
Generating Random Dynamic Resource Scheduling Problems

Wolfgang Haas and William S. Havens
Intelligent Systems Laboratory

Simon Fraser University
Burnaby, British Columbia

Canada V5A 1S6
{haasw, havens}@cs.sfu.ca

Abstract

Dynamic scheduling refers to a class of scheduling
problems in which dynamic events, such as delaying
of a task, occur throughout execution. We develop
a framework for dynamic resource scheduling imple-
mented in Java with a random problem generator, a dy-
namic simulator and a scheduler. The problem gen-
erator is used to generate benchmark datasets that are
read by the simulator, whose purpose is to notify the
scheduler of the dynamic events when they occur. We
perform a case-study on an oversubscribed dynamic re-
source scheduling problem in which we assign unit re-
sources to tasks subject to temporal and precedence
constraints.

Introduction
Scheduling is the science of allocating limited resources to
competing tasks over time (Jackson & Rouskas 2002). Most
of the work in this area has concentrated on static schedul-
ing problems in which one is given all information ahead
of time and the problem does not change during execution
of the schedule. But in the real-world there exists no such
guarantee. A machine may fail or new tasks may arrive un-
expectedly. The research described in this document deals
with so-called dynamic scheduling problems in which many
different kinds of unexpected events occur throughout exe-
cution of the tasks. These problems are much more difficult
to solve but likewise they are also difficult to generate.

In this paper, we describe a framework for dynamic re-
source scheduling problems comprising a random problem
generator and a dynamic event simulator. The parameter-
ized problem generator provides a portfolio of random re-
source scheduling problems. Given a scheduling algorithm
under test, the event simulator executes the schedule while
making dynamic changes to the problem during execution.
Each such problem modification requires the scheduling al-
gorithm to reconsider its proposed solution dynamically.

In general, resource scheduling problems can be de-
scribed as follows: Given a set of resources and a set of
tasks, a schedule is a mapping of tasks to time intervals on
each resource such that all specified constraints remain sat-

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

isfied and the capacity of each resource is respected while
optimizing some objective function (Hoos & Stuetzle 2005).

Resource scheduling is very important in real-world ap-
plication for which there is a significant literature. However,
there is much less known about dynamic scheduling prob-
lems and algorithms. Our own work was inspired by the
Canadian CoastWatch project.

CoastWatch is an oversubscribed dynamic multi-mode
scheduling problem with unit resources and lies in the
Search & Rescue domain. CoastWatch datasets simulate a
typical day for the Canadian Coast Guard, where officers as-
sign resources (planes, helicopters, ships, ...) to execute sev-
eral different kinds of missions (rescue, patrol, transport, ...).
The problem is inherently dynamic. Missions occur sponta-
neously as planes and ships are reported missing. Resources
become unavailable due to equipment malfunction. Search
tasks take unknown times to execute and may spawn addi-
tional rescue tasks. As well, there are a backlog of routine
tasks which must be performed in the interim.

We found that obtaining sufficient real-life Search & Res-
cue data to be difficult. So we had to generate our own
datasets while maintaining as much realism as possible.
However, there is relatively little known about generating
dynamic resource scheduling problems. In particular, there
must be an intimate interaction between the problem gener-
ator and the scheduler. Executing a schedule can alter the
problem being scheduled during execution. For this purpose
a dynamic event simulator is required which is driven by the
current schedule.

The result of our work is a dynamic resource scheduling
framework which can be applied to many different kinds of
dynamic resource scheduling problems. It has three compo-
nents as illustrated in Figure 1: a random problem generator,
a dynamic simulator and a scheduler under test. A special
feature of the simulator is a visualization tool that creates an
animation of the scheduling problem on GoogleEarthTM .
One can watch vehicle resources as they are moving around
to execute missions and see the decisions made by the sched-
uler.

The problem generator is parameterized for generating a
wide variety of random datasets. A dataset is parsed by the
dynamic simulator which creates scheduling events at the
appropriate time. Scheduling events include adding/deleting
tasks; adjusting the duration of a task; removing/adding a re-



Figure 1: Overview of the Dynamic Resource Scheduling
Framework

source; et cetera. Every time an event occurs, the problem is
modified and the scheduler is invoked in order to reoptimize
the schedule.

Previous Work
Usually scheduling problem generators are written as part
of a research project and are tailored specifically towards
the studied problem. Unfortunately, it is very unlikely that
such a problem generator can be applied to a different class
of problems. There do exist good general problem gener-
ators for static resource scheduling problems (e.g. project
scheduling problems (Drexl et al. 2000) (Kolisch, Sprecher,
& Drexl 1995)). Recently however, Policella & Rasconi
(Policella & Rasconi 2005) devised a generator for a lim-
ited class of dynamic project scheduling problems (Brucker
et al. January 1999).

Policella & Rasconi
Policella & Rasconi define a dynamic resource problem as
containing two sub-problems:

• Static sub-problem: Given the problem definition, find
a schedule that optimizes the objective function. This is
equivalent to the usual static problem.

• Dynamic sub-problem: Given the solution to the static
sub-problem, monitor the execution of the schedule.
Should a dynamic event invalidate the current schedule,
then repair it while trying to maintain the quality of the
current solution and continue execution.

Policella & Rasconi developed a testset generator for the
dynamic sub-problem. A model was defined to allow for a
variety of dynamic events. An absolute event time is asso-
ciated with each dynamic event in order to determine when
an event occurs. Using a relaxed version of the scheduling
problem allowed them to compute the feasible range for the
starting times of all activities. However, to ensure that the
event times remain valid throughout execution, it was nec-
essary to make certain restrictions to their dynamic events.
For instance, an activity could not be completed earlier than

expected. We overcome these limitations by using dynamic
event times while also ensuring that no invalid events are
created.

Dynamic Resource Scheduling Framework
We describe a dynamic resource scheduling framework
which can be applied to many different kinds of dynamic
resource scheduling problems. We assume the existence of
renewable unit resources and schedule tasks subject to tem-
poral and resource constraints. Since this framework has
been designed for tasks with multiple modes of execution, it
can also be used for single-mode problems by simply spec-
ifying only one mode. Furthermore, we assume semi pre-
emption (Hua & Qu 2003) meaning the execution of a task
may be interrupted but must be restarted completely. How-
ever, the framework can be easily extended to cover non-
preemptive scheduling1 by implementing only scheduling
algorithms that will not consider retracting a task that is cur-
rently executing. Additionally, this scheduling framework
can be applied to oversubscribed as well as undersubscribed
dynamic resource scheduling problems.

The dynamic resource scheduling framework is imple-
mented in Java and has three components: a random prob-
lem generator, a dynamic simulator and a scheduler. The
random problem generator is a stand-alone component and
can be used to create instances of the problem. It provides
great flexibility in generating datasets for dynamic resource
scheduling problems. The specification of the problem and
the parameters for all missions and events are passed into
the problem generator. This makes it as general as possi-
ble in order to allow for generating benchmark datasets with
very different kind of characteristics. Changing a single pa-
rameter value for an event might cause the dynamic event
to have a very different influence on the whole scheduling
problem. By inputting the problem specification we ensure
that the problem generator can be applied easily to different
dynamic scheduling problems. This is achieved by making
the appropriate changes in the specification file.
Dynamic events that are generated by the problem generator
include:
• resources can be either added or deleted from the problem
• new missions and tasks can be added to the problem
• tasks can be completed earlier or later than anticipated
• a task can be delayed which alters the tasks time window

The dynamic simulator parses the resulting dataset and
creates all tasks and events at the appropriate time. The sim-
ulator is necessary to hide all future events from the sched-
uler. Every time an event occurs, the scheduler is invoked in
order to make adjustments to the schedule to accommodate
the new event. Figure 1 gives an overview of the dynamic
resource scheduling framework.

Random Problem Generator
While there exist more general problem generators that
can be used to generate datasets for many different static

1In non-preemptive scheduling, tasks must be executed to com-
pletion and may never be interrupted.



scheduling problems, the same cannot be said for their dy-
namic counterparts. We address the need for such random
problem generators by creating one for dynamic resource
scheduling problems as part of a larger framework.

Input Files
The random problem generator requires two input files, the
Scheduling Problem file and the Mission and Event file.

Scheduling Problem file This file lists all capabilities,
bases and resources that exist within the scheduling prob-
lem, respectively. These items have to be specified exactly
as stated in the description of our model in the previous sec-
tion.

Mission and Event file This file contains all parameter
values for any mission, task or dynamic event type that is de-
fined in the dynamic resource scheduling problem. Chang-
ing just a single parameter might have a strong effect on the
characteristics of the generated datasets. Dynamic events
can also specify different parameter values for different task
types. A simple example might look as follows:

horizon 0 1440
numBases 2
numResources 3
events
delay probability=0.1

time=normal(10,4)
tasks
transport numStatic=poisson(0.9)

numDynamic=5
priority=random(5,10)
relativeTime=normal(60,10)

This scheduling problem contains 2 bases and 3 resources
and runs for 24 hours. The number of transport tasks known
at the beginning follows poisson distribution while 5 trans-
port tasks will be added throughtout the simulation.

This input file contains all the information that is neces-
sary for the random problem generator to create benchmark
datasets. In fact, by specifying no dynamic events and set-
ting the numDynamic parameter of all task types to zero,
we could use this framework for static resource scheduling
problems. By modifying the input files, we can introduce
additional flexibility. We associate a priority with each mis-
sion and assume that the objective function is to maximize
the sum of priorities of completed missions. This objective
can easily be modified to maximize the number of completed
missions by setting all priorities to 1. Similarly, we can re-
move time window constraints from the problem by setting
the time windows for each task to (−∞,∞).

Dynamic Events
In this section, we provide a detailed description of the dy-
namic events that have already been implemented into our
framework. These events are very common and apply to
most dynamic scheduling problems.

New Mission This dynamic event introduces a new mis-
sion during execution of the problem. The mission must

consist of at least one task that needs to be executed in order
to achieve some goal.
New Task The new task event adds a task to the dynamic
scheduling problem. It must be created in the body of a
mission or a task.
Add Resource This event dynamically adds a resource to
the scheduling problem. To be consistent with our model,
we assume that the new resource is also a renewable unit
resource. Additionally, the type of the new resource has to
be from the set of possible resource types specified initially
in the problem instance.
Remove Resource This event removes a resource from the
scheduling problem. If, at the moment of removal, the re-
source was currently executing a task, it will be unsched-
uled. Similarly, all tasks that were assigned to the resource
to be executed in the future will also be unassigned. It is
the task of the scheduler to reschedule them on one of the
remaining resources.
Disable Resource This dynamic event disables a resource
for a period of time. The purpose of this event is to simu-
late that a resource encounters a mechanical problem which
needs to be fixed. The selected resource is removed from
the scheduling problem and added again after the specified
delay. We assume the resource will remain at the current lo-
cation. As a consequence of the disable resource event, all
the tasks that were assigned to it, will be unscheduled. This
includes the currently executing task as well as all its future
tasks.
Delay Task This dynamic event shifts time window of a
task by a given delay. This delay can be positive or negative.
Change Duration The change duration event modifies the
required execution time of a task for the assigned resource.
The purpose of this event is to simulate unexpected events
that might occur during execution which have an effect on
the duration. For instance, a plane might arrive early be-
cause of strong tailwind. Additionally, this event may be
used instead of the disable resource event, for example when
a vehicle runs out of gas. In such an event, we know that the
problem can be resolved very quickly, and we can simulate
the resulting delay without having to unschedule all assigned
tasks.

Other Issues

Mission Event Times Suppose we were to generate event
times such that the latest finish time of all tasks lies within
the scheduling horizon. This way every task can be com-
pleted before the end of the scheduling horizon. Suppose
further, we schedule tasks which typically require 500 min-
utes to execute and assume that the end of the scheduling
horizon is set to 800. Then, all missions have earliest starting
times ≤ 300 and as a result there will be 500 more minutes
during which no additional mission is created.

Instead, the random problem generator tries to spread out
the generated tasks. We uniformly distribute the absolute
event times for the creation of missions. As a result, there



might be several tasks which cannot be executed completely
before the simulator halts. We deal with that problem by
considering these tasks as completed as long as the schedul-
ing algorithm was able to assign them to a resource such that
they can be executed within their respective time windows.

Time Windows An important consideration for dynamic
resource scheduling datasets with task time windows is the
size of the generated time windows. On the one hand they
should be large enough so that they can be completed suc-
cessfully. But on the other hand the generated problem in-
stances become too easy if task time windows are too large.

We require that any dataset with a single task and a single
resource should be solved optimally. Therefore, in comput-
ing the size of the time window we need to include the time
it takes the assigned resource to get to the starting location
of the task. Since we are dealing with multi modes for exe-
cution, we set it to the sum of the best positioning time and
the average duration.

Precedence constraints Precedence constraints express
the starting time of an activity in terms of another activity’s
starting time. Precedence constraints can be specified be-
tween two tasks belonging to the same mission and between
a task and the mission itself. It turns out that implement-
ing these kinds of constraints into our dynamic scheduling
framework is not that simple.

Assume there exists a task A which adds two subtasks to
the problem instance sometime during its execution. We
denote the subtasks of A as B and C. Suppose we want to
add a precedence constraint between B and C with delay
d. Assume that B is created earlier than task C. After run-
ning the scheduling algorithm, task B might start execution
right away. Eventually task C will be created, but what if the
other task has already been executing for d or more minutes?
Then the constraint has been violated without any fault of the
scheduler. It is not possible to guarantee that this precedence
constraint is obeyed at all times.

Consider the following solution to the problem: Instead
of adding the given precedence constraint to the scheduling
problem, modify the dataset by moving the task C into the
body of task B. Setting the release date of task C to a value≥
d enforces the constraint. Hence, we can completely ignore
the use of precedence constraints if we generate datasets
such that they are implied automatically by the definition
of our dynamic scheduling model.

Dynamic Simulator

Figure 2 shows an overview of the dynamic simulator, which
forms a feedback loop with the underlying scheduling prob-
lem. Given a problem instance to solve, the scheduler pro-
duces a new schedule. The execution of this schedule pro-
duces a stream of events which are interpreted over time by
the simulator. The results of these events are a sequence
of incremental changes to the scheduling problem which
are then iteratively re-solved by the scheduling algorithm.
Each new schedule may produce more events in the future
as scheduled tasks are being executed. This process is driven
by a simulation clock which iterates through the scheduling

horizon.

Figure 2: Dynamic Simulator Model

The Event Queue stores all future events E to be processed
by the Event Executor. The Start/Stop Generator generates
events representing the start and end of the execution of a
task. The Activity Executor parses the body of missions and
tasks and creates the corresponding events. In the event that
a task has been completed or terminated abnormally, the Ac-
tivity Executor is also responsible for removing the corre-
sponding future events from the queue. The Event Executor
module uses the Event Queue to organize events in tempo-
ral order and repeatedly removes the first event e from the
queue. If this event is a dynamic event which introduces a
modification ∆P to the scheduling problem, it is executed
and the scheduler is invoked.

Visualization Tool The dynamic simulator includes a vi-
sualization tool which creates an animation of the schedul-
ing problem on GoogleEarthTM . Models for resources
were obtained from an online database2. The animation
steps through the scheduling horizon and visualizes the dif-
ferent entities. It is even possible to halt the simulation clock
anytime in order to investigate some state in detail. Figure 3
shows a sample screenshots of the visualization tool for a
Search and Rescue mission off the west coast of Vancouver
Island, British Columbia.

Data Model
We describe a general model for dynamic multi-mode re-
source scheduling problems with unit resources subject to
temporal and resource constraints. For a task we assume
that there are multiple modes of execution and its duration
depends on the assigned resource.

We extend static resource scheduling problems to include
dynamic events where tasks and resources can be added,
modified and deleted from the schedule during execution
thereby possibly interrupting some already scheduled tasks.
Unlike Policella & Rasconi, we use relative event times
while guaranteeing that no dynamic event will occur at an

23D Warehouse, http://sketchup.google.com/3dwarehouse/



Figure 3: Visualization Tool - SAR mission

infeasible event time. In the following sections, we will de-
scribe each entity in detail along with a simple BNF syn-
tax that we have implemented into our dynamic resource
scheduling framework.

Scheduling problems
A scheduling problem for the CoastWatch project contains
the following entities. Note that our generator is not specifi-
cally tied to the Search and Rescue domain.

• Bases: Bases are the home locations of resources. This
includes air bases for aircrafts and ports for ships.

• Resources: Resources such as aircraft, helicopters and
ships, execute tasks and have a designated home base.

• Capabilities: A mapping of task requirements to resource
capabilities. Tasks specify the capability that is necessary
to execute them and every resource has a pre-determined
list of capabilities they can perform.

• Tasks: The activities that are scheduled and executed ac-
cording to their time window and resource requirements.

• Missions: A partially ordered set of tasks that have to be
completed to achieve some mission with specified prior-
ity.

We propose a simple regular language in BNF to specify a
dynamic resource scheduling problem. We use ‘*’ to denote
zero or more of the preceding element and ‘+’ to denote one
or more repetitions.

<capability>*
<base>*
<resource>*
problem <horizon>
<event>*

First we specify all capabilities, bases and resources that
exist within the problem. We then set the scheduling horizon

by providing a start time and an end time for the schedule
followed by a list of events, which include the creation of
new missions. The syntax for the horizon is:
<horizon> --> (<start-time>, <end-time>)

where <start-time> and <end-time> are integers such that
<start-time> ≤ <end-time>. Typically, <start-time> = 0.
We assume that time is measured in minutes but any other
integral time unit should also be acceptable. For instance,
a scheduling problem spanning 24 hours would be specified
in minutes as:
problem (0,1440)

Bases Bases give a physical start location for resources at
the start of the scheduling horizon. They are defined by a
unique base name and a location, which is specified by its
latitude and longitude values. We assume that bases are at
sea level. The syntax for defining a base is:
<base> --> base <id> <location>

where the location is defined as follows:
<location> --> (<lat>,<long>)

Resources Resources are defined by a unique identifier
and a resource type. They move at a pre-determined speed
(in km/h) and are assigned a home base which is the starting
location at the beginning of the scheduling horizon. Their
syntax is:
<resource> --> resource <resource-type>

<id> <base> <speed>

Depending on the types of resources in the schedul-
ing problem, <resource-type> may be very general (plane,
ship, ...) or very specific (F/A-18 Hornet, Boeing 747, ...).

Capabilities The <task-type> of a task field specifies the
capability a resource requires in order to be able to execute
it. A capability is a mapping of a task type to a set of re-
source types which are able to perform it. The syntax for
this relation is the following:
<capability> --> capability <task-type>

(<resource-type>*)

For example, a rescue task out in the ocean could be spec-
ified as follows:
capability rescue (helicopter ship)

For resources that have specialized capabilities, we can
define subclasses by name which possess those capabilities.

Constraints
Time window constraints Given a task t, its time window
specifies the earliest possible starting time estt and the latest
possible finish time lftt. A task must not be executed earlier
than the given estt nor later than the given lftt.

Resource constraints Resources are renewable, meaning
that they can serve another task as soon as their current task
is completed. Additionally, resources may only execute one
task at a time. Similarly, a task can use only one resource
for execution which will execute it from the very beginning
to the very end.



Missions & Tasks
Missions in CoastWatch may be made up of a several tasks.
For example, in Search & Rescue (SAR), a search task has
to be completed before the rescue task is initiated. We de-
fine a mission to be a collection of tasks that need to be ex-
ecuted. The mission is only considered accomplished if all
of its tasks have been completed successfully. As a conse-
quence, priorities are specified with missions rather than the
tasks themselves. On the other hand, execution time win-
dows are associated with tasks. This is because not all tasks
of a mission are known at beginning of execution and some
tasks are created dynamically.

It is important to note that these definitions for missions
and tasks do not exclude in any way activities that are only
composed of one task.

Missions The syntax for defining a mission is:

<mission> --> mission <id> <priority>
{<new-task> <body>} {<precedence>*}

where <id> is a unique identifier and <priority> is a posi-
tive integer specifying the priority of the mission with value
1 representing the lowest possible priority. A mission must
have at least one ”New Task” event that creates a new task.
The body of a mission contains a set of dynamic events,
possibly including more new tasks, and is executed once
the mission is introduced into the scheduling problem. Fi-
nally, <precedence>* is the set of precedence constraints
that must be obeyed. There may exist at most one prece-
dence constraint between any ordered pair of tasks belong-
ing to this mission.

Tasks Each mission contains a partially ordered set of
tasks that need to be executed to complete the mission. Tasks
are defined by a unique identifier, a task type and a time win-
dow for execution. Their syntax is:

<task> --> task <time-window> <task-type>
<id> {<body>} {<precendence>*}

where the body of a task is a set of dynamic events that is
parsed once the execution of this task has started. A task is
deemed to execute when the time of the simulator reaches its
start time. Similarly to missions, there may exist at most one
precedence constraint between any ordered pair of subtasks.
The field <time-window> specifies the earliest start time
(EST) and latest finish time for a task (LFT). The syntax for
time windows is:

<time-window> --> (<EST>,<LFT>)

where both fields are positive integers such that <EST> ≤
<LFT>.

Body In dynamic scheduling problems, unexpected events
can occur during the execution of tasks. We model this be-
haviour by associating a set of statements, called the body,
to tasks and missions.

The <body> field defines the set of changes to the
scheduling problem which can occur as a result of schedul-
ing and executing a task. The syntax is as follows:

<body> --> <event>*

where <event>* is the set of unexpected events. For mis-
sions, these statements are evaluated when the mission is
created, which may contain the creation of new tasks as well
as mission events. For tasks, evaluation happens when the
execution of the task commences and possible event types
include new subtasks as well as task events.

Dynamic Scheduling Events
Static scheduling problem models are not concerned with
simulating the execution of tasks in their schedules. In dy-
namic scheduling we assume that executing a task at a par-
ticular time affects the world and introduces changes to the
scheduling problem itself. In our model we use relative
event times while guaranteeing that no invalid events are cre-
ate. To achieve this, we differentiate between regular events,
task events and mission events.

Regular Events Regular events are events that do not di-
rectly influence tasks or missions. Examples are the addition
or removal of a resource. For these kinds of events, obeying
causality is very straight-forward, because we are not con-
cerned with the schedule produced by running the schedul-
ing algorithm. Removing a resource can happen anytime
and under any circumstances. One still has to be careful,
though, because, for instance, if the same resource breaks
down twice during the scheduling horizon, the second event
should happen after the resource has been fixed. The syntax
for regular events is as follows:

<event> --> <event-time> <event-type>
<additional-parameters>*

where <event-time> is an absolute time within the schedul-
ing horizon and <event-type> is a name that uniquely iden-
tifies the type of the event. This is followed by an optional
set of additional parameters.

Task Events Task events are events that directly influence
a task such as the change of its duration or the addition of a
new sub task. These events differ significantly from regular
events, because their event time trel is relative. We impose
the restriction that 0 ≤ trel ≤ 1 and treat the event time as
a percentage of the task duration. For a task a, the absolute
event time tabs can be computed by the following formula:

tabs = start-timea + trel ∗ durationa

It is guaranteed that all events will occur during execution
of the task since the relative event time is a fraction of the
total task duration. When a SAR mission is being executed
we can create the rescue task anywhere during the execution
of the search task. For instance, an event time of 0.9 would
signal that the missing person is found after completing 90%
of the search path. Assigning various resources with various
speeds to the same rescue task, will result in different abso-
lute event times. However, the rescue location will always
be the same.

To guarantee that no invalid events will ever occur, we
need to make sure that all dynamic events also obey causal-
ity. In particular, we need to ensure that neither start nor end
time of a task can shift into the past. Luckily, the use of



relative event times simplifies this issue significantly. Sup-
pose there is a dynamic event which lowers the duration of
a task. If the event happens at relative event time trel, then
the delay delaye must obey the constraint delaye ≥ (trel -
1). This ensures that the event obeys causality; the updated
end time of the task cannot be in the past after execution of
the event. We can use the same argument for any other task
event: we are aware exactly how far into the task execution
the event happens and consequently, we know the maximum
shifts that are possible.

Task events can be defined as follows:
<event> --> <event-time> <event-type>

<task-id> <additional-parameters>*

where <event-type> must be the name of a task event and
<task-id> the unique identifier of a previously defined task.

Mission Events Mission events are events that influence
a mission or one of its tasks. Examples include adjusting
the mission priority or adding a new task. Additionally, de-
laying a task (i.e. shifting it’s time window) should also be
considered a mission task. This is because the delay has to
happen before the start of a task while task events only get
executed once execution has commenced.

For mission events, the event time trel is also relative.
But here it is relative to the creation of the mission and trel

doesn’t represent a fraction because it is independent from
resources. For a mission m, the absolute event time tabs can
be computed by the following formula:

tabs = creation-timem + trel.

Obeying causality is very straight-forward for mission
events. We need to ensure that the task doesn’t start execut-
ing before the delay task event is executed. This is achieved,
by setting t to be smaller than the task’s earliest starting time
est. In addition, if the delay d is negative, that is a task can
be started earlier than first anticipated, we need to ensure
that the event doesn’t move est into the past. This can be
achieved by choosing a value for delay during event gener-
ation such that it obeys the constraint d ≥ (t - est). We can
give a similar argument for any possible mission event.

Case-Study: CoastWatch
CoastWatch is an oversubscribed dynamic multi-mode
scheduling problem with unit resources. The task is to
schedule both routine and emergency missions within a
Search & Rescue (SAR) operational command. There are
more routine patrol missions than can be flown by the avail-
able resources. Unexpected SAR missions are of highest
priority and must be accommodated in the schedule if pos-
sible.

Problem Definition
CoastWatch can be defined as follows:
• Missions. M = {m1, m2, ..., mn} is a set of missions

which have to be completed. A mission has a priority pi

and is composed of a set of tasks Ti, all of which have
to be completed in order for the mission to be consid-
ered accomplished. Every mission has an associated set

of dynamic events called its body. These events occur at
specified times after the creation of the mission.

• Tasks. T = {T1, T2, ..., Tn} is a set of set of tasks which
have to be scheduled. Ti contains all tasks that belong to
mission mi. Similar to missions, every task has a body
which contains a set of dynamic events that occur at spec-
ified times after the start of execution of this task. A task
is characterized by the following parameters:

– rd: the release date of the task. It must be scheduled at
this time or later.

– dd: the due date of the task. Execution must terminate
on or before this time in any schedule.

– CR: the set of resources which can service the task. We
also refer to them as capable resources.

– type: the type of the task. This parameter determines
the set of capable resources.

– D: the set of durations containing the execution times
of the task depending on the assigned resources. The
duration may be altered during execution by dynamic
events.

The different types of tasks in CoastWatch are: Search,
Interdiction (identifying an object), Rescue, Transport
and Patrol.

• Body. A set of dynamic events associated with a task or
mission. These events, which may affect the underlying
scheduling problem, occur at specified times after the cre-
ation of the mission or the execution of the task.

• Resources. R = {r1, r2, ..., rk} is a set of renewable
unit resources which are scheduled to perform tasks. C is
the set of capabilities, or task types, a resource is able to
perform.

The scheduling problem is semi-preemptive, meaning the
execution of a task may be interrupted and restarted from the
beginning at a later time.

Benchmark Datasets Generation
This section contains a description of all parameters values
that we have selected for generating benchmark datasets for
the CoastWatch dynamic resource scheduling problem.

• Scheduling horizon: 0 to 1440. We measure time in min-
utes and set the size of the scheduling horizon to equal a
whole day.

• numBases: 4. We define a set of 4 real-world bases and
include them in every dataset.

• numResources: 10. We specify 18 different resources
in the scheduling problem file for CoastWatch: 2 Aurora
aircrafts, 4 Cormorant and 4 Cyclone helicopters, 4 Eagle
Unmanned Aerial Vehicles and 4 Frigate ships. Aurora
aircrafts are kept very scarce, since they are much faster
and would otherwise dominate the other resources by per-
forming most of the tasks. Every problem instance con-
tains 1 resource for every type and randomly selects the
remaining 5.



Dynamic Events
Delay Task We assume that 10% of all tasks will be de-
layed. However, we allow no such event for interdiction
and rescue tasks. Additionally, the execution of search tasks
should never be delayed. But this is already guaranteed be-
cause we set its earliest possible starting time to be the time
at which the task was created. Additionally, we set the max-
imum possible delay to be one hour and allow a task to be
started at most 10 minutes earlier than first anticipated.

Change Duration 20% of all tasks, excluding interdiction
tasks, experience a change in its duration. The relative time
is set to a value between 1 and 99 meaning this event can
occur anywhere during the execution of a task. A task can
be executed up to 10% faster than first anticipated, which
equals a delay of -10%, but its duration may be increased by
up to 25%.

Disable Resource In our experiments, we simulate a typi-
cal day for the Canadian Coast Guard by assuming that two
resources will experience technical difficulties and be tem-
porarily disabled. We assume that repair will take anywhere
from 30 minutes to 2 hours.

Conclusion
As more and more researchers are working on dynamic
scheduling problems, the need for good problem generators
will only increase over time. We have taken one step towards
this direction: developing a random problem generator that
is flexible enough to be used for many different kinds of
dynamic resource scheduling problems. In this paper we de-
scribed a framework for dynamic resource scheduling prob-
lems with unit resources subject to temporal and resource
constraints. It is composed of three components: a ran-
dom problem generator, a dynamic simulator and a sched-
uler. We proposed a model for dynamic resource scheduling
problems and incorporated it into our framework. We hope
that the development of this dynamic resource scheduling
framework will simplify the work required to attack such
problems. This paper is an attempt to spark more interest in
studying dynamic scheduling problems.

Unlike Policella & Rasconi, we use relative event times
for dynamic events while guaranteeing that all event times
will be valid. We achieve this by differentiating between
three different types of dynamic events: regular events, task
events and mission events. Regular events have an absolute
event time anywhere within the scheduling horizon. The
event time for mission events is relative to the creation of
the mission. For task events, the event time is also relative,
but unlike mission events it represents a percentage. The dy-
namic event is created after the assigned resource has com-
pleted the specified percentage of the parent task.

We performed a case-study on the CoastWatch problem
whose goal is to schedule both routine and emergency mis-
sions within a Search & Rescue operational command. Pos-
sible future work could include generating more datasets for
the CoastWatch problem. It would be interesting to see if
changing some of these parameters changes the character-
istics of the generated datasets significantly. Additionally,

it would be beneficial to identify a subset of parameters
that significantly influences the difficulty of the generated
datasets.

The size of the execution time windows for tasks can have
a significant impact on the difficulty of the resulting problem
instances. Consequently, we need to test several strategies
for determining their size and analyze the resulting datasets.
Currently, we generate the execution time window for a task
by considering the positioning times and durations of the ca-
pable resources. However, there is a disadvantage to this ap-
proach: resources that are either much faster or much slower
than other ones, influence the resulting size significantly. In
the future, we could look for alternative ways such that time
window sizes are not dependent on the available resources.

Acknowledgements
This research has been supported in part by Precarn Asso-
ciates and the Natural Sciences and Engineering Research
Council of Canada.

References
Brucker, P.; Drexl, A.; Mohring, R.; Neumann, K.; and
Pesch, E. January 1999. Resource-constrained project
scheduling: Notation, classification, models, and methods.
European Journal of Operational Research 112:3–41 30 31
32 33 34.
Drexl, A.; Nissen, R.; Patterson, J. H.; and Salewski, F.
2000. Progen/pix - an instance generator for resource-
constrained project scheduling problems with partially re-
newable resources and further extensions. European Jour-
nal of Operational Research 125:59–72(14).
Hoos, H., and Stuetzle, T. 2005. Stochastic Local Search:
Foundations & Applications. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.
Hua, S., and Qu, G. 2003. A new quality of service met-
ric for hard/soft real-time applications. In ITCC ’03: Pro-
ceedings of the International Conference on Information
Technology: Computers and Communications, 347. Wash-
ington, DC, USA: IEEE Computer Society.
Jackson, L. E., and Rouskas, G. N. 2002. Determinis-
tic preemptive scheduling of real-time tasks. Computer
35(5):72–79.
Kolisch, R.; Sprecher, A.; and Drexl, A. 1995. Charac-
terization and generation of a general class of resource-
constrained project scheduling problems. Manage. Sci.
41(10):1693–1703.
Policella, N., and Rasconi, R. 2005. Designing a testset
generator for reactive scheduling. Intelligenza Artificiale
3:29–36.


