
Validation and Verification Issues in a Timeline-based Planning System

A. Cesta† and A. Finzi‡ and S. Fratini† and A. Orlandini∗ and E. Tronci§
† ISTC-CNR, Via S.Martino della Battaglia 44, I-00185 Rome, Italy
‡ DSF “Federico II” University, Via Cinthia, I-80126 Naples, Italy

∗ DIA “Roma TRE” University, Via della Vasca Navale 79, I-00146 Rome, Italy
§ DI “La Sapienza” University, Via Salaria 198, I-00198 Rome, Italy

Abstract

One of the key points to take into account to foster ef-
fective introduction of AI planning and scheduling sys-
tems in real world is to develop end user trust in the
related technologies. Automated planning and schedul-
ing systems often brings solutions to the users which
are neither “obvious” nor immediately acceptable for
them. This is due to the ability of these tools to take
into account quite an amount of temporal and causal
constraints and to employ resolution processes often de-
signed to optimize the solution with respect to non triv-
ial evaluation functions.
To increase technology trust, the study of tools for ver-
ifying and validating plans and schedules produced by
AI systems might be instrumental. In general, valida-
tion and verification techniques represent a needed com-
plementary technology in developing domain indepen-
dent architectures for automated problem solving. This
paper presents a preliminary report of the issues con-
cerned with the use of two software tools for formal
verification of finite state systems to the validation of
the solutions produced by MrSPOCK, a recent effort
for building a timeline based planning tool in an ESA
project.

Introduction
Designing Artificial Intelligence (AI) planning and schedul-
ing systems suitable for supporting human mission planners
in their daily work is a challenging research stream at ESA
(the European Space Agency) and in other space agencies.
The APSI (Advanced Planning and Scheduling) initiative
at ESA-ESOC is an example of research activity aimed at
demonstrating the effectiveness of AI in support of inter-
nal long term programs. As already known, space applica-
tions introduce very challenging problems for Planning and
Scheduling (P&S) technologies that compete with a number
of reasoning and automated control tools in the aim to chal-
lenge their own autonomous features to face such a prob-
lems. Frequently, models and solutions proposed are very
complex and even engineers, designers and scientists can
have difficulties in validating and verifying them by sim-
ple inspection. Then, automated Validation and Verification
(V&V) techniques are an important contribution, adding
value in such kind of applications. In fact, a failure from
an automated decision may have a dramatic impact in terms

of loss of either science activities or money or even human
life. It is quite commonly acknowledged that integration of
V&V capabilities in general purpose P&S architectures may
have a significant impact on the common use of our refer-
ence technology.

Validation of planning models has been studied in sev-
eral works1. For instance, in (Pecheur and Simmons 2001;
Khatib, Muscettola, and Havelund 2001) Livingstone and
HSTS domain models are validated exploiting model check-
ing techniques. In (Smith et al. 2005), formal verification
is used in order to check the existence of undesirable plans
with respect to the domain model. While, VAL (Howey and
Long 2003) is a plan validation tool for PDDL that was suc-
cessfully used during the International Planning Competi-
tion since 2002.

Current AI planning literature shows how timeline-
based planning can be an effective competitor for classi-
cal planning to tackle complex domains which require the
use of both temporal reasoning and scheduling features
(see (Muscettola 1994; Jonsson et al. 2000; Frank and Jon-
sson 2003; Smith, Frank, and Jonsson 2000)). The work
described here is connected to timeline planning because
of a general effort to build a reusable software framework
for modeling space missions problems using timelines (see
(Cesta, Fratini, and Pecora 2007)). The timeline-based ap-
proach models the P&S problem by identifying a set of
relevant features of the planning domain which need to be
controlled to obtain a desired temporal behavior. Time-
lines model entities whose properties may vary in time and
which represent one or more physical (or logical) subsys-
tems which are relevant to a given planning context. The
planner/scheduler plays the role of the controller for these
entities, and reasons in terms of constraints that bound their
internal evolutions and the desired properties of the gener-
ated behaviors (goals).

In our current work we plan to explore different perspec-
tives in the integration of V&V with timeline based planning
and scheduling techniques. The long term goal is to obtain
a software environment in which both technologies are in-
tegrated and the application developers may take advantage
of the co-existence of the two tools while knowledge en-
gineering new application. Indeed, we are currently in an

1See also a specific workshop at ICAPS-05.



initial stage in our path and are reporting here such current
work. In the attempt of developing a common terminology,
we have started considering (a) a particular planning system,
the application called MrSPOCK, for “Mars Express Sci-
ence Plan Opportunities Coordination Kit”, a recent effort
for building a timeline based planning system for the ESA;
and (b) two state-of-the-art software tools in formal verifica-
tion, NuSMV and UPPAAL, and (c) focused on the problem
of the validation of the solutions produced by MrSPOCK.
Notwithstanding the initial extent of the current effort we
have already received some interesting hints on the whole
activity.

The preliminary analysis in this paper aims at present-
ing the approach we have followed as well as discussing the
problems encountered and the lessons learned in trying the
automatic validation and verification of MrSPOCK’s solu-
tions against the temporal and causal constraints in the sym-
bolic model that drives the tool in building the plans.

Target Scenario
As said in the introduction we have focused our current ac-
tivity in developing a validation tool for the MrSPOCK plan-
ner recently developed within the APSI project for MARS
EXPRESS long, medium and short term planning. The open
problem was to support the collaborative problem solving
process between the science team and the operation team
of the space mission. These two groups of human planners
iteratively refine a plan containing all activities for the mis-
sion. The process starts at the long term plan (LTP) level –
three months of planning horizon – and is gradually refined
to obtain fully instantiated activities at short term plan (STP)
level - one week of planning horizon. This process con-
tinuously leads to weekly STPs, which are then further re-
fined every two days to produce final executable plans. Goal
of MrSPOCK has been to develop a pre-planning optimiza-
tion tool for spacecraft operations planning. Specifically, we
have focused on the generation of a pre-optimized skeleton
LTP which will then be subject to cooperative science team
and operation team refinement (see (Cesta et al. 2008b) for
a detailed description of the addressed problem).

We observe that, at the first step of the negotiation
process, one source of approximation comes from the fact
that the operation team has only partial information about
the requested science operations for MARS EXPRESS. Pay-
load Operation Requests (PORs), that is the requested sci-
ence operations. Reference to such requests is given only
when the Pointing Timeline Request is issued by the science
team on the basis of the input skeleton plan generated by
operation team. Indeed, these science requests often require
the satellite to point to the planet, reducing its ability to ob-
tain energy from the Sun and to send data back to Earth.
Also, science operations consume power and exclude the
possibility of performing maintenance operations. On the
other hand, the operation team requires the spacecraft to per-
form maintenance and other service maneuvers in order to
maintain the spacecraft operational. Overall, the two groups
of managers have to cooperatively converge on a plan which
resolves the complex interplay between science, pointing di-

rection, power, data transmission and maintenance opera-
tions.

In this context, the challenge of MrSPOCK is to provide
an automated procedure for producing a good skeleton plan,
i.e., a LTP that takes into account the needs of both par-
ties, thus reducing the effort in reaching an agreement on
a medium-term plan – one month planning horizon. Over-
all, the generated LTP should be such that: (a) the number of
(expensive) iterations between science and operation team is
reduced; (b) a set of objective functions – the total volume of
data for down-link operations; the number of pericentres for
science operations; the number and the uniform distribution
of uplink windows – are optimized.

Problem Required Constraints
For each orbit followed by the spacecraft, the baseline oper-
ations are split into three phases: (1) around the pericentre
(the orbital closest to the target planet); (2) around the apoc-
entre (the orbital more far away from the planet); (3) be-
tween the pericentre and apocentre passages. Around peri-
centre, the spacecraft is generally pointing to the centre of
the planet thus allowing observations of the planet surface –
generically referred to as Science operation. Between peri-
centre and apocentre passages, the spacecraft is generally
Earth pointing for transmitting data to Earth. Communica-
tion with Earth should occur within a ground station avail-
ability window. Ground station visibility can either partially
overlap or fully contain a pericentre passage. Additionally,
Maintenance operations should occur around the apocentre
passages.

At present, given these requirements, an initial skeleton
plan for MARS EXPRESS is generated by the operation team
by allocating over the planning horizon (which generally
covers hundreds of orbits) three different types of decisions:
– selection of the Maintenance windows (generally cen-

tered around the apocentre events and used primarily for
momentum wheel-offloading);

– selection of the Communication windows among the set
of available ground stations (the so-called ground stations
de-overlapping);

– selection of the windows for Science operations around
pericentre events.

Additionally there are quite an amount of hard and soft con-
straints to be satisfied. Constraints on uplink windows fre-
quency and duration require four hours uplink time for each
24 hours (soft constraint). Moreover, there should be given
the possibility to split a four-hour uplink window in two two-
hour uplink windows. Apocentre slots for spacecraft main-
tenance windows must be allocated between 2 and 5 orbits
apart, and the maintenance duration is of 90 minutes to be
centered around the apocentre interval.

Communication activities are source of several temporal
constraints to be considered as hard. For example: (1) the
minimum/maximal durations for the X-band transmitter in
the on state, (2) the minimum duration for the X-band trans-
mitter in the state off ; (3) the periods in which the X-band
transmitter has to be off (e.g., eclipses, occultations, slewing
manoeuvres and non-Earth pointing status).



Furthermore, there are preferences to follow for ground
station selection (called de-overlapping in mission terminol-
ogy). Ground stations have different features like different
dish diameters (there are 70 meters dish antennas, 35 meters
and 34 meters). Usually, they allow both uplink and down-
link communications, but there are cases where it is only
possible to downlink. Additionally, there are ground sta-
tions owned by different agencies and they should be used
according to some policy restriction.

A hybrid solver
In building MrSPOCK, we have followed a hybrid ap-
proach. The timeline representation and management fea-
tures of a general purpose planning and scheduling sys-
tem, called Open Multi-Component Planner and Scheduler
(OMPS (Fratini, Pecora, and Cesta 2008)), are exploited for
modeling some features of the problem and for computing
and maintaining timelines. In addition, a domain dependent
specific planner exploits the domain independent underly-
ing planning system by guaranteeing the satisfaction of the
problem’s constraints not modeled in the domain descrip-
tion and performing plans optimization exploiting a genetic
approach.

OMPS is designed as a layered architecture: there is an
underlying temporal database (that provides primitives to
represent and manage time points and temporal constraints),
a timeline management and representation layer above the
temporal database (that provides primitives to represent tem-
poral flexible plans as timelines) and a portfolio of domain
independent planning and scheduling procedures on top.
MrSPOCK uses the OMPS Timeline Representation Frame-
work (TRF) and proposes a domain dependent search pro-
cedure on top of the TRF.

Figure 1: The domain model

In MrSPOCK, we use the TRF features by representing the
domain with two different types of timelines (see Figure 1):
(1) Controllable State Variables, which define the search
space of the problem, and whose timelines ultimately rep-
resent the solution to the problem; (2) Uncontrollable State

Variables, representing values imposed over time which can
be only observed. Here, we use a single controllable state
variable to model the spacecraft’s pointing mode, which
specifies the temporal occurrence of science and mainte-
nance operations as well as the spacecraft’s ability to com-
municate. The values that can be taken by this state vari-
able, their durations (represented as a pair [min,max]) and
the allowed transitions among them are synthesized by the
automaton in the right in Figure 1. This is an effective way
to capture part of the set-up necessary constraints in the so-
lution.

In addition, we instantiate two uncontrollable state vari-
able to represent contingent events such as orbit events and
communication opportunity windows. One state variable
type component maintains the temporal occurrences of peri-
centres and apocentres (“P” and “A” values on the timeline
in Figure 1, left, top) of the spacecraft’s orbit (they are fixed
in time according to the information found in an orbit events
file), while the other state variables maintains the visibility
of three ground stations (“MAD”,”CEB” and “NNO” time-
lines in Figure 1, left, bottom). These state variables have as
allowed values {Available(?rate,?ul dl,?antennas), Unavail-
able()}, where the ?rate parameter indicates the bitrate at
which communication can occur, ?ul dl indicates whether
the station is available for upload, download or both, and
the ?antennas parameter indicates which dish is available for
transmission. Any valid plan needs temporal synchroniza-
tions among the pointing timeline and the uncontrollable
timelines (represented as dotted arrows in Figure 1): sci-
ence operations must occur during Pericentres, maintenence
operations must occur during Apocentres and communica-
tions must occur during ground station visibility windows.
In addition to those synchronization constraints, the point-
ing mode timeline must respect the transition among values
specified by the automaton and the minimal and maximal
duration specified for each value (in the automaton as well).

On top of this model, MrSPOCK’s solver allocates sci-
ence, maintenance and communication activities and ex-
ploits the TRF features for synchronizing them with orbit
events and ground station visibilities. By querying the TRF
that maintain the actual temporal occurrence of previously
allocated activities, orbit events and available visibility win-
dows, the domain dependent planner allocates new activities
enforcing constraints on uplink windows and maintenance
frequencies. The choice between science, maintenance and
communication activities (when available stations allow a
communication activity) is driven by a chromosome. Once
the complete temporal plan has been instantiated, it is mea-
sured and used in a genetic optimization loop aiming at max-
imizing science allocation (see (Cesta et al. 2008a) for a
MrSPOCK’s more detailed description).

Model Checking
As previously discussed, MrSPOCK proposes solutions tak-
ing into account quite an amount of temporal and causal con-
straints defined by ESA science and operation team mem-
bers. Thus, they have to accept and use such a solutions as
basis for further refinement until complete STPs are defined.
An effective introduction of AI planning and scheduling has



to deal with users’ trust in related technologies. In fact, au-
tomated P&S systems often brings solutions to users which
are neither “obvious” nor immediately acceptable for them.

Furthermore when a hybrid approach that mixes differ-
ent solving procedures is followed, as we have done in Mr-
SPOCK, the need of an indipendent solution verification
process increases. In fact, since not all the problem con-
straints are taken into account in the domain description of
the general planning system, the proof of correctness of the
domain independent planning system can not ensure the cor-
rectness of the produced solutions. Moreover a genetic op-
timization process is performed within MrSPOCK and the
chromosome management performed by the genetic algo-
rithm might invalidate the solution as well. Hence the need
of verifying the solutions of such a kind of hybrid solver.

Aiming at fostering users to act more confidently with Mr-
SPOCK and increasing the effectiveness of the supporting
tool, we perform an additional effort to verify solutions va-
lidity with a different technology. In fact, it is worth noting
that performing an independent model verification can pro-
vide support also during design phase, helping in validating
the domain model.

Thus increasing the overall framework robustness.
In this sense, V&V techniques represent a needed com-

plementary technology in developing domain independent
architectures for automated problem solving. In particu-
lar, model checking is a well known verification technol-
ogy used to verify requirements and design for a variety of
real-time embedded and safety-critical systems. Then, two
prominent software tools in model checking, NuSMV and
UPPAAL, are considered, focusing on the problem of the
validating solutions produced by MrSPOCK.

NuSMV (Cimatti et al. 2002) is a model checker for tem-
poral logics. It has a dedicated modelling language, which
permits the definition of concurrent finite state systems in an
expressive, compact, and modular way. The SMV specifi-
cation uses variables with finite types, grouped into a hier-
archy of module declarations. Each module states its local
variables, their initial value and how they change from one
state to the next. The properties are expressed in Computa-
tion Tree Logic (CTL). CTL is a branching-time temporal
logic, which means that it supports reasoning over both the
breadth and the depth of the tree of possible executions.

UPPAAL (Larsen, Pettersson, and Yi 1997), whose
acronym comes from joining the names of UPPsala and
AALborg universities that built it, is a tool box for mod-
eling, simulation, and verification of real-time systems. The
verifier covers the exhaustive dynamic behavior of the sys-
tem for proving safety and bounded liveness properties. A
UPPAAL model consists of a set of timed automata, a set
of clocks, global variables and synchronizing channels. A
node in an automaton may be associated with an invariant,
for enforcing transitions out of the node. An arc may be as-
sociated with guards, for controlling when this transition can
be taken. On any transition, local clocks may get reset and
global variables may get re-assigned. Channels are used in
order to synchronize transitions on different automata. Anal-
ogously to NuSMV, verified properties are stated in CTL.

The rest of the paper reports on our current achievements

using these two tools for validating MrSPOCK output.

Plan Validation within MrSPOCK
In this section a possible mapping between plan validation
and model checking tasks is presented and discussed. In par-
ticular, in Figure 2, an integrated plan validation architecture
is presented.

MrSPOCK domain and plan are encoded in a new model,
while a property assuring plan validity is defined. Then,
both the model and property are provided as inputs to model
checking tool. In this sense, an initial goal is to build the
new model, such that it can be encoded both in NuSMV and
UPPAAL input languages, and state a suitable property for
plan validity check.

Starting to address such an issue, target application do-
main description and a completely specified temporal solu-
tion plan, generated by MrSPOCK, are to be encoded in the
new model. Such a model is to be translated in the model
checkers input languages. Thus, plan validity property is
defined according to such a model.

In order to simplify the presentation, let us consider in the
following no parameters handling. Although such a feature
is managed in our modelling, it is not quite relevant with
respect to the current discussion.

Figure 2: Plan validation architecture exploiting model
checking.

Modelling MrSPOCK Domain and Plan
First, domain and plan are to be encoded in the new model.
Within the framework, a domain model is represented as a
set of components (i.e. timelines). For each of them, a set
of consistency features are defined in order to state the nom-
inal component’s behaviors. Consistency features represent
transition and temporal constraints related to one singular
timeline. Looking at Figure 1, consistency features related
to the spacecraft’s pointing mode are, for instance, the du-
ration constraint on Science activity (within {36, 68} inter-
val) or the transitions from Maintenance to Earth or Comm
states.

In addition, some inter-components relations are speci-
fied in order to state constraints between different timelines.
Such a relations compose an overall domain theory. In such
a way, a component’s timeline can be related with other



// General variables definition
Define a clock for each component;

Define a counter for each component;

// Components description
For each component,

Generate a corresponding automaton;
For each related consistency features
Generate into the automaton description an appropriate transition;

Clock counts how much time a certain value holds.
When a transition occurs, clock resets to zero.

// Plan description
For each behavior in the plan

Generate a corresponding automaton;
For each value change in the plan
Generate into the automaton description an appropriate transition;

Counter counts how much times a value change occurs in the behavior.

// Monitor description
Generate a monitor automaton with two different states {OK, ERR};
For each value and time interval in the plan
Generate a transition from OK to ERR

if component automaton presents a different value;
For each domain theory relation
Generate a transition from OK to ERR if relation is violated;

// Files Generation
NuSMV and UPPAAL input language files are generated.

Figure 3: An algorithm for mapping MrSPOCK domain and
plan models into reference model for model checkers.

different components’ behavior. Synchronizations between
pointing’s and uncontrollable timelines constitute the set of
domain theory constraints. Science operations occurrences
during pericentre orbits or ground station availability needed
during communications are examples of such a constraints.

A solution plan is represented as a set of decisions on the
components’ behaviors. Focusing on a singular component,
the solution plan is a sequence of allowed values that the
component has to assume in a given time frame. Also the
time points, at which such a changes occur, are fixed and
provided within the plan.

An algorithm for mapping MrSPOCK domain and plan
into the new model is presented in figure 3. First, general
variables are defined. For each component, a clock and a
counter are generated. The clock counts how many times a
value holds in a component, while the counter enumerates
the plan steps within the behavior.

For each component, a corresponding automaton is gen-
erated stating its consistent behaviors. In fact, for each cor-
responding consistency features an appropriate transition is
defined. Thus, temporal constraints can be stated as tempo-
ral guards on transitions or as state invariants.

Then, for each timeline, a corresponding automaton is
generated and appropriate transitions are introduced to de-
fine values changes.

In order to validate plan behaviors, components and
planned values are to be related within the time frame con-
sidered. That is, components and planned timelines have
to follow the same evolution. In this way, it is guaranteed
that the solution plan is consistent w.r.t. the domain model.
Such a relation, can be defined by synchronizing plan behav-
iors and components changes. Thus, when a plan behavior
requires a certain value for a component, the related compo-

nent automata has to assume such a value.
Once such a relation is realized, a monitor automaton is

generated to check whether plan and domain are consistent
or not. If an inconsistency occurs, an error in the plan exists.
In such a case the monitor changes its status from normal
to error. Of course, the monitor checks also domain theory
violations.

Since our goal is not only to validate solution plans, but
also to support users during problems diagnosis, we define
the monitor automaton with multiple error states. In this
way, users can have additional information about which are
the failing components or which domain theory relations
are violated. Such a feature can be easily introduced in the
validation architecture, introducing suitable transitions from
normal to failing states.

Referring to MrSPOCK ’s scenario, the monitor automata
checks if the planned pointing’s timeline is consistent with
its allowed temporal evolutions. For instance, Earth, Slew,
Science, Slew, ... (with appropriate durations) is a consistent
behavior, while Earth, Slew, Science, Earth, ... is not. More-
over, the monitor verifies that all the timelines are consistent
w.r.t. the domain theory constraints: for instance, whenever
the Science status is present on pointing timeline, the orbit
events’ timeline has to present Pericentre status.

Validation Properties
Once the model previously defined is provided as input to
model checkers, a validity plan property has to be defined.
So, model checkers can perform verification.

In order to state such a property, we refer to monitor au-
tomaton. With respect to the model presented above, the
property to be checked is the following: for each timeline,
the last plan step can be reached and the monitor remains
normal. Since, model checkers expect a CTL formula, we
use the following:
AG (last plan steps can be reached) and

(Monitor is normal).

Where AG means that for All the possible system evolu-
tions is Globally true that the property is satisfied. Whenever
the above formula does not hold, model checkers produce an
execution trace of the system witnessing that the monitor au-
tomaton reach an error state. That is, such a trace represents
a system execution showing how the timelines are inconsis-
tent with respect to the components’ behaviors. Thus, the
reported trace can be used to identify the plan error, or the
domain inconsistency, and diagnose from which conditions
it origins. In this way, completely specified temporal plans
can be validated while very useful information can be pro-
vided to users whenever an error occurs.

We performed some preliminary tests in order to verify
plan validation architecture performances. We run tests on a
linux workstation endowed with a 64-bit AMD Athlon CPU
(3.5GHz) and 2GB RAM. We validate plans generated by
MrSPOCK ranging within 1 to 10 days of activity, handling
from 45 to 335 tasks on all the timelines. The results, de-
picted in Figure 4, show that UPPAAL performs better than
NuSMV2.

2NuSMV with BMC instead of BDD model checking.



UPPAAL works on-the-fly, which means that it does not
preconstruct a global state graph, or Kripke structure, as a
prerequisite for the verification of system properties. Since
NuSMV performs such a kind of preconstruction, the exper-
imental results collected do not surprise us.

Figure 4: Experimental Results for UPPAAL and NuSMV.

Although the validation technique presented here is pre-
liminary, we have already obtained some interesting results.
For example, our verification tool allowed us to detect and
solve an inconsistency in MrSPOCK domain. Namely, we
found that MrSpock could generate solutions not consis-
tent with the apocentre-maintenance occurences constraint,
which is an implicit requirement (i.e. not represented in the
temporal model) for the hybid solver. Using the proposed
validation architecture, it was possible to detect the incon-
sistency and, exploiting the additional information provided
by the reported trace, diagnose and fix the error.

Flexible Temporal Plan Validation
In order to address the general plan validation problem, it is
necessary to handle flexible temporal plans. Then, an exten-
sion of the model presented above is required. Namely, time
points are to be represented as time intervals rather than as
fixed time instants. Such a representation can be easily intro-
duced in the model by simply considering temporal variables
over a certain interval of values. For instance, if a flexible
time point can assume values in a given temporal interval
[min,max], then a variable is to be considered in the model
with value in {min...max}. In this way, model checkers
can explore and validate all the possible temporal evolutions
of the plan.

By suitably modelling synchronization between such a
variables, domain model components and plan behaviors,
we can use the proposed architecture also for flexible plan
validation.

Nevertheless, some problems araise in handling such a
flexibility. First, during property verification, model check-
ers consider all the possible temporal combinations over
variables, even those that have not to be taken into account

because of temporal inconsistency with respect to overall
constraints.

To better figure out such a problem, consider the follow-
ing simple example. A plan can contain a task with start and
end times defined by two different flexible temporal points
ts and te. The activity starts within the interval [5, 10], while
it ends within the interval [15, 20]. In addition, a duration
constraint is defined as follows: te − ts ≤ 10.

Following our approach, two variables are defined within
the flexible model, vs and ve on {5...10} and {15...20}, re-
spectively. In this case, not all the possible combinations are
to be checked. In fact, if vs = 5 then ve can assume only
15 as admitted value, for all the other values ve can assume
are inconsistent and can be avoided during validation. Anal-
ogous reasoning can be repeated for each assignment on vs.

In this sense, we are far away to present significant ex-
perimental results for flexible plan validation, but differ-
ent considerations can be done in order to analyse such a
problem. On the one hand, considering inconsistent com-
binations does not influence the verification process, but in-
creases the time needed for the computation. In fact, a larger
number of evolutions are to be considered and verified, even
though already known to be not valid, as previously shown
in the example. On the other hand, we can not still use wit-
ness trace in order to diagnose the problem. In fact, they can
return as failing trace exactly one of the inconsistent behav-
iors, adding no useful information. This is due to our model,
which does not permit to perform constraints propagation
over flexible temporal intervals.

In this sense, addressing such a problem is the next chal-
lenging issue. Our feelings are that this should be possi-
ble since all constraints are part of the problem description
model but should be handle conveniently.

Related Works
In this section, some related works concerning plan verifi-
cation and validation systems based on temporal models are
briefly discussed.

Closely related to our work is the framework proposed in
(Abdedaim et al. 2007). Here, the authors investigate and
compare Constraint Based Temporal Planning techniques
and Timed Game Automata methods for representing and
solving realistic temporal planning problems. In this direc-
tion, they propose a mapping from IxTeT planning problems
to UPPAAL-TIGA game-reachability problems and present
a comparison of the two planning approaches. This paper
is mainly focused on robust plan synthesis while we are in-
terested in plan validation and verification. Indeed, our aim
is to address validation and verification issues arising when
planning in complex domains and depolying hybrid solving
algorithms; these problems are not considered in (Abdedaim
et al. 2007).

Our overall approach is more similar to the one proposed
in (Smith et al. 2005; Havelund et al. 2008), where model
checking (in SPIN) is deployed to guarantee that plans pro-
duced by generic automated planning systems meet certain
desirable properties. However, differently from our case, the
focus is on model validation: planning models are tested



and refined to prevent the generation of undesirable plans.
The modelling framework and the properties considered in
this paper are quite different from the one we are interested
in. Indeed, real-time temporal properties and flexible tem-
porally plan verification and validation are not addressed.

A more expressive temporal model is considered in
(Khatib, Muscettola, and Havelund 2001) where the au-
thors propose a mapping from interval-based temporal re-
lations models (i.e. DDL models for HSTS) to timed au-
tomata models (UPPAAL). This mapping was introduced as
a preliminary step towards the application of verification and
validation techniques in timeline-based temporal planning,
however this direction is not fully developed. In particular,
the authors do not propose methods for plan validation.

In (Vidal 2000), a mapping from Contingent TCN into
TGA models is proposed. However, also in this case, meth-
ods for temporal plan verification are not presented.

In the framework of PDDL, we can find the VAL plan
validation tool (Howey and Long 2003) that was extended
to permit the validation of plans with durative actions.
Although VAL was successfully used during International
Planning Competitions since 2002, several open modelling
issues are still to be addressed (Fox et al. 2006).

Formal verification for timeline-based temporal planning
is considered also in the ANML framework, a timeline-
based specification framework under development at NASA
Ames. The work in (Siminiceanu, Butler, and Munoz
2008) presents a translator from ANMLite (abstact version
of ANML) to the SAL model checker. Given this mapping,
the authors present preliminary results to assess the efficency
of model checking in plan synthesis. Plan validation and
verification issues are not discussed.

Less closely related, we can find other frameworks where
model checking and temporal plan verification are deployed
to support robust plan synthesis. For instance, in the CIRCA
framework (Goldman et al. 2002), a Controller Synthesis
Module (CSM) automatically synthesizes hard real-time re-
active plans; the CSM is modeled through a timed automa-
ton model and a model-checking plan verifier is used as a
support for robust reactive planning. Here, the main con-
cern is on-the-fly synthesis of control sequences, hence is-
sues and methods (e.g. reactive plan generation and verifi-
cation) are different from the ones discussed in our paper.

Conclusion
In this work, we have presented a preliminary approach to
plan validation and verification in a timeline-based planning
system. In particular, we have considered V&V issues aris-
ing in the MrSPOCK framework, a recent effort for building
a timeline-based planning system for the European Space
Agency. In this context, plan validation and verification
tools are particularly relevant. Indeed, the P&S system of
MrSPOCK is based on a hybrid approach where not all the
domain constraints can be explicitly represented in the plan
domain, therefore the soundness of the plan with respect to
the model does not necessarily ensure the soundeness of the
produced solution. In this case, an independent solution ver-
ifier is needed to test plan consistency with respect to im-
plicit requirements. Furthermore, from the end user perspec-

tive, validation and verification tools offer an independent
testing environment which can enhance end user trust on the
complex and (sometimes) counterintuitive solutions gener-
ated by MrSPOCK.

The aim of this paper was to present the approach fol-
lowed, discussing the problems encountered and the lessons
learned in the attempt of deploying V&V techniques and
modelling tools in MrSPOCK. In this context, we have
presented our integrated plan validation system where plan
validation is based on model checking. More specifically,
we have defined a translation from our domain models to
specifications in UPPAAL and NuSMV in so enabling for-
mal verification of domain and plan properties. In the Mr-
SPOCK domain, we have discussed relevant issues reporting
on some preliminary results in temporal plan verification.
We have also tackled the problem of flexible temporal plans
validation, however, further investigations are necessary to
obtain an efficient and effective verification process in this
setting.

A lot of work remains to be done, our long term goal is to
obtain a software environment in which V&V technologies
are integrated in a complex P&S system and the application
developers may take advantage of the co-existence of these
tools while knowledge engineering new application.

Acknowledgments. Cesta, Fratini and Tronci are par-
tially supported by the EU project ULISSE (Call
“SPA.2007.2.1.01 Space Science”). Orlandini is partially
supported by ISTC-CNR. Cesta and Fratini are also partially
supported by European Space Agency (ESA) within the Ad-
vanced Planning and Scheduling Initiative (APSI).

References
Abdedaim, Y.; Asarin, E.; Gallien, M.; Ingrand, F.; Lesire,
C.; and Sighireanu, M. 2007. Planning robust temporal
plans: A comparison between cbtp and tga approaches. In
Proceedings of ICAPS-2007, 2–10.
Cesta, A.; Cortellessa, G.; Fratini, S.; and Oddi, A. 2008a.
Looking for MrSPOCK: Issues in Deploying a Space Ap-
plication. In ICAPS Workshop on Scheduling and Planning
Applications, Sydney, Australia.
Cesta, A.; Fratini, S.; Oddi, A.; and Pecora, F. 2008b.
APSI Case#1: Pre-planning Science Operations in MARS
EXPRESS. In i-SAIRAS-08. Proceedings of the 9th Int.
Symp. on Artificial Intelligence, Robotics and Automation
in Space. JPL, Pasadena, CA.
Cesta, A.; Fratini, S.; and Pecora, F. 2007. A Multi-
Component Framework for Planning and Scheduling Inte-
gration. In PlanSIG’07. Proceedings of the 26th Workshop
of the UK Planning and Scheduling Special Interest Group,
Prague, Czech Republic, December 17-18.
Cimatti, A.; Clarke, E.; Giunchiglia, E.; Giunchiglia, F.;
Pistore, M.; Roveri, M.; Sebastiani, R.; and Tacchella, A.
2002. Nusmv 2: An opensource tool for symbolic model
checking. In 14th International Conference on Computer-
Aided Verification (CAV’2002).



Fox, M.; Long, D.; Baldwin, L.; Wilson, G.; Woods, M.;
Jameux, D.; and Aylett, R. 2006. On-board timeline val-
idation and repair: A feasibility study. In Giuliano, M.,
ed., Proceedings of 5th International Workshop on Plan-
ning and Scheduling for Space.
Frank, J., and Jonsson, A. 2003. Constraint based attribute
and interval planning. Journal of Constraints 8(4):339–
364.
Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying
planning and scheduling as timelines in a component-based
perspective. Archives of Control Sciences 18(2):5–45.
Goldman, R. P.; Musliner, D. J.; ; and Pelican, M. J. 2002.
Exploiting implicit representations in timed automaton ver-
ification for controller synthesis. In Proceedings of the
2002 Hybrid Systems: Computation and Control Work-
shop.
Havelund, K.; Groce, A.; Holzmann, G.; Joshi, R.; and
Smith, M. 2008. Automated testing of planning mod-
els. In Proceedings of the Fifth International Workshop on
MODEL CHECKING and ARTIFICIAL INTELLIGENCE,
5–17.
Howey, R., and Long, D. 2003. Val’s progress: The
automatic validation tool for pddl2.1 used in the interna-
tional planning competition. In Proceedings of the ICAPS
2003 workshop on The Competition: Impact, Organiza-
tion, Evaluation, Benchmarks, 28–37.
Jonsson, A.; Morris, P.; Muscettola, N.; Rajan, K.; and
Smith, B. 2000. Planning in Interplanetary Space: The-
ory and Practice. In Proceedings of the Fifth Int. Conf. on
Artificial Intelligence Planning and Scheduling (AIPS-00).
Khatib, L.; Muscettola, N.; and Havelund, K. 2001. Map-
ping temporal planning constraints into timed automata. In
TIME-01. The Eigth International Symposium on Temporal
Representation and Reasoning, 21–27.
Larsen, K. G.; Pettersson, P.; and Yi, W. 1997. UPPAAL
in a nutshell. International Journal on Software Tools for
Technology Transfer 1(1-2):134–152.
Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. In Zweben, M. and Fox, M.S., ed., Intelligent
Scheduling. Morgan Kauffmann.
Pecheur, C., and Simmons, R. G. 2001. From livingstone to
smv. In FAABS ’00: Proceedings of the First International
Workshop on Formal Approaches to Agent-Based Systems-
Revised Papers, 103–113. London, UK: Springer-Verlag.
Siminiceanu, R. I.; Butler, R. W.; and Munoz, C. A. 2008.
Experimental evaluation of a planning language suitable
for formal verification. In Proceedings of the Fifth Inter-
national Workshop on MODEL CHECKING and ARTIFI-
CIAL INTELLIGENCE, 18–34.
Smith, M. H.; Holzmann, G. J.; Cucullu, G. C.; and Smith,
B. D. 2005. Model checking autonomous planners: Even
the best laid plans must be verified. In Aerospace, 2005
IEEE Conference 5-12 March 2005, 1 – 11. IEEE Com-
puter Society.
Smith, D.; Frank, J.; and Jonsson, A. 2000. Bridging the

gap between planning and scheduling. Knowledge Engi-
neering Review 15(1):47–83.
Vidal, T. 2000. A unified dynamic approach for deal-
ing with temporal uncertainty and conditional planning. In
Proceedings of AIPS-2000, 395–402.


