
How Hard is Verifying Flexible Temporal Plans for the Remote Space Agent?

A. Cesta† and A. Finzi‡ and S. Fratini† and A. Orlandini† and E. Tronci§
† ISTC-CNR, Via S.Martino della Battaglia 44, I-00185 Rome, Italy
‡ DSF “Federico II” University, Via Cinthia, I-80126 Naples, Italy

§ DI “La Sapienza” University, Via Salaria 198, I-00198 Rome, Italy

Abstract

Timeline-based planners have been shown quite successful in
addressing real world problems. Nevertheless they represent
a niche technology in AI P&S research as an application syn-
thesis with such techniques is still considered a sort of “black
art”. Our current work aims at both creating a rational refer-
ence architecture for timeline-based planning and scheduling
and developing a knowledge engineering environment around
such problem solving tool. In particular we are integrating
verification tools in such engineering environment to enhance
typical capabilities of a constraint-based planner. In this pa-
per we present recent results on the connection between plan
generation and execution from a particular perspective: the
static verification of plans before their execution. In particu-
lar, we present a verification process suitable for a timeline-
based planner and show how a temporally flexible plan verifi-
cation problem can be cast as model-checking on timed game
automata. We here discuss the effectiveness of the proposed
approach in a thorough experimental analysis based on a re-
alistic domain called “The Remote Space Agent”.

Introduction
In the past, several planning systems were endowed with
development environments to facilitate application design
(e.g., O-PLAN (Tate, Drabble, and Kirby 1994)). More re-
cent examples of software development environments are
EUROPA (EUROPA 2008) and ASPEN (Sherwood et al.
2000). Such environments can be enriched in several di-
rections. In a recent work (Cesta et al. 2010b), these au-
thors have envisaged the synthesis of knowledge engineer-
ing environments in which constraint-based and validation
and verification techniques concur in creating an enhanced
software environment for P&S. In particular, we are working
on verification and validation methods for timeline-based
planning investigating the use of model checking techniques
for verifying properties of specific planning software appli-
cations.

An important problem in timeline-based planning as used
in (Muscettola 1994; EUROPA 2008; Sherwood et al. 2000)
is the connection with plan execution which is instrumental
in several challenging real domain (e.g., the aspect is rel-
evant for both autonomy in space and robotics). Broadly
speaking such architectures return an envelope of potential
solutions in form of a flexible plan which is commonly ac-
cepted to be less brittle of a single plan when coping with

execution. But the general formal properties of such a repre-
sentation are far from being statically defined. Some aspects
of such plans have been studied by working on the temporal
network which is underlying the constraint based plan rep-
resentation often used by such systems – see for example
(Vidal and Fargier 1999; Morris and Muscettola 2005). We
have addressed the more general question of verifying flex-
ible plans working on the more abstract plan view as set of
timelines with formal tools like model checkers.

These authors have been investigating one aspect which
we consider as missing: the interconnection between
timeline-based planning and standard techniques for formal
validation and verification (V&V). The broad aim here is the
one of building a powerful environment for knowledge engi-
neering (Cesta et al. 2010b) and also that of exploring prop-
erties that concern temporal plans and their execution (Cesta
et al. 2009a; 2009b). In particular, (Cesta et al. 2009a) pro-
vides a feasibility study for the approach, while, in (Cesta et
al. 2009b), some formal properties are further investigated.
In this paper we mainly address a limitation of (Cesta et al.
2009b): the fact that experiments were very preliminary.

Here, that work is carried on by: (a) introducing a bench-
mark problem which is realistic and rich enough to allow
experiments along different directions; (b) presenting a com-
plete experimental analysis considering incrementally com-
plex scenarios and configurations in the benchmark domain.
The collected results show that the approach based on model
checking can be effective in practice. Indeed, despite the in-
creasing complexity of the verification tests, the verifier per-
formances remain acceptable for static analysis in a knowl-
edge engineering environment.

Preliminaries

This section shortly present the two basic ingredients
we combine in our knowledge engineering environment:
timeline-based planning and timed game automata. It is
worth mentioning that in (Abdedaim et al. 2007) the same
ingredients are put together for a different purpose than ours,
namely the mapping from temporal constraint-based plan-
ning problems into UPPAAL-TIGA game-reachability prob-
lems.



Timeline-Based Planning and Execution
Timeline-based planning is an approach to temporal plan-
ning which has been applied in the solution of several real
world problems – e.g., (Muscettola 1994). The approach
pursues a general idea that planning and scheduling consist
in the synthesis of desired temporal behavior for complex
physical systems. In this respect, the set of features of a
domain that needs control are modeled as a set of tempo-
ral functions whose values over a time horizon have to be
planned for. Such functions are synthesized during prob-
lem solving by posting planning decisions. The evolution of
a single temporal feature over a time horizon is called the
timeline of that feature.

In the rest of this paper, the time varying features are
called multi-valued state variables as in (Muscettola 1994).
As in classical control theory, the evolution of controlled
features are described by some causal laws which determine
legal temporal evolution of timelines. Such causal laws are
specified for the state variables in a domain specification
which specifies the operational constraints in a given do-
main. In this context, the task of a planner is to find a se-
quence of control decisions that bring the variables into a
final desired set of evolutions always satisfying the domain
specification.

We assume that the temporal features we want to repre-
sent as state-variables have a finite set of possible values
assumed over temporal intervals. The temporal evolutions
are sequences of operational states – i.e., stepwise constant
functions of time. Operational constraints specify which
value transitions are allowed, the duration of each valued
interval (i.e., how long a given operational status can be
maintained) and synchronization constraints between differ-
ent state variables.

More formally, a state variable is defined by a tuple
〈V , T ,D〉 where: (a) V = {v1, . . . , vn} is a finite set of
values; (b) T : V → 2V is the value transition function;
(c) D : V → N × N is the value duration function, i.e. a
function that specifies the allowed duration of values in V
(as an interval [lb, ub]). (b) and (c) specify the operational
constraints on the values in (a).

In this type of planning, a planning domain is defined as
a set of state variables {SV1, . . . ,SVn}. They cannot be
considered as reciprocally decoupled but a set of additional
relations exist, called synchronizations, modeling the exist-
ing temporal and causal constraints among the values taken
by different state variable timelines (i.e., patterns of legal
occurrences of the operational states across the timelines).
More formally, a synchronization has the form

〈T L, v〉 −→ 〈{〈T L′
1, v

′
1〉 . . . , 〈T L

′
n, v′n〉},R〉

where: T L is the reference timeline; v is a value
on T L which makes the synchronization applicable;
{〈T L′

1, v
′
1〉 . . . , 〈T L

′
n, v′n〉} is a set of target timelines on

which some values v′j must hold; and R is a set of rela-
tions which bind temporal occurrence of the reference value
v with temporal occurrences of the target values.

Timeline based planning. The temporal evolutions of a
state variable will be described by means of timelines, that is

a sequence of state variable values, a set of ordered transition
points between the values and a set of distance constraints
between transition points. When the transition points are
bounded by the planning process (lower and upper bounds
are given for them) instead of being exactly specified, as it
happens in case of a least commitment solving approach for
instance, we refer to the timeline as time flexible and to the
plan resulting from a set of flexible timeline as a flexible
plan.

It is worth mentioning that planning goals are expressed
as desiderata of values in temporal intervals and the task
of the planner is to build timelines that describe valid se-
quences of values that achieve the desiderata.

A plan is defined as a set of timelines {T L1, . . . , T Ln}
over the same interval for each state variable. The process of
solution extraction from a plan is the process of computing
(if exists) a valid and completely specified set of timelines
from a given set of time-flexible timelines. A solution is
valid with respect to a domain theory if every temporal oc-
currence of a reference value implies that the related target
values hold on target timelines presenting temporal intervals
that satisfy the expected relations.

Plan execution. During plan execution the plan is under re-
sponsibility to an executive program that forces value tran-
sitions over timeline. A well known problem with execution
is that not all the value transitions are under responsibility
of the executive but event exists that are under control of
nature. As a consequence, an executive cannot completely
predict the behavior of the controlled physical system be-
cause the duration of certain processes or the timing of ex-
ogenous events is outside of its control. In such cases, the
values for the state variables that are under the executive
scope should be chosen so that they do not constrain uncon-
trollable events. This is the controllability problem defined,
for example, in (Vidal and Fargier 1999) where contingent
and executable processes are distinguished. The contingent
processes are not controllable, hence with uncertain dura-
tions, instead the executable processes are started and ended
by the executive system. Controllability issues underlying
a plan representation have been formalized and investigated
for the Simple Temporal Problems with Uncertainty (STPU)
representation in (Vidal and Fargier 1999) where basic for-
mal notions are given for dynamic controllability (see also
(Morris and Muscettola 2005)). In the timeline-based frame-
work, we introduce the same controllability concept defined
on STNU as follows. Given a plan as a set of flexible time-
lines PL = {T L1, . . . , T Ln}, we call projection the set of
flexible timelines PL′ = {T L′

1, . . . , T L′
n} derived from

PL setting to a fixed value the temporal occurrence of each
uncontrollable timepoint. Considering N as the set of con-
trollable flexible timepoints in PL, a schedule T is a map-
ping T : N → N where T (x) is called time of timepoint x.
A schedule is consistent if all value durations and synchro-
nizations are satisfied in PL. The history of a timepoint x
w.r.t. a schedule T , denoted by T {≺ x}, specifies the time
of all uncontrollable timepoints that occur prior to x. An ex-
ecution strategy S is a mapping S : P → T where P is the
set of projections and T is the set of schedules. An execution



strategy S is viable if S(p) (denoted also Sp) is consistent
for each projection p. Thus, a flexible plan PL is dynami-
cally controllable if there exists a viable execution strategy
S such that Sp1{≺ x} = Sp2{≺ x} ⇒ Sp1(x) = Sp2(x)
for each controllable timepoint x and projections p1 and p2.

Timed Game Automata
Timed game automata (TGA) model have been introduced
in (Maler, Pnueli, and Sifakis 1995) to model control prob-
lems on timed systems. In (Cassez et al. 2005), definitions
related to TGA are presented in depth. Here, we briefly re-
call some of them that we shall use in the rest of the paper.

Definition 1 A Timed Game Automaton (TGA) is a tuple
A = (Q, q0, Act, X, Inv, E) where: Q is a finite set of lo-
cations; q0 ∈ Q is the initial location; Act is a finite set
of actions split in two disjoint sets, Actc the set of control-
lable actions and Actu the set of uncontrollable actions; X
is a finite set of a nonnegative, real-valued variables called
clocks; Inv : Q → B(X) is a function associating to each
location q ∈ Q a constraint Inv(q) (the invariant of q); E
⊆ Q×B(X)× Act× 2X ×Q is a finite set of transitions.
Where B(X) is the set of constraints in the form x ∼ c,
where c ∈ Z , x, y ∈ X , and ∼∈ {<,≤,≥, >}. We also

write q
g,a,Y
→ q′ ∈ E for (q, g, a, Y , q′) ∈ E.

A state of a TGA is a pair (q, v) ∈ Q×RX
≥0

that consists
of a discrete part and a valuation of the clocks (i.e., a value
assignment for each clock in X). An admissible state for a
A is a state (q, v) s.t. v |= Inv(q). From a state (q, v) a TGA
can either let time progress or do a discrete transition and
reach a new state.

A time transition for A is 4-tuple (q, v)
δ
→ (q, v′) where

(q, v) ∈ S, (q, v′) ∈ S, δ ∈ R≥0, v′ = v+δ, v |= Inv(q) and
v′ |= Inv(q). That is, in a time transition a TGA does not
change location, but only its clock values. Note that all clock
variables are incremented by the same amount δ in valuation
v′. This is why variables in X are named clocks. Accord-
ingly, δ models the elapsed time during the time transition.

A discrete transition for A is 5-tuple (q, v)
a
→ (q′, v′)

where (q, v) ∈ S, (q′, v′) ∈ S, a ∈ Act and there ex-

ists a transition q
g,a,Y
→ q′ ∈ E s.t. v |= g, v′ = v[Y ] and

v′ |= Inv(q′). In other words, there is a discrete transition
(labeled with a) from state (q, v) to state (q′, v′) if the clock
values (valuation v) satisfy the transition guard g and the
clock values after resetting the clocks in Y (valuation v′)
satisfy the invariant of location q′. Note that an admissible
transition always leads to an admissible state and that only
clocks in Y (reset clocks) change their value (namely, to 0).

A run of a TGA A is a finite or infinite sequence of al-
ternating time and discrete transitions of A. We denote
with Runs(A, (q, v)) the set of runs of A starting from state
(q, v) and write Runs(A) for Runs(A, (q,�0)). If ρ is a fi-
nite run, we denote with last(ρ) the last state of run ρ and
with Duration(ρ) the sum of the elapsed times of all time
transitions in ρ.

A network of TGA (nTGA) is a finite set of TGA evolv-
ing in parallel with a CSS style semantics for parallelism.
Namely, at any time, only one TGA in the network can

change location, unless a synchronization on labels takes
place. In the latter case, the two automata synchronizing
on the same label move together. Note that time does not
elapse during synchronizations.

Given a TGA A and three symbolic configurations Init,
Safe, and Goal, the reachability control problem or reach-
ability game RG(A, Init, Safe, Goal) consists in finding a
strategy f such that A starting from Init and supervised by
f generates a winning run that stays in Safe and enforces
Goal.

A strategy is a partial mapping f from the set of runs ofA
starting from Init to the set Actc∪{λ} (λ is a special symbol
that denotes ”do nothing and just wait”). For a finite run ρ,
the strategy f(ρ) may say (1) no way to win if f(ρ) is unde-
fined, (2) do nothing, just wait in the last configuration ρ if
f(ρ) = λ, or (3) execute the discrete, controllable transition
labeled by l in the last configuration of ρ if f(ρ) = l.

Using nTGA to model timeline-based planning
specifications

Timed Game Automata are particularly suitable for model-
ing controllability problems because the uncontrollable ac-
tivities can be modeled as adversary moves. Following this
approach, we perform flexible timeline-based plan verifica-
tion by solving a Reachability Game using UPPAAL-TIGA.
To this end, this section describes how a flexible timeline-
based plan, state variables and domain theory can be mod-
eled using nTGA. Our strategy is the following. First, time-
lines and state variables are mapped to TGA. Second, we
model the flexible plan view of the world by partitioning
state variables/timelines into two classes: controllable and
uncontrollable. Finally, an Observer TGA is introduced in
order to check for value constraints violations as well as syn-
chronizations violations.

Modeling a Planning Domain as an nTGA. Let PD =
{SV1, . . .SVn} be the set of state variables defining our
planning domain. We will model each SV ∈ PD with a
TGA ASV = (QSV , q0, ActSV , XSV , InvSV , ESV ). Then
the set SV = {ASV1

, ...,ASVn
} represents our planning do-

main PD as an nTGA.
The TGA ASV is defined as follows. The set QSV of

locations of ASV is just the set V of values of SV . The ini-
tial state q0, of ASV is the initial value in the timeline of
SV . The set of clocks XSV of ASV consists of just one
local clock: csv . The set ActSV of actions of ASV con-
sists of the values V of SV . If SV is controllable then the
actions in ActSV are controllable (i.e., ActSV = ActcSV ),
otherwise they are uncontrollable (i.e., ActSV = ActuSV ).
Location invariants InvSV for ASV are defined as follows:
InvSV (v) := csv ≤ ub, where: v ∈ QSV = V and D(v)
= [lb, ub]. The set ESV of transitions of ASV consists of

transitions of the form v
g,v′

?,Y
→ v′, where: g = csv ≥ lb,

Y = {csv}, v ∈ QSV = V , D(v) = [lb, ub], v′ ∈ T (v).

Modeling a Flexible Plan as an nTGA. Let P =
{T L1, . . . , T Ln} be a flexible plan for our planning do-



main PD. We will model each T L ∈ P with a TGA
AT L = (QT L, q0, ActT L, XT L, InvT L, ET L). Then the
set Plan = {AT L1

, ...,AT Ln
} represents P as an nTGA.

The TGA AT L is defined as follows. The set QT L of lo-
cations of AT L consists of the value intervals (plan steps)
in T L along with a location lgoal modeling the fact that the
plan has been completed. Thus, QT L = T L ∪ {lgoal}. The
initial state q0, of AT L is the first value interval l0 in T L.
The set of clocks XT L ofAT L consists of just one element:
the plan clock cp. Let SV be the state variable correspond-
ing to the timeline T L under consideration. The set ActT L

of actions of AT L consists of the values of SV . If SV is
controllable then the actions in ActT L are controllable (i.e.,
ActT L = ActcT L), otherwise they are uncontrollable (i.e.,
ActT L = ActuT L). Location invariants InvT L for AT L are
defined as follows. For each l = [lb, ub] ∈ T L we define
InvT L(l) := cp ≤ ub. For the goal location lgoal the invari-
ant InvT L(lgoal) is identically true, modeling the fact that
once plan is completed we can stay there as long as we like.
The set ET L of transitions of AT L consists of intermedi-
ate and final transitions. An intermediate transitions has the

form l
g,v!,Y
→ l′, where: g = cp ≥ lb, Y = ∅ with l and

l′ consecutive time intervals in T L. A final transition has
the form q

∅,∅,∅
→ q′, where: q = lpl (pl is the plan length),

q′ = lgoal. Note how using state variable values as transi-
tions label we implement the synchronization between state
variables and planned timelines.

Modeling Synchronizations with an Observer TGA.
We model synchronization between SV and Plan with an
Observer, that is a TGA reporting an error when an illegal
transition occurs.

The observer TGA AObs = (QObs, q0, ActObs, XObs,
InvObs, EObs) is defined as follows.

The set of locations is QObs = {lok, lerr} modeling le-
gal (lok) and illegal (lerr) executions. The initial location
q0 is lok. The set of actions is ActObs = {afail}. The
set of clocks is XObs = {cp}. There are no invariants,
that is InvObs(l) returns always the empty constraint. This
models the fact that AObs can stay in any location as long
as it likes. The set EObs consists of two kind of uncon-
trollable transitions: value transitions and sync transitions.
Let sp ∈ T L be a plan step and vp ∈ SV its associated

planned value. A value transition has the form lok

g,afail,∅
→

lerr , where: g = T Lsp
∧ ¬SVvp

. Let 〈T L, v〉 −→
〈{T L′

1, . . . , T L
′
n}, {v

′
1, . . . , v

′
n} ,R〉 be a synchronization.

A sync transition has the form lok

g,afail,∅
→ lerr , where:

g = ¬R(T Lv, T L
′

1v
′

1

, . . . , T L
′

nv
′

n
). Note how, for each

possible cause of error (illegal value occurrence or synchro-
nization violation), a suitable transition is defined, forcing
our Observer TGA to move to the error location which, once
reached, cannot be left.

The nTGA PL composed by the set of automata PL =
SV ∪Plan∪{AObs} models Flexible plan, State Variables
and Domain Theory descriptions.

Time flexible plan verification
Given the nTGAPL defined above, we can define a Reacha-
bility Game that ensures, once successfully solved, the plan
validity with respect to all the domain constraints and dy-
namic controllability.

nTGA and Flexible Plans
In (Cesta et al. 2009b), we demonstrated by construction
that we obtain a one-to-one mapping between flexible be-
haviors, defined by P , and automata behaviors, defined by
PL, with the Observer automaton holding the error location
if either an illegal value occurs or a synchronization is vio-
lated. More specifically, it is possible to show that the set
of automata Plan = {AT L1

, ...,AT Ln
} captures all and

only the possible evolutions enabled by the flexible plan P ,
that is: each automatonAT Li

describes the sequence of val-
ues for the T Li timeline within the planning horizonH; by
construction, each automata in SV = {ASV1

, ...,ASVn
} rep-

resent the associated state variable in one-to-one correspon-
dence; finally, the Observer automaton checks for both val-
ues consistency (between planned timelines and state vari-
ables) and synchronizations satisfaction.

Plan Verification in UPPAAL-TIGA
Once we have represented flexible plans as nTGA, the plan
verification problem can be reduced to a Reachability Game.

For this purpose, we introduce a Reachability Game
RG(PL, Init, Safe, Goal) where Init represents the set of
initial locations, one for each automaton in PL, Safe =
{lok}, and Goal is for the set of goal locations, one for each
T Li in PL.

In order to solve RG(PL, Init, Safe, Goal), we use
UPPAAL-TIGA (Behrmann et al. 2007). This tool extends
UPPAAL (Larsen, Pettersson, and Yi 1997) providing a tool-
box for the specification, simulation, and verification of real-
time games. If there is no winning strategy, UPPAAL-TIGA
gives a counter strategy for the opponent (environment) to
make the controller lose. Given a nTGA, a set of goal states
(win) and/or a set of bad states (lose), four types of winning
conditions can be issued (Behrmann et al. 2007). Then,
to solve the reachability game, we ask UPPAAL-TIGA to
check the formula Φ = A [ Safe U Goal] in PL. In fact,
this formula means that along all the possible paths, PL re-
mains in Safe states until Goal states are reached. Thus, if
the solver can verify the above property, then the flexible
temporal plan is valid (again, see (Cesta et al. 2009b) for a
formal account).

Whenever the flexible plan is not verified, UPPAAL-
TIGA produces an execution strategy showing one temporal
evolution that leads to a fault. Such a strategy can be ex-
ploited in order to understand whether the plan has some
weakness or flaws are present in the planning model. In
(Cesta et al. 2010b), the authors address this issue in a more
general way.

Dynamic Controllability
If there exists a winning strategy for the Reachability Game
RG, then the plan is also dynamically controllable. Indeed,



recalling the dynamic controllability definition for time-
lines introduced in the second section, we can notice that
each possible evolution of the uncontrollable automata cor-
responds to a timeline projection p. Each strategy/solution
for the RG corresponds to a consistent schedule T and a set
of strategy represents a viable execution strategy S. Thus,
the winning strategies produced by UPPAAL-TIGA repre-
sents a viable execution strategy S for the flexible plan P .
Furthermore, the use of forward algorithms (Behrmann et
al. 2007) guarantees that S is such that Sp1{≺ x} = Sp2{≺
x} ⇒ Sp1(x) = Sp2(x), for each controllable timepoint x
and projections p1 and p2. That is, the flexible plan is dy-
namically controllable.

A new benchmark domain
An aspect worth being addressed is the following: does the
method have any practical relevance? In this respect, we
have investigated the possibility of tailoring our method in
order to implement a realistic benchmark, collect a set of
experimental results and show its actual feasibility.

In this section, we present a case study that we use in our
experimental analysis. The domain is inspired by a Space
Mission Long Term Planning problem as described in (Cesta
et al. 2008; 2010a).

We consider a remote space agent (RSA) that operates
around a target planet. The RSA can either point to the
planet and use its instruments to produce scientific data or
point towards a communication station (Relay Satellite or
Earth) and communicate previously produced data. The
RSA is controlled by a planner and an executive system to
accomplish the required tasks (scientific observations, com-
munication, and maintenance activities). For each orbit fol-
lowed by the RSA around the planet, the operations are split
with respect to 3 orbital phases: (1) the pericentre (the or-
bital segment closest to the target planet); (2) the apocentre
(the orbital segment farthest from the planet); (3) the orbital
segments between the pericentre and apocentre. Around
pericentre, the agent should point toward the planet, thus
allowing observations of the planet surface (Science opera-
tions). Between pericentre and apocentre passages, the agent
should point to Earth for transmitting data. Communication
with Earth should occur within a ground-station availability
window. Ground-station visibility can either partially over-
lap or fully contain a pericentre passage. Maintenance op-
erations should occur around the apocentre passages. The
RSA is also endowed with a set of scientific instruments
or payloads (e.g., stereo cameras, altimeters, spectrometers,
etc.) whose activities are to be planned for during the peri-
centre phase taking into account physical constraints. In par-
ticular here we are assuming that instruments can be acti-
vated one at a time by following a fixed execution sequence
of operations: warm-up, process, turn-off. Additionally,
there are other constraints to be satisfied. Constraints on
uplink windows frequency and duration require four hours
uplink time for each 24 hours, and these uplink windows
must be as regular as possible, one every about 20 hours.
Apocentre slots for spacecraft maintenance windows must
be allocated between 2 and 5 orbits apart, and the mainte-
nance duration is of 90 minutes.

Timeline-based Specification. To obtain a timeline-based
specification of the domain we use: Planned State Variables
representing the timelines where there are activities under
the agent control (they are planned for by the agent); Exter-
nal State Variables, representing values imposed over time
which can only be observed

Figure 1: Value transitions for the planned state variables describ-
ing the Spacecraft Operative Mode (left) and any of the Instruments
(right) correct behavior.

Planned State Variables. A state variable Spacecraft Op-
erative Mode specifies the observation, communication, and
maintenance opportunities for the agent. In Figure 1-left,
we detail the values that can be taken by this state variable,
their durations, and the allowed value transitions. Additional
planned state variables, called Instrument-1..., Instrument-n,
are introduced to represent the scientific payloads. For each
variable Instrument-i we introduce four values: Warmup,
Process, Turnoff, and Idle (see Figure 1-right).

External State Variables. The Orbit Events state variable
(Figure 2, top) maintains the temporal occurrences of peri-
centres and apocentres represented by the values: PERI and
APO (they have fixed durations). The Ground Station Avail-
ability state variables (Figure 2, bottom) are a family of vari-
ables that maintain the visibility of various ground stations.
The allowed values for these state variables are either Avail-
able or Unavailable.

Synchronizations constraints. Any valid temporal plan
needs synchronizations among the planned timelines (see
Figure 2, middle) and the external timelines (represented as
dotted arrows in Figure 2). They represent how (a) science
operations must occur during pericentres, i.e., the Science
value must start and end during a Peri value; (b) mainte-
nance operations must occur in the same time interval as
apocentres, i.e., the Maint value is required to start and end
exactly when the Apo value starts and ends; (c) communica-
tions must occur during ground station visibility windows,
i.e., the Comm value must start and end during an Avail-
able value on any of the ground stations. As for scientific
instruments, we introduce the following constraints: (d) if
Instrument-i is not in Idle then the other instruments need to
be in Idle; (e) the Warmup is before Process which is before
Turnoff; (f) these activities are allowed only when Science is
active along the Operative Mode timeline.

Relaxed constraints. Besides synchronization constraints,
we need to take into account other constraints which cannot
be naturally represented in the planning model as structural
constraints, but rather treated as meta-level requirements to
be enforced by the planner heuristics and optimization meth-
ods. In our case study, we consider the following relaxed



Figure 2: An example of complete plan for the Remote Space
Agent domain. The synchronizations among timelines are high-
lighted.

constraints: (g) Maint must be allocated between 2 and 5
orbits apart with duration of about 90 minutes (to be cen-
tered around the apocentre event); (h) science activities must
be maximized, i.e., during each pericentre phase a Science
event should occur.

Experimental evaluation
In this work, we demonstrate the feasibility of our approach.
In particular, in this section, we analyze the plan verification
performances with respect to temporal flexibility and execu-
tion controllability. In particular, we deploy our verifier in
different scenarios and execution contexts checking for dy-
namic controllability and relaxed constraints satisfaction.

More specifically, we analyze the performances of our
tool varying the following settings: State variables. Here,
we consider three possible configurations: the RSA en-
dowed with zero, one, or two scientific instruments. This
affects the number of state variables (and synchronization
constraints). Flexibility. For each scientific instrument activ-
ity (i.e., warm-up, process, turn-off), we set a minimal dura-
tion (i.e. about 2 minutes), but we allow temporal flexibility
on the activity termination, namely, the end of each activity
has a tolerance ranging from 5 to 10 seconds. E.g. if we set
5 seconds of flexibility, we introduce an uncertainty on the
activity terminations, for instance, the warm-up activity can
take from 120 to 125 seconds. This temporal interval rep-
resents the degree of temporal flexibility that we introduce
in the system. Horizon. We consider flexible plans with a
horizon length ranging from 3 to 10 mission days. Control-
lability. We consider four different execution contexts: 1)
all the instruments activities are controllable; 2) for each in-
strument the warm-up termination is not controllable; 3) for
each instrument, warm-up and process terminations are not
controllable; 4) for each instrument warm-up, process, and

turn-off are not controllable.
Note that the higher is the degree of flexibil-
ity/uncontrollability, the larger is the space of allowed
behaviors to be checked, thus, the harder is flexible plan
verification.

In these settings, we analyze the performance of our tool
considering the following issues: model generation, dy-
namic controllability checking, domain requirements check-
ing. We run our experiments on a Linux workstation en-
dowed with a 64-bit AMD Athlon CPU (3.5GHz) and 2GB
RAM. In the following we illustrate the collected empirical
results.

Model Generation. A first, preliminary, analysis con-
cerns the model generation process and the dimension of
the generated UPPAAL-TIGA specification. This analysis is
needed because the complexity of the generated UPPAAL-
TIGA models can affect the scalability of the overall ver-
ification method. In fact, for this purpose, we developed
a tool that implements the nTGA modeling procedure de-
scribed before (see Section ”‘Using nTga to model timeline-
based planning specifications”’) and automatically builds
the UPPAAL-TIGA model given the description of the plan-
ning domain and the flexible temporal plan to be checked.
Here, we want to assess the size of the generated model
and the generation time with respect to the dimension of the
planning domain and of the plan (state variables and plan
length). In our experimental setting, we consider domain
models with an incremental number of state variables (from
3 to 5) and plans with an incremental number of mission
days (from 3 to 10). For each possible configuration, we
consider the dimension of the generated model and the time
elapsed for the generation. For all these configurations, the
generation process is very fast and takes less than 200ms,
while the dimension of the generated model gradually grows
with respect to the dimension of the flexible plan (in terms
of number of timelines and plan length).

3 timelines 4 timelines 5 timelines
days kb nr. states kb nr. states kb nr. states

3 16 41 19 51 23 61
4 32 85 38 110 42 135
5 54 131 58 179 63 227
6 73 168 77 240 82 312
7 94 204 98 300 101 396
8 107 238 112 351 117 464
9 119 271 125 397 130 523

10 139 301 142 439 147 577

Figure 3: Size of the generated model (kb and number of states)
with respect to the plan length and number of timelines.

In conclusion, the process of model generation is fast and
the generated model grows linearly with the dimension of
the plan, therefore, here the encoding phase is not a critical
step.

Flexible Plan Verification against Fully Controllable Ex-
ecution. Here, we collect the time performances (CPU time)
of plan verification in different scenarios (changing the de-
gree of plan flexibility) and execution contexts (changing the
plan controllability).

Here, we analyze the plan verification performances in



checking dynamic controllability in the easiest condition of
controllability. Indeed, in this initial experimental setting,
we consider fully controllable plans assuming all the scien-
tific tasks to be controllable.

Full Controllability
days 0s flex 5s flex 10s flex

3 0,198 0,202 0,254
4 0,254 0,301 0,320
5 0,300 0,344 0,328
6 0,192 0,208 0,184
7 0,248 0,240 0,248
8 0,292 0,300 0,284
9 0,348 0,332 0,364
10 0,392 0,364 0,401

(a)

1 Uncontrollable Task
days 0s flex 5s flex 10s flex

3 0,189 0,165 0,193
4 0,227 0,234 0,238
5 0,276 0,296 0,264
6 0,172 0,160 0,168
7 0,212 0,220 0,208
8 0,268 0,248 0,252
9 0,308 0,336 0,336

10 0,356 0,364 0,379

(b)

2 Uncontrollable Tasks
days 0s flex 5s flex 10s flex

3 0,189 0,192 0,188
4 0,246 0,237 0,245
5 0,296 0,324 0,288
6 0,156 0,164 0,164
7 0,212 0,216 0,212
8 0,260 0,263 0,264
9 0,316 0,288 0,336
10 0,345 0,321 0,335

(c)

3 Uncontrollable Tasks
days 0s flex 5s flex 10s flex

3 0,198 0,221 0,212
4 0,267 0,283 0,267
5 0,304 0,288 0,288
6 0,188 0,172 0,176
7 0,212 0,208 0,220
8 0,252 0,236 0,248
9 0,312 0,300 0,332

10 0,367 0,353 0,379

(d)

Figure 4: Verification with one additional instrument varying flex-
ibility and controllability.

In Figure 4(a) and Figure 5(a), we illustrate the results gath-
ered in the case of one and two instruments, respectively,
considering the verifier performances under different plan
length and flexibility conditions. The results in Figure 4(a)
and Figure 5(a) show that an increment of temporal flexibil-
ity has a limited impact on the performances of the verifica-
tion tool. This is particularly evident in the case of a single
instrument, where the performances of the verification pro-
cess seems not affected by the degree of temporal flexibility
(Figures 4(a)). On the other hand, in the case of 2 scientific
instruments (Figures 4(b)), we can observe a smooth growth
of the verification time with respect to the allowed tempo-
ral flexibility. Of course, this is mainly due to the fact that
in this case the verification process is to check all the syn-
chronization constraints among the instruments, which are
not considered in the case of a single instrument. However,
even thought the increment of temporal flexibility enlarges
the number of possible behaviors to be checked, in the pres-
ence of fully controllable activities a single execution trace
is sufficient to show plan controllability, hence the verifica-
tion task is reduced to correct plan termination checking.

Flexible Plan Verification against Partially Controllable
Execution. In the following, we consider the verifier per-
formances in checking dynamic controllability in the pres-
ence of uncontrollable activities. Interestingly, also in this
setting the execution time for verification grows in a grad-
ual manner. In the case of a single scientific instrument, the
gathered results (see Figures 4b-c-d) are comparable with
the ones collected in the fully controllable case. Even when
we consider a setting where all the tasks are uncontrollable,
our verification tool can easily accomplish plan verification
for all the flexibility and plan length configurations (see Fig-
ure 4(d)). In the case of 2 instruments (hence, 5 timelines),
the increment of flexibility gradually increments the time

Full Controllability
days 0s flex 5s flex 10s flex

3 0,899 2,010 2,673
4 1,123 3,101 3,200
5 1,664 3,508 3,312
6 2,756 3,780 3,396
7 3,704 4,368 4,528
8 4,492 5,080 5,088
9 5,300 5,896 6,724

10 5,934 6,234 7,243

(a)

1 Uncontrollable Task
days 0s flex 5s flex 10s flex

3 1,784 2,998 3,021
4 2,132 3,156 3,103
5 2,784 3,280 3,248
6 2,892 3,252 3,312
7 3,664 4,384 4,500
8 4,232 5,096 5,212
9 5,492 6,492 6,716
10 6,357 7,093 7,732

(b)

2 Uncontrollable Tasks
days 0s flex 5s flex 10s flex

3 2,022 3,105 3,227
4 2,214 3,326 3,339
5 2,444 3,452 3,548
6 2,652 3,212 3,328
7 3,612 4,412 4,464
8 4,200 4,879 5,208
9 5,300 5,876 6,812

10 6,604 7,012 8,002

(c)

3 Uncontrollable Tasks
days 0s flex 5s flex 10s flex

3 2,243 3,143 3,004
4 2,527 3,340 3,122
5 2,880 3,528 3,052
6 2,628 3,404 3,704
7 3,604 4,252 4,284
8 4,212 4,668 4,98
9 5,176 6,088 6,384
10 6,392 7,478 8,244

(d)

Figure 5: Verification with two instruments changing both flexi-
bility and controllability.

needed by the verification tool to verify the plans (see Fig-
ures 5b-c-d). A similar increment can be observed when
we increase the number of uncontrollable activities. If we
keep constant the uncontrollable activities, the performances
trend appears similar to the one of the fully controllable case.
Nevertheless, even if we consider the worst case, i.e. all
the activities uncontrollable and maximal temporal flexibil-
ity, the performances of the UPPAAL-TIGA verification tool
are still very satisfactory: given flexible plans with horizon
length up to 10 mission days and 5 timelines, plan verifica-
tion can be successfully accomplished within few seconds
(see Figure 5(d)).

Flexible Plan Verification against Relaxed Domain Con-
straints. We also perform tests to verify also other domain-
dependent constraints, namely, the two relaxed constraints
on maintenance and science activities introduced in the pre-
vious section. In this experimental setting, we assume the
system endowed with 2 scientific instruments (5 timelines).
In Figure 6, we report the experimental results collected in-
creasing the degree of uncontrollability on the considered
flexible plans.
Changing the plan flexibility, the verifier presents perfor-
mances that are analogous to the ones reported in the pre-
vious case. Thus, the additional properties to be checked
provide a low additional overhead to the verification pro-
cess.

Conclusion
In our path to enhancing a knowledge engineering environ-
ment for timeline-based problem solving, we are investigat-
ing the integration of formal methods as a way of orthogonal
contribution to analyze properties of plans. In recent work
including the current one we are proposing the combined use
of timeline-based planning and standard techniques for for-
mal validation and verification. In particular, we have syn-
thesized a verification process suitable for a timeline-based
planner showing how a temporally flexible plan verification
problem can be cast as model-checking on timed game au-



Figure 6: Experimental results collected validating flexible plans
varying flexibility and controllability in case study with two addi-
tional instruments.

tomata. Then, we have investigated the possibility of tai-
loring our method in order to implement a realistic bench-
mark, collect a set of experimental results and show its ac-
tual feasibility. The experimental results presented in this
paper demonstrate the feasibility of our method and the ef-
fectiveness of UPPAAL-TIGA in this setting. In fact, despite
the increasing complexity of the verification configurations,
the execution time gradually grows with the complexity of
the task. Furthermore, the concurrent increase of temporal
flexibility and plan uncontrollability does not determine the
expected computational overhead. The UPPAAL-TIGA ver-
ifier can effectively handle the flexible plan verification task
in all the considered configurations.

Acknowledgments. Cesta, Fratini, Orlandini and Tronci
are partially supported by the EU project ULISSE (Call
“SPA.2007.2.1.01 Space Science” Contract FP7.218815).
Cesta and Fratini has been also partially supported by Eu-
ropean Space Agency (ESA) within the Advanced Planning
and Scheduling Initiative (APSI).

References
Abdedaim, Y.; Asarin, E.; Gallien, M.; Ingrand, F.; Lesire,
C.; and Sighireanu, M. 2007. Planning Robust Tempo-
ral Plans: A Comparison Between CBTP and TGA Ap-
proaches. In Proc. of the 7th International Conference on
Automated Planning and Scheduling, 2–10.
Behrmann, G.; Cougnard, A.; David, A.; Fleury, E.;
Larsen, K.; and Lime, D. 2007. UPPAAL-TIGA: Time
for playing games! In Proc. of CAV-07, number 4590 in
LNCS, 121–125. Springer.
Cassez, F.; David, A.; Fleury, E.; Larsen, K. G.; and Lime,
D. 2005. Efficient on-the-fly algorithms for the analysis of
timed games. In CONCUR 2005, 66–80. Springer-Verlag.
Cesta, A.; Fratini, S.; Oddi, A.; and Pecora, F. 2008.
APSI Case#1: Pre-planning Science Operations in MARS
EXPRESS. In i-SAIRAS-08. Proceedings of the 9th Int.
Symp. on Artificial Intelligence, Robotics and Automation
in Space. JPL, Pasadena, CA.

Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci,
E. 2009a. Flexible Timeline-Based Plan Verification. In
KI 2009, volume 5803 of LNAI.
Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and
Tronci, E. 2009b. Verifying flexible timeline-based plans.
In VVPS-09. Workshop on Verification and Validation of
Planning and Scheduling Systems at ICAPS, Thessaloniki,
Greece.
Cesta, A.; Cortellessa, G.; Fratini, S.; and Oddi, A. 2010a.
MRSPOCK: Steps in Developing an End-to-End Space
Application. Computational Intelligence. Accepted for
publication.
Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci,
E. 2010b. Validation and Verification Issues in a Timeline-
Based Planning System. Knowledge Engineering Review.
Accepted for publication.
EUROPA. 2008. Europa Software Distribution Web Site.
https://babelfish.arc.nasa.gov/trac/europa/.
Larsen, K. G.; Pettersson, P.; and Yi, W. 1997. UPPAAL
in a Nutshell. International Journal on Software Tools for
Technology Transfer 1(1-2):134–152.
Maler, O.; Pnueli, A.; and Sifakis, J. 1995. On the Synthe-
sis of Discrete Controllers for Timed Systems. In STACS,
LNCS, 229–242. Springer.
Morris, P. H., and Muscettola, N. 2005. Temporal Dynamic
Controllability Revisited. In Proc. of AAAI 2005, 1193–
1198.
Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. In Zweben, M. and Fox, M.S., ed., Intelligent
Scheduling. Morgan Kauffmann.
Sherwood, R.; Engelhardt, B.; Rabideau, G.; Chien, S.;
and Knight, R. 2000. ASPEN, Automatic Scheduling and
Planning Environment. Technical Report D-15482, JPL.
Tate, A.; Drabble, B.; and Kirby, R. 1994. O-Plan2: An
Open Architecture for Command, Planning, and Control.
In Zweben, M., and Fox, S. M., eds., Intelligent Schedul-
ing. Morgan Kaufmann.
Vidal, T., and Fargier, H. 1999. Handling Contingency
in Temporal Constraint Networks: From Consistency To
Controllabilities. JETAI 11(1):23–45.


