
Model Updating in Action

Maria V. de Menezes and Leliane N. de Barros
Department of Computer Science

IME-USP

Silvio do L. Pereira
Department of Information Technology

FATEC-SP/CEETEPS

Abstract
Model updating is a formal approach to automatically correct
a system modelM with respect to some property ϕ not sat-
isfied by M. The well known model updating approaches
are based on Computational Tree Logic (CTL), a branch time
temporal logic which does not take into account the actions
behind the state transitions. In previous work we have pro-
posed a model checker and a planner based on α-CTL – a
temporal logic whose semantics is based on actions – to solve
extended reachability goals. In this paper, we present a model
updating approach based on α-CTL that can be used to au-
tomatically suggest modifications in a state transition model
induced by a set of actions and also is able to suggest changes
directly in the action specification.

Introduction
Errors are common during the design of systems and their
late detection and correction can be one of the major rea-
sons for a high cost design. However, it can be reduced if
the designer is able to early detect them, i.e., during sys-
tem specification. By using formal methods to specify a
system behavior, we can apply model checking techniques
(Müller-Olm, Schmidt, and Steffen 1999) to automatically
detect not met requirements. In order to understand how
model checking works, let us consider the well-known mi-
crowave oven scenario presented by (Clarke E. 1999), which
represents two main microwave usage processes: food heat-
ing and cooking.

The system designer starts by defining which properties
will be used to describe the current state of a system. In the
microwave oven example, the state properties are: started
(indicating the microwave is operating), closed (indicating
the microwave door is closed), heated (indicating the food
inside microwave oven is heated) and cooked (describing
that the food is cooked). Those properties are propositional
atoms used to describe what is true in the system state and,
their negation, describes what is false. Additionally, a state
property error indicates the error detected during system
operation (in our example, an error occurs in the situation
where the oven starts and the door is open). Furthermore,
system designer has to specify the actions that cause state
transitions, that are: start, finish, open-door, close-door,

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

warm up, cook and reset. Figure 1 shows a preliminary de-
sign model of a microwave oven given by a state transition
diagram.

Figure 1: Formal model of a microwave oven, adapted from
(Clarke E. 1999).

In the initial state s1, a user can select one of the two ac-
tions: start and close-door. The start action takes the system
to state s2, which indicates the existence of an error. Notice
that an error will persist even if the action close-door is se-
lected (transition from s2 to s5). In this situation, the user
has to reset (action reset) the microwave which can take the
system to one of the two states: s3 and s6, both without error
(note that reset is a non-deterministic action: an action with
uncertain effects). If the close-door action is selected in the
initial state s1, the error does not occur and the food inside
the microwave oven can be heated and/or cooked without
making the user to reset the oven.

Suppose the designer wants to verify if the system speci-
fication in Figure 1 satisfies the temporal formula ϕ defined
as: “ once the microwave oven is started, the food inside
will be heated in some future state”. That means, ϕ is satis-
fied in a system model with no state where both started and
¬heated properties are true. The paths [s1, s2, s5, s3, s1,⋯],
[s1, s2, s5, s2,⋯] are examples where ϕ is not satisfied. The
rationale behind ϕ can be “the user should not have to reset



Figure 2: Model checker.

the oven in order to be able to heat and/or cook his food”.
Although the microwave example seems to be easy to

model and verify temporal properties, having defined 5 state
properties (fluents or state variables) implies in 32 (25) pos-
sible states and 1024 (210) possible state transitions. Thus,
to design a system that allows a user to achieve its intended
goals (e.g. to heat or cook a meal) and yet guaranteeing to
hold some temporal properties, is a complex task that gets
harder with the size of state space (i.e. the number of state
variables).

Model checking consists of automatically solving the
problem K ⊧ ϕ, where K is a formal model of a system
and ϕ is a formal specification of a temporal property to be
verified in this system. Essentially, a model checker (Fig-
ure 2) is an algorithm that receives a pair (K, ϕ) as input
and systematically visits the states of the model K, in order
to verify if the property ϕ holds. When all states inK satisfy
property ϕ, the model checker returns success; otherwise, it
returns a counter-example (e.g., a state in the modelKwhere
the property ϕ is violated). One of the limitations of model
checking is that, when the property is violated, it only re-
turns a counter-example leaving the task of modifying the
system model to the designer.

Model updating is a technique that extends model check-
ing functions in order to support the repair of a faulty sys-
tem. Zhang and Ding(2008) proposed a model update al-
gorithm that takes a given Kripke model K (Kripke 1963) -
a state transition model without action specification - with
respect to an arbitrary CTL formula ϕ and generates an up-
dated model K′ that: (1) satisfies ϕ and (2) has a minimal
change with respect to the original model. To generate K′,
this approach uses primitive update operations such as: add
a relation element, remove a relation element, change la-
belling function on one state, add a state and remove a state.
For example, a possible correction in the model of Figure 1
is “remove the transition between the states s1 and s2”. This
means that “It is not allowed to start the microwave oven
with the opened door”.

Motivation: KE for planning vs. model updating
The microwave formal model from Figure 1 can be seen as a
set of plans, specified by the system designer to achieve the
goals: heat and/or cook a meal. Each plan is supposed to be
executed by an user (according with a “system manual”).

In artificial intelligence planning area, the task is to au-
tomatically generate a plan of actions given a goal specifi-
cation and a system model (e.g., a factory or a robot envi-
ronment model). A planning domain is specified in terms
of a set of action schema which can be used to induce the
system model. Nevertheless, it is very difficult, even for a
simple planning domain, to specify a correct set of actions.
Although automatic planning has been the subject of exten-

sive study in the AI community since the early 1970s, low
effort has been given to the task of modeling and verification
of planning domains.

In order to model and verify a planning domain, a de-
signer should start by describing a preliminary set of actions
to be further refined. This refinement can be done using,
e.g.: (i) a set of plan examples, for a given class of goals,
specified in an ad hoc way by a domain expert (or possi-
bly generated by an automatic planner); (ii) a state transition
model induced by the semantics of the preliminary set of
action schema for a small problem.

Notice that in the system model represented by Figure 1
the state transitions are labelled with actions. Traditional
model updating approaches based on CTL (e.g (Zhang and
Ding 2008)) do not take into account the actions behind the
transitions and therefore can not be applied to update (re-
fine) planning domains. Actions are not part of a CTL Kripke
model, which is the formalism used in most of the model
checking and updating approaches (Buccafurri et al. 1999;
Harris and Ryan 2003; Zhang and Ding 2008). In this paper
we show that by representing actions in the formal model
of a system we can extend model updating techniques to be
used as an important support tool for knowledge acquisition,
modeling and verification of planning domains.

Since actions are not part of Kripke structure, we can only
represent them using a temporal logic whose semantics is
based on actions. Pereira and Barros (2008) proposed an
extension of CTL, called α-CTL, whose semantics considers
the transition actions. They have also developed a model
checker based on this logic, named α-CTL model checker.
This work presents a model updating approach based on α-
CTL that can be used to automatically suggest modifications
in a state transition model induced by a set of actions and
therefore is able to suggest changes directly in the actions
specification. We also define a criterion of minimal change
for α-CTL model updating.

The remainder of this article is organized as follows: we
first show the basic concepts of CTL model checking and CTL

model updating; then we define a labelled transition system
and a model checker based on α-CTL . Finally, we show how
to perform model update, based on α-CTL , that can suggest
modification in the set of actions of a planning domain.

CTL Model Checking and Update
In this section, we introduce the basic concepts of CTL

model checking and CTL model update.
The branching time temporal logic CTL (COMPUTATION

TREE LOGIC) (Clarke and Emerson 1982) allows us to reason
about alternative time lines (i.e., alternative futures). In CTL

the temporal operators must be preceded by some quantifier:
∃ (Figure 3) or ∀ (Figure 4).
• ∀◯ (in all next states)
• ∃◯ (at some next state)
• ∀◻ (invariant, in all future state)
• ∃◻ (invariant, at some future state)
• ∀◇ (finally, in all future states)
• ∃◇ (finally, at some the future state)



• ∀[ϕ1 ⊔ ϕ2] (since, in all future states)

• ∃[ϕ1 ⊔ ϕ2] (since, at some future state)

Figure 3: Semantics of the CTL temporal operators preceded
by existential quantifier.

Figure 4: Semantics of the CTL temporal operators preceded
by universal quantifier.

The CTL formulas are composed by atomic propositions,
propositional operators and temporal operators. The sym-
bols ○ (next), ◻ (invariantly), ◇ (finally) and ⊔ (until), com-
bined with the quantifiers ∃ and ∀, are used to compose the
temporal operators of this logic.

The syntax of CTL is inductively defined as:
ϕ ≐ p ∈ P ∣ ¬ϕ1 ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 ∨ ϕ2 ∣ ∃ ○ ϕ1 ∣ ∀ ○ ϕ1 ∣ ∃ ◻

ϕ1 ∣ ∀ ◻ ϕ1 ∣ ∃(ϕ1 ⊔ ϕ2) ∣ ∀(ϕ1 ⊔ ϕ2).
The temporal operators ∃◇ and ∀◇ are defined as:

• ∃ ◇ ϕ ≐ ∃(⊺ ⊔ ϕ)

• ∀ ◇ ϕ ≐ ∀(⊺ ⊔ ϕ)

The semantics of CTL is defined over a Kripke structure
K = ⟨S,L,T ⟩, where S is a set of states, L ∶ S ↦ 2P is a state
labelling relation and T ⊆ S × S is a transition relation. A
path in K is a sequence of states [s0, s1,⋯] such that si ∈ S
and (si, si+1) ∈ T , for all i ⩾ 0.

Given a Kripke structure K and a state s0 ∈ S, the CTL

satisfiability relation is defined as:

Figure 5: Model updater receives K and ϕ and returns an
updated model K’

• (K, s0) ⊧ p iff p ∈ L(s0);

• (K, s0) ⊧ ¬ϕ iff (K, s0) /⊧ ϕ;

• (K, s0) ⊧ ϕ1 ∧ ϕ2 iff (K, s0) ⊧ ϕ1 and (K, s0) ⊧ ϕ2;

• (K, s0) ⊧ ϕ1 ∨ ϕ2 iff (K, s0) ⊧ ϕ1 or (K, s0) ⊧ ϕ2;

• (K, s0) ⊧ ∃ ○ ϕ iff for some path [s0, s1,⋯] in K,
(K, s1) ⊧ ϕ;

• (K, s0) ⊧ ∀ ○ ϕ iff for every path [s0, s1,⋯] in K,
(K, s1) ⊧ ϕ;

• (K, s0) ⊧ ∃ ◻ ϕ iff for some path [s0, s1,⋯] in K, for
i ≥ 0, (K, si) ⊧ ϕ;

• (K, s0) ⊧ ∀ ◻ ϕ iff for every path [s0, s1,⋯] in K, for
i ≥ 0, (K, si) ⊧ ϕ;

• (K, s0) ⊧ ∃(ϕ1 ⊔ ϕ2) iff for some path [s0, s1,⋯] in K,
there exists i ≥ 0 such that (K, si) ⊧ ϕ2 and, for 0 ≤ j < i,
(K, sj) ⊧ ϕ1;

• (K, s0) ⊧ ∀(ϕ1 ⊔ ϕ2) iff for every path [s0, s1,⋯] in K,
there exists i ≥ 0 such that (K, si) ⊧ ϕ2 and, for 0 ≤ j < i,
(K, sj) ⊧ ϕ1.

Model update framework
Let K be a formal model of a system and ϕ be a formal
specification of a property that is not satisfied in this system,
i.e., K /⊧ ϕ. Model update (Zhang and Ding 2008) consists
of generating a new model K′ that satisfies the input for-
mula (K

′
⊧ ϕ) and has a minimal change with respect to

the original model K. Then, a model updater (Figura 5) is
an algorithm that receives a pair (K, ϕ), where K /⊧ ϕ, and
returns a new model K′, where K′ ⊧ ϕ. The updated model
K
′ can be viewed as a possible correction on the original

system specification.
Zhang and Ding (2008) proposed a formal framework for

CTL model update, defining primitive operations and spec-
ifying a minimal change principle for CTL model updating.
Below, we list the Zhang and Ding (2008) primitive opera-
tions:

PU1: Adding one relation element. Let be K =

⟨S,L,T ⟩, its updated model K′ = ⟨S′, L′, T ′⟩ is obtained
from K by adding only one new relation element. That is,
S′ = S,L′ = L,T ′ = T ∪ (si, sj), where si, sj ∈ S and
(si, sj) /∈ T .

PU2: Removing one relation element. Let be K =

⟨S,L,T ⟩, its updated model K′ = ⟨S′, L′, T ′⟩ is obtained
from K by removing only one existing relation element.
That is, S′ = S, L′ = L,T ′ = T −(si, sj), where (si, sj) ∈ T
for two states si, sj ∈ S.



PU3: Changing labelling function on one state. Let be
K = ⟨S,L,T ⟩, its updated model K′ = ⟨S′, L′, T ′⟩ is ob-
tained from K by changing labelling function on a partic-
ular state. That is, S′ = S,T ′ = T,∀s ∈ (S − s∗), s∗ ∈

S,L′(s) = L(s) and L′(s∗) is a set of true variable assigned
in s∗ where L′(s∗) ≠ L(s∗).

PU4: Adding one state. Let be K = ⟨S,L,T ⟩, its updated
model K′ = ⟨S′, L′, T ′⟩ is obtained from K by adding only
one new state. That is, S′ = S ∪ s∗, s∗ /∈ S, T ′ = T and
∀s ∈ S,L′(s) = L(s) and L′(s∗) is a set of true variables
assigned in s∗.

PU5: Removing one isolated state. Let beK = ⟨S,L,T ⟩,
its updated model K′ = ⟨S′, L′, T ′⟩ is obtained from K by
removing only one isolated state. That is, S′ = S − s∗,
where s∗ ∈ S and ∀s ∈ S such that s ≠ s∗, neither (s, s∗)
nor (s∗, s) is not in T , T ′ = T and ∀s ∈ S′, L′(s) = L(s).

Model update should obey minimal change rules. Al-
though, the primitive operations PUi where i = 1,2, ..5 can
be used to define minimal change criterion for CTL model
update, within this framework it is not possible to make up-
dates considering the actions of the system specification, as
we propose in the next sections.

Labelled transition system
Let P ≠ ∅ be a finite set of atomic propositions, denoting
properties of a system, and A ≠ ∅ be a finite set of actions,
representing the events of a system.

Definition 1. A labelled transition system with signature
(P,A) is defined byM = ⟨S,L,T ⟩, where:

• S ≠ ∅ is a finite set of states;
• L ∶ S ↦ 2P is a state labelling function;
• T ∶ S ×A × S is a state transition relation.

A labelled transition system with signature (P,A) can be
represented as a transition graph, where states are labelled
with subsets of P and transitions are labelled with elements
of A. Set S has all possible states of a model, state la-
belling function designs for each state s ∈ S a proposition
set L(s) ∈ 2P and labelling function T designs for each tran-
sition t ∈ T an action a ∈ A. Given two states si, sj ∈ S and
an action a ∈ A, a transition between si and sj is represented
by (si, a, sj) ∈ T .

α-CTL model checking
An example where representing actions may allow for a
more rational model checking and updating is shown in Fig-
ure 6. Suppose that ϕ is a desired property: “from the initial
state s0, all transitions take to state in which p is true”. A
traditional model checker (MC) would represent the system
model by Figure 6(a), i.e., by a Kripke model. Since the tran-
sition (s0, s2) does not satisfy ϕ, the CTL based MC would
detect this error and a model update would indicate “ remove
the relation (s0, s2)”. However, if we do represent the tran-
sition actions (Figure 6(b)) a model checker would not detect

an error, since there is an action a that takes the system to
state s2 that satisfies ϕ. Figure 6(c) shows another example
of how model checking can be more rational when we rep-
resent the actions in the state transition model: by knowing
that the two transitions correspond to non-deterministic ef-
fects of action a, removing one transition implies removing
the other.

(a) (b) (c)

Figure 6: (a) Kripke structure. (b) and (c) Labelled transition
model.

In this section, we present the branching time temporal
logic α-CTL and a model checker based on this new logic.

The new temporal logic α-CTL

Differently from CTL, the branching time temporal logic
α-CTL, proposed in (Pereira and de Barros 2008), can dis-
cern among various actions that produce state transitions.

Syntax of α-CTL In CTL, a formula ∀○ϕ holds on a state s
if and only if it holds on all successors of s, independently of
the actions labeling the transitions from s to its successors.
In α-CTL , to enforce that actions play an important role in
its semantics, we use a different set of “dotted” symbols to
represent temporal operators: ⊙ (next), ⊡ (invariantly), ⟐
(finally) and D (until).
Definition 2. Let p ∈ P be an atomic proposition. The syntax
of α-CTL is inductively defined as:
ϕ ∶∶= p ∣ ¬p ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 ∨ ϕ2 ∣ ∃ ⊙ ϕ ∣ ∀⊙ ϕ ∣ ∃ ⊡ ϕ ∣ ∀ ⊡

ϕ∣ ∃(ϕ1 D ϕ2) ∣ ∀(ϕ1 D ϕ2)

According to the α-CTL syntax, well-formed formulas
are in negative normal form, where the scope of negation
is restricted to the atomic propositions. Furthermore, all
temporal operators are prefixed by a path quantifier (∃ or
∀). The temporal operators derived from ⟐ are defined as:
∃⟐ ϕ2 ≐ ∃(⊺ D ϕ2) and ∀⟐ ϕ2 ≐ ∀(⊺ D ϕ2).

Semantics of α-CTL Let P ≠ ∅ be a finite set of atomic
propositions and A ≠ ∅ be a finite set of actions. An α-CTL

temporal model over (P,A) is a transition graph where
states are labelled with subsets of P and transitions are la-
belled with elements of A.

Intuitively, a state s in a temporal model M satisfies a
formula ∀ ⊙ ϕ (or ∃ ⊙ ϕ) (Figure 7) if there exists an ac-
tion α that, when executed in s, necessarily (or possibly)
reaches an immediate successor of s which satisfies the for-
mula ϕ. In other words, the modality ⊙ represents the set
of α-successors of s, for some particular action α ∈ A; the
quantifier ∀ requires that all these α-successors satisfy ϕ;
and quantifier ∃ requires that some of these α-successors
satisfy ϕ.



(a) s ⊧ ∀⊙ p (b) s ⊧ ∃ ⊙ p

Figure 7: Semantics of the temporal operator ⊙. (a) p is true
for all sucessors of s troughout action a. (b) p is true for
some sucessor of s troughout action a.

Before we can give a formal definition of the α-CTL se-
mantics, we need to define the concept of preimage of a set
of states.
Definition 3. Let be Y ⊆ S a set of states. The weak
preimage of Y , denoted by I−∃ (Y ), is a set {s ∈ S ∶ a ∈

A and ∃(s, a, s′) ∈ T, s′ ∈ S, s′ ⊆ Y }; and the strong preim-
age of Y , denoted by I−∀(Y ), is the set {s ∈ S ∶ a ∈

A and ∀(s, a, s′) ∈ T, s′ ∈ S, s′ ⊆ Y }

The semantics of the global temporal operators (∃⊡, ∀⊡,
∃D and ∀D) is derived from the semantics of the local tem-
poral operators (∃⊙ and ∀⊙), by using least (µ) and greatest
(ν) fixpoint operations.
Definition 4. LetM = ⟨S,L,T ⟩ be a temporal model with
signature (P,A) and p ∈ P be an atomic proposition. The
intention of an α-CTL formula ϕ inM (or the set of states
satisfying ϕ inM, denoted by JϕKM, is defined as:
• JpKM = {s ∈ S ∶ p ∈ L(s)}

• J¬pKM = S ∖ JpKM
• Jϕ1 ∧ ϕ2KM = Jϕ1KM ∩ Jϕ2KM
• Jϕ1 ∨ ϕ2KM = Jϕ1KM ∪ Jϕ2KM
• J∃ ⊙ ϕ1KM = T

−
∃ (Jϕ1KM)

• J∀⊙ ϕ1KM = T
−
∀ (Jϕ1KM)

• J∃ ⊡ ϕ1KM = νY.(Jϕ1KM ∩ T
−
∃ (Y ))

• J∀ ⊡ ϕ1KM = νY.(Jϕ1KM ∩ T
−
∀ (Y ))

• J∃(ϕ1 D ϕ2)KM = µY.(Jϕ2KM ∪ (Jϕ1KM ∩ T
−
∃ (Y )))

• J∀(ϕ1 D ϕ2)KM = µY.(Jϕ2KM ∪ (Jϕ1KM ∩ T
−
∀ (Y )))

A model checker for α-CTL

A model checker for α-CTL can be directly implemented
from its semantics. Given a model M = ⟨S,L,T ⟩ and an
α-CTL formula ϕ, the model checker computes the set C of
states that do not satisfy the formula ϕ inM; then, if C is
the empty set, it returns success; otherwise, it returns C as
counter-example.
α − MODELCHECKER(ϕ,M)
1 C ← S ∖ INTENTION(ϕ,M)
2 if C = ∅ then return success
3 else return C

The basic operation on this model checker is implemented
by the function INTENTION, that inductively computes the in-
tention of the formula ϕ in the model M. The efficiency
of α − MODELCHECKER can be highly improved with use
of BDDS (Bryant 1992), resulting in an extremely efficient
symbolic version of this model checker. More details about
the α-MODELCHECKER can be found in (Pereira and de Bar-
ros 2008).

α-CTL model updating
In this section, we define the basic concepts about the pro-
posed model updating system, which is based on the branch-
ing time temporal logic α-CTL (Pereira and de Barros 2008).

First, consider that a complete modelM⋆
= ⟨S⋆, L⋆, T ⋆⟩

(eventually induced by a formal specification in A) is a la-
belled transition system with signature (P,A). Thus, ac-
cording to Definition 1:

• S⋆ ≠ ∅ is a finite set of states;
• L⋆ ∶ S⋆ ↦ 2P is a state labelling function;
• T ⋆ ⊆ S⋆ ×A × S⋆ is a state transition relation.

Moreover, consider that the model which the system de-
signer wants to correct is a partial model M = ⟨S,L,T ⟩

such thatM ⊆M
⋆ or, more precisely:

• S ⊆ S⋆ is a finite set of states;
• L ∶ S ↦ 2P such that, for all s ∈ S,L(s) = L⋆(s);
• T ⊆ T ⋆ such that, if (si, a, sj) ∈ T and (si, a, sk) ∈ T

⋆,
then (si, a, sk) ∈ T .
In Figure 8, we have a labelled transition system repre-

senting a complete model M⋆, where the highlighted sub-
structure is the partial model M ⊆ M

⋆ given by system
designer.

Figure 8: A labelled transition system. Solid lines represent
the partial modelM and dashed lines represent the complete
modelM⋆.

Given a partial model M ⊆ M
⋆, a initial state s0 ∈ S

and an α-CTL formula ϕ such that (M, s0) /⊧ ϕ, the α-CTL

model updating problem consists of generating a new par-
tial modelM′

⊆M
⋆, called updated model, such that: (i)

(M
′, s0) ⊧ ϕ and (ii)M′ has a minimal change with respect

to the original partial modelM.
To update a partial model M, w.r.t. a complete model

M
⋆, in order to satisfy an α-CTL formula ϕ, we define the

follow primitive operations:

PUA1: Adding transitions induced by an action. Given
a partial model M = ⟨S,L,T ⟩, a corresponding updated
model M′

= ⟨S′, L′, T ′⟩, with respect to M⋆, can be ob-
tained fromM by adding a transition between states si, sj ∈
S. In other words:
• T ′ = T ∪ {(si, a, s) ∈ T

⋆
∶ ∃a ∈ A, (si, a, sj) ∈ T ⋆}

• S′ = S ∪ {s ∶ ∃a ∈ A, (si, a, s) ∈ T ′}
• L′(s) = L⋆(s), s ∈ S′



Adding a transition between two states si and sj in the
partial model is possible only if there is some transition be-
tween these states in the complete model. For example, in
Figure 8 we cannot add a transition between states s2 and s4
in the partial model (solid lines), because there is no transi-
tion between s2 and s4 in the complete model (dashed lines).
In Figure 8, it is possible to add a transition between states
s0 and s3, since a transition labelled with action b exists in
the complete model. However, all the effects of action b
must also be added. In Figure 8 in order to add a transition
between states s0 and s3, using action b, we must also add
state s4 and the transition between s0 and s4 in the updated
model.

PUA2: Removing transitions induced by an action.
Given a partial modelM = ⟨S,L,T ⟩, a corresponding up-
dated model M′

= ⟨S′, L′, T ′⟩, with respect to M⋆, can
be obtained fromM by removing an existing transition be-
tween states si, sj ∈ S, which is labelled by some action
a ∈ A. More formally:
• T ′ = T − {(si, a, s) ∈ T

⋆
∶ (si, a, sj) ∈ T}

• S′ = S
• L′(s) = L(s), s ∈ S′

It is important to observe that to remove an existing tran-
sition between states si and sj labelled by an action a, we
must also remove all transitions from si using action a, i.e.,
all non-deterministic effects of the action a in state si. For
example, to remove the transition between states s0 and s1 in
the partial model of Figure 8, it is also necessary to remove
the transition between states s0 and s2.

PUA3: Adding a new state. Given a partial model
M = ⟨S,L,T ⟩, a corresponding updated model M′

=

⟨S′, L′, T ′⟩, with respect to M⋆, can be obtained from M
by adding only one new state. That is:
• S′ = S ∪ {s}, for some s ∈ S⋆, such that s /∈ S

• L′(s) = L⋆(s), s ∈ S′

• T ′ = T
It is possible to add one state s in the partial model if and

only if this state exists in the complete model.

PUA4: Removing an isolated state. Given a partial
modelM = ⟨S,L,T ⟩, a corresponding updated modelM′

=

⟨S′, L′, T ′⟩, with respect to M⋆, can be obtained from M
by removing only one isolated state. That is:
• S′ = S − {s}, for some s ∈ S, such that for all si ∈ S,
si ≠ s, and a ∈ A, we have (si, a, s) /∈ T and (s, a, si) /∈ T

• L′(s) = L(s), s ∈ S′

• T ′ = T

Defining minimal change for α-CTL model updating
Based on the work of Zhang and Ding (2008), we can estab-
lish a minimal change criterion for a labelled transition sys-
tem using the primitive update operations (PUA1 − PUA4),
defined in previous section.

By using a primitive update operation PUAi, a partial
modelM given by a system designer can be updated in dif-
ferent ways. Thus, we need a criterion which allows us to
measure the changes in the different possible updated mod-
els of M and choose the one which is more close to the
original modelM.

Given a labelled transition system M = ⟨S,L,T ⟩ and a
corresponding updated model M′

= ⟨S′, L′, T ′⟩, for each
operation PUAi, for i = 1..4, we use Diff PUAi(M,M′

) to
denote the differences between these two models.

Diff PUAi(M,M′
) = ∣T ′ − T ∣ + ∣S′ − S∣

We also define Diff (M,M′
) as the following

tuple: (Diff PUA1(M,M′
), Diff PUA2(M,M′

),
Diff PUA3(M,M′

), Diff PUA4(M,M′
)).

Now, we can precisely define the ordering ≤M on labelled
transition system.
Definition 5. (Closeness ordering) - Given M a partial
model and M′

1, M′
2 two corresponding updated models,

with respect to a complete modelM⋆. We say thatM′
1 is at

least as close toM′
2, denoted asM′

1 ≤MM
′
2, if and only

if for each set of PUA1 − PUA4 operations that transform
M intoM′

2, there exists a set of PUA1 − PUA4 operations
that transform M into M′

1, such that the following condi-
tion hold:

Diff PUAi(M,M′
1) ≤ Diff PUAi(M,M′

2), for i = 1..4

We also denote M′
1 <M M

′
2 if M′

1 ≤M M
′
2 and

M
′
2 /≤MM

′
1. For example, ifM,M′

1 andM′
2 are models

such that: Diff PUA1(M,M′
1) = 5; Diff PUA2(M,M′

1) =

2; Diff PUA3(M,M′
1) = 4; Diff PUA4(M,M′

1) = 6;
Diff PUA1(M,M′

2) = 3; Diff PUA2(M,M′
2) = 1;

Diff PUA3(M,M′
2) = 1 and Diff PUA4(M,M′

2) = 5. We
say that M′

2 <M M
′
1, i.e., M′

2 is more close to M than
M

′
1 is.
Definition 5 presents a measure on the difference between

two labelled transition system with respect to a partial model
given by designer. Intuitively, we say that model M ′

1 is
closer to M relative to model M ′

2 if M ′
1 is obtained from

M by applying all primitive update operations that cause
fewer changes than those applied to obtain model M2. Hav-
ing the ordering specified in Definition 5, we can define a
α-CTL model updating formally.
Definition 6. (Admissible Update) Let be a partial model
M = ⟨S,L,T ⟩,M = (M,s0), where s0 ∈ S, and an α-CTL

formula ϕ, a Update(M, ϕ) is called an admissible model
if the conditions below hold:
• Update(M, ϕ) = (M ′, s′0), (M

′, s′0) ⊧ ϕ, where M ′
=

(S′, L′, T ′) and s′0 ∈ S
′;

• There does nor exists another updated model M ′′
=

⟨S′′, L′′, T ′′⟩ and s′′0 ∈ S′′ such that (M ′′, s′′0) ⊧ ϕ and
M ′′

<M M ′.

Model Update in Action
Like in the CTL model update proposed by Zhang and Ding
(2008), the primitive updating operations PUA1-PUA4 can
suggest modifications by adding or removing states and tran-
sitions but:



• by considering an action labelled transition model, the ef-
fects of nondeterministic actions imply in different model
updates; and

• the temporal formula ϕ is expressed in α-CTL which, as
shown in Pereira and Barros (2008) can specify more ex-
pressive planning goals.

In this section we extend model updating to modify an
action specification, i.e., an action precondition and effect.
The idea is to add two more updating operations to PUA1-
PUA4, as we show next.

First, we define how to induce the complete model M∗

from a set of actions, described in a language based on its
preconditions and nondeterministic effects.

Definition 7. An action is defined by a triple ac-
tion(name,pre,pos), where pre is the set of preconditions
that must be true in a state s where the action is applied;
and pos is the set of nondeterministic effects that becomes
true in the state resulting from the execution of the action a
on state s. We use pre(a) refering to the preconditions of
action a and pos(a) for the effects of action a.

For example, action (a,{p, q},{{r, s},{u}}) indicates
that pre(a) = {p, q} and the two possible nondeterministic
effects of a are given by pos(a) = {{r, s},{u}}

Given an action set A, the preposition set P of the com-
plete model is determined as:

P = {p ∶ a ∈ A and pre(a) ∪ pos(a)}

that means, all the proposition symbols involved in the de-
scription of the set of actions A are elements of P.

Definition 8. The complete modelM∗
A induced by a set of

actions A is a structure ⟨S∗A, L
∗
A, T

∗
A⟩, where:

• S∗A is a finite set of enumerated state symbols such that
∣S∣ = ∣2P∣ ;

• L∗A ∶ S ↦ 2P is the labelling function that assigns to each
state a set of atomic propositions ;

• T ∗A = {(sx, a, sy) ∶ sx, sy ∈ S, a ∈ A, pre(a) ⊆ sx, eff
∈ pos(a), eff ⊆ L(sy).

Notice that the semantics of actions defines that a transi-
tion labelled with action a is added to the complete model
M

∗
A if: pre(a) is satisfied in the state sx; and pos(a) is

also satisfied in state sy . That means, the induced model
M

∗
A contains transitions between states without preserving

properties in sx that are not modified by action a. One can
justify this kind of transitions with the occurrence of exoge-
nous events (a possible explanation for nondeterministic ac-
tions) or as a relaxed state transition model useful to sug-
gest the updates on the partial model (or in a preliminary set
of actions specification, as we will see in the next section).
We could also induce a complete model from a set of ac-
tions respecting the classical planning assumptions (i.e., the
STRIPS-like semantics). However, it would be too restric-
tive while modeling a new planning domain (specially in the
case of a nondeterministic domain).

E.g., let us consider the following set of actions A:

• action(a,{p, q},{{r, s},{u}})

• action(b,{r},{t})

• action(c,{u},{{t}})

• action(d,{p, u},{{t}})

The set of proposition atoms is given by P =

{p, q, r, s, u, t}. So, the complete model M∗
A induced by

A has 64 states and all possible transitions, according with
the semantics (Definition 7) of actions in A.

Planning Domain Model Updating
In order to develop a real world planning application, a
knowledge engineer must specify a correct set of actions
which can guarantee the synthesis of correct plans. Our
claim is that the use of a formal method, such as the model
update approach presented in previous section, can offer an
important support to knowledge acquisition, modelling and
verification of planning domains. In this paper we use model
update in a planning domain w.r.t. a preliminary set of ac-
tions A, by making the following correspondences:

• the complete model M∗
A is induced by the actions A

according with Definition 8 (we may call this complete
model as weakly induced by A);

• a partial modelM ⊆ A can be seen as a part of the com-
plete modelM∗

A that can correspond to (i) a set of plans
for a given class of goals, specified in an ad hoc way by
a domain expert (or possibly generated by an automatic
nondeterministic planner) or ; (ii) a state transition model
induced by a stronger semantics of actions (with frame
axioms) and

• an α-CTL temporal formula ϕ is a planning goal (which
can since it is expressed by α-CTL can be more complex
than a simple reachability goal).

Formally, given a complete modelM∗
A induced by a set

of actions A; a partial model M ⊆M
∗
A; and a α-CTL for-

mula ϕ defining a planning goal, the set of primitive updat-
ing operations PUA1 − PUA4 can be used to refine and
validate the partial modelM. Plus, in order to perform up-
dates directly on the action specification, we need to define
two extra primitive updating operations, named PU5−PU6 ,
as follows.

PUA5: Adding transitions induced by a modified action
(precondition change). Given (i) a complete modelM∗

A
= ⟨S∗A, L

∗
A, T

∗
A⟩ induced by a set of actions A; (ii) a partial

modelM = ⟨S,L,T ⟩ such thatM ⊆M
∗
A and (iii) si, sj ∈

S , the corresponding updated model M′
= ⟨S′, L′, T ′⟩ is

obtained from M by adding a transition between states si
and sj labelled by action anew which is a modified version
of an action a ∈ A (where pre(a) not satisfied in si needs to
be relaxed), generating a new set of actions A′. Formally:

• A′
= (A ∖ action(a, pre(a), pos(a))) ∪

action(anew, pre(anew), pos(anew)), eff ∈ pos(a),
eff ⊆ L(sj), pre(anew) = L(si) ∩ pre(a),
pos(anew) = pos(a)

• M∗
A′ = ⟨S∗A′ , L

∗
A′ , T

∗
A′⟩ is a complete model induced by

A′, where S∗A′ = S∗A, L∗A′ = L∗A and T ∗A′ = T ∗A ∪



{(sx, anew, sy)∣sx, sy ∈ S∗A′ ,pre(anew) ⊆ L(sx), eff
∈ pos(anew), eff ⊆ L(sy)}

• T ′ = T ∪ {(si, anew, s) ∈ T
∗
A′}

• S′ = S ∪ {s∣(si, anew, s) ∈ T
′
}

• L′(s) = L∗A′(s), s ∈ S
′

PUA6: Adding transitions induced by a modified action
(postcondition change). Given (i) a complete modelM∗

A
= ⟨S∗A, L

∗
A, T

∗
A⟩ induced by a set of actions A; (ii) a partial

modelM = ⟨S,L,T ⟩ such thatM ⊆M
∗
A and (iii) si, sj ∈

S , the corresponding updated model M′
= ⟨S′, L′, T ′⟩ is

obtained from M by adding a transition between states si
and sj labelled by action anew which is a modified version
of an action a ∈ A (where pre(a) is satisfied in si and we
want to modify pos(a0) to reach sj), generating a new set
of actions A′. Formally:

• A′
= (A ∖ action(a, pre(a), pos(a))) ∪

action(anew, pre(anew), pos(anew)), pre(a) ⊆

L(si), pos(anew) = pos(a) ∪ L(sj), pre(anew) =

pre(a)

• M∗
A′ = ⟨S∗A′ , L

∗
A′ , T

∗
A′⟩ is a complete model induced by

A′, where S∗A′ = S∗A, L∗A′ = L∗A and T ∗A′ = T ∗A ∪

{(sx, anew, sy)∣sx, sy ∈ S∗A′ ,pre(anew) ⊆ L(sx), eff
∈ pos(anew), eff ⊆ L(sy)}

• T ′ = T ∪ {(si, anew, s) ∈ T
∗
A′}

• S′ = S ∪ {s∣(si, anew, s) ∈ T
′
}

• L′(s) = L∗A′(s), s ∈ S
′

The principle of minimal change for PUA5 −PUA6 fol-
lows the same criterion we have defined for PUA1 −PUA4 .
Notice that PUA5 −PUA6 can update a model when a tran-
sition between two states si and sj does not exist in the
complete model M∗

A, i.e., there is no action a ∈ A such
that pre(a) ⊆ L(si) and pos(a) ⊆ L(sj) and therefore the
only way to update the model is by using the operations
PUA5 − PUA6 . However, when the primitive operations
PUA5 − PUA6 are used to modify the actions in A they
also imply in modifications on the induced complete model
M

∗
A which can eventually cause too many changes in the

partial model. Therefore, considering all the primitive up-
dating operations, PUA1 − PUA6 , it is up to the minimal
change criterion to suggest a set of minimal changes to the
planning domain designer.

Conclusion
In this work we have presented a model updating approach
that considers the actions behind the transitions in a state
model. We also formalized the principle of minimal change
for α-CTL logic - a previous proposed branching time tem-
poral logic that has been applied to planning based on model
checking (Pereira and de Barros 2008). To perform model
updating in action (Figure 9), we take (i) a set of actions A
(which is used to induce the complete labeled transition sys-
temM∗), (ii) a partial modelM such thatM∗

⊆M
∗ and

(iii) a α-CTL formula (i.e. a planning goal) and returns an
updated modelM′, that has minimal change with respect to

the original partial model (an example of plan specification
or a more restrictive model induced by a preliminary set of
actions).

Figure 9: Model updater in action.

The minimal change principle proposed, as well the prim-
itive operations PUA1 −PUA4 extended the work of Zhang
and Ding (2008) to perform α-CTL model update. By using
the description of actions, we proposed two extra primitive
operations PUA5−PUA6 , that can be used to change an ac-
tion specification (its precondition and effect, respectively).
These two operations allow us to apply the proposed model
updating as an important supporting tool for a planning do-
main designer.

As a future work we intend to implement an α-CTL model
updater, based on our α-CTL model checker implementation
and use it to refine some nondeterministic planning domain
with complex goals. We also want to make experiments with
new planning applications.

Acknowledgments. We thank CNPq and FAPESP (grant
2009/07039-4) for financial support.

References
Bryant, R. E. 1992. Symbolic Boolean manipulation with
ordered binary-decision diagrams. ACM Computing Sur-
veys 24(3):293–318.
Buccafurri, F.; Eiter, T.; Gottlob, G.; and Leone, N. 1999.
Enhancing model checking in verification by AI tech-
niques. Artif. Intell. 112(1-2):57–104.
Clarke, E. M., and Emerson, E. A. 1982. Design and syn-
thesis of synchronization skeletons using branching-time
temporal logic. In Logic of Programs, Workshop, 52–71.
London, UK: Springer-Verlag.
Clarke E., Grumberg O., P. D. 1999. Model Checking. San
Francisco: MIT Press.
Harris, H., and Ryan, M. 2003. Theoretical foundations of
updating systems. In 18th IEEE International Conference
on Automated Software Engineering, 2003. Proceedings,
291–294.
Kripke, S. 1963. Semantical considerations on modal
logic. Acta Philosophica Fennica 16:83–94.
Müller-Olm, M.; Schmidt, D. A.; and Steffen, B. 1999.
Model-checking: A tutorial introduction. In SAS ’99:
Proceedings of the 6th International Symposium on Static
Analysis, 330–354. London, UK: Springer-Verlag.
Pereira, S. L., and de Barros, L. N. 2008. A logic-
based agent that plans for extended reachability goals. Au-
tonomous Agents and Multi-Agent Systems 16(3):327–344.
Zhang, Y., and Ding, Y. 2008. CTL model update for
system modifications. J. Artif. Int. Res. 31(1):113–155.


