
Hierarchical path planning for multi-size agents in heterogenous environments

Daniel Harabor and Adi Botea
National ICT Australia and The Australian National University

{ daniel.harabor | adi.botea } at nicta.com.au

Abstract
In this paper we present new techniques for the automated
construction of state space representations of complex multi-
terrain grid maps with minimal information loss. Our ap-
proach involves the use of graph annotations to record the
amount of maximal traversable space at each location on a
map. We couple this with a cluster-based hierarchical ab-
straction technique to build highly compact yet complete
representations of the original problem. We further out-
line the design of a new planner, Annotated Hierarchical A*
(AHA*), and demonstrate how a single abstract graph can
be used to plan for many different agents, including differ-
ent sizes and terrain traversal capabilities. Our experimental
analysis shows that AHA* is able to generate near-optimal
solutions to a wide range of problems while maintaining an
exponential reduction in comparative effort over low-level
search. Meanwhile, our abstraction technique is able to gen-
erate approximate representations of large problem-spaces
with complex topographies using just a fraction of the stor-
age space required by the original grid map.

Introduction
Single-agent path planning is a well known and extensively
studied problem in computer science. It has many appli-
cations such as logistics, robotics, and more recently, com-
puter games. Despite the large amount of progress that has
been made in this area, to date, very little work has focused
specifically on addressing planning for diverse-size agents
in heterogenous terrain environments.

The problem is interesting because such diversity in-
troduces much additional complexity when solving route-
finding problems. Modern real-time strategy or role-playing
games for example often feature a wide array of units of dif-
fering shapes and abilities that must contend with navigating
across environments with complex topographical features –
many terrains, different elevations etc. Thus, a route which
might be valid for an infantry-solider may not be valid for a
heavily armoured tank. Likewise, a car and an off-road vehi-
cle may be similar in size and shape but the paths preferred
by each one could differ greatly.

Unfortunately, the majority of current path planners, in-
cluding recent hierarchical planners ((Botea, Müller, and
Schaeffer 2004), (Sturtevant and Buro 2005), (Demyen and
Buro 2006), (Geraerts and Overmars 2007)), only perform

well under certain ideal conditions. They assume, for ex-
ample, that all agents are equally capable of reaching most
areas on a given map and any terrain which is not traversable
by one agent is not traversable by any. Further assumptions
are often made about the size of each respective agent; a path
computed for one is equally valid for any other because all
agents are typically of uniform size. Such assumptions limit
the applicability of these techniques to solving a very nar-
row set of problems: homogenous agents in a homogenous
environment.
We address the opposite case and show how efficient solu-
tions can be calculated in situations where both the agent’s
size and terrain traversal capability are variable. Our method
extends recent work emerging from the areas of robotics and
computer games which has shown the effectiveness of using
clearance annotations to measure obstacle distance at key lo-
cations in the environment and using this information to help
agents plan better paths.

We contribute in several ways: first, we introduce AHA*,
a new clearance-based hierarchical path planner; second, we
show how to leverage clearance in order to produce compact
yet information rich search abstractions; third, we provide a
detailed empirical analysis of our new technique on a wide
range of problems involving multi-size agents in heteroge-
nous multi-terrain environments.

The rest of this paper is organised as such: first, we cover
existing work in the area of hierarchical path planning and
multi-size agent search. We then define the problem and
describe our map annotation approach before showing how
to adapt A* to plan for a range of agents of different sizes
and capabilities. We go on to detail a new map abstraction
technique that leverages map annotations and characterise
the worst-case performance. In the final sections we intro-
duce our hierarchical planner, AHA*, and provide a detailed
analysis of its performance before concluding.

Related Work
A very effective method for the efficient computation of path
planning solutions is to make the original problem more
tractable by creating and searching within a smaller approx-
imate abstract space. Abstraction factors a search problem
into many smaller problems and thus allows agents to reason
about pathfinding strategies in terms of macro operations.
This is known as hierarchical path planning.

Two recent hierarchial path planners relevant to our work
are described in (Botea, Müller, and Schaeffer 2004) and
(Sturtevant and Buro 2005). The first of these, HPA*, builds
an abstract search graph by dividing the environment into
square clusters connected by entrances. Planning involves
inserting the low-level start and goal nodes into the abstract
graph and finding the shortest path between them.
The second algorithm, PRA*, builds a multi-level search-
space by abstracting cliques of nodes; the result is to nar-
row the search space in the original problem to a “win-
dow” of nodes along the optimal shortest-path. Both HPA*
and PRA* are focused on solving planning problems for
homogenous agents in homogenous-terrain environments
and hence are not complete when either of these variables
change. Our technique is similar to HPA* but we extend
that work to solve a wider range of problems.

In robotics, force potentials help autonomous robots find
collision-free paths through an environment. The basic intu-
tion is that a robot is attracted to the far-away goal and re-
pulsed away from obstacles as it nears them. A well known
method for potential-based path planning is the Brushfire
algorithm (Latombe 1991), which proceeds by annotating
each tile in a grid-map with the distance to the nearest ob-
stacle. This embedded information allows the robot to cal-
culate repulsive potentials and makes it possible to plan
using a gradient descent strategy. Brushfire is similar to
AHA* in that the annotations it produces allow an agent
to know something about its proximity to a nearby obsta-
cle. AHA* differs by explicitly calculating the maximal size
of traversable space at each location on the map. Further-
more, unlike Brushfire, AHA* does not suffer from incom-
pleteness which can occur when repulsive forces cancel each
other out and lead the robot into a local minimum.

The Corridor Map Method (CMM) (Geraerts and Over-
mars 2007) is a recently introduced path planner able to
answer queries for multi-size agents by using a probabilis-
tic roadmap to represent map connectivity. The roadmap
(or backbone path) is comprised of nodes which are anno-
tated with clearance information that indicates the radius of
a maximally sized bounding sphere before an obstacle is en-
countered. Nodes are placed on the roadmap by creating
Voronoi regions to split the map and identify locations that
maximise local distance from fixed obstacles.

Like CMM, AHA* calculates the amount of traversable
space at a given location but our approach is adapted to grid
environments, which are simpler to create than roadmaps
and more commonly found in a range of applications. An-
other key difference is that we allow fine-grain control over
the size of the abstract graph; CMM abstractions have a fixed
size. Finally, we deal with multi-terrain cases making our
method more information rich.

Representing an environment using navigation-meshes is
increasingly popular in the literature. Two recent planners in
this category are Triangulation A* and Triangulation Reduc-
tion A* (Demyen and Buro 2006). TA* makes use of a tech-
nique known as Delaunay triangulation to build a polygonal
representation of the environment. This results in an undi-
rected graph connected by constrained and unconstrained
edges; the former being traversable and the latter not. TRA*

is an extension of this approach that abstracts the trian-
gle mesh into a structure resembling a roadmap. Like our
method, both TA* and TRA* are able to answer path queries
for multi-size agents. The abstraction approaches used by
TA* and TRA* however are very distinctly different from
our work. Where we use a simple division of the environ-
ment into square clusters, their approach aims to maximise
triangle size. We also handle additional terrain requirements
while both TA* and TRA* assume a homogenous environ-
ment.

Problem Definition
A gridmap is a structure composed of square cells, of unit
size, each of which represent a unique area in the environ-
ment. Each grid cell is an octile, connected to k neighbours,
where 0 ≤ k ≤ 8.

Each octile, t, is associated with a particular terrain type,
terrain(t) ∈ T where T is the set of all possible terrains
and there are r = |T | : r ≥ 1 possible terrains. Each octile
is either blocked or traversable. Blocked octiles are called
hard obstacles, since no agent can occupy them.

Each gridmap is representable as a graph, G = (V,E)
where each traversable tile generates one node v ∈ V and
each cell adjacency is represented by an edge e ∈ E.

An agent is any entity attempting to move across a grid
environment. Every agent is square in shape and has a size
s ≥ 1 : s ∈ S where S is the set of finite sizes agents
traversing across the gridmap may take. While stationary
or moving, each agent occupies s2 octiles which together
correspond to its current location.

Agents can move in any of the four cardinal directions.
Diagonal moves are allowed only if there exists an equiva-
lent two-step move using the cardinal directions.

Every agent has a terrain traversal capability, c ∈ C,
where c comprises a non-empty subset of terrains. An agent
can never occupy a tile whose terrain type is not included in
its capability.

A soft obstacle is a tile which is not traversable by a spe-
cific agent because it lacks the correct capability or its size
is larger than the associated clearance value of the tile, as
defined below.

A clearance value is an obstacle-distance metric associ-
ated with a particular tile in the grid environment. Each
clearance value measures the maximal size of an agent at a
given location without intersecting any obstacle in the envi-
ronment. A tile can have several clearance values associated
with it, one for each capability.

A problem instance is defined as a pair of locations, a start
and goal, associated with an agent. A problem is valid if at
least one path exists between the locations comprising only
tiles traversable by the agent.

Computing Clearance Value Annotations
On a grid map, a clearance value is perhaps best explained
as representing the length or width of a square that begins at
some octile being evaluated and is expanded symmetrically
to the right and down until it intersects an obstacle. To make
our ideas more concrete we will use as a running example

a simple environment featuring two terrain types: Ground
(represented as white tiles) and Trees (represented as grey
tiles). To distinguish traversable tiles from non-traversable
tiles we will colour hard obstacles black. The set of capa-
bilities, C, required to traverse such a map is thus defined as
C = {{Ground}, {Trees}, {Ground ∨ Trees}}. We will
work with agents of two sizes traversing across this environ-
ment and thus let S = {1, 2}.

Figure 1 (a) to (d) illustrates how clearance can be com-
puted with an iterative procedure in an environment as de-
scribed above. In Figure 1(a) the clearance square for the
highlighted traversable target tile is initialised to 1. Sub-
sequent iterations (Figures 1(b)-(c)) extend the square and
increment the clearance. The process continues until the
square contains an obstacle (Figure 1(d)) or extends beyond
a map boundary at which point we terminate and do not in-
crement clearance any further.

In Figure 1(e) we show the resultant clearance values for
the single-terrain {Ground} capability on a toy map exam-
ple (note that we omit zero-value clearances). Similarly, Fig-
ure 1(f) and Figure 1(g) show the clearance values associ-
ated with the {Trees} and {Ground ∨ Trees} capabilities
respectively.

Figure 1: (a)-(d) Computing clearance. (e)-(g) Clearance
values for different capabilities.

Once a clearance value is derived we store it in memory
and repeat the entire procedure for each capability c ∈ C.
The algorithm terminates when all octiles t ∈ gridmap have
been considered. The worst-case space complexity associ-
ated with computing clearance values in this fashion is thus
characterised by:
Lemma 1. Let CV be the set of all clearance values re-
quired to annotate an octile gridmap with r terrains. Fur-
ther, let G = (V,E) be a graph representing the gridmap
where VHO ∈ V is the set of hard obstacles. Then,

|CV | = (|V | − |VHO|)× 2r−1

Proof. For a node to be traversable for some capability, the
capability must include the node’s terrain type. There are
2r capabilities but each terrain type is included in only 2r−1

of these. There are |V | nodes in total to represent the envi-
ronment, and we avoid storing any clearance values for all
nodes in VHO.

The result from Lemma 1 is an upper bound; if no agent
has a given capability c there is no need to store the corre-
sponding clearances. Despite this observation, the associ-

ated exponential growth function suggests that it is imprac-
tical to store every clearance value as there are Θ(2r) per
node. Fortunately, clearance values can be computed on-
demand with little effort. In particular, calculating clearance
for any agent a of size s ∈ S only requires building a clear-
ance square of maximum area s2 octiles. We present such
an approach in Algorithm 1.

Algorithm 1 Calculate Octile Clearance Value
Require: t ∈ gridmap and c ∈ C and s ∈ S

square← t
cv ← 0
while traversable(square, c)∧area(square) ≤ s2 do

cv ← cv + 1
square← expand(square)

return cv

The key advantage of calculating clearance is that we are
able to plan for both large and small agents using a fixed
size grid. We achieve this by mapping our extended prob-
lem into a classical problem with only two types of tiles
(traversable and blocked) and reducing the problem to the
case of a small-size agent that occupies the upper-left corner
of the area required by the original, large-size agent.

Theorem 2. Given an annotated grid map, any search prob-
lem involving an agent of arbitrary size and capability can
be reduced into a small-agent search problem, where the size
of the small agent is one tile and the capability of the agent
is one terrain.

Proof. A tile t is only traversable by an agent a if t has a
clearance value cvt associated with the agent’s capability ca

which is at least as large as the size of the agent, sa.

t(ca) = cvt ≥ sa : terrain(t) ⊆ ca ∈ C, sa ∈ S (1)

If equation 1 holds, it must be the case that the terrain type
of every tile in the clearance square used to compute cvt is
included in ca and hence traversable for the agent. Thus, the
agent is able to navigate across a map by only considering
the traversal requirements of a single node. Since each tile
being evaluated is either traversable or not this is equivalent
to solving a single-terrain problem.

This is a useful result because it indicates that we can ap-
ply abstraction techniques from classical path planning to
answer much more complex queries involving a wide range
of terrain type and agent-size variables.

Annotated A*
Low-level planning for diverse sets of agents using clearance
values is a straightforward application of the ideas thus far.
We use a variation on the A* algorithm (Hart, Nilsson, and
Raphael 1968) to compute an optimal shortest path between
a start and goal node. Our approach differs from standard A*
by requiring two additional parameters for each query: the
agent’s size and capability. This allows us to map any query
into an instance of small-agent search as shown earlier by
using the parameters to evaluate nodes before they are added

to A*’s open list. We term the resultant algorithm Annotated
A* (AA* for short).

Cluster-based Map Abstraction
AA* is sufficient for low-level planning on the original
gridmap but inefficient for large problem sizes; we would
prefer to express a more general strategy using macro-
operators. Our result from theorem 2 is key to the spatial
abstraction described in this section.

We extend the process in (Botea, Müller, and Schaeffer
2004) which involves dividing a grid map into fixed-size
square sections called clusters. Figure 2(a) shows the re-
sult of this decomposition approach; we use clusters of size
5 to split our toy map into 4 adjacent sections.

In the original work entrances are defined as obstacle-free
transition areas of maximal size that exist along the border
between two adjacent clusters. Each entrance has one or
two transition points (depending on its size) which are rep-
resented in the abstract graph by a pair of nodes connected
with an undirected inter-edge of weight 1.0. We use a sim-
ilar approach but require as a parameter C, the set of all
capabilities, and thus attempt to identify entrances for each
c ∈ C.

Figure 2: Building clusters and identifying entrances

We start at the first pair of traversable tiles along the adja-
cent border area and extend each entrance until one of three
termination conditions occurs: the end of the border area
is reached, an obstacle is detected or the clearance value of
nodes along the border area in either cluster begins to in-
crease. The last condition is important to preserve represen-
tational completeness for large agents in cases where a clus-
ter is partially divided by an obstacle (such as a wall) near
the border. By leveraging clearance we are able to reason
about the presence of such obstacles and build a new en-
trance each time we detect the amount of traversable space
inside either cluster is increasing.

Once an entrance is found, we choose as the transition
point the first pair of adjacent nodes in each cluster which
maximise clearance for c. This latter metric, cvinter is com-
puted by taking the minimum clearance among each pair of
adjacent nodes in the entrance area and selecting the largest
value from the set. Thus, we add a new edge to the graph,
einter and annotate it with a single capability and corre-
sponding clearance value, einter(c) = cvinter. The algo-
rithm repeats for each c ∈ C and terminates when all adja-
cent clusters have been considered. This ensures we identify
all possible entrances for each available capability.

In Figure 2(b) we present three entrances identified by
scanning the border between clusters C1 and C3. Entrances
E1 and E2, each of which span only part of the border area,
are discovered using the {Ground} and {Trees} capabil-
ities respectively. E3 meanwhile, which spans the whole
border area, is discovered using the {Ground ∨ Trees} ca-
pability. The connected tiles represent the locations of the
subsequent transition points; the final result is shown in Fig-
ure 2(c). Note that E1 and E3 are incident on the same pair
of nodes in the abstract graph. This is due to our strategy
of actively attempting to re-use any existing nodes from the
abstract graph.

The final step in the decomposition involves attempting to
add to the abstract graph a set of intra-edges for each pair of
abstract nodes inside a cluster. We achieve this by running
multiple AA* searches ∀(c, s) : c ∈ C, s ∈ S. Once a path
is found we annotate the new edge, eintra, with the capabil-
ity and clearance parameters used by AA* and set its weight
equal to the cost of the path. The algorithm terminates when
all clusters have been considered.

We thus construct an abstract multi-graph in which each
edge e is annotated with a single capability ce and associated
clearance value cve. Each e ∈ Eabs is traversable by an
agent a iff:

e(ca) = cve ≥ sa : ce ⊆ ca ∈ C, sa ∈ S

Where ca represents the capability of the agent and sa its
size. We term the resultant abstraction initial and give the
following lemmas to characterise its space complexity:
Lemma 3. Let Vabs represent the set of nodes in an abstract
graph of a gridmap which is perfectly divisible into c × c
clusters, each of size n × n. Then, in the worst case, the
total number of nodes is given by:

|Vabs| = 4(2n− 1) + (4c− 4)(3n− 2) + (c− 1)2(4n− 4)

Proof. Each transition point results in two nodes in the ab-
stract graph. In the worst case the number of terrains r ≥ n.
If there are no hard obstacles and every pair of nodes along
the adjacent border between two clusters has different ter-
rain type then there will be a maximal number of transition
points. In this scenario, clusters in the middle of the map,
of which there are (c− 1)2, have 4 neighbours and each one
contains 4n− 4 nodes. Clusters on the perimeter of the map
(excluding corners), of which there are 4c−4, have 3 neigh-
bours and 3n− 2 nodes. Corner clusters, of which there are
4, have 2 neighbours and each contains 2n− 1 nodes.

Lemma 4. Let Eabs(L) ⊂ Eabs represent the set of intra-
edges for a cluster L that contains x abstract nodes. Fur-
ther, let r be the total number of terrains found in the map
and k the number of distinct terrain types found inside L.
Then, the number of intra-edges required to connect all
nodes in L is, in the worst case:

|Eabs(L)| = |S| × 2k−1 × x(x− 1)
2

Proof. For each pair of abstract nodes in a cluster and each
size/capability combination, we compute at most one path
of optimal length. From lemma 1 we know each node is

traversable at most by 2r−1 capabilities thus there must be
at most |S| × 2r−1 ways of covering 2 nodes. However, the
number of terrains inside a cluster is governed by its size;
only k ≤ r terrains may be found. From this, it follows that
the upper-bound on the size of the set of edges covering each
pair of nodes is in fact |S|×2k−1. In the worst case there will
be a maximal number of edges between each pair of nodes
and there are x(x−1)

2 such pairs in total per cluster.

Lemma 5. Let Einter ⊂ Eabs represent the set of inter-
edges in an abstract graph of a grid map. In the worst case,
the map is perfectly divisible into c× c clusters, each of size
n× n and the number of inter-edges is given by

|Einter| = (2c2 − 2c)× n(n− 1)
2

Proof. We know from the proof of lemma 3 that in the worst
case each tile along the border between two adjacent clus-
ters is represented by a node in the abstract graph. If we
count the number of adjacencies, avoiding duplication, we
find there are 2c2 − 2c in total.

Each transition results in an inter-edge and there are n
single-terrain transitions with clearance 1 per adjacency and
some number of inter-edges to represent multi-terrain tran-
sitions with larger clearances. By observation we can see
that that each adjacency will produce [n single-terrain tran-
sitions]...[1 n-terrain transition]. This recurrence relation
holds for the general sequence counting formula n(n−1)

2

The above results are interesting for several reasons.
Firstly, lemma 3 shows that the number of nodes in the graph
is a function of cluster-size. This suggests that by varying
the dimensions of clusters we can trade a little performance
(the time it takes to traverse a cluster) for memory (less ab-
straction overhead). The results in lemma 4 and 5 seem to
support this hypothesis. We see that the number of edges
between nodes in the graph is mostly dependent on the com-
plexity of the clusters in which they reside rather than ex-
ponential in the number of capabilities. This is exciting be-
cause it means that, despite having an exponential abstract
edge growth function, we can directly control the size of the
exponent! The cluster-based decomposition technique al-
lows us to include as much or as little complexity in each
cluster as we require.

Optimising Abstract Graph Size
As we have observed in lemmas 4 and 5 the initial abstrac-
tion algorithm attempts to represent every optimal path be-
tween clusters and inside clusters. However, most maps have
far simpler topographies than the worst-case; in our experi-
mental scenarios we often observed the same path returned
for different pairs of (c, s) parameters when discovering
intra-edges. This presents us with an opportunity to com-
pact the graph by removing unnecessary duplication from
the abstract edge set.

Consider the initial abstraction in Figure 3(a) and contrast
it with our desired result in Figure 3(b). {E3, E5} repre-
sent the same path between nodes w and y but are anno-
tated with different clearance values. The same is true for

{E4, E6} which both cover nodes u and y. In such cases
we say that E3 and E4 are strongly dominant, which we
denote E3 � E5 and E4 � E6. This is an irreflexive
and asymmetrical relationship between edges which we for-
malise with the following theorem:
Theorem 6. Let {ea, eb} ∈ Eabs be two edges which con-
nect the same pair of abstract nodes and are annotated with
capabilities ca ⊆ cb ∈ C such that:

1 ≥ ea(cb) ≥ eb(cb) ∧ weight(ea) = weight(eb)

Then ea � eb and we may remove eb from Eabs without loss
of generality or optimality.

Proof. Since ca ⊆ cb it must be the case that any agent with
the correct capability to traverse eb must be likewise able to
traverse ea. Further, if ea(cb) ≥ eb(cb) holds, it must also
be the case that any agent large enough to traverse eb is also
large enough to traverse ea. These conditions are sufficient
to preserve generality. Finally, since ea is equal in weight to
eb we cannot lose optimality by removing removing eb.

We term the resultant graph in which all strongly domi-
nant edges have been removed a high-quality abstraction.

Figure 3: Strong edge dominance

A further observation made during our analysis of this
problem was that in many cases there exist multiple alterna-
tive routes to reach a goal location. The shortest paths tended
to involve the traversal of optimal-length multi-terrain edges
however, it was often possible to reach the same destination
using slightly longer single-terrain edges. This suggests that
the abstract graph can be further compacted without affect-
ing the completeness of the representation.

A reasonable analogy to highlight our intuition here is
to compare the way off-road vehicles opportunistically use
roads where possible even if an off-road route of trail exists
which has a smaller distance cost. We prefer roads because
they connect most points of interest, are smoother to drive
on and have other benefits such as less wear and tear and
better fuel consumption.

Figure 4(a) and 4(b) show a typical high quality abstrac-
tion while in Figure 4(c) and 4(d) we highlight the desired
result after further compacting the graph. In this example
we can see that although edges E1 and E2 have different
traversal requirements any agent of size s ∈ S : S = {1, 2}
capable of traversing E2 can also traverse E1 without loss
of generality. In such cases we say E1 is weakly dominant
and denote it as E1 % E2. Notice also that E3 % E4,
E6 % E7, E10 % E8 and E10 % E9.

As with theorem 6, this relationship is irreflexive and
asymmetric. Unlike strong dominance however, only rep-
resentational completeness (and not optimality) is retained.
We formalise it as:

Figure 4: High and low quality abstraction results

Theorem 7. Let La and Lb be two adjacent clusters, and
{wa, xb}, {ya, zb} ∈ Vabs two pairs of abstract nodes,
each pair connecting La and Lb. Denote the inter-edges
associated with these node pairs as {ewx, eyz} ∈ Eabs

and suppose they are annotated with clearance values
ewx(cwx), eyz(cyz) : cwx ⊆ cyz ∈ C. In this scenario,
ewx % eyz iff the following conditions are met:

1. The capability dominance condition: ewx(cyz) ≥
eyz(cyz).

2. The circuit condition: ∃ewy, exz ∈ Eabs which connect
{wa, ya} and {xb, zb} such that ewy(cyz) ≥ eyz(cyz) and
exz(cyz) ≥ eyz(cyz).

Then, any location which can be reached by traversing eyz

can also be reached via ewx.

Proof. If a circuit exists between the set of edges
{ewx, eyz, ewy, exz} in which every edge is traversable by
cyz with a clearance value at least equal to eyz(cyz), then
it follows that any nodes in La or Lb which are reachable
from ya or zb must be reachable from wa or xb. Thus, any
destination an agent can reach via eyz can also be reached
via ewx.

Corollary 8. If ewx % eyz , then ya and zb and are also
dominated and can be removed, unless required by another
(non-dominated) inter-edge.

Proof. If ya and zb are required by a non-dominated inter-
edge we cannot remove them without violating the capabil-
ity dominance condition which is required to retain repre-
sentational completeness. If this is not the case however, we
know by the circuit condition that any node reachable by an
intra-edge via ya or zb is also reachable via the endpoints of
ewx. Thus, both nodes and any associated intra-edges de-
pendent on them, can be safely removed.

In many situations multi-terrain inter-edges tend to be as-
sociated with very large clearances; much larger than the
size of our largest agent. This unnecessarily limits the appli-
cability of the capability dominance condition from theorem

7. Leveraging the fact that max(s) ∈ S is known, we can
maximise the number of edges which are weakly dominated
by applying the following truncation condition to Eabs be-
fore theorem 7:

e(c) > max(s)⇒ e(c) = max(s) : s ∈ S,∀e ∈ Eabs

Of course, opting for a low-quality abstraction in this way
does affect the quality of computed solutions. In the worst
case, a one-step transition of cost 1.0 in a high quality graph
may be as long as f(n) = 4n+f(n−2) : f(2) = 3, f(3) =
13, where n ≥ 2 is the length of a cluster in a low-quality
approximation. This is a pathological case however; as we
will show the differences in real-world scenarios are much
smaller and still near-optimal. The choice of which qual-
ity abstraction technique to employ will depend on the re-
quirements of the specific application; it is a classic tradeoff
between run-time performance vs space.

Hierarchical Planning
Given a suitable graph abstraction, we can once more turn
our attention back to agent planning. We use a similar pro-
cess to that described in (Botea, Müller, and Schaeffer 2004)
but in our case we substitute A* for AA*. We provide a brief
overview of the process here; for a more detailed descrip-
tion, we direct the reader to the original work.

We begin by using the x, y coordinates of the start and
goal nodes to identify the local cluster each is located in.
Next, we insert a two temporary nodes into the abstract
graph (which we remove when finished) to represent the
start and goal. Connecting the nodes to the rest of the graph
involves attempting to find an intra-edge from each node to
every other abstract node in the cluster using AA*. This
phase involves i + j searches in total, corresponding to the
number of combined abstract nodes in the start and goal
clusters.

To compute a high-level plan we again use a variation on
A* – this time to evaluate the annotations of abstract edges
before adding a node to the open list. Once the search ter-
minates we can take the result, and, if immediate execution
is not necessary, we are finished. Otherwise, we refine the
plan by performing a number of small searches in the orig-
inal gridmap between each pair of nodes along the abstract
optimal path.

We term the resultant algorithm Annotated Hierarchical
A* (AHA* for short).

Experimental Setup
We evaluated the performance of AA* and AHA* on a
set of 120 octile-based maps, ranging in size from 50x50
to 320x320, which we borrowed from a popular roleplay-
ing game. The same maps were used by (Botea, Müller,
and Schaeffer 2004) in their original study. In their de-
fault configuration the maps only featured one type of
traversable terrain interspersed with hard obstacles. We
therefore created five derivative sets (making for a total of
720 maps) where each traversable tile on every map had one
of {10%, 20%, 30%, 40%, 50%} probability of being con-
verted into a second type of traversable terrain (a soft obsta-

cle). This allowed us to evaluate the algorithms in environ-
ments featuring a range of soft and hard obstacles.

For each map we generated 100 experiments by ran-
domly creating valid problems between an arbitrarily cho-
sen pairs of locations and some random capability. We
used two agent sizes in each experiment: small (occupy-
ing one tile) and large (occupying four tiles) resulting in
144000 problem instances (720x200) overall. All experi-
ments were conducted on a 2.4GHz Intel Core 2 Duo proces-
sor with 2GB RAM running OSX 10.5.2. To implement both
planners we used the University of Alberta’s freely avail-
able pathfinding library, HOG (www.cs.ualberta.ca/
˜nathanst/hog.html).

Results
In Figure 5 we present the size of the abstract graphs rela-
tive to the size of the original graphs which featured an av-
erage 4469 nodes and 16420 edges. We look at the effect of
increasing the amount of soft obstacles (SO) from 0% (the
original test maps with only one traversable terrain) to 50%.
We also contrast high and low quality abstractions (denoted
HQ and LQ) on a range of cluster sizes {10, 15, 20} (de-
noted CS10, CS15 and CS20).

Figure 5: Size of abstract graph with respect to original graph.

0% SO 10% SO 20% SO 30% SO 40% SO 50% SO

CS10 HQ
Nodes 9.0% 14.6% 16.6% 17.7% 18.3% 18.5%

Edges 8.2% 32.6% 38.4% 37.8% 35.7% 35.0%

CS10 LQ
Nodes 5.3% 7.9% 10.3% 12.8% 15.0% 15.7%

Edges 2.2% 6.7% 11.6% 17.0% 22.0% 23.6%

CS15 HQ
Nodes 5.6% 9.6% 11.0% 11.8% 12.2% 12.3%

Edges 6.0% 28.0% 32.4% 32.1% 30.0% 29.4%

CS15 LQ
Nodes 2.9% 4.8% 6.4% 8.1% 9.7% 10.3%

Edges 1.2% 4.6% 8.5% 12.5% 17.2% 18.8%

CS20 HQ
Nodes 4.0% 7.0% 8.1% 8.8% 9.1% 9.2%

Edges 5.0% 25.0% 28.8% 28.3% 26.3% 26.0%

CS20 LQ
Nodes 2.0% 3.4% 4.6% 5.9% 7.2% 7.6%

Edges 0.9% 3.6% 6.9% 10.1% 14.4% 15.8%

The first thing to notice is that in all cases the abstract
graph is only a fraction the size of the original graph. As ex-
pected, larger clusters generate smaller graphs; the smallest
abstractions are observed on the SO 0% problem set using
CS20. In this case, using a HQ abstraction results in 4.0%
the number of nodes found in the original graph and 5.0%
edges. LQ abstractions fare even better featuring just 2.0%
as many nodes and 0.9% edges.

The total space complexity associated with storing a
graph is given by the total amount of space required to
store both nodes and edges. If we assume each non-abstract
node and edge require one byte of memory to store, then
our smallest abstract graph, which contains 2 annotations
per edge (capability and clearance, together requiring 1 ad-
ditional byte), will have a space complexity 8.7% the size
of the original graph using a HQ abstraction and just 1.8%
using an LQ abstraction. Similarly, the largest HQ graph,
which occurs for CS10 on SO 20%, has a space complexity
63.8% the size of the original. By comparison, LQ graphs
are largest for CS10 on SO 50%; here 40.4% the size of
the original gridmap. Moving from CS10 to CS20 reduces

the worst-case space complexity of HQ graphs to 47.0% and
26.4% for LQ graphs.

Interestingly, if we use the number of nodes as an indica-
tor for the number of inter-edges in a graph, we may deduce
that most HQ graphs are predominately composed of intra-
edges. The exact number depends on the density of soft ob-
stacles in clusters; less dense clusters (as found on SO 20%)
result in more intra-edges as more unique paths (of differing
sizes and capabilities) are found between each pair of ab-
stract nodes. This is consistent with lemma 4 and useful to
understanding the worst-case behaviour of HQ abstractions.

The linear increase in the size of LQ graphs is the result
of a greater number of single-terrain entrances found as the
number of soft obstacles increases (an observation consis-
tent with lemma 3). Increasing the density of soft obstacles
in a cluster causes the circuit condition from theorem 7 to be
less often satisfied and leads to the observed worst-case on
SO 50%.

Next we consider the performance of AHA* with respect
to path quality. We measure this as:

%error =
apl − opl

opl
× 100

where opl is the length of the optimal path as calculated by
AA* and apl the length of the abstract path used by AHA*.

Figure 6: AHA* performance (HQ vs LQ abstraction)

●

●
●

● ●
●

0 10 20 30 40 50

0
5

10
15

(a) Path Quality vs. Soft Obstacles

% soft obstacles

%
 e

rr
or

● CS10 HQ
CS10 LQ
CS15 HQ
CS15 LQ
CS20 HQ
CS20 LQ

●

●

●
● ● ●

0 10 20 30 40 50

0
5

10
15

(b) Path Quality vs. Agent Size (CS15)

% soft obstacles

%
 e

rr
or

● Size=1 HQ
Size=1 LQ
Size=2 HQ
Size=2 LQ

Figure 6(a) shows the average performance of AHA* with
respect to cluster size and soft obstacles. Notice that HQ
graphs yield a very low error; in most cases between 3-6%.
Perhaps most encouraging however are the results for LQ
abstractions, where in most cases AHA* performs within 6-
10% of optimal. The highest observed error in both cases
occurs on SO 0% and is due to our inter-edge placement
strategy. In all situations the pair of nodes with maximal
clearance in an entrance, which we choose as our transition
point, tends to be towards the beginning of the entrance area
which is not an optimal placement. On maps that produce
low-complexity clusters of predominately one terrain this re-
sults in long entrances that are poorly represented by the sin-
gle inter-edge. Increasing the amount of soft obstacles pro-
duces shorter entrances and generates more transition points
leading to a significant reduction in error. It appears AHA*
is so optimised for complex cases that it suffers some minor
performance degradation on simpler problems.

Interestingly, the error associated with both HQ and LQ
abstractions reaches a minimum on SO 20% before gradu-
ally increasing toward SO 50%. To better understand this

phenomenon we present in Figure 6(b) the performance of
both small and large agents on HQ and LQ graphs using
a fixed cluster-size of 15. Notice that the performance of
small agents continues to improve beyond SO 20% while
large agents begin to degrade. The observed rise in error
stems from the decreasing size of entrances on the problem
sets featuring denser clusters. As previously shown in Figure
5, maps with more soft obstacles result in a greater number
of smaller entrances. This situation is beneficial for smaller
agents (there are more transitions to choose from) but is dis-
advantageous for larger agents. As the average entrance size
shrinks fewer inter-edges exist with clearance > 1 and the
location of such edges along the border area between clus-
ters may be quite varied; sometimes we find an entrance to-
ward the beginning of the border area, other times in the
middle and sometimes toward the end. Consequently, clus-
ter traversal by large agents is often not in a straight line;
the abstract paths produced frequently feature a zig-zagging
effect that is responsible for the observed error and is most
pronounced on SO 50%.

Figure 7: AHA* total search effort (nodes expanded).

● ●
●

●
●

●
●

●

●

●

●

●
● ●

●

●

●

●

0 100 200 300 400

0
50

00
10

00
0

15
00

0

(a) Total search effort (SO 20%, HQ)

optimal solution length

av
g.

 n
od

es
 e

xp
an

de
d

● AA*
AHA* CS10
AHA* CS15
AHA* CS20

● ●
●

●
●

●
●

●

●

●

●

●
● ●

●

●

●

●

0 100 200 300 400

0
50

00
10

00
0

15
00

0

(b) Total search effort (SO 20%, LQ)

optimal solution length

av
g.

 n
od

es
 e

xp
an

de
d

● AA*
AHA* CS10
AHA* CS15
AHA* CS20

Finally, we turn our attention to Figure 7 where we eval-
uate AHA* using a search effort metric. Here we contrast
the total number of nodes expanded by AHA* (during inser-
tion, hierarchical search and refinement phases) with AA*
on both HQ and LQ graphs. We focus on the SO 20% prob-
lem set in order to analyse the effect on search effort as
path length increases but note that similar trends hold for
the other problem sets.

Looking at Figure 7(a) we observe that agents using HQ
graphs featuring large cluster-sizes are disadvantaged in this
test. The insertion effort required to connect start and goal
to each abstract node in their local clusters heavily domi-
nates the total effort causing AHA* CS20 to trail AA* for
problems up to length 250. We can see the gap between
CS20 and the smaller cluster sizes decrease as problem size
grows but our benchmark set of experiments are not hard
enough for such coarse-grain map decompositions to be ad-
vantageous. By comparison, in Figure 7(b) we see that the
difference is less pronounced using LQ graphs (there are less
abstract nodes per cluster) however it appears CS10 or CS15
are more suitable choices for problems up to our maximum
length, 450.

Conclusion
Heterogeneity in path planning is characteristic of many
real-world problems but has received very little attention to

date. In this paper we have addressed this issue by show-
ing how clearance-based obstacle distances can be computed
and leveraged to improve path planning for multi-size agents
in heterogenous-terrain grid-world environments. Our ap-
proach reduces complex problems involving agents of dif-
ferent sizes and multi-terrain traversal capabilities to much
simpler single-size, single-terrain search problems. Build-
ing on these new insights, we have introduced a new planner,
Annotated Hierarchical A*, and have shown through com-
parative analysis that AHA* is able to find near-optimal so-
lutions to problems in a wide range of environments yet still
maintain exponentially lower search effort over standard A*.
Our hierarchical abstraction technique is simple to apply but
very effective; we have shown that in most cases the over-
head for storing the abstract graph is a small fraction of that
associated with non-abstract graphs.

Future work could involve looking at computing annota-
tions to deal with elevation and other common terrain fea-
tures. We are also interested in finding a better inter-edge
placement approach and reducing the effort to insert the
start and goal into the abstract graph. Finally, we believe
AHA* could be usefully applied to solving heterogenous
multi-agent problems.

Acknowledgements
NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.

We would like to thank Philip Kilby and Eric McCreath
for their help and insightful comments during the develop-
ment of this work.

References
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near optimal
hierarchical path-finding. Journal of Game Development
1(1):7–28.
Demyen, D., and Buro, M. 2006. Efficient triangulation-
based pathfinding. In AAAI, 942–947.
Geraerts, R., and Overmars, M. 2007. The corridor map
method: a general framework for real-time high-quality
path planning. Computer Animation and Virtual Worlds
107–119.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics (4):100–107.
Latombe, J. 1991. Robot Motion Planning. Kulwer Aca-
demic Publishers.
Sturtevant, N. R., and Buro, M. 2005. Partial pathfind-
ing using map abstraction and refinement. In AAAI, 1392–
1397.

