

KEPS 2010
Proceedings of the Workshop on Knowledge
Engineering for Planning and Scheduling

Toronto, Canada
May 13, 2010

Edited by
Roman Barták, Simone Fratini,
Lee McCluskey, Tiago Stegun Vaquero

Organization

Roman Barták, Charles University, Czech Republic
contact email: bartak@ktiml.mff.cuni.cz

Simone Fratini, ISTC‐CNR, Italy
contact email: simone.fratini@istc.cnr.it

Lee McCluskey, University of Huddersfield, UK
contact email: lee@hud.ac.uk

Tiago Stegun Vaquero, University of Sao Paulo, Brazil
contact email: tiago.vaquero@poli.usp.br

Program Committee

Piergiorgio Bertoli, Fondazione Bruno Kessler, Italy

Mark Boddy, Adventium Labs, U.S.A.

Adi Botea, NICTA/ANU, Australia

Amedeo Cesta, ISTC‐CNR, Italy

Stefan Edelkamp, Universität Dortmund, Germany

Susana Fernández, Universidad Carlos III de Madrid, Spain

Antonio Garrido, Universidad Politecnica de Valencia, Spain

Arturo González‐Ferrer, University of Granada, Spain

Peter A. Jarvis, NASA, U.S.A.

Ugur Kuter, University of Maryland, U.S.A.

José Reinaldo Silva, University of Sao Paulo, Brazil

Dimitris Vrakas, Aristotle University of Thessaloniki, Greece

Foreword

Knowledge Engineering is a wide area of artificial intelligence, spanning many branches of knowledge‐
based systems, and is concerned with the elicitation, formulation, validation and maintenance of a
knowledge base. Planning and Scheduling are problem areas that demand knowledge of dynamical
systems, and in particular, knowledge of change, of action and of process. Whereas in engineering and
mathematics, knowledge of dynamical systems is used by people, for automated planning and
scheduling this knowledge has to be encoded in such a way that programs can manipulate and reason
with it. To make matters even more complex, planners and schedulers not only require input in an
expressive, accurate, operational and precise form (encoded in the ubiquitous “domain model”), but
also perform the synthetic task of creating plans and schedules to achieve goals. Hence, when
considered in relation to the problems areas of automated planning and scheduling, knowledge
engineering is considered to be particularly difficult.

For the purposes of this workshop, we define knowledge engineering for automated planning and
scheduling to cover the processes of acquisition, validation and maintenance of domain models, as well
as the selection and optimization of appropriate machinery to work on them. These processes impact
directly on the success of real planning and scheduling applications: to function efficiently applications
still need to be fed by careful problem description, and need to be fine tuned for particular domains or
problems. The importance of knowledge engineering techniques is clearly demonstrated by a
performance gap between domain‐independent planners and planners exploiting domain dependent
knowledge.

The KEPS series of workshops has been running for some time interleaving with ICKEPS (The
International Competition on Knowledge Engineering for Planning and Scheduling) with the goal to
promote knowledge engineering aspects of planning and scheduling. KEPS 2010 was held in May 2010
during 20th International Conference on Automated Planning and Scheduling (ICAPS). The current
edition includes seven technical papers all reviewed by international program committee and four
system demonstrations. The width and variety of papers in this volume demonstrates the span and
importance of the field. The papers cover topics such as planning extensions, eliciting planning
information, acquisition of hierarchical descriptions, automated model updating, translation between
representations, verification of plans and post‐design analysis. The applications span from computer
games, through business processes to space exploration. System demonstrations include both academic
and industrial systems; two winners of recent ICKEPS demonstrate advancement of their tools.

We would like to thank to all contributors to this workshop and special thanks go to the members of
program committee and other reviewers for their valuable comments.

Roman Barták, Simone Fratini, Lee McCluskey, Tiago Stegun Vaquero
KEPS 2010 Organizers
May 2010

Contents

Full Technical Papers

Eliciting Planning Information from Subject Matter Experts .. 5
Pete Bonasso, Mark Boddy

How Hard is Verifying Flexible Temporal Plans for the Remote Space Agent? 13
Amedeo Cesta, Alberto Finzi, Simone Fratini, Andrea Orlandini, Enrico Tronci

Ontology Oriented Exploration of an HTN Planning Domain through Hypotheses and Diagnostic
Execution ... 21
Li Jin, Keith S. Decker

Model Updating in Action .. 29
Maria V. de Menezes, Leliane N. de Barros, Silvio do L. Pereira

Integrating plans into BPM technologies for Human‐Centric Process Execution 37
Juan Fdez‐Olivares, Inmaculada Sánchez‐Garzón, Arturo González‐Ferrer, Luis Castillo

Improving Planning Performance Through Post‐Design Analysis ... 45
Tiago Stegun Vaquero, José Reinaldo Silva, J. Christopher Beck

An XML‐based Forward‐Compatible Framework for Planning System Extensions and Domain
Problem Specification .. 53
Eric Cesar E. Vidal, Jr., Alexander Nareyek

System Demonstrations

Constraint and Flight Rule Management for Space Mission Operations .. 62
Javier Barriero, John Chachere, Jeremy Frank, Christie Bertels, Alan Crocker

Using Knowledge Engineering for Planning Techniques to leverage the BPM life‐cycle for dynamic
and adaptive processes .. 64
Juan Fdez‐Olivares, Arturo González‐Ferrer, Inmaculada Sánchez‐Garzón, Luis Castillo

Analyzing Plans and Comparing Planners in itSIMPLE3.1 .. 66
Tiago Stegun Vaquero, José Reinaldo Silva, J. Christopher Beck

Visual design of planning domains ... 68
Jindřich Vodrážka, Lukáš Chrpa

Full Technical Papers

Eliciting Planning Information from Subject Matter Experts

Pete Bonasso* , Mark Boddy**

*Traclabs, Inc, 1012 Hercules, Houston, TX 77059, bonasso@traclabs.com
**Adventium Enterprises, 111 3rd Ave South, Suite 100, Minneanapolis, MN 55401, mark.boddy@adventiumlabs.org

Abstract
Over the past several months, we have been engaged in
layering planning information onto execution procedures for
supporting NASA operations personnel in planning and
executing activities on the International Space Station (ISS).
The procedures are captured in the Procedural
Representation Language (PRL). The planning information
is to be integrated with the procedural information using a
PRL authoring system. This paper describes an initial
design for eliciting planning information from the domain
experts who created the procedures. The goal is to generate
actions in standard planning languages that automated
planners can use to generate executable plans. Of particular
note is that the resulting action representations support both
goal and action HTN decompositions.

 Introduction and Motivation
There have been a number of recent efforts, most notably
the Automation for Operations (A4O) initiative (Frank
2009), to provide NASA flight controllers with activity
planning and execution aids by leveraging maturing
execution (Vera et al 2006) and planning technology (e.g.,
Chien et al, 2003, and Bedrax-Weiss et al 2005). One of
those technologies is the development of a procedure
representation language (PRL) that both captures the form
of traditional procedures and allows for automatic
translation into code that can be executed by NASA-
developed autonomous executives. PRL provides for
access to spacecraft and habitat telemetry, includes
constructs for human-centered displays, allows for the full
range of human interaction, and allows for automatic
methods of verification and validation. As well, PRL is
being developed with a graphical authoring system, known
as PRIDE, that enables non-computer specialists to write
automated procedures (Kortenkamp et al 2007).
 Given a set of procedures cast in PRL, one of our current
research goals has been to enhance the PRL language to
include planning information related to each procedure,

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

i.e., a) time, for both task duration and for temporal
constraints among procedures, b) resources that are
required, produced or consumed by a procedure, c) pre-
conditions, post-conditions and other constraints for both a
given procedure and among concurrently executing
procedures, and d) the decomposition of large procedures
into the fundamental actions used to build up a mission
plan. Our target flight disciplines have been
Extravehicular Activity (EVA) and Power, Heat and Light
Control (PHALCON). The two disciplines often work
together because spacewalks usually entail the installation
or removal of power equipment around the International
Space Station (ISS). (Bonasso & Boddy 2009) details the
results of our first year efforts in both "chunking" large
EVA and PHALCON procedures into primitives for
planning as well as developing PRL representations for
time, resources, preconditions and effects that can easily
translate into standard planning languages, our target being
ANML (Smith & Cushing 2008).
 A second major research goal is to design an interaction
scheme as an addition to PRIDE that will elicit these
planning data from the EVA and PHALCON flight
controllers, the same experts who developed the PRL
procedures. These subject matter experts have little or no
understanding of automated planning technology. This
paper describes our initial approach to obtaining from these
experts planning information sufficient to be used by
automated planners.

Goal versus Action Decomposition
Much of the activity planning done by PHALCONs and
virtually all done by EVA flight controllers lends itself to
Hierarchical Task Net (HTN) planning. Standard HTN
decomposes a task into actions, but some planners, e.g.,
SIPE (Wilkins & Myers 1998) and AP (Applegate et al
1990), a planner we’ve used for several NASA
applications, use goal decomposition. To illustrate,
consider an EVA task to retrieve an external light known
as a Crew and Equipment Translation Aid light, or CETA-
light. A stripped down action description would be:

5

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Define-action: retrieve-light
 Parameters: ev – crew, light – CETA-light
 Variables: bag – ORU-bag, light-loc – location
 Expansion:
 Sequence
 Pick-up (ev, bag)
 Translate-by-handrail (ev, light-loc)
 Extract-item-to-bag (ev, light, bag)

Basically, the crewmember gets the orbital replacement
unit (ORU) bag, travels to the light location and unbolts
and stores the light in the bag.
 A plan using the above definition will always have three
sub-actions. So the first action will still be planned even if
the conditions of the initial situation include the fact that
the crewmember already possesses the bag.
 A goal-decomposition of the above expansion might be:

Expansion:
 Sequence
 Possessed-by (bag, ev)
 Located (ev, light-loc)
 Extracted-into-bag (ev, light, bag)

This form asks the planner to find actions that will bring
about the goals (states) in the order specified. However, if
any goal already holds, no action need be planned. So if
the crewmember already possesses the bag at the outset,
only actions for locating the crewmember and getting the
light in the bag will appear in the plan. Additionally, a
goal decomposition does not specify what action to take to
bring about a desired goal, so, in the above example, any
action that will position the crew member at the light
location can be used, like traveling on a CETA cart or on
the space station robotic arm. In essence, an expansion of
goals is a template for many action decompositions. In
practice there are always actions whose goal/state/intent is
just that the action be successfully completed, which is the
case for extract-item-to-bag.
 While our design favors goal decomposition, our
approach to building an interactive aid to elicit planning
information will produce a representation from which
either or both action and goal decompositions can be
derived.

The Interactive Paradigm
We now describe a query-response flow of interaction in
PRIDE to obtain the planning information needed to
construct complete action descriptions, including actions
with decompositions. We assume in this design that all the
executable level actions – called procedures – have been
defined in files with PRL representations. We also assume
a domain ontology is available to the PRIDE system.
Obtaining those is a non-trivial effort – we spent a year
constructing these for our domain. The examples below
are taken from our models of the EVA domain.

Goal Representation
First we analyzed the primitive actions/procedures to
develop a set of domain relations that can serve as goals or
actions (this set will need to be expanded as users
determine there are other relations that should be
modeled). Here are examples of a goal and an action
relation:

Relation:
 Name: located
 Type: fluent
 Function?: yes
 Args:
 object – thing
 location – geographicarea
 Verb-form: "locate object at location"
 Prefix-form: "object is at location"

Relation:
 Name: extract-item-to-bag
 Type: action
 Function?: no
 Args:
 crew - agent
 object - station-object
 bag - ORU-bag
 Verb-form: "crew extract object to bag"
 Prefix-form: "crew has extracted object to bag"

 The type field is used to distinguish goals that can have
a fluent form and those that are purely actions, that is, there
is no corresponding state condition that could be used as a
goal. The function field allows planners to take advantage
of single-value fluents. For example, rather than

Variables: loc1 – location, crew1 crew 2 - agent
Conditions: located(crew1, loc1)
 located(crew2, loc1)

one can write:

Variables: crew1 crew 2 - agent
Conditions: located(crew1) = located(crew2)

 The prefix forms are used to display the relation to the
user as either effects or conditions; the verb form, as
actions in a decomposition (see Building Decompositions
below).

Obtain the Action
A subset of the relations described above corresponds to
the PRL procedures assumed to exist for this endeavor.
PRIDE will derive the action name as well as the intent of
the action from this set. For this example we'll be using the
procedures known as pick-up, travel-by-
handrail, travel-by-SSRMS, and extract-
item-to-bag.

6

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

So PRIDE will first direct the user to select the procedure
to which planning information is to be added. Our user
selects extract-item-to-bag and the template
shown in Figure 1 appears.

Figure 1 Action Template
 This is a two-step procedure, written in PRL, wherein
the crewmember unbolts the item with a power grip tool
and stows it in an ORU bag.

Obtain the Intent
Next PRIDE directs the user: Select a goal that is the
intent of this action. The user selects from the list of
relations described in the section on goal representation
above and presented to the user in their prefix form. Our
user selects "crew has extracted object to bag" and the
template updates as in Figure 2:

Figure 2 Action Template with Intent

 When the relation is selected, PRIDE uses the type
information for the relation’s arguments to fill in the
Agents and Parameters fields. Instances of parameters are
constructed from the argument names. The agents are
called out separately from the parameters so that other non-

planning applications can use that information from the
final result.

Determine Needed Tools
Another source of parameters will involve tools used in the
procedure. So the user is now asked: Are any tools needed
for this procedure? A taxonomy of the tools in the EVA
domain are presented to the user as shown in Figure 3. The

Figure 3 Tool Taxonomy (with instances in lower case)

user selects a power grip tool with a precision ratchet,
which shows up as pgt1 in the parameters.

Obtain the Decomposition
If this were a new action, the user would be asked at this
point to define the decomposition. Since the current action
is a primitive, PRIDE will not query for a decomposition
(but see Building Decompositions below).

Obtain the Preconditions
Rather than asking the user an open-ended question like,

Figure 4 Action Template with Tools and Conditions

What conditions must be true for this procedure to be
applicable?, we use a series of "wizard" questions keyed
on common conditions such as location, possession and
containment. For possession, PRIDE assumes the crew

7

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

will be the default possessor and so asks, Should crew1
possess any items?, and the user selects from a pop-up
menu of the parameters. In this case, user selects bag1 and
the pgt1. PRIDE then uses the relational form of
possessed-by to construct the appropriate preconditions.
 Similarly, PRIDE will ask if any of the crew and/or
parameters need to be co-located. In this case, crew1
needs to be at the same place as object1. The same process
is used for containment, but we will illustrate that in the
effects query below. The resulting template is shown in
Figure 4.
 As this is a work in progress, we are for now assuming

Figure 5 Focusing parameters with a type pull-down menu

all conditions are pre-conditions until we work out how to
elicit temporal information from the user or develop some
reasonable intelligent "wizard" questions to obtain it.

Focus the Parameters
PRIDE then tells the user, Use the type drop-down menus
to adjust the type of any parameter to be more specific. A
drop-down list under each parameter's type in the template
contains all the subtypes for that parameter. The user
activates the drop-down for station-object and selects the
subtype CETA-light, as in Figure 5.

Obtain Side Effects
Again, rather than asking the user an open-ended question
like, What other effects will be true at the end of this
procedure?, we'll again use a the wizard approach and ask
a series of questions keyed on common conditions such as
location, possession and containment.
 In this example, PRIDE uses the fact that there is a
container and an object to ask the question, At the
conclusion of this action will bag1 contain an item?, and
gives a list of parameters less any containers. The user
knows that the extracted item will be put in the bag so she
checks object1. PRIDE uses the containment relation and
the selected parameters to construct the effect as in Figure
6.

Figure 6 Action Template with Side Effect

Establish Duration
The user is now asked: How long in minutes will this
procedure take? The user can specify an integer amount of
minutes, in this case, 12, or she can specify a computation
(see the translate-by-handrail action below).

Provide a Text Description
Finally, the user will be asked to provide a description of

Figure 7 Completed Action Template

the action in free-form English text. Our user enters,
"Unbolt the CETA light and place in bag." The final action
is shown in Figure 7.

Internal Representation
The main objective of this interactive exercise is to
construct an internal representation that can be translated
into standard planning languages, such as PDDL and

8

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

ANML. Our proposed representation, the instance
resulting from the template above, is show below.

Action: extract-item-to-bag
Agents: crew1
Duration: 12
Parameters: crew1 – agent
 object1 - CETA-light
 bag1 - ORU-bag
Variables: loc1 - geographicarea
 pgt1 - power-grip-tool
Preconditions: operator: "=="
 var: loc1
 relation: located
 args: object1
 relation: located
 args: crew1
 operator: predicate
 relation: possessed-by
 args: bag1, crew1
 operator: predicate
 relation: possessed-by
 args: pgt1, crew1
Effects: relation: extract-item-to-bag
 args: crew1, object1, bag1
 relation: contained-by
 args: object1, bag1
Comment: "Unbolt ceta-light and put in bag"

 Note that any parameters not in the effects are moved to
the variables slot. Also, the operator slot allows the
definition of functional fluents. This internal
representation, along with the set of relations defined
earlier, holds sufficient information to generate the
following PDDL and ANML actions.

(define-durative-action extract-item-to-bag
 :parameters (?crew1 – crew
 ?object1 – ceta-light
 ?bag1 – oru-bag)
 :vars (?loc1 – geographicarea
 ?pgt1 – power-grip-tool)
 :duration 12.0
 :condition
 (and
 (at start (located ?crew1 ?loc1))
 (at start (located ?object1 ?loc1))
 (at start (possessed-by ?bag1 ?crew1))
 (at start (possessed-by ?pgt1 ?crew1)))
 :effect
 (and
 (at end
 (extract-item-to-bag
 ?crew1 ?object1 ?bag1))
 (at end (contained-by ?object1 ?bag1)))
 :comment "Unbolt ceta-light and put in
bag"

 PDDL 2.1 can’t take advantage of functional fluents. As
well, our current planner, AP, uses only goal

decomposition, so a goal form of the action, constructed by
the action name and parameters is included in the effects.

action Extract_item_to_bag
 (agent crew1, CETA_light object1,
 ORU_bag bag1)
{
 duration := 12
 [start]{located(object1) == located(crew1);
 possessed_by(bag1) == crew1;
 exists (power_grip_tool pgt1) {
 possessed_by(pgt1) ==
 crew1}
 };
 [end] contained_by(object1) := bag1
}

 ANML on the other hand, takes full advantage of
functional predicates and can use both goal and action
decompositions (e.g., see Building Decompositions
below).

Add More Actions
We continue the example by building three more
primitives, but we show only the final results (parameters
are in italics). The next action is pick-up, whose intent is
based on the possessed-by relation.

Action: pick-up
Agents: crew1
Duration: 5
Parameters: object1 is a station object,
 loc1 is a geographicarea
Conditions: crew1 is at loc1
 object1 is at loc1
Effects: crew1 has object1
Comment: "Crew untethers item and attaches
to suit."

 Next we develop a translation action based on the
located relation.

Action: travel-by-handrail
Duration: function: distance, path1
Agents: crew1
Parameters: loc1 is a geographicarea
 path1 is a path
 loc2 is a geographicarea
Conditions:
 the start location of path1 is loc2
 the end location of path1 is loc1
 crew1 is at loc2
Effects: crew1 is at loc1
Comment: "Crew uses handrails to go to
loc1."

9

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

 Here the duration is computed from the path using a
distance function. A list of such available domain
functions will reside in the PRIDE system.
 Next we develop a similar action based on the
crewmember being mounted on the space station remote
manipulator system (SSRMS).

Action: travel-by-SSRMS
Agents: crew1
Duration: function: GCA, loc2, loc1
Parameters: loc1 is a geographicarea
 arm1 is a robotic-arm
 loc2 is a geographicarea
Conditions: arm1 is located at loc2
 crew1 is on arm1
Effects: crew1 is at loc1
Comment: "Crew GCAs arm to loc1"

Here the duration is computed using the Ground Controlled
Approach (GCA) function with the start and end locations
as arguments.

Building Decompositions
There is no existing PRL procedure for a complex action;
by definition they are composed of an ordered set of other
complex actions or primitives. Our user wishes to build a
retrieve action wherein a crewmember obtains a bag,
travels to a worksite and extracts a CETA-light to the bag.
She will go through the steps as before, with certain
differences alluded to earlier because this is a new action
with a decomposition.
Action Name and Intent. The user will create an action
name for the new action and PRIDE will generate a
relation based on an assumption that at least one
crewmember is involved and at least one object. If there is
no object involved in the preconditions, effects or
decomposition, PRIDE will excise it from the final internal
representation. In this case the user types in "retrieve item"
and PRIDE generates

Relation:
 Name: retrieve-item
 Type: action
 Function?: no
 Args:
 crew - agent
 object - station-object
 Verb-form: "crew retrieve item object"
 Prefix-form: ""

and the action template that appears is:

Action: retrieve-item
Agents: crew1
Parameters: object1 is a station-object
Effects: crew1 retrieve item object1

Decompositions. As mentioned earlier, a new planning
action may include a decomposition, so PRIDE asks, Does
this action have a decomposition? In this case, the user
answers in the affirmative and PRIDE presents a list of
verb forms for existing relations. A subset of that list is
shown below:

1) "locate object at geographicarea "
2) "object possess another object"
3) "object contain another object"
4) "crew extract CETA-light to bag"

The user selects 2) and 1), focusing object to crew, and 4),
which results in the following template:

Action: retrieve-item
Agents: crew1
Duration: derived
Parameters: object1 is a CETA-light
 loc1 is a geographicarea
 bag1 is an ORU-bag
Expansion: sequential
 crew1 possess bag1
 locate crew1 at loc1
 crew1 extract object1 to bag1
Effects: crew1 retrieve item object1

The default ordering is sequential but is associated with a
pull-down menu that includes unordered,
simultaneous and parallel.
 Note that the parameter object1 has been further
specified by the addition of the extract action where the
object type is a CETA-light. As well, parameters from the
actions other than object1 and crew1 are added to the
variables list. Finally, the duration is set to derived,
since it will be an accumulation of the durations of the
actions in the decomposition.
Tools. In this first pass at our design we do not query for
tools in a complex actions; the bottom-up approach to
building actions should cover the needed tools at the
primitive level.
Preconditions and Effects. In this first pass at our design
we do not allow side effects for a decomposition; the
bottom-up approach to building actions should cover the
needed effects at the primitive levels.
 For tasks with decompositions, the usual suspects for
preconditions – e.g., crew1 has bag1, are brought about
by the actions in the decomposition. But PRIDE can
reason about some aspects of this action and ask, Is loc1
the location of object1 or bag1? The user selects object1.
 After adding a text description the action is:

Action: retrieve-item
Agents: crew1
Duration: derived
Parameters: object1 is a CETA-light
 loc1 is a geographicarea
 bag1 is an ORU-bag

10

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Conditions: object1 is at loc1
Expansion: sequential
 crew1 possess bag1
 locate crew1 at loc1
 crew1 extract object1 to bag1
Effects: crew1 retrieve item object1
Comment: "crew gets bag, goes to loc and
extracts light."

Internal Representation. The internal representation for
the above complex action is:

Action: retrieve-item
Agents: crew1
Duration: derived
Parameters: crew1 – agent
 object1 - ceta-light
Variables: bag1 - oru-bag
 loc1 - geographicarea
Conditions: operator "==“
 var: loc1
 relation: located
 args: object1
Expansion:
 Order: sequential
 Tasks:
 relation: possessed-by
 args: bag1, crew1
 relation: located
 args: crew1, loc1
 relation: extract-item-to-bag
 args: crew1, object1, bag1
Effects: relation: "retrieve-item"
 args: crew1, object1
Comment: "Crew gets bag, goes to loc and
extracts light."

Here are the resulting ANML and PDDL actions.

action Retrieve_item (agent crew1,

ceta_light object1,
oru_bag bag1)

[duration]
{location current_location :=

located(object1);

[all]contains
 ordered(ach_possessed_by(bag1,crew1),

 ach_located(crew1,current_location),
extract_item_to_bag(crew1,object1,bag1

))
}

The first two items in the expansion are goals. ANML
uses an achieve action for each goal, e.g.,
Action ach_possessed_by(station_object item,
crew agent)[duration]

{

[start] possessed_by(item, agent) == TRUE ||

{[start] possessed_by(item, agent) == FALSE;

 [end] possessed_by(item, agent) == TRUE}}

}
that can be interpreted as: if the state doesn't hold at the
start, find an action that will bring it about.
 PDDL uses the goal form for all the actions in the
decomposition:

(define-durative-action retrieve-item
 :parameters (?crew1 – crew
 ?object1 – ceta-light))
 :vars (?bag1 – oru-bag
 ?loc1 – geographicarea)
 :condition (at start (located ?object1
 ?loc1))
 :expansion
 (sequential
 (possessed-by ?bag1 ?crew1)
 (located ?crew1 ?loc1)
 (extract-item-to-bag ?crew1 ?object1
 ?bag1)
:effect (at end (retrieve-item ?crew1
 ?object1))
:comment "crew gets bag, goes to loc and
extracts light."

Resulting Plans
For planning, the PDDL or ANML actions are selected as
tasks to be planned. So the user could, for example, ask
the planner to plan bob retrieve ceta-light1 and a
resulting plan might be:

sequence
 bob pick-up medium-oru-bag2
 bob travel-by-handrail to ceta-light1-loc
 bob extract ceta-light1 to medium-oru-bag2

Given an initial situation where Bob already possessed
an ORU-bag, however, the plan would be:

sequence
 bob travel-by-handrail to ceta-light1-loc
 bob extract ceta-light1 to medium-oru-bag1

Given a starting situation where Bob possessed an ORU
bag and was positioned on the SSRMS, the plan would be:

sequence
 bob travel-by-SSRMS to ceta-light1-loc
 bob extract ceta-light1 to medium-oru-bag1

Thus, the decompositions serve as templates of several
different action combinations that could bring about the
top-level goal.

11

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Relation to Other Work
The bulk of the efforts in knowledge engineering for
planning deal with AI programmers eliciting planning
information from domain experts, and then using KE aids
to model and validate this information. Examples are
(Fernández et al 2004) and (Simpson 2007). The effort in
this paper is aimed at developing planning actions from an
existing set of executable procedures, by asking the
procedure authors – non-AI-programmers – leading
questions about the procedures. Our hope is that, through a
set of focused questions to these non-AI users, we can
obtain planning actions that can be used to generate valid,
though possibly inefficient plans.
 Like our work here, related KE efforts target standard
planning languages like PDDL, NDDL and OCL. Besides
PDDL, we have selected the ANML planning language,
because it is based on strong notions of action and state,
uses a variable/value model, supports rich temporal
constraints (Smith & Cushing 2008 mention ongoing
development of an ANML to NDDL translator), and
provides simple, convenient idioms for expressing the most
common forms of action conditions, effects, and resource
usage. The language supports both generative and HTN
planning models in a uniform framework and has a clear,
well-defined semantics.
 (Boddy and Bonasso 2010) is a companion paper that
discusses the semantics of ANML including goal versus
action decompositions.

Summary and Future Work
With the interactive paradigm described in this paper, we
believe we can enable non-AI programmers to construct
primitive and complex actions from existing procedures
that can be used by AI planners to generate executable
plans. Our design favors goal-based HTNs as templates
for multiple methods of bringing about top-level goals.
We are in the process of coding an interactive plug-in to
our PRIDE system that will execute this paradigm.
 What we've reported on here is of course the tip of the
iceberg. Our approach using "wizard" questions will
quickly become too restrictive as our domain models
become more complicated. So, allowing the user to break
out of the restricted question set and manage the action
templates directly will involve the development of many
more checks and balances to help the user avoid
inadvertent errors.
 And as with all KE for planning efforts, the planning
models developed by this interactive paradigm must be
validated. We envision running our AP planner endowed
with the PRIDE-developed action set, on a set of situations
to obtain valid plans. We then need to develop schemes
for failure diagnosis and feeding back the results of that
diagnosis to the authoring system when the planner cannot
find valid plans. Initially, we will construct a single thread

of that closed loop, concentrating on one or two types of
authoring errors, using our existing planning aid (Bonasso
et al 2009).

References
Applegate, C., C. Elsaesser, and J. Sanborn. 1990. An
Architecture for Adversarial Planning. IEEE Transactions
on Systems, Man, and Cybernetics, 20(1): p. 186-194.

Bedrax-Weiss, T., et al., 2005. EUROPA2: user and
contributor guide, NASA Ames Research Center.

Boddy, Mark and Bonasso, Pete. 2010. Planning for
Human Execution of Procedures Using ANML. In ICAPS
2010 Scheduling and Planning Applications Workshop
(SPARK). Toronto, Canada.

Bonasso, Pete, Boddy, Mark, Kortenkamp, D. 2009.
Enhancing NASA's Procedure Representation Language to
Support Planning Operations. In Proceedings of IWPSS09,
Pasadena, CA.

Chien, S., et al. Autonomous Science on the Earth
Observer One Mission. In i-SAIRAS 2003. 2003. Nara,
Japan.

Frank, Jeremy. 2009. Automaton for Operations.
http://ti.arc.nasa.gov/news/a4o-demo-for-hdu/

Simpson, R. M. 2007. Structural Domain Definition using
GIPO IV. The Knowledge Engineering Review, 22, 117-
134. Cambridge University Press

Susana Fernández, Daniel Borrajo, Raquel Fuentetaja, Juan
D. Arias and Manuela Veloso. 2004. PLTOOL: A
Knowledge Engineering Tool for Planning and Learning.
The Knowledge Engineering Review, Vol. 00:0, 1–24.
Cambridge University Press

Kortenkamp, D., R.P. Bonasso, and D. Schreckenghost.
2007. Developing and Executing Goal-Based, Adjustably
Autonomous Procedures,. in AIAA InfoTech@Aerospace
Conference.

Smith, D.E. and W. Cushing. 2008. The ANML Language,
in iSAIRAS. Los Angeles, CA.

V. Verma, A. Jónsson, C. Pasareanu, and M. Iatauro,
Universal Executive and PLEXIL: Engine and Language
for Robust Spacecraft Control and Operations, American
Institute of Aeronautics and Astronautics Space 2006
Conference.

Wilkins, D. and Myers, K. 1998. A Multi-agent Planning
Architecture, in Artificial Intelligence Planning Systems,
Pittsburg, PA.

12

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

How Hard is Verifying Flexible Temporal Plans for the Remote Space Agent?

A. Cesta† and A. Finzi‡ and S. Fratini† and A. Orlandini† and E. Tronci§
† ISTC-CNR, Via S.Martino della Battaglia 44, I-00185 Rome, Italy
‡ DSF “Federico II” University, Via Cinthia, I-80126 Naples, Italy

§ DI “La Sapienza” University, Via Salaria 198, I-00198 Rome, Italy

Abstract

Timeline-based planners have been shown quite successful in
addressing real world problems. Nevertheless they represent
a niche technology in AI P&S research as an application syn-
thesis with such techniques is still considered a sort of “black
art”. Our current work aims at both creating a rational refer-
ence architecture for timeline-based planning and scheduling
and developing a knowledge engineering environment around
such problem solving tool. In particular we are integrating
verification tools in such engineering environment to enhance
typical capabilities of a constraint-based planner. In this pa-
per we present recent results on the connection between plan
generation and execution from a particular perspective: the
static verification of plans before their execution. In particu-
lar, we present a verification process suitable for a timeline-
based planner and show how a temporally flexible plan verifi-
cation problem can be cast as model-checking on timed game
automata. We here discuss the effectiveness of the proposed
approach in a thorough experimental analysis based on a re-
alistic domain called “The Remote Space Agent”.

Introduction
In the past, several planning systems were endowed with
development environments to facilitate application design
(e.g., O-PLAN (Tate, Drabble, and Kirby 1994)). More re-
cent examples of software development environments are
EUROPA (EUROPA 2008) and ASPEN (Sherwood et al.
2000). Such environments can be enriched in several di-
rections. In a recent work (Cesta et al. 2010b), these au-
thors have envisaged the synthesis of knowledge engineer-
ing environments in which constraint-based and validation
and verification techniques concur in creating an enhanced
software environment for P&S. In particular, we are working
on verification and validation methods for timeline-based
planning investigating the use of model checking techniques
for verifying properties of specific planning software appli-
cations.

An important problem in timeline-based planning as used
in (Muscettola 1994; EUROPA 2008; Sherwood et al. 2000)
is the connection with plan execution which is instrumental
in several challenging real domain (e.g., the aspect is rel-
evant for both autonomy in space and robotics). Broadly
speaking such architectures return an envelope of potential
solutions in form of a flexible plan which is commonly ac-
cepted to be less brittle of a single plan when coping with

execution. But the general formal properties of such a repre-
sentation are far from being statically defined. Some aspects
of such plans have been studied by working on the temporal
network which is underlying the constraint based plan rep-
resentation often used by such systems – see for example
(Vidal and Fargier 1999; Morris and Muscettola 2005). We
have addressed the more general question of verifying flex-
ible plans working on the more abstract plan view as set of
timelines with formal tools like model checkers.

These authors have been investigating one aspect which
we consider as missing: the interconnection between
timeline-based planning and standard techniques for formal
validation and verification (V&V). The broad aim here is the
one of building a powerful environment for knowledge engi-
neering (Cesta et al. 2010b) and also that of exploring prop-
erties that concern temporal plans and their execution (Cesta
et al. 2009a; 2009b). In particular, (Cesta et al. 2009a) pro-
vides a feasibility study for the approach, while, in (Cesta et
al. 2009b), some formal properties are further investigated.
In this paper we mainly address a limitation of (Cesta et al.
2009b): the fact that experiments were very preliminary.

Here, that work is carried on by: (a) introducing a bench-
mark problem which is realistic and rich enough to allow
experiments along different directions; (b) presenting a com-
plete experimental analysis considering incrementally com-
plex scenarios and configurations in the benchmark domain.
The collected results show that the approach based on model
checking can be effective in practice. Indeed, despite the in-
creasing complexity of the verification tests, the verifier per-
formances remain acceptable for static analysis in a knowl-
edge engineering environment.

Preliminaries

This section shortly present the two basic ingredients
we combine in our knowledge engineering environment:
timeline-based planning and timed game automata. It is
worth mentioning that in (Abdedaim et al. 2007) the same
ingredients are put together for a different purpose than ours,
namely the mapping from temporal constraint-based plan-
ning problems into UPPAAL-TIGA game-reachability prob-
lems.

13

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Timeline-Based Planning and Execution
Timeline-based planning is an approach to temporal plan-
ning which has been applied in the solution of several real
world problems – e.g., (Muscettola 1994). The approach
pursues a general idea that planning and scheduling consist
in the synthesis of desired temporal behavior for complex
physical systems. In this respect, the set of features of a
domain that needs control are modeled as a set of tempo-
ral functions whose values over a time horizon have to be
planned for. Such functions are synthesized during prob-
lem solving by posting planning decisions. The evolution of
a single temporal feature over a time horizon is called the
timeline of that feature.

In the rest of this paper, the time varying features are
called multi-valued state variables as in (Muscettola 1994).
As in classical control theory, the evolution of controlled
features are described by some causal laws which determine
legal temporal evolution of timelines. Such causal laws are
specified for the state variables in a domain specification
which specifies the operational constraints in a given do-
main. In this context, the task of a planner is to find a se-
quence of control decisions that bring the variables into a
final desired set of evolutions always satisfying the domain
specification.

We assume that the temporal features we want to repre-
sent as state-variables have a finite set of possible values
assumed over temporal intervals. The temporal evolutions
are sequences of operational states – i.e., stepwise constant
functions of time. Operational constraints specify which
value transitions are allowed, the duration of each valued
interval (i.e., how long a given operational status can be
maintained) and synchronization constraints between differ-
ent state variables.

More formally, a state variable is defined by a tuple
〈V , T ,D〉 where: (a) V = {v1, . . . , vn} is a finite set of
values; (b) T : V → 2V is the value transition function;
(c) D : V → N × N is the value duration function, i.e. a
function that specifies the allowed duration of values in V
(as an interval [lb, ub]). (b) and (c) specify the operational
constraints on the values in (a).

In this type of planning, a planning domain is defined as
a set of state variables {SV1, . . . ,SVn}. They cannot be
considered as reciprocally decoupled but a set of additional
relations exist, called synchronizations, modeling the exist-
ing temporal and causal constraints among the values taken
by different state variable timelines (i.e., patterns of legal
occurrences of the operational states across the timelines).
More formally, a synchronization has the form

〈T L, v〉 −→ 〈{〈T L′1, v
′
1〉 . . . , 〈T L

′
n, v′n〉},R〉

where: T L is the reference timeline; v is a value
on T L which makes the synchronization applicable;
{〈T L′1, v

′
1〉 . . . , 〈T L

′
n, v′n〉} is a set of target timelines on

which some values v′j must hold; and R is a set of rela-
tions which bind temporal occurrence of the reference value
v with temporal occurrences of the target values.

Timeline based planning. The temporal evolutions of a
state variable will be described by means of timelines, that is

a sequence of state variable values, a set of ordered transition
points between the values and a set of distance constraints
between transition points. When the transition points are
bounded by the planning process (lower and upper bounds
are given for them) instead of being exactly specified, as it
happens in case of a least commitment solving approach for
instance, we refer to the timeline as time flexible and to the
plan resulting from a set of flexible timeline as a flexible
plan.

It is worth mentioning that planning goals are expressed
as desiderata of values in temporal intervals and the task
of the planner is to build timelines that describe valid se-
quences of values that achieve the desiderata.

A plan is defined as a set of timelines {T L1, . . . , T Ln}
over the same interval for each state variable. The process of
solution extraction from a plan is the process of computing
(if exists) a valid and completely specified set of timelines
from a given set of time-flexible timelines. A solution is
valid with respect to a domain theory if every temporal oc-
currence of a reference value implies that the related target
values hold on target timelines presenting temporal intervals
that satisfy the expected relations.

Plan execution. During plan execution the plan is under re-
sponsibility to an executive program that forces value tran-
sitions over timeline. A well known problem with execution
is that not all the value transitions are under responsibility
of the executive but event exists that are under control of
nature. As a consequence, an executive cannot completely
predict the behavior of the controlled physical system be-
cause the duration of certain processes or the timing of ex-
ogenous events is outside of its control. In such cases, the
values for the state variables that are under the executive
scope should be chosen so that they do not constrain uncon-
trollable events. This is the controllability problem defined,
for example, in (Vidal and Fargier 1999) where contingent
and executable processes are distinguished. The contingent
processes are not controllable, hence with uncertain dura-
tions, instead the executable processes are started and ended
by the executive system. Controllability issues underlying
a plan representation have been formalized and investigated
for the Simple Temporal Problems with Uncertainty (STPU)
representation in (Vidal and Fargier 1999) where basic for-
mal notions are given for dynamic controllability (see also
(Morris and Muscettola 2005)). In the timeline-based frame-
work, we introduce the same controllability concept defined
on STNU as follows. Given a plan as a set of flexible time-
lines PL = {T L1, . . . , T Ln}, we call projection the set of
flexible timelines PL′ = {T L′1, . . . , T L′n} derived from
PL setting to a fixed value the temporal occurrence of each
uncontrollable timepoint. Considering N as the set of con-
trollable flexible timepoints in PL, a schedule T is a map-
ping T : N → N where T (x) is called time of timepoint x.
A schedule is consistent if all value durations and synchro-
nizations are satisfied in PL. The history of a timepoint x
w.r.t. a schedule T , denoted by T {≺ x}, specifies the time
of all uncontrollable timepoints that occur prior to x. An ex-
ecution strategy S is a mapping S : P → T where P is the
set of projections and T is the set of schedules. An execution

14

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

strategy S is viable if S(p) (denoted also Sp) is consistent
for each projection p. Thus, a flexible plan PL is dynami-
cally controllable if there exists a viable execution strategy
S such that Sp1{≺ x} = Sp2{≺ x} ⇒ Sp1(x) = Sp2(x)
for each controllable timepoint x and projections p1 and p2.

Timed Game Automata
Timed game automata (TGA) model have been introduced
in (Maler, Pnueli, and Sifakis 1995) to model control prob-
lems on timed systems. In (Cassez et al. 2005), definitions
related to TGA are presented in depth. Here, we briefly re-
call some of them that we shall use in the rest of the paper.

Definition 1 A Timed Game Automaton (TGA) is a tuple
A = (Q, q0, Act, X, Inv, E) where: Q is a finite set of lo-
cations; q0 ∈ Q is the initial location; Act is a finite set
of actions split in two disjoint sets, Actc the set of control-
lable actions and Actu the set of uncontrollable actions; X
is a finite set of a nonnegative, real-valued variables called
clocks; Inv : Q → B(X) is a function associating to each
location q ∈ Q a constraint Inv(q) (the invariant of q); E
⊆ Q×B(X)× Act× 2X ×Q is a finite set of transitions.
Where B(X) is the set of constraints in the form x ∼ c,
where c ∈ Z , x, y ∈ X , and ∼∈ {<,≤,≥, >}. We also

write q
g,a,Y
→ q′ ∈ E for (q, g, a, Y , q′) ∈ E.

A state of a TGA is a pair (q, v) ∈ Q×RX
≥0

that consists
of a discrete part and a valuation of the clocks (i.e., a value
assignment for each clock in X). An admissible state for a
A is a state (q, v) s.t. v |= Inv(q). From a state (q, v) a TGA
can either let time progress or do a discrete transition and
reach a new state.

A time transition for A is 4-tuple (q, v)
δ
→ (q, v′) where

(q, v) ∈ S, (q, v′) ∈ S, δ ∈ R≥0, v′ = v+δ, v |= Inv(q) and
v′ |= Inv(q). That is, in a time transition a TGA does not
change location, but only its clock values. Note that all clock
variables are incremented by the same amount δ in valuation
v′. This is why variables in X are named clocks. Accord-
ingly, δ models the elapsed time during the time transition.

A discrete transition for A is 5-tuple (q, v)
a
→ (q′, v′)

where (q, v) ∈ S, (q′, v′) ∈ S, a ∈ Act and there ex-

ists a transition q
g,a,Y
→ q′ ∈ E s.t. v |= g, v′ = v[Y] and

v′ |= Inv(q′). In other words, there is a discrete transition
(labeled with a) from state (q, v) to state (q′, v′) if the clock
values (valuation v) satisfy the transition guard g and the
clock values after resetting the clocks in Y (valuation v′)
satisfy the invariant of location q′. Note that an admissible
transition always leads to an admissible state and that only
clocks in Y (reset clocks) change their value (namely, to 0).

A run of a TGA A is a finite or infinite sequence of al-
ternating time and discrete transitions of A. We denote
with Runs(A, (q, v)) the set of runs of A starting from state
(q, v) and write Runs(A) for Runs(A, (q,�0)). If ρ is a fi-
nite run, we denote with last(ρ) the last state of run ρ and
with Duration(ρ) the sum of the elapsed times of all time
transitions in ρ.

A network of TGA (nTGA) is a finite set of TGA evolv-
ing in parallel with a CSS style semantics for parallelism.
Namely, at any time, only one TGA in the network can

change location, unless a synchronization on labels takes
place. In the latter case, the two automata synchronizing
on the same label move together. Note that time does not
elapse during synchronizations.

Given a TGA A and three symbolic configurations Init,
Safe, and Goal, the reachability control problem or reach-
ability game RG(A, Init, Safe, Goal) consists in finding a
strategy f such that A starting from Init and supervised by
f generates a winning run that stays in Safe and enforces
Goal.

A strategy is a partial mapping f from the set of runs ofA
starting from Init to the set Actc∪{λ} (λ is a special symbol
that denotes ”do nothing and just wait”). For a finite run ρ,
the strategy f(ρ) may say (1) no way to win if f(ρ) is unde-
fined, (2) do nothing, just wait in the last configuration ρ if
f(ρ) = λ, or (3) execute the discrete, controllable transition
labeled by l in the last configuration of ρ if f(ρ) = l.

Using nTGA to model timeline-based planning
specifications

Timed Game Automata are particularly suitable for model-
ing controllability problems because the uncontrollable ac-
tivities can be modeled as adversary moves. Following this
approach, we perform flexible timeline-based plan verifica-
tion by solving a Reachability Game using UPPAAL-TIGA.
To this end, this section describes how a flexible timeline-
based plan, state variables and domain theory can be mod-
eled using nTGA. Our strategy is the following. First, time-
lines and state variables are mapped to TGA. Second, we
model the flexible plan view of the world by partitioning
state variables/timelines into two classes: controllable and
uncontrollable. Finally, an Observer TGA is introduced in
order to check for value constraints violations as well as syn-
chronizations violations.

Modeling a Planning Domain as an nTGA. Let PD =
{SV1, . . .SVn} be the set of state variables defining our
planning domain. We will model each SV ∈ PD with a
TGA ASV = (QSV , q0, ActSV , XSV , InvSV , ESV). Then
the set SV = {ASV1

, ...,ASVn
} represents our planning do-

main PD as an nTGA.
The TGA ASV is defined as follows. The set QSV of

locations of ASV is just the set V of values of SV . The ini-
tial state q0, of ASV is the initial value in the timeline of
SV . The set of clocks XSV of ASV consists of just one
local clock: csv . The set ActSV of actions of ASV con-
sists of the values V of SV . If SV is controllable then the
actions in ActSV are controllable (i.e., ActSV = ActcSV),
otherwise they are uncontrollable (i.e., ActSV = ActuSV).
Location invariants InvSV for ASV are defined as follows:
InvSV (v) := csv ≤ ub, where: v ∈ QSV = V and D(v)
= [lb, ub]. The set ESV of transitions of ASV consists of

transitions of the form v
g,v′

?,Y
→ v′, where: g = csv ≥ lb,

Y = {csv}, v ∈ QSV = V , D(v) = [lb, ub], v′ ∈ T (v).

Modeling a Flexible Plan as an nTGA. Let P =
{T L1, . . . , T Ln} be a flexible plan for our planning do-

15

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

main PD. We will model each T L ∈ P with a TGA
AT L = (QT L, q0, ActT L, XT L, InvT L, ET L). Then the
set Plan = {AT L1

, ...,AT Ln
} represents P as an nTGA.

The TGA AT L is defined as follows. The set QT L of lo-
cations of AT L consists of the value intervals (plan steps)
in T L along with a location lgoal modeling the fact that the
plan has been completed. Thus, QT L = T L ∪ {lgoal}. The
initial state q0, of AT L is the first value interval l0 in T L.
The set of clocks XT L ofAT L consists of just one element:
the plan clock cp. Let SV be the state variable correspond-
ing to the timeline T L under consideration. The set ActT L
of actions of AT L consists of the values of SV . If SV is
controllable then the actions in ActT L are controllable (i.e.,
ActT L = ActcT L), otherwise they are uncontrollable (i.e.,
ActT L = ActuT L). Location invariants InvT L for AT L are
defined as follows. For each l = [lb, ub] ∈ T L we define
InvT L(l) := cp ≤ ub. For the goal location lgoal the invari-
ant InvT L(lgoal) is identically true, modeling the fact that
once plan is completed we can stay there as long as we like.
The set ET L of transitions of AT L consists of intermedi-
ate and final transitions. An intermediate transitions has the

form l
g,v!,Y
→ l′, where: g = cp ≥ lb, Y = ∅ with l and

l′ consecutive time intervals in T L. A final transition has
the form q

∅,∅,∅
→ q′, where: q = lpl (pl is the plan length),

q′ = lgoal. Note how using state variable values as transi-
tions label we implement the synchronization between state
variables and planned timelines.

Modeling Synchronizations with an Observer TGA.
We model synchronization between SV and Plan with an
Observer, that is a TGA reporting an error when an illegal
transition occurs.

The observer TGA AObs = (QObs, q0, ActObs, XObs,
InvObs, EObs) is defined as follows.

The set of locations is QObs = {lok, lerr} modeling le-
gal (lok) and illegal (lerr) executions. The initial location
q0 is lok. The set of actions is ActObs = {afail}. The
set of clocks is XObs = {cp}. There are no invariants,
that is InvObs(l) returns always the empty constraint. This
models the fact that AObs can stay in any location as long
as it likes. The set EObs consists of two kind of uncon-
trollable transitions: value transitions and sync transitions.
Let sp ∈ T L be a plan step and vp ∈ SV its associated

planned value. A value transition has the form lok

g,afail,∅
→

lerr, where: g = T Lsp
∧ ¬SVvp

. Let 〈T L, v〉 −→
〈{T L′1, . . . , T L

′
n}, {v

′
1, . . . , v

′
n} ,R〉 be a synchronization.

A sync transition has the form lok

g,afail,∅
→ lerr, where:

g = ¬R(T Lv, T L
′

1v
′

1

, . . . , T L
′

nv
′

n
). Note how, for each

possible cause of error (illegal value occurrence or synchro-
nization violation), a suitable transition is defined, forcing
our Observer TGA to move to the error location which, once
reached, cannot be left.

The nTGA PL composed by the set of automata PL =
SV ∪Plan∪{AObs} models Flexible plan, State Variables
and Domain Theory descriptions.

Time flexible plan verification
Given the nTGAPL defined above, we can define a Reacha-
bility Game that ensures, once successfully solved, the plan
validity with respect to all the domain constraints and dy-
namic controllability.

nTGA and Flexible Plans
In (Cesta et al. 2009b), we demonstrated by construction
that we obtain a one-to-one mapping between flexible be-
haviors, defined by P , and automata behaviors, defined by
PL, with the Observer automaton holding the error location
if either an illegal value occurs or a synchronization is vio-
lated. More specifically, it is possible to show that the set
of automata Plan = {AT L1

, ...,AT Ln
} captures all and

only the possible evolutions enabled by the flexible plan P ,
that is: each automatonAT Li

describes the sequence of val-
ues for the T Li timeline within the planning horizonH; by
construction, each automata in SV = {ASV1

, ...,ASVn
} rep-

resent the associated state variable in one-to-one correspon-
dence; finally, the Observer automaton checks for both val-
ues consistency (between planned timelines and state vari-
ables) and synchronizations satisfaction.

Plan Verification in UPPAAL-TIGA
Once we have represented flexible plans as nTGA, the plan
verification problem can be reduced to a Reachability Game.

For this purpose, we introduce a Reachability Game
RG(PL, Init, Safe, Goal) where Init represents the set of
initial locations, one for each automaton in PL, Safe =
{lok}, and Goal is for the set of goal locations, one for each
T Li in PL.

In order to solve RG(PL, Init, Safe, Goal), we use
UPPAAL-TIGA (Behrmann et al. 2007). This tool extends
UPPAAL (Larsen, Pettersson, and Yi 1997) providing a tool-
box for the specification, simulation, and verification of real-
time games. If there is no winning strategy, UPPAAL-TIGA
gives a counter strategy for the opponent (environment) to
make the controller lose. Given a nTGA, a set of goal states
(win) and/or a set of bad states (lose), four types of winning
conditions can be issued (Behrmann et al. 2007). Then,
to solve the reachability game, we ask UPPAAL-TIGA to
check the formula Φ = A [Safe U Goal] in PL. In fact,
this formula means that along all the possible paths, PL re-
mains in Safe states until Goal states are reached. Thus, if
the solver can verify the above property, then the flexible
temporal plan is valid (again, see (Cesta et al. 2009b) for a
formal account).

Whenever the flexible plan is not verified, UPPAAL-
TIGA produces an execution strategy showing one temporal
evolution that leads to a fault. Such a strategy can be ex-
ploited in order to understand whether the plan has some
weakness or flaws are present in the planning model. In
(Cesta et al. 2010b), the authors address this issue in a more
general way.

Dynamic Controllability
If there exists a winning strategy for the Reachability Game
RG, then the plan is also dynamically controllable. Indeed,

16

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

recalling the dynamic controllability definition for time-
lines introduced in the second section, we can notice that
each possible evolution of the uncontrollable automata cor-
responds to a timeline projection p. Each strategy/solution
for the RG corresponds to a consistent schedule T and a set
of strategy represents a viable execution strategy S. Thus,
the winning strategies produced by UPPAAL-TIGA repre-
sents a viable execution strategy S for the flexible plan P .
Furthermore, the use of forward algorithms (Behrmann et
al. 2007) guarantees that S is such that Sp1{≺ x} = Sp2{≺
x} ⇒ Sp1(x) = Sp2(x), for each controllable timepoint x
and projections p1 and p2. That is, the flexible plan is dy-
namically controllable.

A new benchmark domain
An aspect worth being addressed is the following: does the
method have any practical relevance? In this respect, we
have investigated the possibility of tailoring our method in
order to implement a realistic benchmark, collect a set of
experimental results and show its actual feasibility.

In this section, we present a case study that we use in our
experimental analysis. The domain is inspired by a Space
Mission Long Term Planning problem as described in (Cesta
et al. 2008; 2010a).

We consider a remote space agent (RSA) that operates
around a target planet. The RSA can either point to the
planet and use its instruments to produce scientific data or
point towards a communication station (Relay Satellite or
Earth) and communicate previously produced data. The
RSA is controlled by a planner and an executive system to
accomplish the required tasks (scientific observations, com-
munication, and maintenance activities). For each orbit fol-
lowed by the RSA around the planet, the operations are split
with respect to 3 orbital phases: (1) the pericentre (the or-
bital segment closest to the target planet); (2) the apocentre
(the orbital segment farthest from the planet); (3) the orbital
segments between the pericentre and apocentre. Around
pericentre, the agent should point toward the planet, thus
allowing observations of the planet surface (Science opera-
tions). Between pericentre and apocentre passages, the agent
should point to Earth for transmitting data. Communication
with Earth should occur within a ground-station availability
window. Ground-station visibility can either partially over-
lap or fully contain a pericentre passage. Maintenance op-
erations should occur around the apocentre passages. The
RSA is also endowed with a set of scientific instruments
or payloads (e.g., stereo cameras, altimeters, spectrometers,
etc.) whose activities are to be planned for during the peri-
centre phase taking into account physical constraints. In par-
ticular here we are assuming that instruments can be acti-
vated one at a time by following a fixed execution sequence
of operations: warm-up, process, turn-off. Additionally,
there are other constraints to be satisfied. Constraints on
uplink windows frequency and duration require four hours
uplink time for each 24 hours, and these uplink windows
must be as regular as possible, one every about 20 hours.
Apocentre slots for spacecraft maintenance windows must
be allocated between 2 and 5 orbits apart, and the mainte-
nance duration is of 90 minutes.

Timeline-based Specification. To obtain a timeline-based
specification of the domain we use: Planned State Variables
representing the timelines where there are activities under
the agent control (they are planned for by the agent); Exter-
nal State Variables, representing values imposed over time
which can only be observed

Figure 1: Value transitions for the planned state variables describ-
ing the Spacecraft Operative Mode (left) and any of the Instruments
(right) correct behavior.

Planned State Variables. A state variable Spacecraft Op-
erative Mode specifies the observation, communication, and
maintenance opportunities for the agent. In Figure 1-left,
we detail the values that can be taken by this state variable,
their durations, and the allowed value transitions. Additional
planned state variables, called Instrument-1..., Instrument-n,
are introduced to represent the scientific payloads. For each
variable Instrument-i we introduce four values: Warmup,
Process, Turnoff, and Idle (see Figure 1-right).

External State Variables. The Orbit Events state variable
(Figure 2, top) maintains the temporal occurrences of peri-
centres and apocentres represented by the values: PERI and
APO (they have fixed durations). The Ground Station Avail-
ability state variables (Figure 2, bottom) are a family of vari-
ables that maintain the visibility of various ground stations.
The allowed values for these state variables are either Avail-
able or Unavailable.

Synchronizations constraints. Any valid temporal plan
needs synchronizations among the planned timelines (see
Figure 2, middle) and the external timelines (represented as
dotted arrows in Figure 2). They represent how (a) science
operations must occur during pericentres, i.e., the Science
value must start and end during a Peri value; (b) mainte-
nance operations must occur in the same time interval as
apocentres, i.e., the Maint value is required to start and end
exactly when the Apo value starts and ends; (c) communica-
tions must occur during ground station visibility windows,
i.e., the Comm value must start and end during an Avail-
able value on any of the ground stations. As for scientific
instruments, we introduce the following constraints: (d) if
Instrument-i is not in Idle then the other instruments need to
be in Idle; (e) the Warmup is before Process which is before
Turnoff; (f) these activities are allowed only when Science is
active along the Operative Mode timeline.

Relaxed constraints. Besides synchronization constraints,
we need to take into account other constraints which cannot
be naturally represented in the planning model as structural
constraints, but rather treated as meta-level requirements to
be enforced by the planner heuristics and optimization meth-
ods. In our case study, we consider the following relaxed

17

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Figure 2: An example of complete plan for the Remote Space
Agent domain. The synchronizations among timelines are high-
lighted.

constraints: (g) Maint must be allocated between 2 and 5
orbits apart with duration of about 90 minutes (to be cen-
tered around the apocentre event); (h) science activities must
be maximized, i.e., during each pericentre phase a Science
event should occur.

Experimental evaluation
In this work, we demonstrate the feasibility of our approach.
In particular, in this section, we analyze the plan verification
performances with respect to temporal flexibility and execu-
tion controllability. In particular, we deploy our verifier in
different scenarios and execution contexts checking for dy-
namic controllability and relaxed constraints satisfaction.

More specifically, we analyze the performances of our
tool varying the following settings: State variables. Here,
we consider three possible configurations: the RSA en-
dowed with zero, one, or two scientific instruments. This
affects the number of state variables (and synchronization
constraints). Flexibility. For each scientific instrument activ-
ity (i.e., warm-up, process, turn-off), we set a minimal dura-
tion (i.e. about 2 minutes), but we allow temporal flexibility
on the activity termination, namely, the end of each activity
has a tolerance ranging from 5 to 10 seconds. E.g. if we set
5 seconds of flexibility, we introduce an uncertainty on the
activity terminations, for instance, the warm-up activity can
take from 120 to 125 seconds. This temporal interval rep-
resents the degree of temporal flexibility that we introduce
in the system. Horizon. We consider flexible plans with a
horizon length ranging from 3 to 10 mission days. Control-
lability. We consider four different execution contexts: 1)
all the instruments activities are controllable; 2) for each in-
strument the warm-up termination is not controllable; 3) for
each instrument, warm-up and process terminations are not
controllable; 4) for each instrument warm-up, process, and

turn-off are not controllable.
Note that the higher is the degree of flexibil-
ity/uncontrollability, the larger is the space of allowed
behaviors to be checked, thus, the harder is flexible plan
verification.

In these settings, we analyze the performance of our tool
considering the following issues: model generation, dy-
namic controllability checking, domain requirements check-
ing. We run our experiments on a Linux workstation en-
dowed with a 64-bit AMD Athlon CPU (3.5GHz) and 2GB
RAM. In the following we illustrate the collected empirical
results.

Model Generation. A first, preliminary, analysis con-
cerns the model generation process and the dimension of
the generated UPPAAL-TIGA specification. This analysis is
needed because the complexity of the generated UPPAAL-
TIGA models can affect the scalability of the overall ver-
ification method. In fact, for this purpose, we developed
a tool that implements the nTGA modeling procedure de-
scribed before (see Section ”‘Using nTga to model timeline-
based planning specifications”’) and automatically builds
the UPPAAL-TIGA model given the description of the plan-
ning domain and the flexible temporal plan to be checked.
Here, we want to assess the size of the generated model
and the generation time with respect to the dimension of the
planning domain and of the plan (state variables and plan
length). In our experimental setting, we consider domain
models with an incremental number of state variables (from
3 to 5) and plans with an incremental number of mission
days (from 3 to 10). For each possible configuration, we
consider the dimension of the generated model and the time
elapsed for the generation. For all these configurations, the
generation process is very fast and takes less than 200ms,
while the dimension of the generated model gradually grows
with respect to the dimension of the flexible plan (in terms
of number of timelines and plan length).

3 timelines 4 timelines 5 timelines
days kb nr. states kb nr. states kb nr. states

3 16 41 19 51 23 61
4 32 85 38 110 42 135
5 54 131 58 179 63 227
6 73 168 77 240 82 312
7 94 204 98 300 101 396
8 107 238 112 351 117 464
9 119 271 125 397 130 523

10 139 301 142 439 147 577

Figure 3: Size of the generated model (kb and number of states)
with respect to the plan length and number of timelines.

In conclusion, the process of model generation is fast and
the generated model grows linearly with the dimension of
the plan, therefore, here the encoding phase is not a critical
step.

Flexible Plan Verification against Fully Controllable Ex-
ecution. Here, we collect the time performances (CPU time)
of plan verification in different scenarios (changing the de-
gree of plan flexibility) and execution contexts (changing the
plan controllability).

Here, we analyze the plan verification performances in

18

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

checking dynamic controllability in the easiest condition of
controllability. Indeed, in this initial experimental setting,
we consider fully controllable plans assuming all the scien-
tific tasks to be controllable.

Full Controllability
days 0s flex 5s flex 10s flex

3 0,198 0,202 0,254
4 0,254 0,301 0,320
5 0,300 0,344 0,328
6 0,192 0,208 0,184
7 0,248 0,240 0,248
8 0,292 0,300 0,284
9 0,348 0,332 0,364
10 0,392 0,364 0,401

(a)

1 Uncontrollable Task
days 0s flex 5s flex 10s flex

3 0,189 0,165 0,193
4 0,227 0,234 0,238
5 0,276 0,296 0,264
6 0,172 0,160 0,168
7 0,212 0,220 0,208
8 0,268 0,248 0,252
9 0,308 0,336 0,336

10 0,356 0,364 0,379

(b)

2 Uncontrollable Tasks
days 0s flex 5s flex 10s flex

3 0,189 0,192 0,188
4 0,246 0,237 0,245
5 0,296 0,324 0,288
6 0,156 0,164 0,164
7 0,212 0,216 0,212
8 0,260 0,263 0,264
9 0,316 0,288 0,336
10 0,345 0,321 0,335

(c)

3 Uncontrollable Tasks
days 0s flex 5s flex 10s flex

3 0,198 0,221 0,212
4 0,267 0,283 0,267
5 0,304 0,288 0,288
6 0,188 0,172 0,176
7 0,212 0,208 0,220
8 0,252 0,236 0,248
9 0,312 0,300 0,332

10 0,367 0,353 0,379

(d)

Figure 4: Verification with one additional instrument varying flex-
ibility and controllability.

In Figure 4(a) and Figure 5(a), we illustrate the results gath-
ered in the case of one and two instruments, respectively,
considering the verifier performances under different plan
length and flexibility conditions. The results in Figure 4(a)
and Figure 5(a) show that an increment of temporal flexibil-
ity has a limited impact on the performances of the verifica-
tion tool. This is particularly evident in the case of a single
instrument, where the performances of the verification pro-
cess seems not affected by the degree of temporal flexibility
(Figures 4(a)). On the other hand, in the case of 2 scientific
instruments (Figures 4(b)), we can observe a smooth growth
of the verification time with respect to the allowed tempo-
ral flexibility. Of course, this is mainly due to the fact that
in this case the verification process is to check all the syn-
chronization constraints among the instruments, which are
not considered in the case of a single instrument. However,
even thought the increment of temporal flexibility enlarges
the number of possible behaviors to be checked, in the pres-
ence of fully controllable activities a single execution trace
is sufficient to show plan controllability, hence the verifica-
tion task is reduced to correct plan termination checking.

Flexible Plan Verification against Partially Controllable
Execution. In the following, we consider the verifier per-
formances in checking dynamic controllability in the pres-
ence of uncontrollable activities. Interestingly, also in this
setting the execution time for verification grows in a grad-
ual manner. In the case of a single scientific instrument, the
gathered results (see Figures 4b-c-d) are comparable with
the ones collected in the fully controllable case. Even when
we consider a setting where all the tasks are uncontrollable,
our verification tool can easily accomplish plan verification
for all the flexibility and plan length configurations (see Fig-
ure 4(d)). In the case of 2 instruments (hence, 5 timelines),
the increment of flexibility gradually increments the time

Full Controllability
days 0s flex 5s flex 10s flex

3 0,899 2,010 2,673
4 1,123 3,101 3,200
5 1,664 3,508 3,312
6 2,756 3,780 3,396
7 3,704 4,368 4,528
8 4,492 5,080 5,088
9 5,300 5,896 6,724

10 5,934 6,234 7,243

(a)

1 Uncontrollable Task
days 0s flex 5s flex 10s flex

3 1,784 2,998 3,021
4 2,132 3,156 3,103
5 2,784 3,280 3,248
6 2,892 3,252 3,312
7 3,664 4,384 4,500
8 4,232 5,096 5,212
9 5,492 6,492 6,716
10 6,357 7,093 7,732

(b)

2 Uncontrollable Tasks
days 0s flex 5s flex 10s flex

3 2,022 3,105 3,227
4 2,214 3,326 3,339
5 2,444 3,452 3,548
6 2,652 3,212 3,328
7 3,612 4,412 4,464
8 4,200 4,879 5,208
9 5,300 5,876 6,812

10 6,604 7,012 8,002

(c)

3 Uncontrollable Tasks
days 0s flex 5s flex 10s flex

3 2,243 3,143 3,004
4 2,527 3,340 3,122
5 2,880 3,528 3,052
6 2,628 3,404 3,704
7 3,604 4,252 4,284
8 4,212 4,668 4,98
9 5,176 6,088 6,384
10 6,392 7,478 8,244

(d)

Figure 5: Verification with two instruments changing both flexi-
bility and controllability.

needed by the verification tool to verify the plans (see Fig-
ures 5b-c-d). A similar increment can be observed when
we increase the number of uncontrollable activities. If we
keep constant the uncontrollable activities, the performances
trend appears similar to the one of the fully controllable case.
Nevertheless, even if we consider the worst case, i.e. all
the activities uncontrollable and maximal temporal flexibil-
ity, the performances of the UPPAAL-TIGA verification tool
are still very satisfactory: given flexible plans with horizon
length up to 10 mission days and 5 timelines, plan verifica-
tion can be successfully accomplished within few seconds
(see Figure 5(d)).

Flexible Plan Verification against Relaxed Domain Con-
straints. We also perform tests to verify also other domain-
dependent constraints, namely, the two relaxed constraints
on maintenance and science activities introduced in the pre-
vious section. In this experimental setting, we assume the
system endowed with 2 scientific instruments (5 timelines).
In Figure 6, we report the experimental results collected in-
creasing the degree of uncontrollability on the considered
flexible plans.
Changing the plan flexibility, the verifier presents perfor-
mances that are analogous to the ones reported in the pre-
vious case. Thus, the additional properties to be checked
provide a low additional overhead to the verification pro-
cess.

Conclusion
In our path to enhancing a knowledge engineering environ-
ment for timeline-based problem solving, we are investigat-
ing the integration of formal methods as a way of orthogonal
contribution to analyze properties of plans. In recent work
including the current one we are proposing the combined use
of timeline-based planning and standard techniques for for-
mal validation and verification. In particular, we have syn-
thesized a verification process suitable for a timeline-based
planner showing how a temporally flexible plan verification
problem can be cast as model-checking on timed game au-

19

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Figure 6: Experimental results collected validating flexible plans
varying flexibility and controllability in case study with two addi-
tional instruments.

tomata. Then, we have investigated the possibility of tai-
loring our method in order to implement a realistic bench-
mark, collect a set of experimental results and show its ac-
tual feasibility. The experimental results presented in this
paper demonstrate the feasibility of our method and the ef-
fectiveness of UPPAAL-TIGA in this setting. In fact, despite
the increasing complexity of the verification configurations,
the execution time gradually grows with the complexity of
the task. Furthermore, the concurrent increase of temporal
flexibility and plan uncontrollability does not determine the
expected computational overhead. The UPPAAL-TIGA ver-
ifier can effectively handle the flexible plan verification task
in all the considered configurations.

Acknowledgments. Cesta, Fratini, Orlandini and Tronci
are partially supported by the EU project ULISSE (Call
“SPA.2007.2.1.01 Space Science” Contract FP7.218815).
Cesta and Fratini has been also partially supported by Eu-
ropean Space Agency (ESA) within the Advanced Planning
and Scheduling Initiative (APSI).

References
Abdedaim, Y.; Asarin, E.; Gallien, M.; Ingrand, F.; Lesire,
C.; and Sighireanu, M. 2007. Planning Robust Tempo-
ral Plans: A Comparison Between CBTP and TGA Ap-
proaches. In Proc. of the 7th International Conference on
Automated Planning and Scheduling, 2–10.
Behrmann, G.; Cougnard, A.; David, A.; Fleury, E.;
Larsen, K.; and Lime, D. 2007. UPPAAL-TIGA: Time
for playing games! In Proc. of CAV-07, number 4590 in
LNCS, 121–125. Springer.
Cassez, F.; David, A.; Fleury, E.; Larsen, K. G.; and Lime,
D. 2005. Efficient on-the-fly algorithms for the analysis of
timed games. In CONCUR 2005, 66–80. Springer-Verlag.
Cesta, A.; Fratini, S.; Oddi, A.; and Pecora, F. 2008.
APSI Case#1: Pre-planning Science Operations in MARS
EXPRESS. In i-SAIRAS-08. Proceedings of the 9th Int.
Symp. on Artificial Intelligence, Robotics and Automation
in Space. JPL, Pasadena, CA.

Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci,
E. 2009a. Flexible Timeline-Based Plan Verification. In
KI 2009, volume 5803 of LNAI.
Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and
Tronci, E. 2009b. Verifying flexible timeline-based plans.
In VVPS-09. Workshop on Verification and Validation of
Planning and Scheduling Systems at ICAPS, Thessaloniki,
Greece.
Cesta, A.; Cortellessa, G.; Fratini, S.; and Oddi, A. 2010a.
MRSPOCK: Steps in Developing an End-to-End Space
Application. Computational Intelligence. Accepted for
publication.
Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci,
E. 2010b. Validation and Verification Issues in a Timeline-
Based Planning System. Knowledge Engineering Review.
Accepted for publication.
EUROPA. 2008. Europa Software Distribution Web Site.
https://babelfish.arc.nasa.gov/trac/europa/.
Larsen, K. G.; Pettersson, P.; and Yi, W. 1997. UPPAAL
in a Nutshell. International Journal on Software Tools for
Technology Transfer 1(1-2):134–152.
Maler, O.; Pnueli, A.; and Sifakis, J. 1995. On the Synthe-
sis of Discrete Controllers for Timed Systems. In STACS,
LNCS, 229–242. Springer.
Morris, P. H., and Muscettola, N. 2005. Temporal Dynamic
Controllability Revisited. In Proc. of AAAI 2005, 1193–
1198.
Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. In Zweben, M. and Fox, M.S., ed., Intelligent
Scheduling. Morgan Kauffmann.
Sherwood, R.; Engelhardt, B.; Rabideau, G.; Chien, S.;
and Knight, R. 2000. ASPEN, Automatic Scheduling and
Planning Environment. Technical Report D-15482, JPL.
Tate, A.; Drabble, B.; and Kirby, R. 1994. O-Plan2: An
Open Architecture for Command, Planning, and Control.
In Zweben, M., and Fox, S. M., eds., Intelligent Schedul-
ing. Morgan Kaufmann.
Vidal, T., and Fargier, H. 1999. Handling Contingency
in Temporal Constraint Networks: From Consistency To
Controllabilities. JETAI 11(1):23–45.

20

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Ontology Oriented Exploration of an HTN Planning Domain
thr ough Hypotheses and Diagnostic Execution

Li Jin and Keith S. Decker
University of Delaware

Department of Computer and Information Sciences
Newark, DE 19716, USA
{jin, decker@cis.udel.edu}

Abstract

We present a framework, HTN-Explorer, for case-based ex-
ploration of hierarchical task network planning domain ori-
ented by ontological background knowledge. With an exist-
ing simple, incomplete model as a seeding model extracted
from limited examples of plan solutions, HTN-Explorer ex-
plores more comprehensive planning domain knowledge by
expanding the seeding model through a discovery circle of
hypothesis generation, evaluation and diagnostic execution.
HTN-Explorer proposes hypothetical task methods by adapt-
ing an existing model for those situations not covered by
the original model. As well, hypothetical models are eval-
uated with heuristics that estimate the plausibility and dis-
coveries of hypotheses. The executions of hypothetical plans
based on hypothetical models provide information to diagno-
sis. This framework provides some desirable functionalities:
(1) it automatically explores HTN models by integrating var-
ious strategies; (2) it proposes hypotheses for experimental
testing based upon their evaluated plausibility and discover-
ies; (3) it facilitates encoding of background knowledge into
the exploration processes. We use a variation of the UM
Translog domain to evaluate our approach.

Introduction
Hierarchical task networks(HTNs) are an important, fre-
quently studied approach to solve problems in AI planning
research and have recently achieved several notable suc-
cesses (Nau 2007). Ahierarchical task network(HTN)
planner solves a problem by following task decomposition
descriptions to recursively decompose a complex task into
simpler tasks until the tasks can be accomplished by ac-
tions directly. HTN planning was first presented in the mid-
1970s (Sacerdoti 1975), and its formalisms and properties
were well studied in the mid-1990s (Erol, Nau, and Hendler
1994). Over the past decade, many planning systems based
on HTN decomposition (e.g. SIPE (Wilkins 1985), O-PLAN
(Currie and Tate 1991), and SHOP (Nau et al. 2005)) have
made successful achievements in the practical applications,
such as the Mars Rovers (Estlin et al. 2003) and Bridge
Baron (Smith, Nau, and Throop 1998).

Despite the achievements of HTN planning, there still ex-
ists a significant challenge, i.e. the difficulty of acquiring

Copyright c© 2010,Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

complete domain knowledge required by a planner to solve
a problem. In many application domains, it is difficult or
impossible to acquire accurate and complete HTN models
hard-coded by human experts due to multiple reasons, such
as the lack of necessary experiences or knowledge of the
domains, the complexities in the domains, and time or ef-
fort consumption. Consequently, researchers have recently
shown strong interest in developing algorithms or systems
to (semi)automatically learn planning theories from solution
cases/examples or from planning and execution experiences
(Zimmerman and Kambhampati 2003). However, most of
the previous research that learns a planning domain theory
from examples and experiences are passive, namely, it de-
pends on examples or previous planning experiences but
cannot actively explore new models not represented by or
not reasoned from example cases or experiences.

In this paper, we present HTN-Explorer, a general frame-
work that aims at facilitating exploration of an HTN plan-
ning domain with minimum human intervention. Our work
is motivated by many practical domains in which generally,
background knowledge is available, but domain specific task
decomposition or action descriptions may be only partially
provided by a human or learned by limited example cases.
In such a domain, there might be limited plan examples or
solution experiences available that do not cover all situa-
tions in the real world; thus, only example-driven learning
techniques (e.g. case-based learning) might not work very
well. We present an approach to learn comprehensive mod-
els through hypothesis generation and diagnostic execution.

With an assumption that background knowledge can be
represented in ontology, we develop HTN-Explorer as a self-
directed automated system that utilizes an ontology to ex-
pand an incomplete model by presenting hypotheses with
multiple strategies. The plausibility of a hypothesis is eval-
uated based on the assessment of the strength of its propos-
ing strategy and the underlying computational method. The
novelty of a hypothesis is estimated by new preconditions,
new kinds of tasks, new constrains or new solutions that the
hypothesis may cover or provide. HTN-Explorer is capa-
ble of presenting those hypotheses with high evaluations of
plausibility and novelty to a human or an experimental sys-
tem (e.g. a lab robot) for testing. The feedback information
will be used to update the original domain theory and will
be utilized to generate new hypothetical models.

21

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

This paper continues with brief introduction of HTN plan-
ning formalism. Next, we overview the architecture of
HTN-Explorer. After presenting the hypothesis generation
strategies implemented in HTN-Explorer, we will then ex-
plain the hypothesis evaluation heuristic function and the di-
agnosis procedures. Then, we demonstrate an empirical case
study of exploring a variation of the UM Translog domain
(Andrews et al. 1995). Finally, we discuss related works
and make conclusions.

Preliminaries
In this paper, we follow the principles of the task decom-
position formalism of HTN planning defined in Chapter
11 by Ghallab et al. (Ghallab, Nau, and Traverso 2004).
HTN planning uses task decomposition description methods
to decompose non-primitive (also called compound) tasks
into simpler subtasks. Planning continues the decomposi-
tion process until primitive tasks are reached. A primitive
task can be accomplished by an action. A plan solution is
composed of a sequence of actions that can achieve the high-
level tasks of a problem.

Generally, an HTN planning theory is composed of two
sets of descriptions, one is a set of operators, the other is a
set of methods. An operator describes how a state is changed
if the operator is applied to the state when required precon-
ditions are satisfied. A method describes how a compound
task is decomposed into subtasks.

An operator is represented by a 4-tupleO =
(name(O), P reC,Add,Del), wherename(O) is the name
of the operator,PreC is a set of preconditions, andAdd
andDel are the adding list and deleting list that define how
to modify the current states (consisting of a collection of
ground atoms) whenO is applied tos by adding or deleting
atoms in the lists to or froms. A method is formalized as
a tripleM = {T, PreC, SubTs} specifying thatT , a non-
primitive task, can be achieved by the subtasksSubT when
the elements in the precondition setPreC are satisfied. A
task is of the formT (r1, . . . , rn), whereT is a task symbol,
i.e. the name of the task, andr1, . . . , rk are terms.

An HTN planning problem is a 4-tupleP =
(s0, T s,Os,Ms), wheres0 is the initial state,Ts is the
initial sequence of tasks, andOs andMs are sets of plan-
ning operators and methods respectively. A solution for
P is a plan consisting of a sequence of actions that can
achieveTs from the initial states0. As a ground in-
stance of a planning operator, an action is of the form
a = (name(a), preconditions(a), effects(a)). An action
can accomplish a ground primitive taskt in a states if a
is applicable tos when the preconditions of the action are
satisfied ins, anda is able to produce the effects (including
adding list and deleting list) that can succeed in achieving
the goals requested by the task.

We assume that an ontology describing background
knowledge of a domain is available. We use predicate to
represent the relationships of variables and constants in an
ontology, such as(class ?x C)indicating that a variable?x is
of a class typeC and(isa C C’) indicating thatC is a subclass
of C’. For instance, Figure 1 shows the ontology of the UM
Translog domain that is simplified from its original version

Figure 1: Ontology of the UM Translog domain.

(Andrews et al. 1995) and will be used in this paper to ex-
plain our approach. In Figure 1, the relationship thatSmall
Truck is a subclass ofTruck is represented by(isa Small-
Truck Truck). And the relationship of classSmall Truckand
its instancest1can be defined as(class st1 Small-Truck). We
also suppose that a simple incomplete model can be easily
hard coded by hand or extracted from limited solution exam-
ples. Then the simple model works as a seeding one from
which a more comprehensive model can be automatically
generated by using some strategies with the aid of ontology
knowledge.

Figure 2: Information flow of HTN-Explorer.

22

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Overview of HTN-Explorer
Figure2 shows the top-level control of the exploration pro-
cess in the HTN-Explorer. The process repeats the cycle of
hypothesis generation, evaluation, experiment and diagnosis
until no hypothesis has a plausible value above a stop crite-
rion.

The HTN-Explorer’s input consists of: (1) An initial set
of cases of planning problems and their HTN solutions that
are used to obtain the initial model to be expanded. The set
may be limited; thus, the initial model may be incomplete.
(2) Domain-specific background knowledge base stored in
an ontology. (3) Domain-specific novelties of discoveries
that are defined by a user. The output of HTN-Explorer is an
enhanced planning theory that is more comprehensive and
more accurate than the original one.

HTN-Explorer consists of the following main compo-
nents:

• A hypothesis generator that proposes plausible hypothet-
ical HTN methods or operators. It encodes multiple gen-
eral HTN planning model exploration strategies to pro-
pose hypotheses based on the background knowledge or-
ganized in an ontology until reaching stopping values of
the strategies.

• A hypothesis evaluator that estimates the plausibility and
novelty of a hypothesis through a heuristic function. It
selects candidates that are worth of the expense of exper-
imental tests. It provides a flexible framework for the us-
age of specific background knowledge and user defined
discoveries.

• An experiment designer that can design observations to be
made for a robot or a system or a human that can execute
experiments to test hypotheses, make observations, and
maintain the records.

• An experimental diagnosis component that interprets the
observed results and explains any divergence of the obser-
vations from the expected results predicted by the tests.
The planning knowledge base is updated by the diag-
noses.

Hypotheses Generation
With a set of HTN plan solution cases as input, HTN-
Explorer first generates a simple model by abstracting an
object with a variable of the deepest class in the ontology
that the object belongs to. For the example shown in Figure
3, a method in the right side is generated from the case in
the left side.

Then HTN-Explorer uses the following strategies to ex-
pand a simple model.

Analogical Expansion
One kind of hypotheses can be generated by modifying a
method through replacing an object variable with a similar
one in the object’s ontology leaf nodes. The similarity be-
tween two classes in one ontology is estimated quantitatively
as the division of the number of their common ancestors by
the sum of the numbers of their individual distinguish an-
cestors as shown in Equation (1). Hypotheses are created

Task: deliver pac1 from loc1 to loc2

Preconditions:

pac1 class: Small Package

loc1 class: Home

loc2 class: Post Office

loc1 in city1

loc2 in city1

city1 class: City

truck1 class: Small Truck

truck1 at loc1

Subtask:

load pac1 truck1

drive truck1 loc1 loc2

unload pac1 truck1

Task: deliver ?p from ?l1 to ?l2

Preconditions:

?p class: Small Package

?l1 class: Normal Location

?l2 class: Normal Location

differ ?l1 ?l2

?l1 in ?c1

?l2 in ?c2

?c1 class: City

?c2 class: City

same ?c1 ?c2

?v class: Small Truck

?v at ?l1

Subtask: load ?p ?v

drive ?v ?l1 ?l2

unload ?p ?v

Figure 3: Generating simple model from plan cases.

by this method when the similarity between the substituting
and original classes is higher than a prefixed value.

Sim(C1, C2) =
|Anc(C1)

⋂
Anc(C2)|

|Anc(C1)
⋃

Anc(C2)|
(1)

whereAnc(C) is a set of all ancestors ofC.
For example, based on the ontology shown in Figure 1,

Sim(Small Truck, Medium Truck)=1.0 andSim(Small Truck,
Small Train)=1/5=0.2; thus,Medium Truckis decided more
similar toSmall TruckthanSmall Train. As shown in Figure
4, a hypothetical method can be generated by adapting the
method in the right side of Figure 3 with modifying the class
of ?v from Small Truckto Medium Truck. After the hypoth-
esis and testing processes, the method in the right side of
Figure 3 will be adapted with all leaf classes in the ontology
shown in Figure 1.

Task: deliver ?p from ?l1 to ?l2

Preconditions: ?p class: Small Package

?l1 class: Normal Location

?l2 class: Normal Location

differ ?l1 ?l2

?l1 in ?c1

?l2 in ?c2

?c1 class: City

?c2 class: City

same ?c1 ?c2

?v class: Medium Truck

?v at ?l1

Subtask: load ?p ?v

drive ?v ?l1 ?l2

unload ?p ?v

Figure 4: Hypothetical method generated by analogical ex-
pansion.

23

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

However, hypotheses generated by this strategy may be
incorrect. For example, if a hypothetical method can be
generated by adapting the method in the right side of Fig-
ure 3 with modifying the class of?p from Small Packageto
Medium Package, then a solution generated by this method
will fail when it is executed. Therefore, hypotheses need ex-
perimental tests to prove it is correct or not. The testing and
diagnosis processes will be discussed in later sections.

Negation
The above strategy expands a seeding model by adapting the
model to more class types. There exist other kinds of pre-
conditions that are not related to class types, such as(same
?c1 ?c2)in Figure 3. The strategy of negation makes a pre-
condition unsatisfied by replacing it with a negative one;
then, the old method will fail under the negative precon-
dition. One way to repair the old method is adding a new
subtask that can use an already known method if it exists
to achieve the original precondition from the negative one.
Thus, a new method that combines the old method and the
added method for the new subtask will be generated to solve
a problem under the negative precondition. For example, in
Figure 3, the precondition(?v at ?l1)is denied to(not (?v at
?l1)), so a new task(drive ?v ?l1’ ?l1)with (not (same ?l1
?l1’)) can be added to achieve(?v at ?l1). Then the newly
generated method can be applied to a problem with the pre-
conditions(?v at ?l1’) and(not (same ?l1 ?l1’))instead of
(?v at ?l1).

However, for those unsatisfied preconditions that cannot
be achieved by a new task, the original solution should be
modified by using the already existing methods or proved
hypothetical methods. Then hypotheses can be proposed.
For example, when(same ?c1 ?c2)is negated as(not (same
?c1 ?c2))for which multiple possible methods can be pro-
posed: one is that a truck is still used to drive the package
from ?l1 to ?l2 if there is route connecting?l1 and?l2; an-
other is that the task is re-decomposed into three tasks: first,
deliver ?p to a train station, then a variable of train type is
used to deliver?p to another train station in?c2, then deliver
?p to ?l2.

Diversification
Diversification strategy selects a new precondition semanti-
cally different from the original preconditions but not con-
flicting with any of the original predictions; then combines
this new precondition to the originals. Semantical differ-
ence is defined as that in an ontology, the concept related to
a new precondition and the concepts related to original pre-
conditions do not have any common ancestors. This strategy
intends to generate methods for those rare situations that sel-
dom happen in example problems and solutions.

For the example in Figure 1, a new subclass can be added
to Thingsuch asWeatherwhereWeatheris considered as se-
mantically different fromPackageandLocation. Two pre-
conditions can be related toWeather, such as(Weather is
good)and(Weather is snowing). Different methods may be
preferred under the two weather preconditions, e.g. using a
method employing a train may be preferred under the pre-
condition of snow weather.

Generalization
This strategy generalizes a variable from its class to its par-
ent class in an ontology. This strategy should be applied
before all the class’s siblings in an ontology have been ex-
amined. This strategy only chooses one hypothesis that can
cover most of the individual methods that can be applied
to the children classes. Exclusive preconditions are added
to remove any conflictions from the children classes. This
strategy makes the new method more general and provides
a possible solution for those problems that are not solved by
the original theory.

For example, when the hypothetical methods related to
Medium Packageand Large Packagehave been generated
by adapting the method in Figure 3 and have been tested, the
method shown in Figure 5 can be generalized fromSmall
Package,Medium PackageandLarge Packageto Package.
BecauseLarge Truckcan work for all kinds of packages
(Small,MediumandLarge), this method is chosen as a gen-
eral method. If(?v class: Large Truck)is changed to(?v
class: Medium Truck), then a precondition,(not (?p class:
Large Package)), should be added to exclude the incorrect
solution thatMedium Truckis used to deliverLarge Pack-
age.

Task: deliver ?p from ?l1 to l2

Preconditions:

?p class: Package

?l1 class: Normal Location

?l2 class: Normal Location

differ ?l1 ?l2

?l1 in ?c1

?l2 in ?c2

?c1 class: City

?c2 class: City

same ?c1 ?c2

?v class: Large Truck

?v at ?l1

Subtask: load ?p ?v

drive ?v ?l1 ?l2

unload ?p ?v

Figure 5: Hypothesis generated by generalization.

Ranking Hypotheses by Heuristics
When multiple hypotheses are generated, they should be
evaluated to confirm that they are worthy experimental test
operated by a robot or a human. In our approach, the hy-
potheses are ranked with the following considerations:
• assessing corresponding strength of a strategy that is used

to propose a hypothesis;

• evaluating the plausibility of a hypothesis; namely, a hy-
pothetical method has a higher likelihood to be chosen to
solve a problem or to succeed when it is applied to a prac-
tical problem;

• estimating the novel discoveries that might be produced
by a hypothesis.

24

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Based on these considerations, we define the following
heuristicfunction to evaluate a hypothesis:

Evaluate(h) = ws ∗ Ph ∗
∑

(Ih) (2)

where,h is a hypothesis,ws is the weight of the strategy
used to proposeh, Ph is the plausibility estimated forh
based on the underlying computation methods used in the
exploration strategies, andIh represents the estimation of
novelties ofh’s items interesting to a user or to a complete
domain theory. The purpose of this function is to balance
two factors related to a hypothesis, i.e. the appropriateness
of a hypothesis and the interests of domain knowledge dis-
covery or user preference. The appropriateness is encoded
in the plausibility of execution success when the hypothesis
is applied to a problem or the confidence that the hypothe-
sis is selected from multiple choices to accomplish a task.
The discovery of a hypothesis is represented by the summed
discovery scores estimated for the items involved in a hy-
pothesis.

For a general HTN domain, the plausibility of a hypoth-
esis can be estimated differently for different exploration
strategy together with the background knowledge and the
already known planning theory. Our approach makes the es-
timation by follows:

• For analogical expansion, the computational method as
shown in Equation (1) that estimates the similarity of two
classes in an ontology can be used to estimate the plausi-
bility of a hypothesis.

• For the strategy of generalization, the plausibility is esti-
mated by the percentage of coverage of the new hypothe-
sis over the methods of the children classes.

• For negation, the confidence of a hypothesis can be evalu-
ated by the success possibilities of the primitive tasks that
may estimated from the previous cases.

• Because analogical expansion provides various hypothe-
ses of lower classes that are bases for the strategy of
generalization, the strategy of analogical expansion is as-
signed higher priority.

• For diversification, the plausibility of a hypothesis may be
based on background knowledge if related knowledge ex-
ists; otherwise, diversification will be assigned the lowest
priority.

The general items of discoveries for an HTN planning do-
main can be categorized into groups with weights indicat-
ing preference to complete a domain theory or to satisfy a
user’s interest. As shown in Figure 6, this kind of estimated
weights of discoveries can be defined or modified based on
specific domains with the interestingness of specific items
domain-dependently defined and estimated.

Plan Execution, Observation and Diagnosis
A hypothetical method generated may be incorrect or in-
complete so that a plan solution based on hypothetical mod-
els (called a hypothetical plan) may fail when it is ex-
ecuted. Actually, a hypothetical plan provides informa-

Figure 6: Abstraction of discoveries and their weights.

tion about what is expected to happen during an execu-
tion. When a prediction is different from what is observed
in an execution, it means that an expectation failure hap-
pens. Such failures provide critical information for learn-
ing and refining a planning theory (Birnbaum et al. 1990;
Ram, Narayanan, and Cox 1995), especially for testing and
improving a hypothetical model in our approach.

We propose to apply model-based diagnosis technology
(Reiter 1987) to diagnose a hypothetical plan execution by
observing, comparing and analyzing the differences between
predictions and observations of the plan. The incorrectness
of hypothetical models can be identified and refined by the
diagnosis information.

To test a generated hypothetical HTN task method, the
following steps are necessary:

• Design a plan case to test the hypothetical method. A
testing plan can be created by instantiating a task method
with the instances of that variables. For the example of
the method in Figure 4, a hypothetical plan case similar
to the case in the left side of Figure 3 can be generated
by replacing the variables with instances of the variable
classes. For a hypothetical method containing variables
of the upper class in an ontology, the variables should be
instantiated with each instance of leaf classes; therefore,
multiple hypothetical plan cases may be generated to test
the model.

• Design observations to monitor during a plan execution.
Figure 7 shows how to decide what to be observed for a
hypothetical plan case. Here, we assume that a monitor
robot or a human is able to decide when an action begins
being executed and is able to know when this action is
finished. We define that a precondition or an effect that
can be monitored is observable.

25

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

• Diagnose a plan execution. Based on the difference be-
tweenobservations and predictions, decide if an execu-
tion succeeds or fails and give out the reasons of a failure.
The diagnosis of one case may be saved in the background
knowledge base to guide the future hypothesis generation.

function Observable(hp)
input : an HTN planhp = {T, S0, A, D}, T: task,S0:

initial state, A: action, D: domain knowledge
output : a set of atoms to be observed
S ←− ∅;
foreachactiona ∈ A do

foreachpreconditionc of a do
if c is observable and(c, before(a)) not∈ S then

insert(c, before(a)) into S;
endfor
foreacheffecte of a do

if e is observable and(e, after(a)) not∈ S then
insert(e, after(a)) into S;

endfor
endfor
returnS;

Figure 7: Designing an observable set of a plan.

Empirical Evaluations
To evaluate our approach, we adopt the variant of the UM
Translog domain presented by Xu and Muñoz-Avila (2005)
to do experiments for exploring HTN domain by generat-
ing hypotheses using the strategies described in the previous
section. The domain contains trucks, trains and airplanes to
transport packages of various sizes between different sites in
different distance ranges (intercity and intracity) as shown in
Figure 1. One region contains one or more cities with each
city having one or more city-locations that may be transport
centers or normal locations that are not transport centers.
The transport centers include airports or train stations, while
the normal locations serve as the origin or destination of a
package. Different kinds of transportation tools are used for
deliveries over different distance with different cost. For ex-
ample, a truck is used for intercity delivery, a train or an air-
plane is used for intracity transportation. It assumes that any
two intercity locations are connected by a truck route, two
train stations are connected by a train route, and an airplane
route connects two airports.

The initial states are generated with 5 cities each hav-
ing one airport and one train station, 25 trucks, 20 trains,
20 airplanes and 20 packages. Each of the vehicles is ini-
tially located in a random city and randomly categorized into
big, medium, and small types. The packages of different
types are randomly located at various locations. We ran-
domly generate a set of 150 solvable problems from which
50 problems are randomly selected to consist a seeding set
and the left 100 problems become a testing set. For our
purpose, JSHOP2 system (Ilghami 2005) is used to simu-
late solving a problem in the seeding set that requires a do-
main description, including operators and methods to gener-

ate plans. The problems and their corresponding plan solu-
tions (including plans and task decomposition structures) are
stored as cases in the seeding set from which HTN-Explorer
abstracts a seeding model by replacing an instance object
with a variable of its type. The HTN-Explorer will use the
seeding model and the ontology to explore a more compre-
hensive model that will be tested by using JSHOP2 to solve
the problems in the testing set.

We conduct evaluation by choosing various numbers of
examples from the seeding set. The completeness of a seed-
ing model depends on how much of the domain theory is
covered by the selected solution cases. In detail, the experi-
ments are conducted as the following:

1. for N=1 to 50 do steps 2 to 5:

2. Randomly choose N problems with their solutions from
the seeding set. Extract an HTN model from each solution
and combine the models together to be an initial seeding
model.

3. Solve the problems in the testing set using the seeding
model.

4. Apply the strategies described in the previous section
to the seeding model to generate a more comprehensive
model.

5. Use the comprehensive model to solve the problems in the
testing set.

Figure 8 shows the results of an experiment in which one cir-
cle of hypothesis generation is applied to expand the seeding
models that are respectively extracted from the various num-
ber of examples in the seeding set. From Figure 8, we can
see that the HTN-Explorer can expand an incomplete do-
main theory efficiently. Figure 9 shows the average number
of those strategies that the HTN-Explorer uses to do the ex-
periments as shown in Figure 8. Because the experimental
domain is not so complex that the strategy ”diversification”
is not applied.

Figure 8: Experimental results of seeding models and ex-
pandedmodels after one circle of hypothesis generation.

Related Work
Automated HTN planning requires that a domain theory (de-
scriptions of actions and methods) be present to a plan-

26

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Figure 9: Strategies used to explore seeding models in Fig-
ure8.

ner. Besides building up tools to facilitate effective plan-
ning domain acquisition and validation (e.g. GIPO (Mc-
Cluskey, Liu, and Simpson 2003) and itSIMPLE (Vaquero
et al. 2009)), researchers have been interested in pursuing
(semi)autonomous programs to generate a domain theory for
those complicated empirical domains.

CHEF and PRODIGY/ANALOGY (Veloso and Car-
bonell 1993) are two representative systems that extend
planning domain knowledge with the analogical knowledge
and case-based reasoning. While CHEF employs domain-
dependent reasoning knowledge, PRODIGY/ANALOGY
develops completely domain-independent analogical rea-
soning mechanisms and uses cases as search control knowl-
edge. PRODIGY/OBSERVER (Wang 1996) automatically
acquires and refines the preconditions and effects of opera-
tors by observing expert solution traces. PRODIGY/EXPO
(Carbonell and Gil 1990) refines incomplete operator mod-
els by proposing experiments to test the explanations for
those observed divergences. However, none of these sys-
tems does task model learning.

Instead of requiring a large numbers of training cases
as those case-based reasoning systems, some authors have
proposed an explanation-based learning approach that can
learn from a single training example with the aid of the do-
main knowledge (DeJong and Mooney 1986). For example,
GRASPHER (Bennett and Dejong 1996) implements a per-
missive planning approach to acquire and refine generalized
plan schema through explanation-based learning.

To learn or improve the hierarchical structures relating
tasks and subtasks (task models), one approach learns pre-
conditions of HTN methods from HTN plan solution ex-
amples, e.g. CaMeL(++) (Ilghami et al. 2005) and DIn-
CaD (Xu and Mũnoz-Avila 2005). The other approach elic-
its the hierarchical structures of tasks from a collection of
STRIPS action plans and hard-coded hierarchical annota-
tion, e.g. HTN-MAKER (Hogg, Mũnoz-Avila, and Kuter
2008). The generalization strategy proposed in this paper is
similar to the approach described in DInCaD; however, the
other exploration strategies presented in our work make our
approach go further in expanding planning domain knowl-

edge. The main difference between our approach and these
previous case-based systems is that the previous works can
only update their knowledge bases of HTN methods when
they are provided with new problem solution cases; thus,
they cannot produce methods that are not captured in the
plan examples.

Another approach to exploiting hierarchies in planning
is abstraction, such as ABSTRIPS (Sacerdoti 1974) and
ALPINE (Knoblock 1990). These systems use both a collec-
tion of operators and an abstraction model that benefits the
search process. Newton et al. (2008) learn control knowl-
edge not captured by examples with genetic approach.

In summary, different from the previous approaches,
HTN-Explorer integrates various strategies with an aim at
self-directed exploring a bigger search space that exam-
ple data does not provide. HTN-Explorer provides a flex-
ible framework to integrate general domain-independent
HTN exploration strategies and domain specific background
knowledge represented in an ontology. The strategies HTN-
Explorer implements to expand a domain space are not to-
tally example-dependent. In addition, HTN-Explorer im-
plements a heuristic function for evaluation of hypothe-
ses. Generally, HTN-Explorer is like a knowledge discov-
ery system, such as AM (Lenat 1982) and HAMB (Liv-
ingston, Rosenberg, and Buchana 2003). While AM focuses
on mathematics domain and HAMB concentrates on chem-
istry discovery, our work focuses on exploring an incomplete
HTN model.

Conclusion and Future Work

In this paper, we propose a framework that present hypothe-
ses to explore an incomplete HTN planning domain. We
present multiple exploration strategies and a heuristic func-
tion to estimate the value that a hypothesis deserves exper-
iments to provide new theory for a domain. Finally, we
demonstrate an empirical evaluation to test the effectiveness
of our approach with the UM Translog domain.

For future work, more useful exploration strategies will
be added to HTN-Explorer. In this paper, we have not con-
sidered the utilities of a plan execution, such as cost and
duration. In real world, these properties are also important
for hypothetical model generation. We will add utility con-
sideration into a hypothesis evaluation. In addition, in this
paper, we have only taken the advantage of the hierarchical
structure of an ontology. The future work will study how
to use the detailed properties of concepts in an ontology to
propose and evaluate hypothetical models.

In our opinion, a planning domain model (HTN or non-
HTN) can be improved by our approach. For example, an
operator model can be expanded by the hypothesis strate-
gies we presented. In addition, our approach can be ap-
plied to discover users’ preference or to discover interesting
knowledge for some real world domains whose background
knowledge can be represented in HTN formalism. In the fu-
ture, we will apply our approach to more planning domains
to test its effectiveness.

27

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

References
Andrews, S.; Kettler, B.; Erol, K.; and Hendler, J. 1995.
Um translog: A planning domain for the development
and benchmarking of planning systems.Technical Report,
Dept. of CS, Univ. of Maryland at College Park.
Bennett, S. W., and Dejong, G. F. 1996. Real-world
robotics: Learning to plan for robust execution.Machine
Learning23(2-3):121–161.
Birnbaum, L.; Collins, G.; Freed, M.; and Krulwich, B.
1990. Model-based diagnosis of planning failures. InPro-
ceedings of AAAI’90, 318–323.
Carbonell, Y. G., and Gil, Y. 1990. Learning by experimen-
tation: The operator refinement method.Machine Learning
3:191–213.
Currie, K., and Tate, A. 1991. O-plan: the open planning
architecture.Artificial Intelligence52:49–86.
DeJong, G. E., and Mooney, R. J. 1986. Explanation-based
learning: An alternative view.Machine Learning1(2):145–
176.
Erol, K.; Nau, D.; and Hendler, J. 1994. Htn planning:
Complexity and expressivity. InProceedings of AAAI’94,
1123–1128.
Estlin, T.; Castano, R.; Anderson, B.; Gaines, D.; Fisher,
F.; and Judd, M. 2003. Learning and planning for mars
rover science. InProceedings of IJCAI’03.
Ghallab, M.; Nau, D.; and Traverso, P. 2004.Automated
Planning: Theory and Practice. Morgan Kauffmann.
Hogg, C.; Mũnoz-Avila, H.; and Kuter, U. 2008. Htn-
maker: Learning htns with minimal additional knowledge
engineering required. InProceedings of AAAI’08.
Ilghami, O.; Mũnoz-Avila, H.; Nau, D. S.; and Aha, D. W.
2005. Learning approximate preconditions for methods in
hierarchical plans. InProceedings of ICML’05, 337–344.
Ilghami, O. 2005. Documentation for jshop2. Technical
Report CS-TR-4694, University of Maryland, Department
of Computer Science.
Knoblock, C. 1990. Learning abstraction hierarchies for
problem solving. InProceedings of AAAI’08, 923–928.
Lenat, D. 1982. Am: Discovery in mathematics as heuristic
search.Knowledge-Based Systems in Artificial Intelligence
3–225.
Livingston, G.; Rosenberg, J.; and Buchana, B. 2003. An
agenda- and justification-based framework for discovery
systems.Knowledge and Information Systems5:133–161.
McCluskey, T. L.; Liu, D.; and Simpson, R. 2003. Gipo
ii: Htn planning in a tool-supported knowledge engineering
environment. InProceedings of ICAPS’03.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Mũnoz-
Avila, H.; Murdock, J.; Wu, D.; and Yaman, F. 2005.
Applications of shop and shop2.IEEE Intelligent Systems
20(2):34–41.
Nau, D. S. 2007. Current trends in automated planning.AI
Magazine28(4):43–58.
Newton, M. A. H.; Levine, J.; Fox, M.; and Long, D. 2008.
Learning macros that are not captured by given example

plans. InSupplementary Online Proceedings for Poster Pa-
pers at ICAPS’08.
Ram, A.; Narayanan, S.; and Cox, M. T. 1995.
Reiter, R. 1987. A theory of diagnosis from first principles.
Artificial Intelligence32(1):57–96.
Sacerdoti, E. 1974. Planning in a hierarchy of abstraction
spaces.Artificial Intelligence5(2):115–135.
Sacerdoti, E. 1975. The nonlinear nature of plans. In
Proceedings of IJCAI’75, 206–214.
Smith, S. J. J.; Nau, D. S.; and Throop, T. 1998. Computer
bridge: A big win for ai planning.AI Magazine19(2):93–
105.
Vaquero, T. S.; Silva, J.; Ferreira, M.; Tonidandel, F.; and
Beck, J. 2009. itsimple3:0: From uml requirements and
petri net-based analysis to pddl representation in the pro-
cess of modeling plans for real applications. InProceeding
of ICAPS 2009 Workshop on Knowledge Engineering for
Planning and Scheduling.
Veloso, M. M., and Carbonell, J. G. 1993. Derivational
analogy in prodigy: Automating case acquisition, storage,
and utilization.Machine Learning10:249–278.
Wang, X. 1996. A mulitstrategy learning system for plan-
ning operator acquisition. InProceedings of the Third In-
ternational Workshop on Multistrategy Learning.
Wilkins, D. 1985. Recovering from execution errors in
sipe.Computational Intelligence1:33–45.
Xu, K., and Mũnoz-Avila, H. 2005. A domain-independent
system for case-based task decomposition without domain
theories. InProceedings of AAAI’05, 234–240.
Zimmerman, T., and Kambhampati, S. 2003. Learning-
assisted automated planning: Looking back, taking stock,
going forward.AI Magazine24(2):73–96.

28

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Model Updating in Action

Maria V. de Menezes and Leliane N. de Barros
Department of Computer Science

IME-USP

Silvio do L. Pereira
Department of Information Technology

FATEC-SP/CEETEPS

Abstract
Model updating is a formal approach to automatically correct
a system modelM with respect to some property ϕ not sat-
isfied by M. The well known model updating approaches
are based on Computational Tree Logic (CTL), a branch time
temporal logic which does not take into account the actions
behind the state transitions. In previous work we have pro-
posed a model checker and a planner based on α-CTL – a
temporal logic whose semantics is based on actions – to solve
extended reachability goals. In this paper, we present a model
updating approach based on α-CTL that can be used to au-
tomatically suggest modifications in a state transition model
induced by a set of actions and also is able to suggest changes
directly in the action specification.

Introduction
Errors are common during the design of systems and their
late detection and correction can be one of the major rea-
sons for a high cost design. However, it can be reduced if
the designer is able to early detect them, i.e., during sys-
tem specification. By using formal methods to specify a
system behavior, we can apply model checking techniques
(Müller-Olm, Schmidt, and Steffen 1999) to automatically
detect not met requirements. In order to understand how
model checking works, let us consider the well-known mi-
crowave oven scenario presented by (Clarke E. 1999), which
represents two main microwave usage processes: food heat-
ing and cooking.

The system designer starts by defining which properties
will be used to describe the current state of a system. In the
microwave oven example, the state properties are: started
(indicating the microwave is operating), closed (indicating
the microwave door is closed), heated (indicating the food
inside microwave oven is heated) and cooked (describing
that the food is cooked). Those properties are propositional
atoms used to describe what is true in the system state and,
their negation, describes what is false. Additionally, a state
property error indicates the error detected during system
operation (in our example, an error occurs in the situation
where the oven starts and the door is open). Furthermore,
system designer has to specify the actions that cause state
transitions, that are: start, finish, open-door, close-door,

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

warm up, cook and reset. Figure 1 shows a preliminary de-
sign model of a microwave oven given by a state transition
diagram.

Figure 1: Formal model of a microwave oven, adapted from
(Clarke E. 1999).

In the initial state s1, a user can select one of the two ac-
tions: start and close-door. The start action takes the system
to state s2, which indicates the existence of an error. Notice
that an error will persist even if the action close-door is se-
lected (transition from s2 to s5). In this situation, the user
has to reset (action reset) the microwave which can take the
system to one of the two states: s3 and s6, both without error
(note that reset is a non-deterministic action: an action with
uncertain effects). If the close-door action is selected in the
initial state s1, the error does not occur and the food inside
the microwave oven can be heated and/or cooked without
making the user to reset the oven.

Suppose the designer wants to verify if the system speci-
fication in Figure 1 satisfies the temporal formula ϕ defined
as: “ once the microwave oven is started, the food inside
will be heated in some future state”. That means, ϕ is satis-
fied in a system model with no state where both started and
¬heated properties are true. The paths [s1, s2, s5, s3, s1,⋯],
[s1, s2, s5, s2,⋯] are examples where ϕ is not satisfied. The
rationale behind ϕ can be “the user should not have to reset

29

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Figure 2: Model checker.

the oven in order to be able to heat and/or cook his food”.
Although the microwave example seems to be easy to

model and verify temporal properties, having defined 5 state
properties (fluents or state variables) implies in 32 (25) pos-
sible states and 1024 (210) possible state transitions. Thus,
to design a system that allows a user to achieve its intended
goals (e.g. to heat or cook a meal) and yet guaranteeing to
hold some temporal properties, is a complex task that gets
harder with the size of state space (i.e. the number of state
variables).

Model checking consists of automatically solving the
problem K ⊧ ϕ, where K is a formal model of a system
and ϕ is a formal specification of a temporal property to be
verified in this system. Essentially, a model checker (Fig-
ure 2) is an algorithm that receives a pair (K, ϕ) as input
and systematically visits the states of the model K, in order
to verify if the property ϕ holds. When all states inK satisfy
property ϕ, the model checker returns success; otherwise, it
returns a counter-example (e.g., a state in the modelKwhere
the property ϕ is violated). One of the limitations of model
checking is that, when the property is violated, it only re-
turns a counter-example leaving the task of modifying the
system model to the designer.

Model updating is a technique that extends model check-
ing functions in order to support the repair of a faulty sys-
tem. Zhang and Ding(2008) proposed a model update al-
gorithm that takes a given Kripke model K (Kripke 1963) -
a state transition model without action specification - with
respect to an arbitrary CTL formula ϕ and generates an up-
dated model K′ that: (1) satisfies ϕ and (2) has a minimal
change with respect to the original model. To generate K′,
this approach uses primitive update operations such as: add
a relation element, remove a relation element, change la-
belling function on one state, add a state and remove a state.
For example, a possible correction in the model of Figure 1
is “remove the transition between the states s1 and s2”. This
means that “It is not allowed to start the microwave oven
with the opened door”.

Motivation: KE for planning vs. model updating
The microwave formal model from Figure 1 can be seen as a
set of plans, specified by the system designer to achieve the
goals: heat and/or cook a meal. Each plan is supposed to be
executed by an user (according with a “system manual”).

In artificial intelligence planning area, the task is to au-
tomatically generate a plan of actions given a goal specifi-
cation and a system model (e.g., a factory or a robot envi-
ronment model). A planning domain is specified in terms
of a set of action schema which can be used to induce the
system model. Nevertheless, it is very difficult, even for a
simple planning domain, to specify a correct set of actions.
Although automatic planning has been the subject of exten-

sive study in the AI community since the early 1970s, low
effort has been given to the task of modeling and verification
of planning domains.

In order to model and verify a planning domain, a de-
signer should start by describing a preliminary set of actions
to be further refined. This refinement can be done using,
e.g.: (i) a set of plan examples, for a given class of goals,
specified in an ad hoc way by a domain expert (or possi-
bly generated by an automatic planner); (ii) a state transition
model induced by the semantics of the preliminary set of
action schema for a small problem.

Notice that in the system model represented by Figure 1
the state transitions are labelled with actions. Traditional
model updating approaches based on CTL (e.g (Zhang and
Ding 2008)) do not take into account the actions behind the
transitions and therefore can not be applied to update (re-
fine) planning domains. Actions are not part of a CTL Kripke
model, which is the formalism used in most of the model
checking and updating approaches (Buccafurri et al. 1999;
Harris and Ryan 2003; Zhang and Ding 2008). In this paper
we show that by representing actions in the formal model
of a system we can extend model updating techniques to be
used as an important support tool for knowledge acquisition,
modeling and verification of planning domains.

Since actions are not part of Kripke structure, we can only
represent them using a temporal logic whose semantics is
based on actions. Pereira and Barros (2008) proposed an
extension of CTL, called α-CTL, whose semantics considers
the transition actions. They have also developed a model
checker based on this logic, named α-CTL model checker.
This work presents a model updating approach based on α-
CTL that can be used to automatically suggest modifications
in a state transition model induced by a set of actions and
therefore is able to suggest changes directly in the actions
specification. We also define a criterion of minimal change
for α-CTL model updating.

The remainder of this article is organized as follows: we
first show the basic concepts of CTL model checking and CTL

model updating; then we define a labelled transition system
and a model checker based on α-CTL . Finally, we show how
to perform model update, based on α-CTL , that can suggest
modification in the set of actions of a planning domain.

CTL Model Checking and Update
In this section, we introduce the basic concepts of CTL

model checking and CTL model update.
The branching time temporal logic CTL (COMPUTATION

TREE LOGIC) (Clarke and Emerson 1982) allows us to reason
about alternative time lines (i.e., alternative futures). In CTL

the temporal operators must be preceded by some quantifier:
∃ (Figure 3) or ∀ (Figure 4).
• ∀◯ (in all next states)
• ∃◯ (at some next state)
• ∀◻ (invariant, in all future state)
• ∃◻ (invariant, at some future state)
• ∀◇ (finally, in all future states)
• ∃◇ (finally, at some the future state)

30

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

• ∀[ϕ1 ⊔ ϕ2] (since, in all future states)

• ∃[ϕ1 ⊔ ϕ2] (since, at some future state)

Figure 3: Semantics of the CTL temporal operators preceded
by existential quantifier.

Figure 4: Semantics of the CTL temporal operators preceded
by universal quantifier.

The CTL formulas are composed by atomic propositions,
propositional operators and temporal operators. The sym-
bols ○ (next), ◻ (invariantly), ◇ (finally) and ⊔ (until), com-
bined with the quantifiers ∃ and ∀, are used to compose the
temporal operators of this logic.

The syntax of CTL is inductively defined as:
ϕ ≐ p ∈ P ∣ ¬ϕ1 ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 ∨ ϕ2 ∣ ∃ ○ ϕ1 ∣ ∀ ○ ϕ1 ∣ ∃ ◻

ϕ1 ∣ ∀ ◻ ϕ1 ∣ ∃(ϕ1 ⊔ ϕ2) ∣ ∀(ϕ1 ⊔ ϕ2).
The temporal operators ∃◇ and ∀◇ are defined as:

• ∃ ◇ ϕ ≐ ∃(⊺ ⊔ ϕ)

• ∀ ◇ ϕ ≐ ∀(⊺ ⊔ ϕ)

The semantics of CTL is defined over a Kripke structure
K = ⟨S,L,T ⟩, where S is a set of states, L ∶ S ↦ 2P is a state
labelling relation and T ⊆ S × S is a transition relation. A
path in K is a sequence of states [s0, s1,⋯] such that si ∈ S
and (si, si+1) ∈ T , for all i ⩾ 0.

Given a Kripke structure K and a state s0 ∈ S, the CTL

satisfiability relation is defined as:

Figure 5: Model updater receives K and ϕ and returns an
updated model K’

• (K, s0) ⊧ p iff p ∈ L(s0);

• (K, s0) ⊧ ¬ϕ iff (K, s0) /⊧ ϕ;

• (K, s0) ⊧ ϕ1 ∧ ϕ2 iff (K, s0) ⊧ ϕ1 and (K, s0) ⊧ ϕ2;

• (K, s0) ⊧ ϕ1 ∨ ϕ2 iff (K, s0) ⊧ ϕ1 or (K, s0) ⊧ ϕ2;

• (K, s0) ⊧ ∃ ○ ϕ iff for some path [s0, s1,⋯] in K,
(K, s1) ⊧ ϕ;

• (K, s0) ⊧ ∀ ○ ϕ iff for every path [s0, s1,⋯] in K,
(K, s1) ⊧ ϕ;

• (K, s0) ⊧ ∃ ◻ ϕ iff for some path [s0, s1,⋯] in K, for
i ≥ 0, (K, si) ⊧ ϕ;

• (K, s0) ⊧ ∀ ◻ ϕ iff for every path [s0, s1,⋯] in K, for
i ≥ 0, (K, si) ⊧ ϕ;

• (K, s0) ⊧ ∃(ϕ1 ⊔ ϕ2) iff for some path [s0, s1,⋯] in K,
there exists i ≥ 0 such that (K, si) ⊧ ϕ2 and, for 0 ≤ j < i,
(K, sj) ⊧ ϕ1;

• (K, s0) ⊧ ∀(ϕ1 ⊔ ϕ2) iff for every path [s0, s1,⋯] in K,
there exists i ≥ 0 such that (K, si) ⊧ ϕ2 and, for 0 ≤ j < i,
(K, sj) ⊧ ϕ1.

Model update framework
Let K be a formal model of a system and ϕ be a formal
specification of a property that is not satisfied in this system,
i.e., K /⊧ ϕ. Model update (Zhang and Ding 2008) consists
of generating a new model K′ that satisfies the input for-
mula (K

′
⊧ ϕ) and has a minimal change with respect to

the original model K. Then, a model updater (Figura 5) is
an algorithm that receives a pair (K, ϕ), where K /⊧ ϕ, and
returns a new model K′, where K′ ⊧ ϕ. The updated model
K
′ can be viewed as a possible correction on the original

system specification.
Zhang and Ding (2008) proposed a formal framework for

CTL model update, defining primitive operations and spec-
ifying a minimal change principle for CTL model updating.
Below, we list the Zhang and Ding (2008) primitive opera-
tions:

PU1: Adding one relation element. Let be K =

⟨S,L,T ⟩, its updated model K′ = ⟨S′, L′, T ′⟩ is obtained
from K by adding only one new relation element. That is,
S′ = S,L′ = L,T ′ = T ∪ (si, sj), where si, sj ∈ S and
(si, sj) /∈ T .

PU2: Removing one relation element. Let be K =

⟨S,L,T ⟩, its updated model K′ = ⟨S′, L′, T ′⟩ is obtained
from K by removing only one existing relation element.
That is, S′ = S, L′ = L,T ′ = T −(si, sj), where (si, sj) ∈ T
for two states si, sj ∈ S.

31

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

PU3: Changing labelling function on one state. Let be
K = ⟨S,L,T ⟩, its updated model K′ = ⟨S′, L′, T ′⟩ is ob-
tained from K by changing labelling function on a partic-
ular state. That is, S′ = S,T ′ = T,∀s ∈ (S − s∗), s∗ ∈

S,L′(s) = L(s) and L′(s∗) is a set of true variable assigned
in s∗ where L′(s∗) ≠ L(s∗).

PU4: Adding one state. Let be K = ⟨S,L,T ⟩, its updated
model K′ = ⟨S′, L′, T ′⟩ is obtained from K by adding only
one new state. That is, S′ = S ∪ s∗, s∗ /∈ S, T ′ = T and
∀s ∈ S,L′(s) = L(s) and L′(s∗) is a set of true variables
assigned in s∗.

PU5: Removing one isolated state. Let beK = ⟨S,L,T ⟩,
its updated model K′ = ⟨S′, L′, T ′⟩ is obtained from K by
removing only one isolated state. That is, S′ = S − s∗,
where s∗ ∈ S and ∀s ∈ S such that s ≠ s∗, neither (s, s∗)
nor (s∗, s) is not in T , T ′ = T and ∀s ∈ S′, L′(s) = L(s).

Model update should obey minimal change rules. Al-
though, the primitive operations PUi where i = 1,2, ..5 can
be used to define minimal change criterion for CTL model
update, within this framework it is not possible to make up-
dates considering the actions of the system specification, as
we propose in the next sections.

Labelled transition system
Let P ≠ ∅ be a finite set of atomic propositions, denoting
properties of a system, and A ≠ ∅ be a finite set of actions,
representing the events of a system.

Definition 1. A labelled transition system with signature
(P,A) is defined byM = ⟨S,L,T ⟩, where:

• S ≠ ∅ is a finite set of states;
• L ∶ S ↦ 2P is a state labelling function;
• T ∶ S ×A × S is a state transition relation.

A labelled transition system with signature (P,A) can be
represented as a transition graph, where states are labelled
with subsets of P and transitions are labelled with elements
of A. Set S has all possible states of a model, state la-
belling function designs for each state s ∈ S a proposition
set L(s) ∈ 2P and labelling function T designs for each tran-
sition t ∈ T an action a ∈ A. Given two states si, sj ∈ S and
an action a ∈ A, a transition between si and sj is represented
by (si, a, sj) ∈ T .

α-CTL model checking
An example where representing actions may allow for a
more rational model checking and updating is shown in Fig-
ure 6. Suppose that ϕ is a desired property: “from the initial
state s0, all transitions take to state in which p is true”. A
traditional model checker (MC) would represent the system
model by Figure 6(a), i.e., by a Kripke model. Since the tran-
sition (s0, s2) does not satisfy ϕ, the CTL based MC would
detect this error and a model update would indicate “ remove
the relation (s0, s2)”. However, if we do represent the tran-
sition actions (Figure 6(b)) a model checker would not detect

an error, since there is an action a that takes the system to
state s2 that satisfies ϕ. Figure 6(c) shows another example
of how model checking can be more rational when we rep-
resent the actions in the state transition model: by knowing
that the two transitions correspond to non-deterministic ef-
fects of action a, removing one transition implies removing
the other.

(a) (b) (c)

Figure 6: (a) Kripke structure. (b) and (c) Labelled transition
model.

In this section, we present the branching time temporal
logic α-CTL and a model checker based on this new logic.

The new temporal logic α-CTL

Differently from CTL, the branching time temporal logic
α-CTL, proposed in (Pereira and de Barros 2008), can dis-
cern among various actions that produce state transitions.

Syntax of α-CTL In CTL, a formula ∀○ϕ holds on a state s
if and only if it holds on all successors of s, independently of
the actions labeling the transitions from s to its successors.
In α-CTL , to enforce that actions play an important role in
its semantics, we use a different set of “dotted” symbols to
represent temporal operators: ⊙ (next), ⊡ (invariantly), ⟐
(finally) and D (until).
Definition 2. Let p ∈ P be an atomic proposition. The syntax
of α-CTL is inductively defined as:
ϕ ∶∶= p ∣ ¬p ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 ∨ ϕ2 ∣ ∃ ⊙ ϕ ∣ ∀⊙ ϕ ∣ ∃ ⊡ ϕ ∣ ∀ ⊡

ϕ∣ ∃(ϕ1 D ϕ2) ∣ ∀(ϕ1 D ϕ2)

According to the α-CTL syntax, well-formed formulas
are in negative normal form, where the scope of negation
is restricted to the atomic propositions. Furthermore, all
temporal operators are prefixed by a path quantifier (∃ or
∀). The temporal operators derived from ⟐ are defined as:
∃⟐ ϕ2 ≐ ∃(⊺ D ϕ2) and ∀⟐ ϕ2 ≐ ∀(⊺ D ϕ2).

Semantics of α-CTL Let P ≠ ∅ be a finite set of atomic
propositions and A ≠ ∅ be a finite set of actions. An α-CTL

temporal model over (P,A) is a transition graph where
states are labelled with subsets of P and transitions are la-
belled with elements of A.

Intuitively, a state s in a temporal model M satisfies a
formula ∀ ⊙ ϕ (or ∃ ⊙ ϕ) (Figure 7) if there exists an ac-
tion α that, when executed in s, necessarily (or possibly)
reaches an immediate successor of s which satisfies the for-
mula ϕ. In other words, the modality ⊙ represents the set
of α-successors of s, for some particular action α ∈ A; the
quantifier ∀ requires that all these α-successors satisfy ϕ;
and quantifier ∃ requires that some of these α-successors
satisfy ϕ.

32

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

(a) s ⊧ ∀⊙ p (b) s ⊧ ∃ ⊙ p

Figure 7: Semantics of the temporal operator ⊙. (a) p is true
for all sucessors of s troughout action a. (b) p is true for
some sucessor of s troughout action a.

Before we can give a formal definition of the α-CTL se-
mantics, we need to define the concept of preimage of a set
of states.
Definition 3. Let be Y ⊆ S a set of states. The weak
preimage of Y , denoted by I−∃ (Y), is a set {s ∈ S ∶ a ∈

A and ∃(s, a, s′) ∈ T, s′ ∈ S, s′ ⊆ Y }; and the strong preim-
age of Y , denoted by I−∀(Y), is the set {s ∈ S ∶ a ∈

A and ∀(s, a, s′) ∈ T, s′ ∈ S, s′ ⊆ Y }

The semantics of the global temporal operators (∃⊡, ∀⊡,
∃D and ∀D) is derived from the semantics of the local tem-
poral operators (∃⊙ and ∀⊙), by using least (µ) and greatest
(ν) fixpoint operations.
Definition 4. LetM = ⟨S,L,T ⟩ be a temporal model with
signature (P,A) and p ∈ P be an atomic proposition. The
intention of an α-CTL formula ϕ inM (or the set of states
satisfying ϕ inM, denoted by JϕKM, is defined as:
• JpKM = {s ∈ S ∶ p ∈ L(s)}

• J¬pKM = S ∖ JpKM
• Jϕ1 ∧ ϕ2KM = Jϕ1KM ∩ Jϕ2KM
• Jϕ1 ∨ ϕ2KM = Jϕ1KM ∪ Jϕ2KM
• J∃ ⊙ ϕ1KM = T

−
∃ (Jϕ1KM)

• J∀⊙ ϕ1KM = T
−
∀ (Jϕ1KM)

• J∃ ⊡ ϕ1KM = νY.(Jϕ1KM ∩ T
−
∃ (Y))

• J∀ ⊡ ϕ1KM = νY.(Jϕ1KM ∩ T
−
∀ (Y))

• J∃(ϕ1 D ϕ2)KM = µY.(Jϕ2KM ∪ (Jϕ1KM ∩ T
−
∃ (Y)))

• J∀(ϕ1 D ϕ2)KM = µY.(Jϕ2KM ∪ (Jϕ1KM ∩ T
−
∀ (Y)))

A model checker for α-CTL

A model checker for α-CTL can be directly implemented
from its semantics. Given a model M = ⟨S,L,T ⟩ and an
α-CTL formula ϕ, the model checker computes the set C of
states that do not satisfy the formula ϕ inM; then, if C is
the empty set, it returns success; otherwise, it returns C as
counter-example.
α − MODELCHECKER(ϕ,M)
1 C ← S ∖ INTENTION(ϕ,M)
2 if C = ∅ then return success
3 else return C

The basic operation on this model checker is implemented
by the function INTENTION, that inductively computes the in-
tention of the formula ϕ in the model M. The efficiency
of α − MODELCHECKER can be highly improved with use
of BDDS (Bryant 1992), resulting in an extremely efficient
symbolic version of this model checker. More details about
the α-MODELCHECKER can be found in (Pereira and de Bar-
ros 2008).

α-CTL model updating
In this section, we define the basic concepts about the pro-
posed model updating system, which is based on the branch-
ing time temporal logic α-CTL (Pereira and de Barros 2008).

First, consider that a complete modelM⋆
= ⟨S⋆, L⋆, T ⋆⟩

(eventually induced by a formal specification in A) is a la-
belled transition system with signature (P,A). Thus, ac-
cording to Definition 1:

• S⋆ ≠ ∅ is a finite set of states;
• L⋆ ∶ S⋆ ↦ 2P is a state labelling function;
• T ⋆ ⊆ S⋆ ×A × S⋆ is a state transition relation.

Moreover, consider that the model which the system de-
signer wants to correct is a partial model M = ⟨S,L,T ⟩

such thatM ⊆M
⋆ or, more precisely:

• S ⊆ S⋆ is a finite set of states;
• L ∶ S ↦ 2P such that, for all s ∈ S,L(s) = L⋆(s);
• T ⊆ T ⋆ such that, if (si, a, sj) ∈ T and (si, a, sk) ∈ T

⋆,
then (si, a, sk) ∈ T .
In Figure 8, we have a labelled transition system repre-

senting a complete model M⋆, where the highlighted sub-
structure is the partial model M ⊆ M

⋆ given by system
designer.

Figure 8: A labelled transition system. Solid lines represent
the partial modelM and dashed lines represent the complete
modelM⋆.

Given a partial model M ⊆ M
⋆, a initial state s0 ∈ S

and an α-CTL formula ϕ such that (M, s0) /⊧ ϕ, the α-CTL

model updating problem consists of generating a new par-
tial modelM′

⊆M
⋆, called updated model, such that: (i)

(M
′, s0) ⊧ ϕ and (ii)M′ has a minimal change with respect

to the original partial modelM.
To update a partial model M, w.r.t. a complete model
M

⋆, in order to satisfy an α-CTL formula ϕ, we define the
follow primitive operations:

PUA1: Adding transitions induced by an action. Given
a partial model M = ⟨S,L,T ⟩, a corresponding updated
model M′

= ⟨S′, L′, T ′⟩, with respect to M⋆, can be ob-
tained fromM by adding a transition between states si, sj ∈
S. In other words:
• T ′ = T ∪ {(si, a, s) ∈ T

⋆
∶ ∃a ∈ A, (si, a, sj) ∈ T ⋆}

• S′ = S ∪ {s ∶ ∃a ∈ A, (si, a, s) ∈ T ′}
• L′(s) = L⋆(s), s ∈ S′

33

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Adding a transition between two states si and sj in the
partial model is possible only if there is some transition be-
tween these states in the complete model. For example, in
Figure 8 we cannot add a transition between states s2 and s4
in the partial model (solid lines), because there is no transi-
tion between s2 and s4 in the complete model (dashed lines).
In Figure 8, it is possible to add a transition between states
s0 and s3, since a transition labelled with action b exists in
the complete model. However, all the effects of action b
must also be added. In Figure 8 in order to add a transition
between states s0 and s3, using action b, we must also add
state s4 and the transition between s0 and s4 in the updated
model.

PUA2: Removing transitions induced by an action.
Given a partial modelM = ⟨S,L,T ⟩, a corresponding up-
dated model M′

= ⟨S′, L′, T ′⟩, with respect to M⋆, can
be obtained fromM by removing an existing transition be-
tween states si, sj ∈ S, which is labelled by some action
a ∈ A. More formally:
• T ′ = T − {(si, a, s) ∈ T

⋆
∶ (si, a, sj) ∈ T}

• S′ = S
• L′(s) = L(s), s ∈ S′

It is important to observe that to remove an existing tran-
sition between states si and sj labelled by an action a, we
must also remove all transitions from si using action a, i.e.,
all non-deterministic effects of the action a in state si. For
example, to remove the transition between states s0 and s1 in
the partial model of Figure 8, it is also necessary to remove
the transition between states s0 and s2.

PUA3: Adding a new state. Given a partial model
M = ⟨S,L,T ⟩, a corresponding updated model M′

=

⟨S′, L′, T ′⟩, with respect to M⋆, can be obtained from M
by adding only one new state. That is:
• S′ = S ∪ {s}, for some s ∈ S⋆, such that s /∈ S

• L′(s) = L⋆(s), s ∈ S′

• T ′ = T
It is possible to add one state s in the partial model if and

only if this state exists in the complete model.

PUA4: Removing an isolated state. Given a partial
modelM = ⟨S,L,T ⟩, a corresponding updated modelM′

=

⟨S′, L′, T ′⟩, with respect to M⋆, can be obtained from M
by removing only one isolated state. That is:
• S′ = S − {s}, for some s ∈ S, such that for all si ∈ S,
si ≠ s, and a ∈ A, we have (si, a, s) /∈ T and (s, a, si) /∈ T

• L′(s) = L(s), s ∈ S′

• T ′ = T

Defining minimal change for α-CTL model updating
Based on the work of Zhang and Ding (2008), we can estab-
lish a minimal change criterion for a labelled transition sys-
tem using the primitive update operations (PUA1 − PUA4),
defined in previous section.

By using a primitive update operation PUAi, a partial
modelM given by a system designer can be updated in dif-
ferent ways. Thus, we need a criterion which allows us to
measure the changes in the different possible updated mod-
els of M and choose the one which is more close to the
original modelM.

Given a labelled transition system M = ⟨S,L,T ⟩ and a
corresponding updated model M′

= ⟨S′, L′, T ′⟩, for each
operation PUAi, for i = 1..4, we use Diff PUAi(M,M′

) to
denote the differences between these two models.

Diff PUAi(M,M′
) = ∣T ′ − T ∣ + ∣S′ − S∣

We also define Diff (M,M′
) as the following

tuple: (Diff PUA1(M,M′
), Diff PUA2(M,M′

),
Diff PUA3(M,M′

), Diff PUA4(M,M′
)).

Now, we can precisely define the ordering ≤M on labelled
transition system.
Definition 5. (Closeness ordering) - Given M a partial
model and M′

1, M′
2 two corresponding updated models,

with respect to a complete modelM⋆. We say thatM′
1 is at

least as close toM′
2, denoted asM′

1 ≤MM
′
2, if and only

if for each set of PUA1 − PUA4 operations that transform
M intoM′

2, there exists a set of PUA1 − PUA4 operations
that transform M into M′

1, such that the following condi-
tion hold:

Diff PUAi(M,M′
1) ≤ Diff PUAi(M,M′

2), for i = 1..4

We also denote M′
1 <M M

′
2 if M′

1 ≤M M
′
2 and

M
′
2 /≤MM

′
1. For example, ifM,M′

1 andM′
2 are models

such that: Diff PUA1(M,M′
1) = 5; Diff PUA2(M,M′

1) =

2; Diff PUA3(M,M′
1) = 4; Diff PUA4(M,M′

1) = 6;
Diff PUA1(M,M′

2) = 3; Diff PUA2(M,M′
2) = 1;

Diff PUA3(M,M′
2) = 1 and Diff PUA4(M,M′

2) = 5. We
say that M′

2 <M M
′
1, i.e., M′

2 is more close to M than
M

′
1 is.
Definition 5 presents a measure on the difference between

two labelled transition system with respect to a partial model
given by designer. Intuitively, we say that model M ′

1 is
closer to M relative to model M ′

2 if M ′
1 is obtained from

M by applying all primitive update operations that cause
fewer changes than those applied to obtain model M2. Hav-
ing the ordering specified in Definition 5, we can define a
α-CTL model updating formally.
Definition 6. (Admissible Update) Let be a partial model
M = ⟨S,L,T ⟩,M = (M,s0), where s0 ∈ S, and an α-CTL

formula ϕ, a Update(M, ϕ) is called an admissible model
if the conditions below hold:
• Update(M, ϕ) = (M ′, s′0), (M

′, s′0) ⊧ ϕ, where M ′
=

(S′, L′, T ′) and s′0 ∈ S
′;

• There does nor exists another updated model M ′′
=

⟨S′′, L′′, T ′′⟩ and s′′0 ∈ S′′ such that (M ′′, s′′0) ⊧ ϕ and
M ′′

<M M ′.

Model Update in Action
Like in the CTL model update proposed by Zhang and Ding
(2008), the primitive updating operations PUA1-PUA4 can
suggest modifications by adding or removing states and tran-
sitions but:

34

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

• by considering an action labelled transition model, the ef-
fects of nondeterministic actions imply in different model
updates; and

• the temporal formula ϕ is expressed in α-CTL which, as
shown in Pereira and Barros (2008) can specify more ex-
pressive planning goals.

In this section we extend model updating to modify an
action specification, i.e., an action precondition and effect.
The idea is to add two more updating operations to PUA1-
PUA4, as we show next.

First, we define how to induce the complete model M∗

from a set of actions, described in a language based on its
preconditions and nondeterministic effects.

Definition 7. An action is defined by a triple ac-
tion(name,pre,pos), where pre is the set of preconditions
that must be true in a state s where the action is applied;
and pos is the set of nondeterministic effects that becomes
true in the state resulting from the execution of the action a
on state s. We use pre(a) refering to the preconditions of
action a and pos(a) for the effects of action a.

For example, action (a,{p, q},{{r, s},{u}}) indicates
that pre(a) = {p, q} and the two possible nondeterministic
effects of a are given by pos(a) = {{r, s},{u}}

Given an action set A, the preposition set P of the com-
plete model is determined as:

P = {p ∶ a ∈ A and pre(a) ∪ pos(a)}

that means, all the proposition symbols involved in the de-
scription of the set of actions A are elements of P.

Definition 8. The complete modelM∗
A induced by a set of

actions A is a structure ⟨S∗A, L
∗
A, T

∗
A⟩, where:

• S∗A is a finite set of enumerated state symbols such that
∣S∣ = ∣2P∣ ;

• L∗A ∶ S ↦ 2P is the labelling function that assigns to each
state a set of atomic propositions ;

• T ∗A = {(sx, a, sy) ∶ sx, sy ∈ S, a ∈ A, pre(a) ⊆ sx, eff
∈ pos(a), eff ⊆ L(sy).

Notice that the semantics of actions defines that a transi-
tion labelled with action a is added to the complete model
M

∗
A if: pre(a) is satisfied in the state sx; and pos(a) is

also satisfied in state sy . That means, the induced model
M

∗
A contains transitions between states without preserving

properties in sx that are not modified by action a. One can
justify this kind of transitions with the occurrence of exoge-
nous events (a possible explanation for nondeterministic ac-
tions) or as a relaxed state transition model useful to sug-
gest the updates on the partial model (or in a preliminary set
of actions specification, as we will see in the next section).
We could also induce a complete model from a set of ac-
tions respecting the classical planning assumptions (i.e., the
STRIPS-like semantics). However, it would be too restric-
tive while modeling a new planning domain (specially in the
case of a nondeterministic domain).

E.g., let us consider the following set of actions A:

• action(a,{p, q},{{r, s},{u}})

• action(b,{r},{t})

• action(c,{u},{{t}})

• action(d,{p, u},{{t}})

The set of proposition atoms is given by P =

{p, q, r, s, u, t}. So, the complete model M∗
A induced by

A has 64 states and all possible transitions, according with
the semantics (Definition 7) of actions in A.

Planning Domain Model Updating
In order to develop a real world planning application, a
knowledge engineer must specify a correct set of actions
which can guarantee the synthesis of correct plans. Our
claim is that the use of a formal method, such as the model
update approach presented in previous section, can offer an
important support to knowledge acquisition, modelling and
verification of planning domains. In this paper we use model
update in a planning domain w.r.t. a preliminary set of ac-
tions A, by making the following correspondences:

• the complete model M∗
A is induced by the actions A

according with Definition 8 (we may call this complete
model as weakly induced by A);

• a partial modelM ⊆ A can be seen as a part of the com-
plete modelM∗

A that can correspond to (i) a set of plans
for a given class of goals, specified in an ad hoc way by
a domain expert (or possibly generated by an automatic
nondeterministic planner) or ; (ii) a state transition model
induced by a stronger semantics of actions (with frame
axioms) and

• an α-CTL temporal formula ϕ is a planning goal (which
can since it is expressed by α-CTL can be more complex
than a simple reachability goal).

Formally, given a complete modelM∗
A induced by a set

of actions A; a partial model M ⊆M
∗
A; and a α-CTL for-

mula ϕ defining a planning goal, the set of primitive updat-
ing operations PUA1 − PUA4 can be used to refine and
validate the partial modelM. Plus, in order to perform up-
dates directly on the action specification, we need to define
two extra primitive updating operations, named PU5−PU6 ,
as follows.

PUA5: Adding transitions induced by a modified action
(precondition change). Given (i) a complete modelM∗

A
= ⟨S∗A, L

∗
A, T

∗
A⟩ induced by a set of actions A; (ii) a partial

modelM = ⟨S,L,T ⟩ such thatM ⊆M
∗
A and (iii) si, sj ∈

S , the corresponding updated model M′
= ⟨S′, L′, T ′⟩ is

obtained from M by adding a transition between states si
and sj labelled by action anew which is a modified version
of an action a ∈ A (where pre(a) not satisfied in si needs to
be relaxed), generating a new set of actions A′. Formally:

• A′
= (A ∖ action(a, pre(a), pos(a))) ∪

action(anew, pre(anew), pos(anew)), eff ∈ pos(a),
eff ⊆ L(sj), pre(anew) = L(si) ∩ pre(a),
pos(anew) = pos(a)

• M∗
A′ = ⟨S∗A′ , L

∗
A′ , T

∗
A′⟩ is a complete model induced by

A′, where S∗A′ = S∗A, L∗A′ = L∗A and T ∗A′ = T ∗A ∪

35

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

{(sx, anew, sy)∣sx, sy ∈ S∗A′ ,pre(anew) ⊆ L(sx), eff
∈ pos(anew), eff ⊆ L(sy)}

• T ′ = T ∪ {(si, anew, s) ∈ T
∗
A′}

• S′ = S ∪ {s∣(si, anew, s) ∈ T
′
}

• L′(s) = L∗A′(s), s ∈ S
′

PUA6: Adding transitions induced by a modified action
(postcondition change). Given (i) a complete modelM∗

A
= ⟨S∗A, L

∗
A, T

∗
A⟩ induced by a set of actions A; (ii) a partial

modelM = ⟨S,L,T ⟩ such thatM ⊆M
∗
A and (iii) si, sj ∈

S , the corresponding updated model M′
= ⟨S′, L′, T ′⟩ is

obtained from M by adding a transition between states si
and sj labelled by action anew which is a modified version
of an action a ∈ A (where pre(a) is satisfied in si and we
want to modify pos(a0) to reach sj), generating a new set
of actions A′. Formally:

• A′
= (A ∖ action(a, pre(a), pos(a))) ∪

action(anew, pre(anew), pos(anew)), pre(a) ⊆

L(si), pos(anew) = pos(a) ∪ L(sj), pre(anew) =

pre(a)

• M∗
A′ = ⟨S∗A′ , L

∗
A′ , T

∗
A′⟩ is a complete model induced by

A′, where S∗A′ = S∗A, L∗A′ = L∗A and T ∗A′ = T ∗A ∪

{(sx, anew, sy)∣sx, sy ∈ S∗A′ ,pre(anew) ⊆ L(sx), eff
∈ pos(anew), eff ⊆ L(sy)}

• T ′ = T ∪ {(si, anew, s) ∈ T
∗
A′}

• S′ = S ∪ {s∣(si, anew, s) ∈ T
′
}

• L′(s) = L∗A′(s), s ∈ S
′

The principle of minimal change for PUA5 −PUA6 fol-
lows the same criterion we have defined for PUA1 −PUA4 .
Notice that PUA5 −PUA6 can update a model when a tran-
sition between two states si and sj does not exist in the
complete model M∗

A, i.e., there is no action a ∈ A such
that pre(a) ⊆ L(si) and pos(a) ⊆ L(sj) and therefore the
only way to update the model is by using the operations
PUA5 − PUA6 . However, when the primitive operations
PUA5 − PUA6 are used to modify the actions in A they
also imply in modifications on the induced complete model
M

∗
A which can eventually cause too many changes in the

partial model. Therefore, considering all the primitive up-
dating operations, PUA1 − PUA6 , it is up to the minimal
change criterion to suggest a set of minimal changes to the
planning domain designer.

Conclusion
In this work we have presented a model updating approach
that considers the actions behind the transitions in a state
model. We also formalized the principle of minimal change
for α-CTL logic - a previous proposed branching time tem-
poral logic that has been applied to planning based on model
checking (Pereira and de Barros 2008). To perform model
updating in action (Figure 9), we take (i) a set of actions A
(which is used to induce the complete labeled transition sys-
temM∗), (ii) a partial modelM such thatM∗

⊆M
∗ and

(iii) a α-CTL formula (i.e. a planning goal) and returns an
updated modelM′, that has minimal change with respect to

the original partial model (an example of plan specification
or a more restrictive model induced by a preliminary set of
actions).

Figure 9: Model updater in action.

The minimal change principle proposed, as well the prim-
itive operations PUA1 −PUA4 extended the work of Zhang
and Ding (2008) to perform α-CTL model update. By using
the description of actions, we proposed two extra primitive
operations PUA5−PUA6 , that can be used to change an ac-
tion specification (its precondition and effect, respectively).
These two operations allow us to apply the proposed model
updating as an important supporting tool for a planning do-
main designer.

As a future work we intend to implement an α-CTL model
updater, based on our α-CTL model checker implementation
and use it to refine some nondeterministic planning domain
with complex goals. We also want to make experiments with
new planning applications.

Acknowledgments. We thank CNPq and FAPESP (grant
2009/07039-4) for financial support.

References
Bryant, R. E. 1992. Symbolic Boolean manipulation with
ordered binary-decision diagrams. ACM Computing Sur-
veys 24(3):293–318.
Buccafurri, F.; Eiter, T.; Gottlob, G.; and Leone, N. 1999.
Enhancing model checking in verification by AI tech-
niques. Artif. Intell. 112(1-2):57–104.
Clarke, E. M., and Emerson, E. A. 1982. Design and syn-
thesis of synchronization skeletons using branching-time
temporal logic. In Logic of Programs, Workshop, 52–71.
London, UK: Springer-Verlag.
Clarke E., Grumberg O., P. D. 1999. Model Checking. San
Francisco: MIT Press.
Harris, H., and Ryan, M. 2003. Theoretical foundations of
updating systems. In 18th IEEE International Conference
on Automated Software Engineering, 2003. Proceedings,
291–294.
Kripke, S. 1963. Semantical considerations on modal
logic. Acta Philosophica Fennica 16:83–94.
Müller-Olm, M.; Schmidt, D. A.; and Steffen, B. 1999.
Model-checking: A tutorial introduction. In SAS ’99:
Proceedings of the 6th International Symposium on Static
Analysis, 330–354. London, UK: Springer-Verlag.
Pereira, S. L., and de Barros, L. N. 2008. A logic-
based agent that plans for extended reachability goals. Au-
tonomous Agents and Multi-Agent Systems 16(3):327–344.
Zhang, Y., and Ding, Y. 2008. CTL model update for
system modifications. J. Artif. Int. Res. 31(1):113–155.

36

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Integrating plans into BPM technologies for Human-Centric Process Execution

Juan Fdez-Olivares and Inmaculada Sánchez-Garzón and Arturo González-Ferrer and Luis Castillo
Department of Computer Science and Artificial Intelligence

University of Granada

Abstract

This work presents a translation process from a standard rep-
resentation of plans into a standard executable format for
Business Process Management (BPM). This translation is
conceived as a Knowledge Engineering for Planning pro-
cess that bridges the existing gap between AI Planning and
Busines Process Management and provides support for the
direct execution of plans playing the role of Human-Centric
processes.

Motivation
Human-Centric processes (Dayal, Hsu, and Ladin 2001) are
collections of tasks, mainly organized in sequential and/or
parallel control flows, which necessarily require human in-
teraction in order to control and manage their execution.
They are very common in any organization and they can be
seen as complementary to System-Centric processes, which
are devoted to exhaustively automate the data flow and pro-
cesses of an organization, reducing human intervention to
the minimum. This work is focused on a special kind
of Human-Centric processes, concretely those oriented to
knowledge workers(Myers et al. 2007): highly qualified per-
sonnel, like experts or decision makers, who need and pro-
duce knowledge in their daily work. These processes com-
monly support decisions and help to the accomplishment of
workflow tasks in several application domains. Examples of
such processes are a forest fire attack plan devoted to fire
fighting technical staff, a medical treatment plan for a clini-
cian, an e-learning course for a teacher, a military forces de-
ployment plan for a commander, etc. For the sake of simplic-
ity, we will designate these processes as Smart Processes.

The management and execution of Smart Processes de-
mand special technological requirements, due to its main
features(WorkflowManagementCoalition 2010): first, these
processes respond to very complex, interacting sets of pro-
cedures and doctrine which reside either in an unstructured
form in experts’ mind or in partially structured documents,
what makes difficult to generate and execute tasks in confor-
mance with those constraints; second, they are unpredictable
in the sense that both their composing tasks and order rela-
tions cannot be easily devised prior to their execution, since

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

they strongly depend on the context of the organization and
do not respond to a fixed pattern.

Hence they need to be somehow modeled and dynami-
cally generated, their generation must be adaptable to the
context of the organization and, finally, smart processes have
to be flexibly and interactively executed by humans. In
summary, they require some kind of intelligent management
since they are very difficult to foresee and need to be adap-
tively generated depending on the context (current state) of
an organization.

AI P&S has showed to be very suitable in many appli-
cations ((Fdez-Olivares et al. 2006; Castillo et al. 2007;
Bresina et al. 2005; Fdez-Olivares et al. 2010)) as a tech-
nology that fulfills the above requirements. The role of
AI P&S in this area, fundamentally HTN-based paradigms
(Sacerdoti 1975; Castillo et al. 2006), is well known: start-
ing from a planning domain where expert knowledge (in
the form of actuation protocols or operating procedures) is
modeled as a hierarchy of tasks networks, a plan (repre-
senting a course of actions to be accomplished at a given
time) is adaptively generated as the result of a planning
process. Then, the plan is executed by humans who, de-
pending on the application may be ground operators, mili-
tary personnel, experts in forest fire fighting, clinicians, etc.,
and this execution is supported by ad-hoc task visualization
and execution models and tools (Fdez-Olivares et al. 2006;
2010).

On the other hand, a leading industrial area that has
showed to be successful in the management and execution of
Human-Centric processes is BPM (Business Process Man-
agement)(wfm), devoted to the modeling, deployment, exe-
cution and monitoring of business processes. From the con-
crete point of view of process execution, BPM technology
provides: (1) runtime engines that support the execution of
tasks based on robust task execution models, and (2) visual
consoles (at present based on web portals) that support user
interaction for the control of human-centric tasks. However,
at the time being, BPM technology is mainly focused on
static, repetitive, even perfectly predictable tasks/processes,
mostly devoted to low qualification operators(Workflow-
ManagementCoalition 2010).

This is a widely known weakness in the BPM commu-
nity (either industrial or academic) and, because of this,
it is also recognized that new techniques must be devel-

37

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Oncology
Protocol

HTN
Domain

Problem

Planner
Plan
(XML) Translation

to XPDL

Process
(XPDL)

BPM Console

Process and
User actions Tasks

states

Clinical
Data BPM engine

Figure 1: Integrating oncology treatment plans into both, a BPM console and a BPM engine

oped at the process modeling/generation step in order to
fully cover the needs of knowledge workers on Smart Pro-
cesses. With respect to AI P&S weak points, it is necessary
to recognize that since most of the planning applications
in Human-Centric processes are based on ad-hoc develop-
ments for task interactive execution (Bresina et al. 2005;
Fdez-Olivares et al. 2006; Tate, Drabble, and Kirby 1994;
Wilkins 1990), these developments are still far from being
so stable, mature and usable like in BPM.

In summary, while AI P&S (concretely HTN paradigm)
has proven to be successful on supporting the knowledge
workers’ effort (by modeling their expertise and helping
them to adaptively produce plans to support their decisions),
it can be seen that BPM is much more appropriate to sup-
port the result of this effort (by providing technological in-
frastructures in order to interactively execute and monitor
processes). As a conclusion, it becomes relevant to analyze
in what extent AI P&S technology might cover the lack of
capability of BPM regarding the modeling and adaptive gen-
eration of plans. In addition, AI P&S may take advantage of
an already tested, developed technology in order to enhance
the user experience of a planning application at the execu-
tion and monitoring stage.

Consequently, this work faces the problem of integrat-
ing the capability of adaptive, dynamic generation of plans
that we can find in AIP&S with the high-performance of
BPM with respect to interactive execution of Human-centric
processes. Concretely, we have interpreted the solution to
this problem as the development of Knowledge Engineering
techniques, focused on plan representation and postprocess-
ing, in order to make the output of an AI planner under-
standable by a BPM runtime engine. The convergence of
both technologies leads into an integrated environment for
Smart Process Management, providing support for modeling
(based on the representation of Hierarchical Task Networks),
adaptive generation (based on Planning and Scheduling pro-
cess) and execution (based on BPM runtime engines and
consoles) of Smart Processes.

The adoption of this approach has many advantages for
AIP&S in practical applications: the integration of a plan
previously generated by a planning engine into an already

developed, BPM standard environment for interactive exe-
cution of processes might support a rapid prototyping de-
velopment life-cycle, saving development time at the first
stages in the development of a AI P&S application. This
also would allow to carry out a reliable acquisition of user
requirements based on a rapid-prototyping methodology. In
addition, user experience may be improved, helping to re-
duce/eliminate a constant bottle-neck in the adoption of
AIP&S as a widely spread technology. From the BPM point
of view, integrating a planner into its functional life-cycle,
will leverage any BPM system allowing to fulfill all the re-
quirements imposed by needs of knowledge workers.

In the following sections, in order to bring this arguments
into reality, we will introduce a Knowledge Engineering ap-
proach based on the postprocessing and translation of plans
into a BPM standard representations of processes. The result
of this translation will be considered as the input of a BPM
runtime engine that, highly coupled with a web console, will
support the interactive execution of smart processes. In or-
der to demonstrate the suitability of this approach, we have
performed some experiments in the medical domain. Con-
cretely we have achieved to execute, by using a commer-
cial BPM runtime engine, pediatrics oncology therapy plans
previously generated by a hierarchical planner. The therapy
plans obtained by our planner are a clear example of what
human-centric smart processes are, since they are primarily
useful to support clinical decision making and need to be
interactively executed by oncologists. Technical aspects of
the plan representation and the translation process are de-
tailed in last sections. Previously, the case study on therapy
planning and some necessary background concepts on BPM
are introduced.

Therapy planning case study
The work presented in this paper is being carried out in the
framework of a research project aimed at developing a Clin-
ical Decision Support System (called OncoTheraper), based
on planning and scheduling techniques, in the pediatrics on-
cology area. OncoTheraper is intended to support oncolo-
gists’s effort (they are the knowledge workers in this case
study) when they deal with the problem of planning an on-

38

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

cology treatment for a given patient. These experts make
their decisions following oncology treatment protocols, a set
of evidence-based operating procedure and policies that are
gathered in partially structured documents. The system is
based on a temporally extended HTN paradigm (see (Fdez-
Olivares et al. 2010) for more details) that, on the one
hand, supports to model treatment protocols on the basis of
an HTN temporal planning language. On the other hand,
it allows to dynamically generate user-acceptable treatment
plans, adapted to a context defined by a concrete patient pro-
file, by following a planning process driven by the expert
knowledge modeled in the planning domain.

In a previous experimentation, reported in (Fdez-Olivares
et al. 2010; Fdez-Olivares, Czar, and Castillo 2009), a model
of a concrete oncology clinical trial protocol (the one fol-
lowed at present for planning the treatment of Hodgkin’s
disease and elaborated by the Spanish Society on Pediatrics
Oncology) has been encoded in the temporally extended
HTN planning language, following a knowledge elicitation
process based on interviews with experts. This model con-
tains knowledge about wokflow control structures included
in the treatment protocol, temporal constraints to be ob-
served between chemotherapy cycles, periodic patterns to
administrate drugs as well as the representation of oncolo-
gists’ working shifts.

In the experiments performed, the planner received the
following inputs: a planning domain, representing this pro-
tocol; an initial state representing some basic information
to describe a patient profile (age, sex, body surface, etc.)
as well as other information needed to apply administra-
tion rules about drugs (dosage, frequency, etc.); and a high-
level task representing the goal (apply the protocol to the
patient) with temporal constraints representing the start date
of the treatment plan. The output of the planner are plans
that contain collections of (partially) ordered tasks repre-
senting drug administration actions to be accomplished on a
patient. Since temporal information is crucial for oncology
treatments, all the actions in a plan are temporally annotated
with constraints on start and end dates which specify dead-
lines either for the estimated beginning and finalization of
tasks. These plans are represented in a standard XML repre-
sentation that allows to display them as Gantt charts in stan-
dard tools devoted to project management (like MS Project,
see Figure 2)

Furthermore, OncoTheraper is also intended to support
the execution of the treatment plan, that is, the result of the
process followed by oncologists (now supported by the AI
planning system) when planning a treatment. In the work
here presented, we are exploring how the treatment plans,
dynamically generated on the basis of medical knowledge,
can be made executable in order to support the deployment
and supervision, step by step, of all the planned treatment
tasks. Clearly, the treatment plan generated by AI P&S tech-
niques becomes a human-centric process and oncologists
need a platform to visualize and interact with the plan gen-
erated, controlling the execution of the tasks defined in the
treatment plan. Figure 1 illustrates this idea: since BPM
consoles and runtime engines have shown to be success-
ful in the execution of human-centric processes, it seems

Figure 2: A temporally annotated and automatically gener-
ated therapy plan represented as a gantt chart. The plan rep-
resents the treatment for a patient following the Hodgkin’s
Disease Protocol. Start and end dates of every action are
shown in the left-hand side. Drugs and their dosage are
shown in the bars of the chart.

that a plan (in our example a treatment plan) adequately
transformed into a standard business process representation,
might be interactively executed by a standard/commercial
runtime engine together with a BPM web console. In or-
der to test this hypothesis we have considered the following
steps:

1. The structure and content of plans generated by the hier-
archical planner are postprocessed into an XML represen-
tation for plans.

2. The XML representation of plans has been translated into
XPDL, a widely known standard representation of busi-
ness processes. The result of this translation is the input
to a BPM runtime engine.

3. The XPDL process is deployed into the BPM console in
order to display its tasks and provide appropriate visual
”gadgets” to support the interactive control of the execu-
tion of tasks.

4. The execution of tasks is fully accomplished by a BPM
runtime engine,following a task execution model based
on a state-based automaton. The engine is also in charge
of capturing user actions, sent by the console, an changing
accordingly the states of the tasks. New states of tasks are
sent back and visualized into the BPM console.
From a Knowledge Engineering for Planning point of

view, the translation of a plan into a different model raises
the question of which categories of information a plan
should contain in order to be executable by a standard BPM
engine. Next section is devoted to clarify this question, since
an important part of the answer comes from the analysis of
the information model of the target language of the transla-
tion process, as well as from the analysis of the execution
model carried out by the runtime engine and from the re-
quirements about visualization and interaction of the BPM
console.

39

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Technological Environment
A great part of the ideas developed in this work need to know
in some extent the terminology, standard languages and con-
cepts involved in the area of BPM. A business process is a
collection of activities with order relations and control struc-
tures that define their execution flow. Processes are defined
using a standard BPMN notation, through a Business Mod-
eling tool. The result of such definition takes the form of
a XPDL file. XPDL (XML Process Definition Language)
is a standard language (wfm) , based on XML, devoted to
promote process exchange between BPM engines. A BPM
runtime engine is in charge of executing a process, usually
represented in XPDL, by following the execution flow de-
scribed. Since human-centric processes require the interac-
tion of human users during its execution, most commercial
runtime engines have also coupled a web console that sup-
port user interaction. The most relevant XPDL entities and
attributes considered in our work are:

Activities. They comprise a logical, self-contained unit
of work, which will be carried out by participants and/or
computer applications. Activities are related to one another
via transitions. Transitions. They result in the sequential
or parallel operation of individual activities. Participants.
They are used to define the organizational model over which
a process is deployed and can be allocated to one or more ac-
tivities.Parameters and DataFields. These entities are used
to define the process data model. Information that is internal
to the process is represented as Data Fields and information
required outside the process is represented by Parameters.

In addition the information model of any XPDL entity
may be extended by using Extended Attributes.

BPM runtime engines

Figure 3: A typical BPM console showing a collection of
tasks. For each one temporal information, execution state
and execution controls are shown.

Most BPM systems include three main components: a
Business Process Modeler (a tool oriented to IT profession-
als who visually design a business process), a BPM Runtime
Engine (in charge of executing the activities represented in
a XPDL process that, as said above, is a serialization of
the business process visually designed) and a BPM console.
From the user point of view, the BPM console is the most
important component and it is closely related with the run-
time engine, being responsible of (1) providing user inter-

action in order to deploy a business process previously de-
fined by the Business process Modeler, (2) visualizing the
process activities to be carried out, and (3) providing visual
”gadgets” to interactively control the execution of process
activities. Figure 3 shows a snapshot of the console used in
the experiments of this work.1

Figure 4: A BPM runtime execution model for Human-
Centric tasks.

Regarding process execution, BPM engines are com-
monly endowed with the necessary machinery in order to ex-
ecute every task in a process following an execution model
based on state-based automata. Fig 4 illustrates the states
and transitions of the automaton underlying task execution
for the engine that we have chosen to test our concepts. It
follows a standard life-cycle for task execution, and simi-
lar ones can be found in the literature for BPM engines as
well as for clinical plans execution. Thus, there is not lost
of generality on the concepts here explained and they can be
applied to another different BPM engine. As shown int the
figure, the engine allows to start, finish, suspend or abort any
task, always upon user request. A task may be in a READY
state if all its previously ordered tasks have been finished.
Then, it can be started by the user and the engine changes
its state to EXECUTING. At this point a task may change

1The console chosen for experimental purposes is Nova Bonita
console that also includes the Nova Bonita runtime engine
(http://www.bonitasoft.com/). Besides that both are Open Source
projects and accept XPDL as input, the main reason for selecting
these tools is that they support the interactive execution of tasks
based on a configurable, simple yet expressive execution model.

40

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

either to SUSPENDED, ABORTED or FINISHED, depend-
ing on user actions. Every change of state has associated a
trigger (a java method) that can be customized by the devel-
oper. This provides support to define the behaviour of the
engine as required by users. Furthermore, triggers opens the
possibility of communicating the engine with external sys-
tems like a plan monitoring service: the monitor may receive
information on critical changes in the execution of a process
and respond to them accordingly, for example raising a re-
planning process.

Finally, on the basis on this execution model, the basic
principles of an acceptable execution of plans can be ob-
tained, with the following considerations:

1. Though most BPM engines support the execution of pro-
cesses with conditional and repetitive control structures,
due to the nature of clinical treatment plans, only sequen-
tial and parallel control structures are addressed.

2. BPM engines do not provide full support for the exe-
cution of processes with tasks incorporating time con-
straints(Gagné and Trudel 2009). Indeed, the engine used
in this work is only capable of directly manage deadlines
for the termination of tasks. This is a really weak point
that forces to develop special monitoring services to pro-
vide full temporal information management like, for ex-
ample rescheduling of dates upon user request. Therefore,
the full treatment of temporal constraints falls out of the
scope of this paper.
Next the XML plan representation used in this approach

is explained.

Plan representation
The plans generated by the planner are represented in XML
as collection of Task nodes (see Figure 5) where every Task
node contains information about:
• Activities (id and name) and their parameters (type, name

and the value assigned at planning time), its preconditions
and effects.

• Temporal information of activities (earliest Start and ear-
liest End), representing the estimated time (obtained at
planning time) for the start and end of every task in
the plan (start, end, duration). Indeed, the plan ob-
tained includes richer temporal information, since it is
deployed over a temporal constraint network that as-
signs to every task a start and end time points rep-
resented as time intervals with the earliest and lat-
est start and end dates at which an action is al-
lowed to be executed ([aearlieststart, alateststart] and
[aearliestend, alatestend]). However, the information rep-
resented in the xml plan is enough, given the above ex-
plained execution model.

• Order dependencies. Every action a contains a collec-
tion of order dependencies, one for each action b ordered
before a, which allow to establish sequential an parallel
runtime control structures. This is a crucial item since its
analysis will lead to inform the runtime engine about the
set of actions that are immediately ordered after a given
one.

• Metadata, which allow to represent additional knowl-
edge required by either the user, the console or the
runtime execution engine. They are syntactic structures
that are managed (created, assigned, etc.) at planning
time, and are intended to be interpreted by external
systems. Indeed, they are the keystone to enrich a
plan in order to facilitate plan postprocessing steps and
integration with other systems. For a given action,
the meta-data field is a collection of items of the form:
<metadata <name> <valuetype> <value> >.

The plan representation used in this approach embodies
the following metadata:
Description, a string containing user-friendly informa-
tion about the task.

Type, used to represent whether the execution of an ac-
tion necessarily requires human intervention to be ini-
tiated (Type = Manual) or might be initiated by the
engine (Type = Auto). This is a very common cate-
gorization of actions in Human-Centric processes.

Actor, considering that we are focused on human-centric
processes, it is mandatory that one of the parameters be
considered as the resource (either a person or a system)
that accomplishses the action.

Performer, its value is the participant in the process in
charge of executing the action from the BPM console.

Meta-data are a very convenient way to encode informa-
tion that is not directly related with the reasoning process,
but which is strongly required in practical applications. Fur-
thermore, they can also be used to extend the knowledge
model of actions with additional items requires for a given
domain. Indeed, meta-data are encoded in the planning do-
main, as special tags associated to actions. It is important to
note that they can be encoded independently from the BPM
processes intended to be executed, as it will be shown in next
sections.

Translating plans into XPDL
The translation process is focused mainly in transforming
the following pieces of knowledge from a XML plan: activ-
ities and its parameters, temporal information, order depen-
dencies and metadata. This knowledge is enough to generate
a human-centric process that can be fully executed by a user
through a standard BPM engine, since with this knowledge it
is possible to generate information in order for the execution
model to manage order relations, either sequential or paral-
lel, of tasks as well as execution deadlines. The translation
process has three main steps:

1. Generation of XPDL DataFields/Participants.The goal
of this step is to generate the data model used by the run-
time engine. Basically, consists on translating the objects
hierarchy, their properties and initial values (defined in
the initial state) into XPDL DataFields. This step is at
present subject to further analysis, in the experiments this
has been done semi-automatically.

2. Generation of XPDL Activities. For each action aplan

in the XML representation of plan, a XPDL activity axpdl

is generated with the following information items:

41

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

XML Plan representation XPDL process representation

Figure 5: An XML structure of a plan and the XPDL schema of the relevant information for activities and transitions used in
this work.

• axpdl.name = aplan.name

• axpdl.performer = aplan.metadata.Performer

• axpdl.participant = aplan.metadata.Actor

• axpdl.description = aplan.metadata.Description

• axpdl.startmode = aplan.metadata.Type

• axpdl.deadline = aplan.duration

• Start and end dates of aplan are translated as XPDL
extended attributes and added to the properties of axpdl

<ExtendedAttribute name=start value=startaplan>
<ExtendedAttribute name=end value=endaplan>

• Every paramenter pi of aplan is translated
as a XPDL extended attribute of the form
<ExtendedAttribute name=pi.name value=pi.value>

3. Generation of XPDL Transitions. This step contains
two stages:

(a) For each aplan generate SUCC(aplan) as the set of
immediate succesors of aplan. A task j is an immediate
succesor of another task i when a dependence i < j
exists and there is no task k such that i < k and k < j.

(b) For every aplan and for each b in
SUCC(aplan), generate an XPDL transition
<Transition From=aplan To=b>

As said before, the XPDL so generated is given as input
to the BPM console that deploys it upon user request. The
information contained in the XPDL file is used by both, the
console in order to show task items required by the user, and
the runtime engine in order to execute tasks according to the
information stored in the XPDL process. Thus, an XPDL
file contains informative-only fields which are the following:

name, participant, description, parameters, and estimated
start and end times. These fields are usually showed in
the console for user information purposes. Operative fields
needed by the execution model are: startmode (used to de-
termine whether a tasks starts automatically or upon user
request), deadline (used to manage whether a task has fin-
ished correctly on time), performer (used to determine if the
user is allowed to execute a given actions) and the transitions
(used to determine the execution order of tasks).

The life-cycle of Smart Process Management
The translation process above introduced is the keystone of
a process that allows to achieve a full connection between
the output of an AI Planning system and the input of a BPM
runtime engine. The convergence of both technologies leads
into an integrated environment for Smart Process Manage-
ment, providing support for modeling (based on the repre-
sentation of Hierarchical Task Networks), adaptive genera-
tion (based on Planning and Scheduling process) and execu-
tion (based on BPM runtime engines and consoles) of Smart
Processes.

Authors argue that this can be considered a contribution
in the field of Knowledge Engineering for Planning due to
the following reasons: first, it is a non-trivial transformation
between a plan representation and a widely spread, stan-
dard language for business processes. Second, it also an-
swers some questions about new information requirements
that must be covered by domains and plans representations
when they have to deal with plans that must be executed
by using standard BPM technologies. The new pieces of
knowledge like type of actions, actors and performers, are

42

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

not usually considered as part of a planning model, but it has
been shown that they necessarily have to be incorporated in
domain and plan representations.

Furthermore, the field of Knowledge Engineering for
Planning also deals with the study and development of tech-
niques and methodologies that might advance the life-cycle
for engineering planning systems. In this sense, the trans-
formation process above described bridges a common, im-
portant gap that prevented to adequately carry out a fast
prototyping strategy for developing practical planning ap-
plications since, in order to develop a first prototype, it was
mandatory to develop also ad-hoc execution monitoring pro-
cesses and underlying preliminary interfaces, in order to
convince users about the advantages of the system. There-
fore, under this circumstances, building a first prototype of
planning application is very costly in time and human re-
sources.

As opposite, we have carried out a proof of concept based
on the translation of a treatment plan previously generated
by the planner and its execution based on the console. The
plans obtained are then transformed into XPDL processes,
following the translation process above described and inter-
actively executed by oncologists on a BPM console. There-
fore, the development effort in building a first prototype for
oncologists has been reduced. Instead of fully developing
both a specific interface for user interaction and a execution
monitoring system to support the execution, we have studied
and used the configuration techniques provided in the user
manuals of both the console and runtime engine. The result,
from the oncologist point of view, is a web application, ob-
tained in few weeks, that provides both information about
the treatment tasks to be performed, their time constraints
and interaction to start/finish/suspend/abort tasks.

Figure 3 shows the configured interface which has as de-
fault behaviour to show information about the pending treat-
ment tasks to be executed. The information in the console is
structured as a table where each row shows task information
that may be divided into three blocks:

1. Information about its name, its parameters and its esti-
mated start and end dates (recall that XPDL does not pro-
vide specific fields to represent task parameters, nor start
and end dates, but this information is extracted from ex-
tended attributes as detailed above).

2. Information about its state, shown in the form of flags.

3. Active buttons to control the execution of tasks. These
controls are easily configurable, and include buttons to
start, finish and suspend a task.

As the execution of the process progress, new pending
task are added to the console. In addition, a basic time man-
agement at execution can be achieved, based on the capabil-
ity of representing deadlines for tasks, as explained above.

Oncologists are highly skilled knowledge workers, but
it is understandable the they have not a clear idea about
what are their real usability needs with respect to a challeng-
ing and novel Clinical Decision Support System. Therefore
the basic functionality above described is enough to capture
user requirements, on the basis of this prototype, that would

be almost impossible to detect on interviews-based knowl-
edge/requirements acquisition.

Apart from Knowledge Engineering for Planning, the
connection between a planner and a BPM runtime engine
through the translation process introduced has advantages
in the field of BPM. Mainly, it contributes to leverage the
BPM life cycle incorporating capabilities for dynamic gen-
eration of emergent processes. As said in the introduction of
this paper, BPM engines are oriented to execute processes
the execution flow of which is completely defined a priori,
and there is no place to the management of adaptive, context
dependent process generation. The experimental proof of
concept carried out shows that, starting from a ”smart pro-
cess model” represented by an HTN planning domain, it is
possible generate processes (originally plans and then trans-
lated into business processes) that vary on its execution flow
depending on a variable context, defined by a patient pro-
file. Then, these processes can be executed on the basis of
standard BPM execution models.

Related work
The relationships between workflows (or business pro-
cesses) and AI planning have been studied from different
perspectives, but it is relevant for this work when consid-
ered as a technique to directly generate workflows executed
by ad-hoc, application specific systems devoted to the in-
teractive execution and monitoring of plans considered as
workflows. For this last case, some works are oriented to
autonomic computing (Srivastava, Vanhatalo, and Koehler
2005), others oriented to grid computing(Deelman et al.
2004), and we can also find works devoted to support knowl-
edge workers in their daily work, in the form of intelligent
task management assistants(Myers et al. 2007). Again,
these approaches do not face the execution of plans, seen
as smart processes, by using standard BPM technologies.
AI P&S techniques have also been applied in the field of
worflow generation for semantic web services. In this ap-
plication area, AI planning techniques are mainly focused
on the automated generation of sequences of semantic web
services calls (that may be seen as semantic business pro-
cesses)(S.A., T.C., and H. 2001). Some approaches in this
field (P. and M. 2004) address the generation of BPEL code
from plans representing web services processes. These ap-
proaches are focused on the management of System-Centric
processes and, due to the nature of these processes, do not
address the interactive execution of processes.

Regarding the concrete BPM field, the concepts described
in this work are subject of study under the denomina-
tion of Adaptive Case Management(WorkflowManagement-
Coalition 2010). Nowadays this is an emergent concept in
BPM. It tries to analyze and explore either already devel-
oped or new promising techniques, susceptible to be inte-
grated into present BPM systems, in order to fulfill the re-
quirements imposed by knowledge worker processes.

Conclusions
This work should be considered as a step forward in the pur-
suit of a methodology for rapid prototyping in Knowledge

43

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Engineering for Planning. The main contribution consists
on the integration of AIP&S techniques and BPM technolo-
gies through a process that translates plans into executable
business processes, thus allowing to directly execute those
plans into BPM standard runtime engines. From the point
of view of a BPM runtime engine, the information model of
plans, represented in XML, contains enough information to
be directly executed what allows a fully automated transla-
tion process.

With respect to the flexibility of this approach, it is impor-
tant to note that, although most of the knowledge embodied
by plans obtained by any state-of-art planner can be reused
by BPM runtime engines, without the transformation pro-
cess presented, the plans obtained could not be directly exe-
cuted in BPM engines. Therefore, for any planning system,
it is mandatory to transform both, the structure of the plans
and their content, as already explained. In this sense, when-
ever the plans obtained by another state-of-art planner fits
to the plan representation here presented, it will always be
possible to use our translation process in order to transform
the plans into XPDL and then execute them on a BPM run-
time engine. However, it is necessary to say that the domain
model must be able to represent ”special tags” for actions,
in order to finally obtain plans containing all the informa-
tion required for execution. This technique is not new in
planning, and many planners, specially HTN planners (My-
ers et al. 2007), allow to introduce additional knowledge
in the model of actions for postprocessing purposes. Under
these considerations, authors argue that it is possible obtain
a fully automated process that leads from domain modeling
to human-centric business processes execution.

However the approach here introduced presents some
weak points that need to be deeply studied. The translation
of the planning domain object model is not completely ad-
dressed, and it must be faced in order to achieve a fully auto-
mated translation process. Precondition and effects manage-
ment is neither addressed. Although it is possible to achieve
a user acceptable execution of plans, this functionality is
only permitted for prototype-level versions. The develop-
ment of a full application requires to develop a complete
execution monitoring based on the causal rationale of plans.
Finally, a full treatment of temporal constraints at execution
time is needed. All these issues are being faced at present
and will be incrementally added to the current approach, ac-
cording to the user requirements analyzed on the basis of
this first prototype.

Acknowledgements
This work has been partially supported by the Andalusian
Regional Ministry of Innovation under project P08-TIC-
3572.

References
Bresina, J. L.; Jonsson, A. K.; Morris, P.; and Rajan, K.
2005. Activity planning for the mars exploration rovers. In
Proceedings of the ICAPS05, 40–49.
Castillo, L.; Fdez-Olivares, J.; Garcı́a-Pérez, O.; and Palao,

F. 2006. Efficiently handling temporal knowledge in an
HTN planner. In Proceeding of ICAPS06, 63–72.
Castillo, L.; Fdez-Olivares, J.; Garca-Prez, O.; Garzón, T.;
and Palao, F. 2007. Reducing the impact of ai planning on
end users. In ICAPS 2007, Workshop on Moving Planning
and Scheduling Systems into the Real World, 40–49.
Dayal, U.; Hsu, M.; and Ladin, R. 2001. Business process
coordination: State of the art, trends, and open issues. In
Proceedings of the 27th VLDB Conference.
Deelman, E.; Blythe, J.; Gil, Y.; Kesselman, C.; Mehta,
G.; Vahi, K.; Blackburn, K.; Lazzarini, A.; Arbree, A.; Ca-
vanaugh, R.; and Koranda, S. 2004. Mapping abstract com-
plex workflows onto grid environments. Journal of Grid
Computing 1:25–39.
Fdez-Olivares, J.; Castillo, L.; Garcı́a-Pérez, O.; and Palao,
F. 2006. Bringing users and planning technology together.
Experiences in SIADEX. In Proceedings ICAPS06, 11–20.
Fdez-Olivares, J.; Castillo, L.; Cozar, J.; and Garcia-Perez,
O. 2010. Supporting clinical processes and decisions by
hierarchical planning and scheduling. Computational In-
telligence To Appear.
Fdez-Olivares, J.; Czar, J.; and Castillo, L. 2009. Knowl-
edge Management for Health Care Procedures, volume
5626 of Lecture Notes on Computer Science. Springer.
chapter OncoTheraper: Clinical Decision Support for On-
cology Therapy Planning Based on Temporal Hierarchical
Tasks Networks, 25–41.
Gagné, D., and Trudel, A. 2009. ”Time-BPMN”. In Pro-
ceedings of 1st International Workshop on BPMN.
Myers, K.; Berry, P.; Blythe, J.; Conley, K.; Gervasio, M.;
McGuinness, D.; Morley, D.; Pfeffer, A.; Pollack, M.; and
Tambe, M. 2007. An intelligent personal assistant for task
and time management. AI Magazine 28(2).
P., T., and M., P. 2004. Automated composition of semantic
web services into executable processes. In International
Semantic Web Conference.
S.A., M.; T.C., S.; and H., Z. 2001. Semantic web services.
IEEE Intelligent Systems 2(16):46–53.
Sacerdoti, E. D. 1975. The nonlinear nature of plans. In
Proceedings of IJCAI 1975, 206–214.
Srivastava, B.; Vanhatalo, J.; and Koehler, J. 2005. ”Man-
aging the Life Cycle of Plans”. In 17th Innovative Appli-
cations of Artificial Intelligence Conference, 1569–1575.
AAAI Press.
Tate, A.; Drabble, B.; and Kirby, R. 1994. O-PLAN2:
An open architecture for command, planning and control.
In Zweben, M., and Fox, M., eds., Intelligent scheduling.
Morgan Kaufmann.
Workflow management coalition. http://www.wfmc.org/.
Wilkins, D. E. 1990. Can AI planners solve practical prob-
lems? Computational intelligence 6:232–246.
WorkflowManagementCoalition. 2010.
http://www.xpdl.org/nugen/p/adaptive-case-
management/public.htm. Group on Adaptive Case
Management.

44

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Improving Planning Performance Through Post-Design Analysis

Tiago Stegun Vaquero1,2 and José Reinaldo Silva1 and J. Christopher Beck2

1Department of Mechatronic Engineering, University of São Paulo, Brazil
2Department of Mechanical & Industrial Engineering, University of Toronto, Canada

tiago.vaquero@poli.usp.br, reinaldo@usp.br, jcb@mie.utoronto.ca

Abstract

In this paper, we investigate how knowledge acquired
during a plan analysis phase that follows model de-
sign affects planning performance. We describe a post-
design framework that combines a knowledge engi-
neering tool and a virtual prototyping environment for
the analysis and simulation of plans. Our framework
demonstrates that post-design analysis supports the dis-
covery of missing requirements and guides the model
refinement cycle. We present two case studies using
benchmark domains and eight state-of-the-art planners.
Our results demonstrate that significant improvements
in plan quality and an increase in planning speed of up
to three orders of magnitude can be achieved through a
careful post-design process. We argue that such a pro-
cess is critical for deployment of planning technology
in real-world applications.

Introduction
Over the last decade, both research effort and industry inter-
est have been directed towards the application of AI Plan-
ning techniques to solve real-life problems. As a result, it
has become clear that the process of developing algorithms
for synthesizing plans forms only one part of the complex
design life cycle of a real-world planning application. Most
of the problems identified as suitable to being solved with a
planning approach are characterized by a need for substan-
tial knowledge management, reasoning about actions and a
careful consideration of quality metrics and criteria. The
design process of real applications must have a strong com-
mitment to these prerequisites in order to result in reliable,
deployed planning systems.

Design decisions about knowledge modeling and plan-
ning algorithm development drastically affect the quality of
plans. From a planning technology perspective, in a ce-
teris paribus scenario, factors such as the improper choice
of planning techniques and heuristics may lead to the gener-
ation of poor quality solutions. From a knowledge engineer-
ing perspective, lack of knowledge, ill-defined requirements
and inappropriate definition of quality metrics and prefer-
ences can contribute directly to malformed models and, con-
sequently, to unsatisfactory plans, independent of the plan-

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ning algorithm. Traditionally, much of planning research
has focused on the former perspective, in which new algo-
rithms are developed and tuned to obtain high performance
and better plans. Not much investigation has been done on
the knowledge engineering (KE) perspective, especially re-
modeling the planning problem based on observations and
information that emerge during the design process itself.

In plan analysis, hidden knowledge and requirements cap-
tured from human feedback raise the need for a continuous
re-modeling process. The capture and use of such human-
centered feedback is still an unexplored area in the knowl-
edge engineering for AI planning. Moreover, the extent of
impact of such feedback and re-modeling on the planning
performance is unknown. In order to deal with such post-
design analysis, techniques such as simulation, visualization
and virtual prototyping, commonly used in other disciplines
(Cecil and Kanchanapiboon 2007), can help design teams
identify new requirements and inconsistencies in the model.

In this paper, we present a post-design tool for AI plan-
ning that combines the open-source KE tool itSIMPLE (Va-
quero et al. 2007) and a virtual prototyping environment
to support identification of inconsistencies and hidden re-
quirements. We describe two case studies showing that post-
design not only improves plan quality, but also improves
planning performance even in benchmark problems. The
main contributions of this work are:

1. The creation of a framework to support post-design anal-
ysis for planning;

2. Two case studies that demonstrate that improvements in
plan quality, an increase in solvability and a reduction of
planning time of up to three orders of magnitude can be
achieved through a careful post-design process.
This paper is organized as follows. First, we discuss con-

cepts in knowledge engineering for planning and their role
in plan analysis and post-design. Then, we present the post-
DAM project describing the integration of itSIMPLE and a
virtual prototyping tool. Next, we present two case studies
and the results. We conclude with a discussion of our results.

Knowledge Engineering and Post-Design
Requirements engineering (RE) and knowledge engineering
(KE) principles have become important to the success of the
design and maintenance of real world planning applications.

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

45

While pure AI planning research focuses on developing re-
liable planners, KE for planning research focuses on the de-
sign process for creating reliable models of real domains
(McCluskey 2002; Vaquero et al. 2007). A well-structured
life cycle to guide design increases the chances of building
an appropriate planning application while reducing possible
costs of fixing errors in the future. A simple design life cycle
is feasible for the development of small prototype systems,
but fails to produce large, knowledge-intense applications
that are reliable and maintainable (Studer, Benjamins, and
Fensel 1998).

Research on KE for planning and scheduling has cre-
ated tools and techniques to support the design process of
planning domain models (Vaquero et al. 2009b; Simpson
2007). However, given the natural incompleteness of the
knowledge, practical experience in real applications such as
space exploration (Jónsson 2009) has shown that, even with
a disciplined process of design, requirements from different
viewpoints (e.g. stakeholders, experts, users) still emerge
after plan generation, analysis and execution. For exam-
ple, the identification of unsatisfactory solutions and unbal-
anced trade-offs among different quality metrics and crite-
ria (Jónsson 2009; Rabideau, Engelhardt, and Chien 2000;
Cesta et al. 2008) indicates a lack of understanding of re-
quirements and preferences in the model. These hidden re-
quirements raise the need for iterative re-modeling and tun-
ing process. In some applications, finding an agreement or
a pattern among emerging requirements is an arduous task
(Jónsson 2009), making re-modeling a non-trivial process.

A fundamental step in the modeling cycle is the analysis
of generated plans with respect to the requirements and qual-
ity metrics. Plan analysis naturally leads to feedback and the
discovery of hidden requirements for refining the model. We
call ‘post-design analysis’ the process performed after plan
generation, in which we have a base model and a set of plan-
ners and investigate the solutions they generate. Some of the
AI planning research on plan analysis has developed tools
and techniques for plan animation (McCluskey and Simpson
2006; Vaquero et al. 2007), visualization (e.g. Gantt charts),
and plan querying and summarization (Myers 2006). How-
ever, such work does not explore the effects of the missing
knowledge and the re-modeling loop in the planning pro-
cess. The investigation of modern analysis techniques such
as simulation for planning it is still an emerging field.

The postDAM Project

The postDAM project aims to investigate post-design tech-
niques to enhance the modeling cycle and increase the qual-
ity of plans. The project focuses on combining some of the
recently developed tools in KE for planning with virtual pro-
totyping. Virtual prototyping is commonly used in other en-
gineering fields (e.g. mechanical engineering) to validate
models and identify missing requirements (Cecil and Kan-
chanapiboon 2007) where producing a real prototype is im-
practical and costly.

The project proposes a framework that integrates the KE
tool, itSIMPLE (Vaquero et al. 2009b), and the 3D content

creation environment, Blender1, for virtual prototyping. The
former is a robust design system dedicated to AI planning in
which a set of languages and validation engines are used to
create domain models in a disciplined design process. The
latter is an open source tool, widely used for creating games
and animations. Blender provides several mechanisms for
the definition and simulation of 3D elements, including their
physical properties (such as mass, collision, gravity, inertia,
velocity, strength, and sound effects), to mimic some real
world characteristics.

The integration of these tools aims to close the design
loop, from requirements acquisition to plan analysis in the
post-design. In this loop, itSIMPLE is responsible for sup-
porting users during design and re-design of the models
while Blender, properly integrated with the KE tool, encom-
passes the simulation of plans provided by planners.

During model construction in itSIMPLE, designers per-
form the initial design phases to develop domain models in
the Unified Modeling Language. An important step in this
design process is the identification and specification of qual-
ity metrics, along with their respective importance. These
quality metrics are characterized in the form of weighted
domain or plan variables, i.e., numeric variables that are di-
rectly (or indirectly) related to the quality of plans. Exam-
ples of domain and plan variables are: the number of occur-
rences of a specific action in a plan; the total consumption of
fuel; the number of robots used for a particular purpose; and
the energy remaining in a battery. The definition of quality
metrics in itSIMPLE uses the approach described in (Ra-
bideau, Engelhardt, and Chien 2000). During simulation,
the designer can analyze and evaluate different solutions
while contrasting them based on the quality metrics. Differ-
ent viewpoints can communicate during 3D visualization in
order to validate and adjust the model based on their impres-
sions. Figure 1 illustrates this iterative refinement process.

Figure 1: The post-design framework

In order to provide an integrated design iteration, a com-
munication channel between itSIMPLE and Blender was de-
veloped in which data is sent from the KE tool to the 3D

1Blender, available at www.blender.org

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

46

environment. The data sent by itSIMPLE consist of the do-
main model, the problem instance and the quality metrics to
be considered (all in an XML representation (Vaquero et al.
2009b)). Since users can run several state-of-the-art plan-
ner from the itSIMPLE’s GUI, the generated plans are sent
directly to the 3D simulator.

Blender reads the data from itSIMPLE and generates a
virtual prototype of the model based on a predefined library
of graphical objects and their physics. These objects are de-
signed in such a way that they can perform and react to the
actions defined in the model from itSIMPLE. The Blender
application reads the main elements of the domain and prob-
lem instance such as classes of objects, the objects and their
properties, and additional information regarding the graphi-
cal position of the elements that has been stated by the user.
Classes are used to identify the necessary graphical elements
from the predefined library, while objects, properties and
location information are used to instantiate and initiate the
graphical elements in the initial scene. All the elements in
the problem instance definition are found in the 3D represen-
tation. Having the initial state established in the 3D scene,
the plan provided by a planner is then simulated (we assume
that plan actions are deterministic). In the simulation, the
actions are sent to each involved object, step-by-step. Each
object is implemented to act based on the instructions that
it is given. In each step of the simulation, the values of the
metrics are stored to provide a clear view of their changes
over the plan.

At the end of simulation, Blender 3D produces a plan re-
port that can be analyzed by users. The report contains the
evolution of the chosen quality metrics along with the cost
of the plan.

Case Studies
In this section, we present two case studies using bench-
mark domains from the International Planning Competi-
tions (IPC). The domains are the Gold Miner domain from
IPC-6 and the Storage domain from IPC-5. Both were cho-
sen from recent competitions based on the clear correspon-
dence between objects in the real and virtual world.

The procedure used for each case study is as follows:

1. We created an initial model in itSIMPLE guided by the
original PDDL representation to simulate the design pro-
cess. Since itSIMPLE generates PDDL output as a com-
munication language to planners, we verify that such out-
put is exactly the same as the original PDDL version of
the benchmark domain. This model is called Original.

2. We selected three problem instances from the 30 IPC in-
stances to be analyzed in-depth. The selected set of prob-
lem instances is called the design set. Eight planners were
chosen to be run (using default arguments) with a 20-
minute time-out for each problem instance.

3. In addition to the PDDL reproduction process, we used
itSIMPLE to define quality metrics for the domain.

4. Using the virtual prototype in Blender, we studied ev-
ery generated plan and its execution. With the analysis
and plan reports, we manually introduced modifications

to the model in itSIMPLE. We repeated the plan simu-
lation and model refinement, going back and forth with
new ideas and results, until we had two new models (A
and B) each representing one major change and a third
new model (AB) incorporating them both.

5. We then took the remaining 27 problem instances and
tested all four models (Original, A, B, and AB) with
the eight planners. We call this set of instances the testing
set.

In order to analyze the impact of the refinement cycle, we
compare the models A, B and AB to the Original over
all 27 problem instances from the testing set. This analysis
considers the changes on plan quality, plan length, speed,
and solvability. PDDL terms and elements are used to de-
scribe the adjustments made to the original model in the re-
modeling process to facilitate the explanation.

The Gold Miner Domain
The Gold Miner is a benchmark domain from the learning
track of IPC-6 (2008). In this domain, a robot is in a mine
and has the objective of reaching a location that contains
gold. The mine is represented as a grid in which each cell
contains either hard or soft rock. There is a special location
where the robot can either pickup an unlimited supply of
bombs or pickup a single laser cannon. The laser cannon
can be used to destroy both hard and soft rock, whereas the
bomb can only penetrate soft rock. If the laser is used to
destroy a rock that is covering the gold, the gold will also
be destroyed. However, a bomb will not destroy the gold,
just the rock. This particular domain has a simple optimal
strategy2 in which the robot must (1) get the laser, (2) shoot
through the rocks (either soft of hard) until it reaches a cell
neighboring the gold, (3) go back to get a bomb, (4) explode
the rock at the gold location, and (5) pickup the gold. In
this case study we used the propositional typed PDDL model
from the testing phase of IPC-6.

For our design set, we chose three problem instances con-
sidering the variety of the number of objects and difficulty.
The first (gold-miner-target-5x5-02) and the second (gold-
miner-target-5x5-01) instances have a 5x5 mine with dis-
tinct positions of gold, bombs, cannon, and soft and hard
rocks. The third instance (gold-miner-target-6x6-05) has a
6x6 mine also with a particular position of the domain ele-
ments.

The quality metrics chosen for this study are (1) the travel
distance of the robot (weight 2), (2) the bomb usage (weight
1), and (3) the laser cannon usage (weight 1). In itSIMPLE,
we specified these metrics as counters of the actions move,
detonatebomb, and firelaser, respectively. For this domain
we selected SGPlan5, MIPS-xxl 2006, LPG-td, MIPS-xxl
2008, SGPlan6, Metric-FF, LPG 1.2, and hspsp to solve the
problem instances.

During the first post-design analysis with the original
model and the design set, we carefully investigated all 24
generated plans through the 3D simulation using Blender.
Figure 2 shows an example of the simulation.

2IPC-6 2008. http://eecs.oregonstate.edu/ipc-learn/

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

47

Figure 2: Virtual prototype and simulation of the Gold
Miner domain. The robot is represented as a cube in the
bottom. Soft and hard rocks are light and dark gray areas re-
spectively. We used basic shapes to represent objects, how-
ever, there is no restriction on using complex 3D shapes and
skins.

A number of observations were made in the first analysis:

• One planner generated invalid solutions in which the
robot used the laser at the gold location, destroying the
gold.3

• Some planners provided (valid) plans in which the laser
cannon was fired at an already clear location.

• Unnecessary move actions were present in some plans.

In order to fix these non-optimal and flawed behaviors, we
refined the original model. Concerning the planner assign-
ing the robot to fire at the gold, the original model does not
prevent such situation: there was no precondition on the fire-
laser operator that explicitly constrains this behavior. There-
fore, a precondition to the operator was added: (not (gold-at
?loc)). Regarding the unnecessary firelaser occurrences, a
second precondition was added to the same firelaser opera-
tor, in this case (not (clear ?loc)). We call this set of modi-
fications A. The resulting model was sent to the planners to
solve the same problem instances, resulting in a new post-
design iteration.

During the second analysis process, additional observa-
tion were collected:

• Invalid plans were no longer being generated.

• The undesirable firing behavior from the initial observa-
tion was eliminated.

• In most of the plans, at the goal state, the laser cannon
was left in a different position from the initial one. As a
new requirement, the robot could leave the laser only at
the same spot as the bomb source.

3This was observed with MIPS-xxl 2008. We contacted the au-
thors and the bug appears to arise from the way we called the plan-
ner (e.g. a special script is necessary) but due to time limitations,
we were unable to re-run these instances with the correct script.

• Unnecessary move actions were still being found in some
solutions.
These new observations guided the second re-modeling

loop. A precondition to the putdownlaser operator was
added, forcing the robot to always drop the cannon at the
location of the bombs. The precondition (bomb-at ?loc) was
used for this purpose. We call this modification B. The
plans generated with model B properly controlled the lo-
cation where the cannon was left. The combination of the
previous and the current set of adjustments is called AB.

As a result of the AB modification, most of the generated
plans to the design set converged to the same solution. The
main issues raised during post-design analysis were elimi-
nated, except some unneeded move actions.

To analyze and compare the effects of the post-design
analysis on planning performance, the Original model was
compared to the models A, B, and AB. The selected plan-
ners were run on the testing set for each of the four mod-
els. Table 1 illustrates the comparison concerning run-time
(speed) and solvability on the testing set. The table shows
the total time (including time-outs) for each planner to solve
all 27 problem instances in each of the four models. In or-
der to determine the speed-up values, we first define tMp,k as
the time planner p takes to solve problem instance k using
model M . We then define the speed-up ratio for each of the
new models (A, B, AB) compared to the Original model
as follows:

rM
p,k =

tOriginal
p,k

tMp,k

. (1)

For a particular planner and model, we calculate the mean
and the median of the speed-up ratios. The mean speed-up
value presented in Table 1 for each model is the mean of
means of speed-up ratios over all planners. Similarly, the
median speed-up is the median of the medians of speed-
up ratios over all problem instances and planners for each
model. Model AB shows a significant speed-up compared
to the Original. Even A and B individually provide a sig-
nificant speed-up. The maximum speed-up ratios observed
on an individual problem instance were 7,547 with model A,
5,068 with model B and 5,185 with model AB. However,
we also observed that in some cases the new models were
slower than the original. The lowest ratio observed was 0.26
with model B. Considering the total time to solve the testing
set, all planners perform better in the AB model. Because
MIPS-xxl 2008 was run improperly it is not considered in
the analysis showed in Table 1.

Table 1 also illustrates the number of instances solved by
the planners in each model, as well as the percentage im-
provement of each new model compared to the original. All
problem instances were solved in the AB model, a 22.7%
improvement compared to the original model.

Improvements are not only found on speed and solvabil-
ity, but also on plan length and quality. By looking at each
problem instance and the four plans generated by a particu-
lar planner, we can determine the model that gives the best
performance on three criteria: run time, plan length and plan
quality (cost). Table 2 illustrates the number of times each

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

48

Time (s) Problems Solved
Planners Original A B AB Planners Original A B AB
SGPlan5 3,303.42 1.93 3.65 1.99 SGPlan5 14 27 27 27

MIPS-xxl 06 3,995.34 983.79 2,015.28 22.13 MIPS-xxl 06 15 25 21 27
LPG-td 41.04 29.69 39.28 27.83 LPG-td 27 27 27 27

SGPlan6 3,925.85 3.13 4.65 3.51 SGPlan6 18 27 27 27
Metric-FF 1,707.00 3.79 4.35 3.78 Metric-FF 26 27 27 27
LPG 1.2 10.58 5.58 4.47 4.70 LPG 1.2 27 27 27 27

hspsp 37.53 16.77 8.22 8.19 hspsp 27 27 27 27
Mean Speed-Up 469.70 267.97 479.67 Total 154 187 183 189

Median Speed-Up 7.33 6.82 10.54 Improvement 21.4% 18.8% 22.7%

Table 1: Total time (including time-outs) required to solve all problem instances and the solvability comparison for the Gold
Miner domain models.

Best Time Occurrence Best Plan Length Occurrence Best Plan Quality Occurrence
Planners Original A B AB Original A B AB Original A B AB
SGPlan5 0 10 5 13 14 13 24 13 14 17 24 17

MIPS-xxl 06 0 4 0 23 11 19 21 25 11 19 21 25
LPG-td 2 10 2 13 5 24 10 27 5 24 10 27

SGPlan6 0 19 2 7 17 19 24 19 17 20 24 20
Metric-FF 0 9 9 10 26 13 23 13 26 17 23 17
LPG 1.2 3 3 10 12 12 15 18 12 15 17 19 12

hspsp 0 0 19 8 27 27 27 27 27 27 27 27
Total 5 55 47 86 112 130 147 136 115 141 148 145

Table 2: Best time, plan length and plan quality comparison over the Gold Miner models.

model results in the best solution with respect to each of the
three criteria for a given planner. For example, LPG-td gen-
erated the best plan lengths compared to the other models
using LPG-td in 5 cases with the Original model, 24 with
model A, 10 with model B, and 27 with model AB. The
numbers sum to greater than 27 due to ties. Better plans are
usually found with refined models.

The Storage Domain
The Storage domain is one of the benchmark domains from
the deterministic track of IPC-5 (2006). This domain in-
volves moving a certain number of crates from containers to
depots using hoists. Inside a depot, each hoist can move ac-
cording to a specified spatial map connecting different areas
of the depot, represented by a grid. Transit areas are used
to connect depot areas to containers and also depots to de-
pots. The domain has five actions: (1) lifting a crate with a
hoist; (2) dropping a crate from a hoist; (3) moving a hoist
into a depot; (4) moving a hoist from one area of a depot
to another; and (5) moving a hoist outside a depot. At the
beginning of each problem, all crates are inside the contain-
ers waiting to be transported to the necessary depot. For this
case study we used the propositional version of the PDDL
domain model.

The design set for this domain is composed of three prob-
lem instances with different numbers of elements and diffi-
culty. In the first instance (p10), four crates must be allo-
cated in one depot using a single hoist. In the second (p16),
six crates must be carried from two containers into two de-

pots by three available hoists. The third instance (p20) has
ten crates stored in three containers, three depots, and three
hoists.

The quality metrics specified for this domain are the
numbers of occurrence of each operator in the plan: move
(weight 2), lift (weight 1), drop (weight 1), go-out (weight
3); and go-in (weight 3). The weights used in this exper-
iment were inspired by the PDDL numeric version of the
domain. We selected the same planners used in the previous
case study, except LPG 1.2 which was removed due to a bug
identified while running the design set. Instead we used FF
2.3.

During the first post-design iteration, the plans for the de-
sign set were analyzed in the virtual prototype platform. Fig-
ure 3 shows the simulation of the first problem instance from
the design set.

The main observation raised while analyzing the plans
provided by planners were:

• In some solutions, the hoists were putting the crates back
into the containers. This scenario happens mainly when
hoists left other crates on the main access to the depots,
blocking access. Such situation forced the hoist into a
lift-drop loop in and out of the containers.

• The fact that hoists drop crates on the doorway of depots
forced them to rearrange the crates, which culminated in
unnecessary actions to correct the previous decisions.

• Some of the plans included unnecessary lifts and drops of
the same crate. This lift-drop loop happened usually in

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

49

Figure 3: Virtual prototype and simulation of the Storage
domain. Three crates at the depot and a hoist on the transit
area.

transit and depot areas.
• Some solutions contained unnecessary move actions.

We focused on the fact that crates were being placed back
into the containers. In order to constrain that situation, a
simple modification of the parameters of operator drop was
made. The original operator has the following PDDL rep-
resentation (?h - hoist ?c - crate ?a1 - storearea ?a2 - area
?p - place). The adjusted version of the drop operator dif-
fers from the original in the last parameter: ?p - depot.
The parameter p constrains the location where crates can be
dropped. We call this modification A.

During the second iteration of simulation with adjustment
A, the following observation were acquired:
• Crates were no longer being put back into the containers.
• Some of the plans still contained unnecessary lifts and

drops of the same crate, but fewer than the original model.
• The unneeded move actions still occurs in some plans.

In the second re-modeling iteration, we focused on the
unnecessary lift and drop cycles of the same crate. The ap-
proach taken for this problem was to make the hoist memo-
rize the last lifted crate. For that, a new predicate was spec-
ified (lastLifted ?h - hoist ?c - crate). This predicate was
added to the precondition of the lift operator in the follow-
ing form (not (lastLifted ?h - hoist ?c - crate)), as well as
in the post-condition as (lastLifted ?h - hoist ?c - crate) to
record the current crate. The precondition constrained the
planner not to assign a hoist to lift the same crate again. The
added post-condition defines the previously lifted crate. It is
important to note that this is just one approach to attempt to
tackle the issue. More elaborate re-modeling could be per-
formed. We call this individual modification B. The combi-
nation of the refinements A and B generated the model AB.
Note that A, B and AB do not require modification of the
problem instances, even with the new predicate in B, since
the hoists start with no previous lifted crates.

By analyzing the model AB in the post-design frame-
work, the unnecessary lift-drop loops of the same crate were
reduced drastically. However, some plans exhibited the
problem in a different form: two hoists alternatively lift and
drop the same crate. The occurrence of such situations was
rare. The unnecessary move actions were reduced but not
eliminated.

Table 3 shows the impact on run-time and solvability
when running the selected planners over the testing set with
the original and the new models. A and B are again analyzed
separately for a better view of individual effects. In this ta-
ble, the speed-up is not as impressive as the first case study.
The maximum speed-up ratios observed for a single problem
instance were 4,411 with model A, 1,597 with model B and
5,194 with model AB. The minimal ratio observed was 0.01
with model B. We do not have a significant improvement in
the solvability with the new models. The highest one is the
AB with a 9.4% improvement on the total number of prob-
lems solved. As above, the results of MIPS-xxl 2008 are not
included due to the use of an incorrect script.

Table 4 illustrates in which model each planner provides
it best run time, plan length and plan quality. For example,
SGPlan6 provided the best plan lengths on 4 problem in-
stances with the original model; 10 with model A, 17 with
model B, and 18 with model AB. Similarly to the previous
case study, the table shows that better plans are found more
often using the refined models.

Discussion
In this section we present some of the main discussions
raised by the case studies.

Knowledge Acquisition and Extraction
The case studies presented above demonstrate that even in
benchmark domains missing requirements and modeling is-
sues emerge in the post-design analysis. In real planning
applications, we expect such gaps to be very common due
to the difficulties of obtaining the necessary knowledge and
requirements. The knowledge acquisition process in real-
world applications is not the pure collection of already ex-
isting requirements during the beginning an application de-
sign (Studer, Benjamins, and Fensel 1998). Tacit knowledge
and hidden and unknown requirements must be discovered
and considered. Therefore, knowledge must be built up and
structured during an iterative design process, especially dur-
ing the initial phases and after design. Domain modeling
is an iterative process in which new observations may lead
to a refinement of the already built-up model (Studer, Ben-
jamins, and Fensel 1998), even over time; moreover, the
model itself may guide the further acquisition of knowledge.

In this work, both the KE tool and the 3D simulation en-
vironment have an important role in the discovery of miss-
ing requirements and the refinement cycle. The use of vir-
tual prototyping, in particular, has shown to be a powerful
technique on plan validation and new requirements identi-
fication as opposed to looking at plan traces. Visual and
sound effects can give experts and non-experts a clear view
of the domain model as well as the planning strategy. The

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

50

Time (s) Problems Solved
Planners Original A B AB Planners Original A B AB
SGPlan5 11,562.25 10,137.26 7,686.23 7,470.18 SGPlan5 18 19 21 21

MIPS-xxl 06 3,433.82 3,334.95 3,913.46 3,347.97 MIPS-xxl 06 16 16 14 16
LPG-td 5,980.77 7,124.50 5,796.66 4,775.16 LPG-td 25 26 25 26

SGPlan6 8,230.74 10,177.03 7,754.42 7,508.96 SGPlan6 18 19 21 21
Metric-FF 13,441.49 9,767.35 13,205.63 12,003.99 Metric-FF 16 19 16 17

FF 2.3 14,416.93 9,935.53 15,603.44 12,117.64 FF 2.3 15 19 16 17
hspsp 21,782.20 21,744.39 21,117.63 20,989.91 hspsp 9 9 10 10

Speed-Up mean 37.22 13.03 43.49 Total 117 127 123 128
Speed-Up median 1.15 1.00 1.04 Improvement 8.5% 5.1% 9.4%

Table 3: Total time (including time-outs) required to solve all problem instances and the solvability comparison for the Storage
domain models.

Best Time Occurrence Best Plan Length Occurrence Best Plan Quality Occurrence
Planners Original A B AB Original A B AB Original A B AB
SGPlan5 2 8 3 8 13 13 16 16 13 13 16 16

MIPS-xxl 06 2 7 1 6 13 14 12 13 10 13 13 13
LPG-td 5 6 4 11 9 9 17 18 9 9 15 18

SGPlan6 0 11 2 9 4 10 17 18 4 10 17 18
Metric-FF 1 10 3 9 15 16 10 12 14 17 10 12
LPG 1.2 2 12 1 5 12 15 14 17 13 15 14 16

hspsp 1 4 1 4 9 9 10 10 9 9 10 10
Total 13 58 15 52 75 86 96 104 72 86 95 103

Table 4: Best time, plan length and plan quality comparison on the Storage domain.

KE tool was also essential in the process, especially in the
re-modeling phases. A metric-focused analysis, using for
example the plan report, helps the designer to determine the
subset of high quality solutions as well as the proper set of
quality criteria.

Another important factor on discovering a lack of knowl-
edge in the model and hidden requirements is the presence
of different levels of quality over the analyzed plans. The
identification of bad plans, for example, proved to be a pow-
erful guidance on the re-modeling process. Bad plans not
only raise the need for new constraints on the model, but
also help designers to capture user’s feedback and prefer-
ences. In our case studies, the generation of distinct plan
qualities was enhanced by using a variety of planners. Since
the lack of knowledge in the model can impact differently on
the planners, their different responses also contribute to the
identification of model issues. After the adjustment process
these different responses are narrowed as many of the plans
converge to the same solution over different planners.

We observed that planners can be very sensitive to the
presence or absence of specific knowledge in the model. As
an example, in the Gold Miner domain, the adjustment cy-
cle made some of the planners perform impressively better;
however, in the Storage domain, the addition of knowledge
negatively affected the planners’ internal heuristics. In fact,
adding missing constraints not necessarily implies in faster
responses from the planners; however even with a higher
run-time we are moving toward better plans. These facts
suggest that IPC results could be different if such issues were

considered.

Modeling and Planning
The case studies showed that the planning performance in-
deed improved with a post-design analysis. We achieved
speed-ups through a careful plan analysis and re-modeling
process, without changing or adjusting planners. In some
cases we have added obvious knowledge, from a human per-
spective, to the model; however, its explicit representation
facilitates the search process of the planners. This evidence
reinforces that both aspects, model and planner, must be
carefully designed and refined. A sole emphasis on improv-
ing planners, neglecting observations and feedback from the
design process itself, can de facto prevent or constrain plan-
ning use in real applications.

We believe that our results represent a challenge for prac-
tical planning research. The central justification for building
general-purpose planners is that domain experts cannot be
expected to also be planning experts. Domain experts should
be able to concentrate on modeling the domain, treating the
solver as a black-box. In practice, therefore, the only op-
tions available to a domain expert are domain and problem
re-modeling. The use of planning technology by someone
who is not a planning expert therefore depends entirely on
the extent to which domains can be modeled (and remod-
eled) to allow planning algorithms to achieve satisfactory
performance. Yet, we know very little about how domain
modifications affect planning algorithms and we can provide
little advice to domain experts (without becoming domain

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

51

experts ourselves) on what changes are likely to be positive.4
Tools, such as the one presented here, to allow domain ex-
perts to investigate changes and planning experts to begin to
develop an understanding of the impact of changes on their
algorithms are therefore critical.

There is a fundamental mismatch between the target do-
mains of the postDAM framework (i.e., real-world planning
applications) and the case studies using IPC domains. A
true test of our tool should be in the form of a case study
with a real problem (e.g., (Cesta et al. 2008; Jónsson 2009;
Vaquero et al. 2009a)). However, such case studies are not
reproducible and often rely for success on external factors:
significant interest from the client, success of other parts of
the mission (e.g., landing on Mars), and larger economic
forces. System building research is extremely valuable but
sometimes inaccessible and difficult to generalize. Research
in AI planning has shifted toward a more empirical style
since the beginning of the IPC, where research innovations
can be reproduced and directly compared. This style, too,
has substantial benefits as can be observed from the gains
in solver performance. The design of our case studies was
an attempt to bridge the gap between “real” applications and
“academic” benchmarks and to encourage further research
on modeling in planning. We have shown that even in bench-
mark domains that, by definition, do not include a wealth of
unrepresented knowledge, it is still possible to substantially
increase solver performance by domain re-modeling.

Conclusion
In this paper, we have described a post-design framework
to assist the discovery of missing requirements and to guide
the model refinement cycle. We have demonstrated that fol-
lowing a careful post-design analysis, we can improve not
only plan quality but also solvability and planner speed. The
modifications made through the observations acquired dur-
ing post-design resulted in impressive speed-up of state-of-
the-art planners. In a real planning application, the analysis
process that follows design becomes essential for having the
necessary knowledge represented in the model. Post-design
analysis is critical for deployment of planning technology in
real-world applications.

References
Cecil, J., and Kanchanapiboon, A. 2007. Virtual engineer-
ing approaches in product and process design. The Inter-
national Journal of Advanced Manufacturing Technology
31(9-10):846–856.
Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci,
E. 2008. Validation and verification issues in a timeline-
based planning system. In Proceedings of the ICAPS 2008
Workshop on Knowledge Engineering for Planning and
Scheduling (KEPS). Sydney, Autralia.
Jónsson, A. K. 2009. Practical planning. In
ICAPS 2009 Practical Planning & Scheduling

4We believe that the fact that the planners used in our experi-
ments all tended to improve their performance is an indication that
such advice may exist.

Tutorial. Greece, Thessaloniki. Available at:
http://icaps09.uom.gr/tutorials/tutorials.htm.
McCluskey, T. L., and Simpson, R. M. 2006. Tool sup-
port for planning and plan analysis within domains em-
bodying continuous change. In Proceedings of the ICAPS
2006 Workshop on Plan Analysis and Management. Cum-
bria, UK.
McCluskey, T. L. 2002. Knowledge engineering: Is-
sues for the AI planning community. Proceedings of the
AIPS-2002 Workshop on Knowledge Engineering Tools
and Techniques for AI Planning, Toulouse, France.
Myers, K. L. 2006. Metatheoretic plan summarization and
comparison. In Proceedings of the 16th International Con-
ference on Automated Planning and Scheduling (ICAPS-
06). AAAI Press.
Rabideau, G.; Engelhardt, B.; and Chien, S. 2000. Using
generic preferences to incrementally improve plan quality.
In Proceedings of the Fifth International Conference on
Artificial Intelligence Planning and Scheduling, Brecken-
ridge, CO.
Simpson, R. M. 2007. Structural domain definition using
GIPO IV. In Proceedings of the Second International Com-
petition on Knowledge Engineering. Providence, Rhode Is-
land, USA.
Studer, R.; Benjamins, V. R.; and Fensel, D. 1998. Knowl-
edge engineering: Principles and methods. Data and
Knowledge Engineering 25:161–197.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An integrated tool for designing plan-
ning environments. In Proceedings of the 17th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2007). Providence, Rhode Island, USA.
Vaquero, T. S.; Sette, F.; Silva, J. R.; and Beck, J. C.
2009a. Planning and scheduling of crude oil distribu-
tion in a petroleum plant. In Proceedings of ICAPS 2009
Scheduling and Planning Application woRKshop. Thessa-
loniki, Greece.
Vaquero, T. S.; Silva, J. R.; Ferreira, M.; Tonidandel, F.;
and Beck, J. C. 2009b. From requirements and analysis to
PDDL in itSIMPLE3.0. In Proceedings of the Third ICK-
EPS, ICAPS 2009, Thessaloniki, Greece.

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

52

An XML-based Forward-Compatible Framework for Planning System

Extensions and Domain Problem Specification

Eric Cesar E. Vidal, Jr. and Alexander Nareyek

NUS Games Lab

Interactive and Digital Media Institute, National University of Singapore

21 Heng Mui Keng Terrace, Level 2, Singapore 119613

ericvidal@nus.edu.sg, elean@nus.edu.sg

Abstract

Real-world planning problems, e.g., planning for virtual
characters in computer games, typically come with a set of
very specific domain constraints that may require
specialized processing, like symbolic path planning,
numerical attributes, etc. These specific application
requirements make it necessary for planning systems to
have an extensible design. We present a framework for a
planning system that recognizes planning extensions (such
as new data types or structures, sensing/acting functionality,
and others). The framework is designed to be forward-
compatible, exposing an XML-based domain language that
allows current and future problems that use such planning
extensions to be properly specified.

Introduction

In artificial intelligence, planning is a problem where,
given a set of goals and possible actions, the necessary
actions are to be determined (along with their proper
temporal arrangement) to attain the given goals. A
logistics problem, for example, can define a set of possible
actions, such as ―move a vehicle V from location A to
location B‖ or ―load/unload package P in vehicle V‖, and a
set of goals such as ―deliver n packages, labeled P1..n from
locations A1..n to locations B1..n‖. A solution is called a
plan; in this case, the plan would involve multiple ―move‖
and ―load/unload‖ actions on a correctly-ordered, non-
conflicting schedule. A plan is considered valid when it
reaches the goal state without inconsistencies such as
violations of action preconditions (e.g., moving a package
requires the package to be loaded first) or forbidden
overlapping of actions (e.g., a package cannot be unloaded
while the vehicle is moving). A planning system or
planner is a program that automatically creates such plans.

 Many planning problems are simple enough such that a
general (i.e., domain-independent) planning system is not

This work was supported by the Singapore National Research Foundation

Interactive Digital Media R&D Program under research grant
NRF2007IDM-IDM002-051.

needed, e.g., path planning in most computer games is
usually implemented as a simple A* search. On the other
hand, more complex problems (e.g., planning a
dynamically-generated story for a computer game) can
benefit from the solving capabilities of a general planning
system. In order to do this, the properties of the problem
must be formalized into a domain definition, using a
specification language that can be understood by a planner.

 To solve real-world problems, however, a general
planning system usually needs to be extended to handle
specific application requirements. A computer game, for
example, will require extensions such as online planning
(i.e., feeding the planner-selected actions into the game,
and then sensing in real time the current state of the game
world, updating the plan accordingly), numerical resources
such as player health or money, and specialized solving
heuristics to let the planner more efficiently handle specific
sub-problems like symbolic path planning (where symbols
are mapped to actual positions in the world, for faster
planner reasoning about connectivity and distances
compared to regular path planning). A planner written
without such extensibility in mind will invariably need
continuous re-design to handle these and future extensions.
A better solution, from a software engineering point of
view, is to adhere to a framework that readily integrates
such extensions, making a planner forward-compatible
with current and future planning problems.

 Many such extensions may expose new planning
constructs—for example, online planning introduces the
concept of actuators and sensors into the domain
ontology—thus making it necessary for the extensible
planner architecture to tie in seamlessly with its domain
specification language.

Background

In this section, we introduce the issues that accompany the
design of an extensible planning architecture, and issues
related to the domain specification of planning extensions.

53

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Monolithic versus General-Search-based Planning

We first discuss existing planning approaches to establish
the context of our planner extensibility problem. Different
planning approaches vary in the degree they can be
extended.

 Systems such as STRIPS (Fikes and Nilsson 1971) and
Graphplan (Blum and Furst 1997) are monolithic systems.
Although these systems are extensible to a certain degree,
these systems use relatively rigid planning frameworks that
are often optimized to exploit a particular problem
representation and are not specifically designed with
extensions in mind. Thus, the possibility of extending such
systems ranges from impractical to impossible.

 Planners that map to general search frameworks like
propositional satisfiability (SAT), integer linear
programming (ILP) or constraint programming (CP) can
usually handle planning extensions much more easily,
although they are often not as expressive as monolithic
approaches for specific domains. SAT-based systems,
such as Blackbox (Kautz and Selman 1998) and SatPlan-
2006 (Kautz, Selman, and Hoffman 2006), can handle
Boolean propositions, which somewhat limits the types of
problems that can be expressed. ILP-based planners, such
as LPSAT (Wolfman and Weld 1999), take into account
numerical resources but are restricted to linear inequality
constraints. CP-based planners, such as CPLAN (van Beek
and Chen 1999) and the EXCALIBUR agent’s planning
system (Nareyek 2001), can theoretically handle more
general constraints. See Nareyek et al. (2005) for a more
detailed discussion.

 A fully-extensible planning architecture should be able
to handle flexible planning problem constructions such as
the general search frameworks described above (including
future refinements to these frameworks), while retaining
the domain-specific expressiveness found in monolithic
systems.

PDDL and Planner Extensibility

There are many available planning systems, often using
very different internal representations of planning domains.
The Planning Domain Definition Language (McDermott et
al. 1998) was conceived to enable standardized
comparisons and competitions between planning engines.
PDDL solves a critical problem by exposing an extensible
language to introduce new features to a planning system’s
model—by default, it recognizes STRIPS-style actions, but
it also recognizes feature extensions such as conditional
effects, hierarchical actions, durative actions and numerical
reasoning (Fox and Long 2003), and as of version 3.0,
preferences and soft constraints intended for CP planners
(Gerevini and Long 2005). The requirements tag of
PDDL invokes these extensions, which, in turn, change
parts of the language’s definition.

 However, since PDDL is designed as a common
language intended for academic planning competitions, it
has distinct disadvantages in real-world applications.

PDDL was conceived during a time when monolithic
planners with STRIPS-like constructions were the norm,
and the extensions were added stepwise as new planning
paradigms were introduced. Consequently, these extension
constructs, including but not limited to the simplified
treatment of resource properties, durative actions,
nonlinear numerical projections and unknown information,
have been subject to criticism (Boddy 2003). Additionally,
there is no direct way to expose sensing and actuating
interfaces to the outside world, which is a requirement for
specifying online planning problems. While a planner can
add new or improved constructs in its private
implementation of PDDL, this would result in the
proliferation of non-standard extensions that are
incompatible across planning systems. It may be possible
to standardize certain extensions (PDDL versions 2.1 and
above are indeed targeted towards providing standard
extensions); however, as PDDL’s intent is to provide a
common interface that is not necessarily efficient nor
sufficiently expressive (for example, continuous numerical
effects in PDDL are assumed to be linear, making non-
linear continuous functions hard to express), strict
adherence to the language will impose an artificial
restriction on a planning system’s capabilities and will
limit extensibility.

 Furthermore, PDDL’s requirements–based
extensibility is not a solution to support real-world
applications. As mentioned earlier in the Introduction,
real-world applications using a planning system need to
extend that planning system according to their special
requirements by providing their own custom modules (e.g.,
new data types, new heuristics, or custom sensors and
actuators). Ideally, external users (application developers
or even third-party vendors) should be able to add new
constructs to the planning problem definition without the
domain modeler needing to recompile the planning system
or its problem definition parser. This functionality is
inherently absent from PDDL as it was intended to be an
academic tool, with little consideration for a professional
or industrial environment.

 This paper proposes a solution to these problems by
presenting a general planning system framework based on
the Extensible Markup Language (XML), allowing a
simple, modular way to extend the planning system and its
model. The goal is to create a pluggable system of
planning extensions that neatly tie into the representation
language. Efficiency is not the main focus (although a
clean problem representation that directly corresponds to
the planning system’s internal structure will naturally be
more efficient than a poorly-fitting PDDL representation);
rather, a planning system implementing our framework
will be ―future-proof‖, with a vast potential for new
planning extensions to extend the capabilities of planning
beyond what is currently being explored in academic
circles.

 The next section introduces an example scenario where
extensions are needed, followed by a discussion of the
framework itself, and the extension possibilities it allows.

54

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

An Example Scenario for Extensible Planning

The Crackpot planning system will be used throughout this
paper as an example to show how our proposed framework
can be implemented by a typical planning system. This
section contains a brief introduction to Crackpot, along
with a sample problem to be tackled by this planner.

The Example Planner

Crackpot
1
 is the successor of the EXCALIBUR agent’s

planning system (Nareyek 2001). As such, it uses the same
principle of local search based on iterative repair to make
and improve plans—a plan with inconsistencies or costs
(e.g., unmet goals, mutually-exclusive actions that overlap,
unmet preconditions for an existing action, etc.) is
iteratively improved by using one of several repair
heuristics (e.g., add a new action, move an action’s
start/end times, etc.). Crackpot is intended to be an online
planner, where agents other than itself might change the
state of the world as time passes, and actions can only be
added to the plan at positions at or beyond the current time.

 Crackpot, as with most planners, separates the notion of
a general domain from a specific problem of the domain,
allowing modelers to create separate specifications of each.
Crackpot internally models a domain/problem using an
object-oriented design amenable to implementation in
C++. Figure 1 depicts the relationships between
Crackpot’s domain specification constructs using a UML
(OMG 2010) class diagram.

Figure 1. Crackpot’s domain specification class structure.

(This specification is a work-in-progress.)

 In general, a distinction is made between the type and
instance of a particular construct (e.g., ObjectType vs.
ObjectInstance): the abstract types (e.g., the ―person‖ type)
appear in the domain specification, while the grounded
instances (e.g., a ―person‖ named ―Joe‖) appear in the
problem specification. (It is the planning system’s task to
create action instances and their components; hence the
related classes are not shown in the above diagram.)

 A domain object (e.g., a person) contains state resource
variables called attributes (e.g., walking speed) whose
projections over time can consist of one or more attribute

1 Crackpot is a work-in-progress planner available at the following URL:
http://sourceforge.net/projects/crackpot

values (e.g., 0.0 m/s at the start, 1.0 m/s at the end). An
object also contains action resource variables called
actuators (e.g., legs).

 An action (e.g., walking from one place to another) is
made up of object parameters (technically, ―parameter
object instances‖) specifying which objects are related to
the action (e.g., which person is doing the walking),
conditions on the object parameters’ attributes that must be
met for the action to execute (e.g., the person must be at
the start location), contributions of the action to the
attributes (e.g., the person ends up in the target location),
and action tasks indicating how actuators are used
throughout an action (e.g., a person uses his legs to walk).

 Note that this design roughly maps to the EXCALIBUR
planning system’s model. In particular, actuators,
attributes, and conditions/contributions directly map to
action resource constraints, state resource constraints, and
task constraints. (Nareyek 1998)

 Because of efficiency reasons, Crackpot is not a
completely-modular system, taking a middle ground
between monolithic and fully-modular planning systems.
Its design currently assumes a fixed flow of the planner’s
execution cycle (find a repairable cost in the plan, repair
the cost, repeat). Third-party extensibility of the planner
itself is currently restricted to introducing specialized
attribute value types (e.g., a SymbolicLocation type
extended from the provided Symbolic type to allow for
path planning, or perhaps a collection-oriented Set type).

 However, the next version of Crackpot that is currently
being worked on will increase the expressiveness of
domains, by introducing a control flow actuator (Nareyek
2003) to allow changes in the planning execution cycle
(e.g., temporarily focusing on specific plan repairs), a cost
management system to allow domain-influenced selection
of the repair heuristic by specifying modifiers for each
available cost (e.g., to cause the planner to prefer adding
certain actions over others), action-component relations
that specify additional constraints between an action’s
object parameters and other action-related parameters (e.g.,
to set the duration of the action according to the value of a
resource), and read-ins that take in attribute values and
feed them into action-component relations. These
extension possibilities must be taken into account when
designing a representation language for Crackpot.

A Sample Problem with Extension Possibilities

Consider a very simple planning problem: A person is
currently in his living room, and he is hungry. Given the
following scenario, what must he do to satiate his hunger?

 There is an apple in the kitchen. Conveniently, he
can travel from one place to another by walking.

 The way to the kitchen is separated by a closed
door. The only way to overcome this formidable
obstacle is to open it with his hands.

 To model the domain of this problem, a modeler may
use Crackpot’s constructs in the following manner. (The

 class Domain specification

ObjectType ObjectInstance

ActuatorType

AttributeType

AttributeValueType

AttributeInstance

ActuatorInstance

AttributeValueInstance

ActionType

ConditionType

AbstractActionTaskType

ContributionType

1..*

1..*

1..*

1..*1..*

55

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

problem specification is omitted to save space, but the
initial state and goals may be inferred from the above
description.)

ObjectType: Person

 AttributeType: Hungry { true, false }

 AttributeType: Location { livingroom, door, kitchen }

 ActuatorType: Legs

 ActuatorType: Hands

ObjectType: Apple

 AttributeType: Existing { true, false }

ObjectType: Door

 AttributeType: Open { true, false }

ActionType: EatApple

 Parameters: { p : Person, a : Apple }

 Conditions: { p.Hungry = true, p.Location = kitchen,

 a.Existing = true }

 Contributions: { p.Hungry = false, a.Existing = false }

 ActionTask: uses p.Hands

ActionType: WalkFromLivingRoomToDoor

 Parameter: { p : Person }

 Condition: { p.Location = livingroom }

 Contribution: { p.Location = door }

 ActionTask: uses p.Legs

ActionType: WalkFromDoorToKitchen

 Parameters: { p : Person, d : Door }

 Conditions: { p.Location = door, d.Open = true }

 Contribution: { p.Location = kitchen }

 ActionTask: uses p.Legs

ActionType: OpenDoor

 Parameters: { p : Person, d : Door }

 Conditions: { d.Open = false, p.Location = door }

 Contribution: { d.Open = true }

 ActionTask: uses p.Hands

 The above representation is adequate for a planning
domain with relatively simplistic assumptions. True
enough, it is also possible to create a PDDL description out
of this domain with predicates and actions (each with
parameters, preconditions and effects), all but with a slight
loss of fidelity to the modeler’s intent; for example, the
concept of actuators are lost in the translation. (The PDDL
version is not shown here, again due to space constraints.)
However, suppose that this is part of a more sophisticated
computer game world, where a non-player character (NPC)
agent has a relatively simple behavioral AI such as that
described above (in order to tell a simple story, for
example). Some problems with the above domain
representation immediately become clear:

1. Game worlds, more often than not, have a running
game clock, so actions don’t occur instantaneously
but are executed over certain durations.

2. Agent attributes such as hunger (or generally,
health) in computer games are, more often than not,

modeled as numerical resources that rise and fall
over time, not just Boolean values as assumed here.

3. It is inadequate to specify game world locations as
plain symbols. Without information about each
location’s actual Cartesian coordinates and its
connectivity with other locations, this representation
does not scale well to a real path-planning problem
(as the current form requires many ―walk‖ actions to
be defined between each connected location).

4. The door’s actual state may change irrespective of
the agent’s interactions—if a player closed the door
immediately after our simplistic agent opened it, the
agent will suddenly not be able to pass the ―real‖
door in the game (although the agent thinks it has),
nor would it know that it needs to re-open the door,
unless the planner is notified of the change.

 All these problems stem from a lack of expressiveness in
the domain. What we need in this case are mechanisms to
specify action durations, numerical attributes, symbolic
path-planning, and some form of sensing functionality.
These features will require extensions in the planning
system. Perhaps just as importantly, these extensions must
be properly exposed in the corresponding representation
language. Note that if we had used a PDDL representation,
we will be able to solve the first two representation
problems (as PDDL 2.1 and above already support durative
actions and numerical attributes), but we cannot solve the
last two without extending PDDL’s language specification.

Key Guidelines of the Proposed Framework

Having introduced our example planning system and
problem, this section now presents the key guidelines of
our planning extension/representation framework,
explained via examples using the Crackpot system.

Correspondence between Language and Planning

System Elements

The concept of an extensible planning language,
introduced by PDDL, is quite essential for our proposed
framework. However, PDDL is not able to handle nuances
unique to a specific planning system, limiting its real-
world use. In Crackpot, for example, it is non-trivial
(although possible) to map PDDL predicates to
ObjectTypes and AttributeTypes; worse, there is no direct
PDDL analogue for ActuatorTypes.

This problem can be alleviated by designing the
language around the planner, not the other way around.
More succinctly, form follows function; this idea has been
pointed out in critiques of PDDL (Boddy 2003). It must be
noted that PDDL’s ―one-size-fits-all‖ representation
stemmed from the need to provide common language
elements across planning systems. Since our main focus is
to extend planning systems into real-world applications
such as games, with little to no use for inter-planner
compatibility, we extend the basic idea into this

56

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

philosophy: Develop a language that closely corresponds
to the target planning system’s internal representation.

 For example, since Crackpot recognizes ObjectTypes
and AttributeTypes as first- and second-class constructs,
respectively, they should be represented as-is in the
language with their relative hierarchy unchanged (as
opposed to representing their relationship as a predicate in
PDDL). This has the advantage of easier extensibility
system-wise, because new classes of constructs can be
introduced to a domain language using the same class
hierarchy of the planning system; for example, it is now
trivial to add ActuatorTypes to the new language.

 Planners conforming to the said philosophy will, of
course, not be able to read each other’s languages. Also, in
the worst case, future planning problems and systems
might require restructuring of the ontology: For example,
Crackpot improves over EXCALIBUR (Nareyek 2001) by
requiring resources to be grouped into objects for more
expression possibilities (e.g., attributes can be references to
objects), at the expense of incompatibility. However,
language translation tools exist, such as proposed by Clark
(1999), that allow wide-scale restructuring of a language,
removing unnecessary data or even adding missing data,
making it possible to import problems between planners.

Distributed Parsing of the Planning Language

A system that may be extended by external modules needs
to have some form of registration system, which registers
the cases when a planner needs to dispatch tasks to an
external module rather than its internal constructs; for
example, calling the constructor of an externally-created
attribute instead of the system’s built-in attributes.

 The Observer design pattern (Gamma et al. 1995) is
used as the basis of the registration system. This pattern is
developed mainly for distributing events to observers or
listeners, and it works well with our scenario—this allows
modules to independently handle their own constructs.
The Observer pattern effectively distributes the parsing of
the representation language to the specific modules that are
interested in smaller parts of the language.

 For example, a SymbolicLocationAttribute external
module can register as a listener on the same parts of the
planning system that other attributes (SymbolicAttribute,
NumericAttribute, etc.) also listen into. This way,
whenever the language parser encounters the use of an
attribute, a general ―event‖ is fired, and the registered
listener (in this case, SymbolicLocationAttribute) does the
actual task, e.g., construction of the attribute, production of
value instances, and managing of relations such as
equality, comparison, etc. that are valid for the attribute.

XML as a Language Base

Theoretically, this planning framework can use a PDDL-
like syntax as the language base. However, a much better
option exists, in the form of the Extensible Markup
Language or XML (Bray, Paoli, and Sperberg-McQueen

1998). Using XML as the language base has several
advantages over maintaining a separate language:

 Since XML is widely considered as a standard, it
enjoys vast third-party library support. Extension-
aware planners will invariably have languages that
change frequently. Existing XML libraries already
allow users to change an XML-based language
without needing to recompile the parser itself,
which is perfect for a rapidly-evolving language.

 The XML SAX API (Megginson 2004) allows
exactly the kind of distributed parsing that we need.
SAX is a lightweight, event-driven API where each
well-formed XML element (or ―tag‖) fires an event;
the target system’s internal parser looks at an
incoming XML ―event‖ and distributes the event to
the appropriate listener. The parser only needs to
maintain a lookup table to find out which listener
should be activated for which XML element.

 Using XSLT (Clark 1999), it is possible to do
automatic translation between different languages
(as recommended earlier). In fact, it is possible to
transform the language into a version of PDDL with
XML-style tokens, on which a simple token
substitution can be performed to obtain pure PDDL.

 XML is only used for planning system features where
very high performance is not required. Generally, planning
domains and problems are only loaded at the start of the
planning process, so performance is not normally an issue,
especially when taking into account the benefits that XML
provides in terms of flexibility.

Example Implementation: Crackpot SLAP

A new domain specification language, dubbed ―Scalable
Language for Action Planning‖ or SLAP, is developed
specifically for Crackpot. Two XML document schemas
are created: The <domain> schema handles the formal
definition of a domain (i.e., all xxxType constructs), while
the <problem> schema specifies a problem instance of
that domain (i.e., all xxxInstance constructs).

 The example domain presented earlier roughly translates
to this form in SLAP, which corresponds with how
Crackpot models the domain internally (for illustrative
purposes only; details are left out due to space constraints):

<domain name="Apple Domain">

 <!-- definition for the location type -->

 <attribute_value_type name="LocType"

 data_type="symbolic">

 <value name="livingroom" />

 <value name="door" />

 <value name="kitchen" />

 </attribute_value_type>

 <!-- object definitions -->

 <object_type name="Person">

 <attribute_type name="Hungry"

 attribute_value_type="boolean" />

 <attribute_type name="Location"

 attribute_value_type="LocType" />

 <actuator_type name="Legs" capacity="1" />

 <actuator_type name="Hands" capacity="1" />

 </object_type>

57

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

 <object_type name="Apple">

 <attribute_type name="Existing"

 attribute_value_type="boolean" />

 </object_type>

 <object_type name="Door">

 <attribute_type name="Open"

 attribute_value_type="boolean" />

 </object_type>

 <!-- action definitions -->

 <action_type name="EatApple">

 <parameter name="p" object_type="Person" />

 <parameter name="a" object_type="Apple" />

 <condition_type parameter="p"

 attribute_type="Hungry"

 relation="equals" value="true" />

 <condition_type parameter="p"

 attribute_type="Location"

 relation="equals" value="kitchen" />

 <condition_type parameter="a"

 attribute_type="Existing"

 relation="equals" value="true" />

 <contribution_type parameter="p"

 attribute_type="Hungry"

 value="false" />

 <contribution_type parameter="a"

 attribute_type="Existing"

 value="false" />

 <action_task_type parameter="p"

 actuator_type="Hands" />

 </action_type>

 <action_type name="WalkFromLivingRoomToDoor">

 <parameter name="p" object_type="Person" />

 <condition_type parameter="p"

 attribute_type="Location"

 relation="equals"

 value="livingroom" />

 <contribution_type parameter="p"

 attribute_type="Location"

 value="door" />

 <action_task_type parameter="p"

 actuator_type="Legs" />

 </action_type>

 <action_type name="WalkFromDoorToKitchen">

 <parameter name="p" object_type="Person" />

 <parameter name="d" object_type="Door" />

 <condition_type parameter="p"

 attribute_type="Location"

 relation="equals" value="door" />

 <condition_type parameter="d"

 attribute_type="Open"

 relation="equals" value="true" />

 <contribution_type parameter="p"

 attribute_type="Location"

 value="kitchen" />

 <action_task_type parameter="p"

 actuator_type="Legs" />

 </action_type>

 <action_type name="OpenDoor">

 <parameter name="p" object_type="Person" />

 <parameter name="d" object_type="Door" />

 <condition_type parameter="p"

 attribute_type="Location"

 relation="equals" value="door" />

 <condition_type parameter="d"

 attribute_type="Open"

 relation="equals" value="false" />

 <contribution_type parameter="d"

 attribute_type="Open"

 value="true" />

 <action_task_type parameter="p"

 actuator_type="Hands" />

 </action_type>

</domain>

 To implement the extensible framework itself, there
were minimal changes to Crackpot’s class structure. See
Figure 2 for an overview. The Xerces-C++ parser (Apache
Xerces Project 2010) was used for XML parsing, wrapping

the library in the class XMLFactory using the Façade
pattern (Gamma et al. 1995).

Figure 2. Crackpot’s XML parser class structure.

 For a custom module to register with the extensible
framework, the interface XMLTagListener is provided.
Since Crackpot also allows for third-party-supplied
attributes, AttributeXMLTagListener is provided to further
expand the XMLTagListener interface with helper methods
that are relevant for attribute modules.

 Registered listeners are stored in a lookup table on the
tags that they listen to, e.g., all AttributeXMLTagListeners
listen to the <attribute_value_type> tag. To
resolve simple conflicts between multiple extension
modules that listen to the same XML tags, Crackpot
utilizes a last-registered-first-called rule, where the last
listener to register is the first listener to be invoked by the
parser. This rule makes sense because custom modules
typically register with the system after the base modules.
Future versions of the system may incorporate more
sophisticated conflict resolution (more on this in the next
section), but as it stands, the current system already allows
for many interesting extension possibilities.

Possibilities for Planner Extensions

The advantages of our framework become apparent once
the example problem is extended with new functionality.

Introduction of New Features

In our architecture, it is possible to add a new XML
element for each new feature added to the system. For
example, in Crackpot, a timing module

2
 can be introduced

to the system to handle action durations, which registers
with our framework by listening to a new XML element,
<timing>. This new element can be placed as a child
under <action_type>. This allows many ways of
implementing durative actions, such as a fixed duration:

2 Crackpot currently implements durations in a different way; action-
component relations will handle durative actions even more generally.

 class XML parser

XMLFactoryXMLObject

XMLTagListener DefaultXMLTagListener

AttributeXMLTagListener

SymbolicAttributeXMLTagListener

BooleanAttributeXMLTagListener

(other attribute listeners...)

ObjectType

ObjectInstance

(other classes...)

1..*

58

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

<action_type name="WalkFromLivingRoomToDoor">

 <timing duration="10" />

 ...

 Or a condition- or contribution-related sub-duration (the
overall duration is computed from all sub-durations):

<contribution_type parameter="p"

 attribute_type="Hungry" value="false">

 <timing effect_time="30" />

 ...

 Using this framework, any planning system can decide
how to model durations without being tied to a particular
representation like that of PDDL, where durative actions
needed a completely new construct (:durative-

action) to support a single way of specifying durations.

 Custom modules to add sensors to the outside world (in
order to support online planning) are likewise easy to add
in. An application can create hooks to attributes by adding
a tag under the <attribute_type> tag:

<object_type name="Door">

 <attribute_type name="Open"

 attribute_value_type="boolean">

 <sensor_stream id="doorState" resolution="5" />

 </attribute_type>

</object_type>

In this example, the <sensor_stream> element is
provided by a custom module, and specifies that a refresh
of the door state is triggered every 5 time units. The actual
sensor values may be transmitted to the planner via low-
level means (i.e., not XML, for higher performance).

Overloading of Existing Features

It is also possible to extend the behavior of an XML
element via element overloading, i.e., letting multiple
modules listen-in on the same XML element. For
example, custom modules to support new attribute value
types like NumericRange and SymbolicLocation can
provide listeners to the <attribute_value_type>
tag, overloading its use when it encounters a data_type
string that corresponds to what this module handles. They
can make their own XML tags further down the hierarchy:

<attribute_value_type name="HungerType"

 data_type="numeric_range">

 <range begin="0" end="100" />

</attribute_value_type>

<attribute_value_type name="LocType"

 data_type="symbolic_location">

 <value name="livingroom">

 <coordinates x="0.0" y="0.0" />

 <connection to="door" />

 </value>

 <value name="door">

 <coordinates x="0.0" y="10.0" />

 <connection to="kitchen" />

 <connection to="livingroom" />

 </value>

 <value name="kitchen">

 <coordinates x="10.0" y="10.0" />

 <connection to="door" />

 </value>

</attribute_value_type>

 These modules can then also override the
<condition> and <contribution> tags to specify
their own relations and operations:

<!-- a more natural model of hunger satiation -->

<condition_type parameter="p"

 attribute_type="Hunger"

 relation="greater_than" value="50">

 <timing check_time="0" />

</condition_type>

<contribution_type parameter="p"

 attribute_type="Hunger"

 operation="linear_decr" value="25">

 <timing effect_time="20" duration="30" />

</contribution_type>

 These XML elements are handled directly by their
respective modules, giving these modules the freedom to
specify an entirely new XML hierarchy for their own data;
for example, custom Set or Matrix attributes may include
sizable amounts of formatted numeric data (potentially
with the base functionality inherited from NumericRange).

 Feature overloading may introduce problems when
conflicting modules listen-in on the same XML elements
(necessitating conflict resolution, mentioned in the
previous section), but these issues are not unlike those
encountered with OOP languages like C++; in future
implementations, these problems may be solved using the
same software engineering principles commonly used in
these languages (such as disallowing multiple inheritance,
adding support for public/private visibility, and so on).

Planner-Specific Exposure of the Solution Process

So far the preceding extensions simply modify existing
planning constructs to support better expressiveness of a
problem domain. However, internal planner extensions
can also expose or even introduce changes to the solution
process itself. Such extensions are not meant to be written
by third-parties but by internal developers of the planning
system. For example, Crackpot’s forthcoming cost
management system, an improved version of what is found
in EXCALIBUR (Nareyek 2001), will allow cost modifiers
to influence the selection of repair heuristics in a specific
domain. These costs are specified in the form of domain
hints. First, cost collections are specified by the domain:

<cost_collection name="satisfaction">

 <cost_type name="goal" cost_mapping="3x" />

 <cost_type name="aux" cost_mapping="2x" />

</cost_collection>

<cost_collection name="optimization">

 <cost_type name="optional" cost_mapping="default" />

</cost_collection>

Then, cost types may be registered for the different cost
centers in the domain, i.e., attributes, actuators and
(forthcoming) action-component relations:

<attribute_type name="Hungry"

 attribute_value_type="boolean">

 <cost_registration cost_name="unsatisfied"

 cost_type="goal" />

</attribute_type>

<attribute_type name="Location"

 attribute_value_type="LocType">

59

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

 <cost_registration cost_name="distance"

 cost_type="optional" />

</attribute_type>

<actuator_type name="Legs" capacity="1">

 <cost_registration cost_name="usage_overlap"

 cost_type="aux" />

</actuator_type>

 This allows for an expressive model of plan preferences

that more closely mirrors Crackpot’s internal planning

architecture (which is based on cost repair via local search)

than that of strong and soft constraints in PDDL 3.0

(Gerevini and Long 2005).

Conclusion

Our proposed framework solves two important problems:
how to make a planning system support a level of
extensibility to facilitate its use for real-world problems,
and how to model and support an evolving domain
representation language that allows problems to take
advantage of such planner extensibility. The framework
uses three key guidelines: maintaining correspondence
between domain ontology and the planner’s internal
architecture, distributing language parsing to external
modules through the use of the Observer design pattern,
and using XML as a language base to facilitate language
design, parsing and translation to other languages.

 Possible future work include the development of more
sophisticated forms of conflict resolution between planning
extension modules, a common XSLT stylesheet library to
allow translation of domain problems between planning
systems (or to/from PDDL), and extensions to the
Crackpot planning system itself, such as the
aforementioned cost manager, control flow actuator,
action-component relations, and a complete sensing/acting
system to fully support real-world online planning.

References

Apache Xerces Project. 2010. Xerces-C++ XML Parser,
Project documentation, available at
http://xerces.apache.org/xerces-c, Apache Software
Foundation.

Blum, A., and Furst, M. 1997. Fast Planning Through
Planning Graph Analysis. Artificial Intelligence 90(1-2):
281-300.

Boddy, M. 2003. Imperfect Match: PDDL 2.1 and Real
Applications. Journal of Artificial Intelligence Research
20: 123-137.

Bray, T.; Paoli, J.; and Sperberg-McQueen, C. M. 1998.
Extensible Markup Language (XML) 1.0. Technical
Report, W3C recommendation, W3C.

Clark, J. 1999. XSL Transformations (XSLT) Version 1.0.
Technical Report, W3C recommendation, W3C.

Fikes, R. E., and Nilsson, N. 1971. STRIPS: A New
Approach to the Application of Theorem Proving to
Problem Solving. Artificial Intelligence 5(2): 189-208.

Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains.
Journal of Artificial Intelligence Research 20: 61-124.

Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J. 1995.
Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, MA; Menlo Park, CA: Addison-
Wesley Publishing Co.

Gerevini, A., and Long, D. 2005. Plan Constraints and
Preferences in PDDL3, Technical Report, R. T. 2005-08-
47, Università degli Studi di Brescia, Dipartimento di
Elettronica per l'Automazione.

Kautz, H., and Selman, B. 1998. BLACKBOX: A New
Approach to the Application of Theorem Proving to
Problem Solving. In Working Notes of the Workshop on
Planning as Combinatorial Search, held in conjunction
with AIPS-98, 58-60. Pittsburgh, PA.

Kautz, H.; Selman, B.; and Hoffman, J. 2006. SatPlan:
Planning as Satisfiability. In Abstracts of the 5th
International Planning Competition, available at
http://www.cs.rochester.edu/~kautz/satplan/index.htm.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL--The Planning Domain Definition Language--
Version 1.2, Technical Report, CVC TR-98-003, Yale
Center for Computational Vision and Control.

Megginson, D. 2004. SAX - Simple API for XML, Project
documentation, available at http://www.saxproject.org/,
Megginson Technologies, Ltd.

Nareyek, A. 1998. A Planning Model for Agents in
Dynamic and Uncertain Real-Time Environments. In
Proceedings of the Workshop on Integrating Planning,
Scheduling and Execution in Dynamic and Uncertain
Environments at the Fourth International Conference on
Artificial Intelligence Planning Systems (AIPS-98), 7-14.
Menlo Park, California: AAAI Press.

Nareyek, A. 2001. Constraint-Based Agents: An
Architecture for Constraint-Based Modeling and Local-
Search-Based Reasoning for Planning and Scheduling in
Open and Dynamic Worlds (LNAI 2062). Springer.

Nareyek, A. 2003. Planning to Plan - Integrating Control
Flow. In Proceedings of the International Workshop on
Heuristics (IWH'02), 79-84.

Nareyek, A.; Fourer, R.; Freuder, E. C.; Giunchiglia, E.;
Goldman, R. P.; Kautz, H.; Rintanen, J.; and Tate, A. 2005.
Constraints and AI Planning. IEEE Intelligent Systems
20(2): 62-72.

OMG. 2010. Unified Modeling Language (UML), Version
2.2, Formal specification, available at
http://www.omg.org/spec/UML/2.2/, Object Management
Group.

van Beek, P., and Chen, X. 1999. CPlan: A Constraint
Programming Approach to Planning. In Proceedings of the
Sixteenth National Conference on Artificial Intelligence
(AAAI-99), 585-590.

Wolfman, S. A., and Weld, D. S. 1999. The LPSAT system
and its Application to Resource Planning. In Proceedings
of the Sixteenth International Joint Conference on
Artificial Intelligence, 310-316. Stockholm, Sweden.

60

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

System Demonstrations

Constraint and Flight Rule Management for Space Mission Operations

Javier Barriero and John Chachere and Jeremy Frank and Christie Bertels and Alan Crocker

NASA Johnson Space Center Mail Stop DS15 2010 NASA Parkway Houston, TX 77058
SGT, Inc. NASA Ames Research Center Mail Stop N269-3 Moffett Field, CA 94035-1000

NASA Ames Research Center Mail Stop N269-3 Moffett Field, CA 94035-1000
{Javier.Barreiro,John.M.Chachere,Jeremy.D.Frank,Alan.R.Crocker,Christie.D.Bertels}@nasa.gov

Abstract

Thousands of operational constraints govern NASA’s
human spaceflight missions. NASA’s Mission Operations
Directorate (MOD) develops, documents, and applies these
constraints during mission planning to ensure the safety of
the crew, as well as proper operation of the spacecraft
systems and payloads. These constraints are currently
written as documents intended to be read by MOD staff.
Similar operational constraints are developed
independently by different organizations, and manually
transformed into machine-readable formats needed to drive
tools such as automated planners, mission analysis and
mission monitoring tools. The resulting process is
inefficient and error prone. In response, NASA has
developed Constraint and Flight Rule Management
(ConFRM) software to centralize the capture of operational
constraints and to transform these constraints into different
products for different uses. ConFRM will help MOD staff
create constraints using disparate information, update
operational constraints using new information, and check
sets of constraints for errors and omissions.

Human Spaceflight Mission Operations
NASA’s Mission Operations Directorate (MOD)
develops, documents, and applies operational constraints
to ensure the safety of the crew and the proper operation
of the spacecraft systems and payloads. During pre-flight
planning, NASA and its partners systematically develop,
document, and approve these constraints. MOD provides
training and operations teams with approved constraint
documents in paper form and online searchable databases.
During training, flight controllers and related personnel
learn all of the constraints relevant to their disciplines, and
configure tools to help enforce those constraints. During
nominal operations, the Flight Control Team and crew
ensure that the constraints are continually satisfied.
During off-nominal operations, these constraints indicate
corrective actions the Flight Control Team should take in
order to return to an acceptable mission state.

Many operational constraints are developed in order to
mitigate a hazard documented in a Hazard Report. Many
more are derived from engineering analysis of spacecraft
systems. Yet more operational constraints are derived
from the operational experiences of Flight Control Teams
and crew. There are several types of operational
constraints. The Flight Control Team uses Flight Rules
(FRs) to avoid hazards or guide reactions to unexpected
events. Mission planners, who are part of the Flight
Control Team, use Ground Rules and Constraints

(GR&Cs) and Crew Scheduling Constraints (CSCs) to
plan the crew’s daily activities. The Flight Control Team
uses FRs and GR&Cs mitigate hazards that must be
avoided, while Crew Scheduling Constraints are ‘best
practices’ developed over years of operational experience.
Generic constraints apply to all missions. Flight-specific
constraints are specific to a mission’s payload, objective
or system configuration. For a typical six month period,
the Flight Control Team manages 1000 generic FRs, 100
flight-specific FRs, 300 GR&Cs, and 100 CSCs.

Development of Operational Constraints
The following scenario illustrates a common life-cycle of
operational constraints. Suppose a new Hazard Report
specifies that hand-held radios onboard ISS interfere with
some communications between ISS and Mission Control.
The Flight Control Team may write a Flight Rule to ensure
that the crew has powered off these radios prior to sending
critical commands to ISS, and link this rule to the Hazard
Report. In addition, the Mission Planners may document
the GR&C to ensure the crew’s plan contains these
activities explicitly, and link this GR&C to the Flight
Rule. Over the course of several missions, the specific
details of the constraint may change; the number of radios
that must be turned off, the type of radio, and the specific
ISS commanding activities that require the radios to be
turned off. Also, these mission specific constraints may be
changed to generic, i.e. they impact every flight.

ISS crew activity planning happens in stages. The Long-
Range Plan (LRP) is generated for roughly six months
worth of ISS activities (equal to one ISS Increment and
crew rotation). Versions of this plan are initially generated
using Excel and Microsoft Word. Once the major mission
milestones are decided, the LRP for the Increment is
generated using the Consolidated Planning System, a
model-based planner. CPS permits the declaration of state
and resource requirements, as well as temporal constraints
on activities. These constraints are manually translated
from GR&C and CSC documents. CPS allows operators
to add activities, delete activities, and automatically
generate plans according to constraints on activities [1].

Operating constraints may change from mission to
mission. A constraint created for a specific flight may be
deemed generally applicable, or changes in vehicle
configuration may lead to new crew scheduling
constraints. Similar operational constraints are developed

62

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

independently by different organizations. A GR&C may
contain identical information to a Flight Rule, but today
these documents are created by different parts of the Flight
Control Team, and may be mutually inconsistent because
of changes to the Flight Rule that are not reflected in the
GR&C. Manual input of constraints into machine-readable
formats needed to drive tools such as automated planners,
mission analysis and mission monitoring tools is
performed after documentation of the constraints. The
resulting process is inefficient and error prone.

ConFRM
The creation and management of consistent operational
constraints to drive automated planning has been
addressed previously by the AI planning community.
Existing tools can detect ill-formed rules, mutually
inconsistent rules and automatically infer rules from plans
[2,3]. However, the task of managing these operational
constraints for human spaceflight offers some unique
challenges. First, the constraints must be documented so
that both people and AI planners can use them. Second,
the constraints will be created by a large, distributed team
of knowledge engineers. Third, these tools will be used
by experienced spaceflight operators and engineers who
are not AI experts. While rules for automated planners
have been extracted from documents e.g. for Orbital
Express [7], this is not common practice today. Lastly, the
gradual changes of constraints over long periods of time
introduces the problem of ‘lifetime rule management’.

NASA has designed and prototyped a software solution
called Constraint and Flight Rule Management
(ConFRM). ConFRM’s approach to authoring and
managing operational constraints addresses the problems
described above. ConFRM's main features are: 1)
ConFRM provides direct links to the many spacecraft
command and telemetry descriptions, databases of
hazards, previously created operational constraints, and
analysis products that the constraint references. ConFRM
automatically reads XML command and telemetry
descriptions [5]. ConFRM can establish links to these
products either manually or automatically. ConFRM can
also detect changes to product content and location, so the
constraints and links are always up-to-date. 2) ConFRM
enables export of relevant information from operational
constraints to planning and monitoring tools, thereby
reducing the effort in mapping the documented constraint
to the tools used to ensure the constraints are followed.
ConFRM’s approach to capturing constraint knowledge in
a central database also allows each group to export the
content it needs, reducing duplication of effort and
operational constraint mismatches between groups. 3) The
ConFRM prototype includes basic error and inconsistency
detection supported by formal modeling. The NASA team
is evaluating a promising enhancement to automatically
integrate constraints with monitoring and planning
software.

ConFRM’s technical architecture has three layers: 1) A
Storage Layer uses a relational database for scalability and
rich searching and reporting functionality. 2) A Business
Layer encapsulates document lifecycle, version control,
error checking, authentication, and authorization. A plug-
in mechanism allows for modular 2-way integration with
external applications. Separating the Storage and
Business layers enables flexibility in database technology
and design. 3) A Presentation Layer provides a rich
authoring UI with wiki formatting. An alternative,
lightweight web UI can provide access for casual and
external users (such as hardware manufacturers, whose
role is limited to providing technical details for some
constraints). The UI is built using Eclipse tools, following
in the footsteps of other recent developments in mission
operations software such as Mars mission operations [4]
and human spaceflight procedure development [6].

We will demonstrate the features of ConFRM, particularly
those used in configuring a planning system. We will show
how Wiki formatting allows non-programmers to add
various types of formal structure to text-based documents,
and how GR&C's can be exported in order to configure a
planner. We will show how ConFRM facilitates tracing
back of GR&Cs to parent FRs, searching for products
based on keywords, browsing imported command and
telemetry, detecting errors in constraints, and automatic
creation of both human- and machine-readable content.

References
[1] Frank, J., “When Plans are Executed by Mice and Men." Proceedings
of the IEEE Aerospace Conference, IEEE, Big Sky, MT, 2010.

[2] Simpson, R. M. Kitchin D. E. and McCluskey T. L. Planning domain
definition using GIPO. The Knowledge Engineering Review. Volume 22
, Issue 2 (June 2007) pp. 117-134, 2007

[3] T. S. Vaquero ; V. M. C. Romero;, F. Tonidanel; J. R. Silva.
itSIMPLE 2.0: An Integrated Tool for Designing Planning Domains.
Proceedings of the International Conference on Automated Planning &
Scheduling 2007, Providence, Rhode Island. Menlo Park, California,
USA, 2007.

[4] Aghevli, A., Bachmann, A., Bresina, J.L., Greene, J., Kanefsky, R.,
Kurien, J.,McCurdy, M., Morris, P.H., Pyrzak, G.,Ratterman, C., Vera,
A., Wragg. S., “Planning Applications for Three Mars Missions with
Ensemble.” 5th International Workshop on Planning and Scheduling for
Space. Baltimore, MD, 2007

[5] Simon, G. Shaya, E. Rice, K. Cooper, S. Dunham, J. Champion, J.
“XTCE: A Standard XML-Schema for Describing Mission Operations
Databases,” IEEE Aerospace Conference, IEEE, Big Sky, MT, 2004

[6] Izygon, M., Kortenkamp, D., Molin, A., “A Procedure Integrated
Development Environment for Future Spacecraft and Habitats,” Space
Technology and Applications International Forum, Albuquerque, NM,
2008.

[7] Knight, R., Chouinard, C., Jones, G., Tran, D. “Planning and
Scheduling Challenges for Orbital Express.” Proceedings of the 6th
International Workshop on Planning and Scheduling for Space, 2009.

63

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Using Knowledge Engineering for Planning Techniques to leverage the BPM
life-cycle for dynamic and adaptive processes

Juan Fdez-Olivares and Arturo González-Ferrer and Inmaculada Sánchez-Garzón and Luis Castillo
Department of Computer Science and Artificial Intelligence

University of Granada

Motivation
The approach here presented deals with the development
of AI P&S Knowledge Engineering techniques in order to:
(1) automatically generate planning domains from expert
knowledge described in BPM (Muehlen and Ho 2006) pro-
cess models,(2) automatically generate plans, upon these
domains, that can be interpreted as business process, and
(3) automatically transform these plans back into executable
business processes.

The interest of this work is focused on business processes
the deployment and execution of which strongly depends on
the given context of an organization and, therefore, do not
respond to a fixed pattern. An example of such processes
may be the organizational process to manage the collabora-
tive creation of e-learning courses within a virtual learning
center (a special case of product development processes).
Upon a customer request, the manager of the organization
needs an estimation of the tasks to be accomplished, the
resources of the organization to be used in the elaboration
of the course, as well as the time needed to deploy the re-
quested course. Under these circumstances, since the final
workflow to be carried out cannot be easily devised a priori,
managers and decision makers rely on either project man-
agement or business process simulation tools to support de-
cisions about activity planning (in order to find adequate
dependencies between tasks and their time and resources
constraints), by determining various scenarios and simulate
them. But these tools force a knowledge worker to carry out
a trial-and-error process that may become unrealistic when
either the number of alternatives courses of action makes un-
manageable to ascertain which tasks should be considered
or the constraints get harder. Therefore, it is widely recog-
nized (WfMC 2010) that, at this step, the life-cycle of BPM
presents some weak points and new techniques must be de-
veloped at the process modeling/generation step, in order to
fully cover the needs of knowledge workers for dynamic,
adaptable processes.

From the AI P&S point of view, the need to obtain a con-
text dependent, concrete workflow from a given business
process model can be seen as the problem of obtaining a
situated plan from an original process model. That is, a plan

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that represents a case for a given situation, and such that
its composing tasks and order relations, as well as its tem-
poral and resource constraints, strongly depend on the con-
text for which the plan is intended to be executed. This is
not a trivial problem which requires at least two strong re-
quirement in order to be solved. On the one hand, since the
(possibly nested) conditional courses of action that may be
found in a process model lead to a vast space of alternative
tasks and possible orderings, it is necessary to carry out a
search process on this space in order to determine the se-
quence of actions to be included in the situated plan. On the
other hand, the search process necessarily has to be driven
by the knowledge of the process model, which in most cases
takes a hierarchical structure. Therefore, considering that
there is a structural similarity between BPM process mod-
els and HTN domain models, we opted in a previous work
(Gonzalez-Ferrer, Fdez-Olivares, and Castillo) for the de-
velopment of Jabbah: a Knowledge Engineering for Plan-
ning tool that allows to automatically extract and represent
HTN planning knowledge from a business process model.
Hence, by using Jabbah in order to generate HTN domain
and problem files, from an original process model, it is pos-
sible to carry out a knowledge-driven HTN planning process
that results in the generation of situated plans, that is, plans
customized for a given situation.

These plans can be used either for supporting decision
making about activity planning or process validation based
on use-case analysis, leveraging the current BPM life-cycle
at its process modeling/generation step. Furthermore, Jab-
bah has been extended (among other features below ex-
plained) in order for the business cases obtained to be ex-
ecuted in standard BPM runtime engines. Therefore, Jab-
bah fulfills, by using AI P&S knowledge engineering tech-
niques, the needs of knowledge workers not yet completely
covered by BPM technologies, in the management of dy-
namic, adaptable processes. Definitively, Jabbah supports
most of the BPM life-cycle, from adaptive case generation
(starting from a given process model represented in BPM
standard languages), to the execution of such processes.

Transformation processes
The BPM models given as input to Jabbah are represented in
XPDL, a standard BPM language that is a XML serialization
of BPMN, the standard graphical representation for process

64

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

models. See (Gonzalez-Ferrer, Fdez-Olivares, and Castillo)
for a description of the relevant XPDL entities managed by
Jabbah.

Transformation from process models to planning do-
mains. Given an XPDL process as input, Jabbah proceeds
by identifying common workflow patterns (that is, sequen-
tial, parallel, subprocess and conditional structures) as pro-
cess blocks in the process model, and then maps them into
HTN decomposition schemes (a decomposition scheme is
formed by a compound task and its associated decompo-
sition methods, each one comprising a set of subtasks ar-
ranged by order constraints). Hence, it is possible to use a
state-of-art HTN planner that takes this domain representa-
tion as input and use its output as activity plans helpful for
management tasks. We have used the IACTIVE

TM
planner

for this work, a temporally extended HTN planner which
uses an HTN planning language that is a hierarchical exten-
sion of PDDL (we call it HTN-PDDL, see (Gonzalez-Ferrer,
Fdez-Olivares, and Castillo) for more details).

In its first version, Jabbah was capable of detecting, on the
one hand, sequential and parallel blocks, translating them
into decomposition schemes with one single method, with
subtasks arranged by either sequential or parallel order con-
straints, respectively. On the other hand, conditional blocks
were mapped into decomposition schemes comprising as
many methods as the number of alternative courses of action
defined by the conditional gateways (see (Gonzalez-Ferrer,
Fdez-Olivares, and Castillo) for more details). At present,
Jabbah has been extended in order to identify both, subpro-
cess relations between process activities, and more complex
synchronization mechanisms between parallel branches de-
scribed in a process model. Regarding the later extension,
once a synchronization between parallel blocks has been de-
tected (represented as a data flow between two activities),
Jabbah generates the necessary predicates in the effects of
the data producer as well as in the preconditions of the con-
sumer, in order to establish a causal relationship between
tasks in the HTN domain.With respect to the former exten-
sion it is important to note that it can only by managed by
hierarchical planning approaches, and it endows Jabbah with
a greater expressivity, allowing it to deal with a wider set of
more realistic process models.

By following this process, it is possible to generate prob-
lem and domain files which are given as input to the HTN
planner in order to obtain situated plans. These plans are
generated by the planner for a given context represented in
the problem file, and they can be interpreted as adaptive
business cases since they are direct and automatically ob-
tained from the initial process model. Furthermore, these
plans can also be seen as process instances of the original
process model. Thus, next we briefly describe how these
plans are transformed back into XPDL process instances in
order to be understandable, and so executable, by a BPM
runtime engine.

Transformation from plans to executable process
models. Given an XPDL process instance as input, BPM
engines are commonly endowed with the necessary machin-
ery in order to interactively execute every task (allowing to
start, finish, suspend or abort it) in the process by follow-

ing an execution model based on state-based automata. The
plans generated by the planner, using the planning domains
and problems generated by Jabbah, are represented in XML
as a collection of Task nodes where every node contains in-
formation about: actions (activities) and their parameters;
temporal information as earliest start and earliest end dates
for the execution of every activity; order dependencies be-
tween actions which allow to establish sequential and par-
allel runtime control structures; and metadata which allow
to represent additional knowledge like the user-friendly de-
scription of a task, its type (manual, auto) or its performer
(that is, the participant of the activity). It is worth to note
that metadata are generated at domain generation phase and
are automatically extracted and generated by Jabbah.

Starting from this XML plan representation, we have im-
plemented as an extension of Jabbah a translation process
that automatically generates XPDL processes which can be
directly executed in a BPM runtime engine and users can in-
teract with them on an underlying BPM console (see (Fdez-
Olivares et al. 2010) for more details). This process has
three main steps: (1) generation of XPDL DataFields and
Participants from the problem and domain files; (2) genera-
tion of XPDL activities from the information about actions,
temporal constraints and metadata in the plan; (3) generation
of XPDL transitions from the order dependencies between
the actions of the plan.

Notes on experiments
We have applied the transformation processes here described
in some experiments, by representing the whole process to
develop and deploy a specific course within an e-learning
center. Having this process model and an incoming course
request, as well as some available workers with different ca-
pabilities, we have generated its corresponding HTN plan-
ning domain. Then, we have obtained a plan by using the
temporally extended HTN planner and we have translated it
into an executable XPDL process. Finally, this process has
been used as input to a standard BPM runtime engine and
console. In conclusion, the system not only allows to sup-
port the generation of dynamic, adaptive processes in order
to support decision making, in addition it provides the nec-
essary functionalities to execute these processes under user
request.

References
Fdez-Olivares, J.; Sanchez-Garzon, I.; Gonzalez-Ferrer,
A.; and Castillo, L. 2010. ”Integrating plans into BPM
technologies for Human-Centric Process Execution”. In
ICAPS 2010. KEPS Workshop.
Gonzalez-Ferrer, A.; Fdez-Olivares, J.; and Castillo, L.
”JABBAH: A Java Aplication Framework for the Trans-
lation between Business Process Models and HTN”. In
ICKEPS 2009.
Muehlen, M., and Ho, D. T.-Y. 2006. Business Process
Management Workshops, LNCS 3812. Springer. chapter
”Risk Management in the BPM Lifecycle”, 454–466.
WfMC. 2010. http://www.xpdl.org/nugen/p/adaptive-case-
management/public.htm.

65

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Analyzing Plans and Comparing Planners in itSIMPLE3.1

Tiago Stegun Vaquero1,2 and José Reinaldo Silva1 and J. Christopher Beck2

1Department of Mechatronic Engineering, University of São Paulo, Brazil
2Department of Mechanical & Industrial Engineering, University of Toronto, Canada

tiago.vaquero@poli.usp.br, reinaldo@usp.br, jcb@mie.utoronto.ca

Introduction
Real planning problems arise from real application domains.
One significant challenge to achieving satisfactory planner
performance, in terms of both plan quality and planning
speed, is the development of a clear understanding and ac-
curate model of the application domain. Lack of knowl-
edge or ill-defined requirements typically propagate to poor
project specifications, then to an erroneous planning model
and finally to unsatisfactory planner performance. Ideally,
assumptions and models leading to incorrect and poor qual-
ity plans should be spotted and fixed in the design process.
One useful approach to finding such problems is the analysis
of plans generated by different planning techniques. Hence
the need to include a re-modeling cycle in any real applica-
tion design process.

Following this idea, itSIMPLE3.1 not only allows users to
test the PDDL model that is generated from a UML specifi-
cation with a set of modern planners, it also provides a set
of tools for plan analysis. Besides the existing capabilities
of plan visualization in UML and the definition of plan qual-
ity metrics, itSIMPLE3.1 brings extended features aimed to
help users to (1) perform experiments with different plan-
ners, (2) evaluate plan quality, (3) compare planner perfor-
mance, and (4) compare different model refinements. In all
these new features, users observe and analyze automatically
generated reports that contain useful information for inves-
tigating plans, the performance of planners, and the impact
of certain modifications.

In this short paper, we briefly describe these new features
in itSIMPLE3.1. We start by introducing how users define
and represent the quality metrics that guide the plan evalu-
ation. We then show how user can set-up planning exper-
iments to study and analyze planners and domain models.
Finally, we describe the reports generated by itSIMPLE3.1.

Defining Quality Metrics
Some of the research effort in the itSIMPLE project has been
directed to plan quality analysis. One of the extended func-
tionalities available in itSIMPLE3.1 supports the definition
of plan quality metrics and criteria acquisition. The main

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

objective of this new functionality is to capture domain met-
rics and criteria from users and to use them to evaluate and
compare plans. This feature aims to help the designer iden-
tify and explore their own metrics and their preferences on
the metric values.

In order to capture metrics and criteria, itSIMPLE pro-
vides an interface in which users specify and select the vari-
ables that correspond to key parameters for measuring the
quality of the plan. Metrics can be, for instance, a variable of
the domain (e.g., travel-distance or total-fuel-use), an action
counter that can involve specific characteristics (e.g., how
many times action move appears in the plan with the first
parameter being loc1), or an linear function involving sev-
eral domain variables. These metrics can be maximized or
minimized by planners or just observed by users. Each one
of these metrics can have a preference function that maps
variable values to scores in the interval [0,1] (where 0 is un-
satisfactory and 1 is satisfactory). The definition of metrics
in itSIMPLE was inspired by the work of (Rabideau, Engel-
hardt, and Chien 2000).

These metrics and their preference functions are used to
evaluate the plans produced by planners. These plan eval-
uations can be used while analyzing models and planners
or when performing planning experiments. The evaluations
(metric values and plan scores) can support and lead design-
ers to modified their models accordingly to their expecta-
tions. Such modification process is performed manually, but
automatic refinement procedures have been investigated.

Performing Experiments with Planners
A number of planners can be used within itSIMPLE3.1’s
graphical interface: Metric-FF, FF, SGPlan, MIPS-xxl,
LPG-TD, LPG, hspsp, SATPlan, Plan-A (IPC-6), blackbox
(version 4.3), MaxPlan (IPC-5), LPRPG (beta version 1),
and Marvin (IPC-4). Since itSIMPLE3.0, the requirements
tags of the (automatically generated) PDDL can be used to
select the planners that can handle a given domain.

Generally, during research experiments in planning, we
might want to do the following: test a specific domain model
with different planners; test a particular planner with differ-
ent planning domains; compare the performance of a set of
planners in a given domain model; or compare the perfor-
mance of a set of planners in a set of planning domains (what
is generally done during the International Planning Compe-

66

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

tition). itSIMPLE3.1 allows the user to perform all these
kinds of experiments.

In itSIMPLE3.1, experiments are normally done as fol-
lows. Users first select which planners and domain mod-
els will be used in an experiment. The tool lets designers
specify time-outs for all planners or a specific time-out for
a particular planner. The tool, then, handles the experiment
automatically, while showing to the user the progress and
the status of the process. During the execution of every plan-
ner, itSIMPLE3.1 records essential information and data: not
only the speed (runtime) and solvability of the planner for a
given problem instance, but also the quality of the resulting
plans based on the defined metrics. All information and data
from the experiments are recorded in a XML file which is
used to display the results to the user in the form of a report.

Generating Reports
In this section we describe the reports that itSIMPLE3.1 can
generate from the data record of the experiments.

Plan Report
When a user wants to analyzed a particular plan,
itSIMPLE3.1 can generate a HTML report that shows basic
information about the planner, the evolution of all metrics
using charts (so user can identify peaks, maximum and min-
imum), the individual score for each metric, and, finally, the
overall score of the plan.

Plan and Planner Comparison Report
When considering experiments with multiple planners
and/or multiple domains, itSIMPLE3.1 generates a compar-
ison report that shows how planners perform for each prob-
lem instance concerning speed, solvability, number of ac-
tions, plan cost, quality of metrics, and plan quality. The
report contains tables that list all these data. The report also
contains two charts for every domain in the experiment: the
first one correlates “number of actions” and “planners” con-
sidering every problem instance in the domain; the second
correlates “speed” (time) and ”planners” also considering
every problem instance in the domain. These charts are very
similar to those presented in the IPC results. At the end of
the comparison report, we provide a summary of the best
planners concerning the categories speed, quality and plan
length. This summary is made by counting how many times
each planner dominates on problem instances in each cate-
gory. This report, also in HTML format, can be very useful
to identify better planners as well as critical domains and
problem instances. In fact, it can simulate the evaluation
process generally done in IPC.

Since every plan is stored in the experiments data file,
users can quickly simulate or visualize a chosen plan using
itSIMPLE’s interface to do a deeper investigation. Com-
ments can be added to the plan which is stored in the XML
file for further analysis and reuse.

Comparing Refined Domains
Plan analysis can help validation of the model and can also
guide model modification and refinement. Recent research

work with itSIMPLE (Vaquero, Silva, and Beck 2010) has
shown that several observations, hidden requirements, and
potential modifications to the model can be discovered while
simulating the plan in a virtual environment. These modifi-
cations produce new (refined) models and a lead to subse-
quent plan analysis. The cycle of re-modeling and analy-
sis naturally raises the need to compare the impact of in-
serted modifications, i.e., comparing different planners on
different versions of the model. In order to help on such
comparison tasks, itSIMPLE3.1 produces a special report
that combines several experiments on a particular domain.
With such a combination of data, the tool can show (1) the
model in which the planners produced the the best quality
plans, (2) the model in which the planners had the fastest re-
sponse and (3) the model in which the planners had the best
plan length. The resulting report contains tables that show
the performance of the planners in each problem instance
of every (refined) model and also column charts illustrating
the best models for each problem instance and for all ex-
periment. Figure 1 illustrates an overall evaluation of four
models where each criteria has been mapped so that higher
means better. This figure shows that, in this case, Model AB
is the best model for all criteria.

Figure 1: Overall comparison of models in itSIMPLE3.1

Conclusion
The itSIMPLE project is in ongoing development. We
have recently put some efforts on integrating itSIMPLE
with other tools (such as virtual prototyping environ-
ments, model checking, and the Automatic Validation
tool (VAL) for PDDL), as well as improving the model-
ing features. itSIMPLE3.1 can be found in our website
http://dlab.poli.usp.br.

References
Rabideau, G.; Engelhardt, B.; and Chien, S. 2000. Using
generic preferences to incrementally improve plan quality.
In Proceedings of the Fifth AIPS, Breckenridge, CO.
Vaquero, T. S.; Silva, J. R.; and Beck, J. C. 2010. Im-
proving planning performance through post-design analy-
sis. In Proceedings of ICAPS 2010 workshop on Schedul-
ing and Knowledge Engineering for Planning and Schedul-
ing (KEPS). Toronto, Canada. To be published.

67

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Visual design of planning domains

Jindřich Vodrážka
Charles University in Prague

Faculty of Mathematics and Physics
Malostranské náměstı́ 25

118 00 Praha 1, Czech Republic
vodrazka@ufal.mff.cuni.cz

Lukáš Chrpa
Czech Technical University in Prague

Agent Technology Center
Karlovo náměstı́ 13

121 35 Praha 2, Czech Republic
chrpa@agents.felk.cvut.cz

Introduction
Description of planning domains and problems is the first
critical task when using planning technology. It naturally
belongs to the area of Knowledge Engineering as it involves
knowledge extraction (from the user) and schematic formu-
lation of problems.
To make the task more comprehensive for non-experts in
planning we propose to use graphical representation for
planning domains. This method has been already used in
systems GIPO (Simpson et al. 2007) and itSIMPLE (Va-
quero et al. 2007). In this paper we will describe system
VIZ inspired by them. Unlike GIPO or itSimple, VIZ is a
lightweight system which uses straightforward approach to
model a planning domain. Users do not need to be famil-
iar with PDDL syntax. VIZ provides a graphical user inter-
face for description of planning domains and problems. The
interface uses collection of simple diagrams which can be
exported directly into PDDL.

Categorization
Planning domain designers usually start with informal de-
scription of some system. Available pieces of information
need to be categorized with respect to their meaning. Con-
cept of object oriented programming and formalism of first
order logic (FOL) is incorporated in the following categories
which are used in VIZ:

• class determines common properties for all objects which
belong to it. It can be understood as a set of objects.

• object is a specific instance of some class

• variable can refer to any object from particular class

• predicate denotes an atomic statement of FOL language
for a given planning domain

Design levels
It is convenient to split complex task of planning domain de-
sign into pieces. We can consider three levels of abstraction:

1. declaration of classes and predicates

2. definition of planning operators using variables and pre-
viously declared predicates

3. definition of planning problem using objects and predi-
cates

Figure 1: Declaration of language

Planning domain is described at the first two levels. Plan-
ning problems are described at the third level.

Program VIZ
Three types of diagrams are sufficient to describe simple
planning domain with VIZ. All diagram types share the
same idea. Semantics of diagrams correspond with three
levels of abstraction described earlier. Number of diagrams
depends on number of planning operators and problems.

Blockworld domain (Slaney and Thiébaux 2001) is used
as an example in following Figures. Corresponding PDDL
code is shown as well.

Declaration of language
In Figure 1 we can see rectangular nodes labeled Box and
Robot representing classes used in the Blockworld domain.
There are also eliptic nodes as a representation for pred-
icates. By connecting e.g. predicate empty and class
Robot, we can declare type of empty’s only argument.
Generally we start declaration of predicates with zero argu-
ments. Then we add new arguments by connecting the node
which represents the predicate to some class. In this manner
types of predicate arguments will be defined as well. Vari-
ous information e.g. the order of predicate arguments can be
displayed on demand in the VIZ’s property editor.

68

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

Figure 2: Planning operator example

Figure 3: Planning problem example

Definition of planning operators

In Figure 2 we can see a diagram representing planning op-
erator stack. Rectangular nodes in this diagram repre-
sent variables. We can see only their names, but VIZ al-
lows to set their class as well. Notable difference is in vi-
sualisation of predicates. Predicates in operator Op are di-
vided into three disjoint sets (effect+,effect−,precond).
This is marked with three different colours. In the first set,
there are predicates appearing only in effect+ (we assume
that such predicates do not appear in precond neither in
effect−). The second set consists of predicates which ap-
pear in precond but not in effect− (not shown in Figure
2). Finally, there is a set of predicates from precond that
also appear in effect−.

Description of planning problems

The diagram for describing planning problems can be seen
in Figure 3. Rectangle nodes represent objects and eliptic
nodes (predicates) help to describe the state of the world.
Distinct colors of predicate nodes are used to distinguish
whether the described state is an initial state of the world
or a condition which has to be fulfilled in the goal state.

Features and restrictions
Program VIZ is restricted to simple STRIPS planning do-
mains with typing. It covers the following key features:

• class inheritance in the language declaration

• n-ary predicates with possibility of overloading

• basic consistency checking (e.g. missing predicate argu-
ments, inconsistencies caused by changes in the language
declaration)

• export of diagrams as .png images

• export and import from/to XML (in special format)

• export into PDDL (import from PDDL is not yet sup-
ported)

Conclusions
The presented system provides a comprehensive graphical
interface which can assist users when designing simple plan-
ning domains through their visual representation. It can be
also used for educational purposes. The proposed concept
can be extended to allow design of more complex domains
(e.g. functional symbols, conditional effects). Future devel-
opment will be focused on the process of knowledge extrac-
tion from the informal problem description. VIZ is available
from http://clp.mff.cuni.cz/Viz.html.

Acknowledgements
The research is supported by the Czech Science Foundation
under the contract P103/10/1287.

We would like to thank Roman Barták for help with proof
reading of this paper.

References
Simpson, R.M.; Kitchin, D.E.; McCluskey, T.L.:Planning
domain definition using GIPO. Knowledge Engineering Re-
view, 22 (2): 117-134 (2007)

Vaquero, T. S.; Romero, V. M. C.; Tonidandel, F.; Silva, J.
R.:itSIMPLE 2.0: An Integrated Tool for Designing Plan-
ning Domains. In Proceedings of International Conference
on Automated Planning & Scheduling (ICAPS 2007), pp.
336-343, AAAI Press (2007)

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; Wilkins, D.: PDDL - the
planning domain definition language. Technical report, Yale
Center for Computational Vision and Control (1998)

Slaney, J.K,; Thiébaux, S.:Blocks World revisited. Artif. In-
tell. (AI) 125(1-2):119-153 (2001)

69

KEPS 2010: Workshop on Knowledge Engineering for Planning and Scheduling

	Front page
	Organization
	Program Committee
	Foreword
	Contents
	Full Technical Papers
	Eliciting Planning Information from Subject Matter Experts
	How Hard is Verifying Flexible Temporal Plans for the Remote Space Agent?
	Ontology Oriented Exploration of an HTN Planning Domain through Hypotheses and Diagnostic Execution
	Model Updating in Action
	Integrating plans into BPM technologies for Human-Centric Process Execution
	Improving Planning Performance Through Post-Design Analysis
	An XML-based Forward-Compatible Framework for Planning System Extensions and Domain Problem Specification

	System Demonstrations
	Constraint and Flight Rule Management for Space Mission Operations
	Using Knowledge Engineering for Planning Techniques to leverage the BPM life-cycle for dynamic and adaptive processes
	Analyzing Plans and Comparing Planners in itSIMPLE 3.1
	Visual design of planning domains

