancy Search 
Toby Walsh.  In Proceedings of 15th 
International Joint Conference on Artificial 
Intelligence, pp. 1388-1393, 1997. 

41


	Pořadač1.pdf
	
	References.pdf
	References.pdf
	Surveys
	The Origins
	Consistency techniques
	Search





