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Abstract
Reasoning with minimal models is at the heart of
many knowledge representation systems. Yet, it
turns out that this task is formidable even when very
simple theories are considered. It is, therefore, cru-
cial to be able to break this task into several sub-
tasks that can be solved separately and in parallel.
We show that minimal models of positive propo-
sitional theories can be decomposed based on the
structure of the dependency graph of the theories.
This observation can be useful for many applica-
tions involving computation with minimal models.
As an example of such benefits, we introduce new
algorithms for minimal model finding and check-
ing that are based on model decomposition. The
algorithms’ temporal worst-case complexity is ex-
ponential in the size s of the largest connected com-
ponent of the dependency graph, but their actual
cost depends on the size of the largest source ac-
tually encountered, which can be far smaller than
s, and on the class of theories to which sources be-
long. Indeed, if all sources reduce to an HCF or
HEF theory, the algorithms are polynomial in the
size of the theory.

1 Introduction
The tasks of minimal model finding and checking are central
in Artificial Intelligence (AI). These computational tasks are
at the heart of several knowledge representation systems, in-
cluding circumscription [28; 29; 27], default logic [30], mini-
mal diagnosis [11; 32], planning [21], multi-agents coordina-
tion [20], and logic programs under stable model semantics
[17; 6; 13].

Reasoning with minimal models has been the subject of
several studies in the AI community [8; 7; 24; 14; 9; 3; 25;
4; 22; 18; 1]. Given a theory T , the Minimal Model Finding
task consists of computing a minimal model of T , whereas the
Minimal Model Checking task is concerned with the problem
of checking whether a given set of atoms is indeed a minimal
model of T . Both tasks have been proven to be intractable
even if only positive theories are considered [8; 7]. Therefore,
we deem it relevant and interesting to single out classes of
theories for which these problems can be solved efficiently [1;

5; 2]. In particular, a recent work [1] shows how it is possi-
ble to construct minimal models of positive theories by an
incomplete algorithm, called IGEA, that always converges in
polynomial time by either declaring success or failure, while
it is guaranteed to end successfully at least on the class of
HEF theories [16], which forms a significant strict superclass
of HCF theories [3].

This work looks for methods to decompose a theory into
disjoint subsets of clauses, such that the formidable task of
minimal model computation is split between subsets of the
original theory. We do so by investigating the relationship be-
tween a propositional theory and its super-dependency graph.
We show that a minimal model of a theory can be generated
by first computing, separately and in parallel, the minimal
models of the theories corresponding to sources of the graph
and then by computing the minimal models of the rest of the
theory, after propagating the assignment to variables by the
minimal models computed at the sources. Regarding the op-
posite direction, we show that given a minimal model, if its
projection on a source is a minimal model of the theory corre-
sponding to the source, then the rest of the model is a minimal
model of the theory updated by the content of the minimal
model computed at the sources.

To demonstrate the merits of theory decomposition, we
present two new algorithms- one for minimal model gener-
ation and one for minimal model checking. The basic idea
of the model generation algorithm is to compute the minimal
models bottom to up while traversing the graph source fol-
lowing source. Intuitively, the algorithm starts with an empty
model and iteratively adds to it “necessary” atoms. When a
source in the graph is encountered during the computation,
first the algorithm calls an external procedure like, for exam-
ple, IGEA, to compute a minimal model of the sub-theory
induced by that source. In many cases, this external compu-
tation will successfully terminate in polynomial time. Clearly
enough, any algorithm possibly proposed in the future might
be plugged into the algorithmic schema to ameliorate its per-
formance. The model checking algorithm works in a way op-
posite to the model finding algorithm. It starts with a model,
and it decomposes the model and the theory until both be-
come empty, which means the model is, indeed, a minimal
model of the given theory.

Noteworthy, almost all the studies mentioned above indi-
cate that the source of intractability in minimal model find-



ing stems from the presence of head-loops in the dependency
graphs of the theories. In fact, in HCF theories no such a
loop occurs, whereas in HEF theories only specific kinds of
loops are allowed. Starting from this, the work reported in
this manuscript presents an algorithm that finds a minimal
model of any positive theory in time exponential in the size
of the largest head-loop that induces a sub-theory on which
the incomplete algorithm of [1] fails. In particular, when run
on HEF theories, our algorithm is guaranteed to find a mini-
mal model in polynomial time.

Note that our decomposition strategy has three related ad-
vantages: (i) even if our algorithm resorts to an exponential-
time complete procedure, the procedure will be executed on
just one loop and not on the whole theory, (ii) even if a the-
ory is initially neither HEF nor HCF, while considering loops
from bottom to up it may hold that a sub-theory induced by a
specific loop is either HEF or HCF; this is due to the fact that
the forward propagation of values of resolved atoms towards
forward components may decrease their complexity, and (iii)
models of theories associated with sources of the graph can
be computed in parallel and then combined with the rest of
the theory.

2 Preliminaries
We focus on propositional theories. We will refer to a theory
as a set of clauses of the form

a1 ∧ a2 ∧ ... ∧ am ⊃ c1 ∨ c2 ∨ ... ∨ cn (1)

where all the a’s and the c’s are atoms1. We assume that all
the c’s are different. The expression to the left of ⊃ is called
the body of the clause, while the expression to the right of ⊃
is called the head of the clause. We will sometimes denote a
clause by B ⊃ H , where B is the set of atoms in the body
of the clause and H the set of atoms in its head. A clause is
disjunctive if n > 1. A theory is called positive if, for every
clause, n > 0. From now on, when we refer to a theory it is a
positive theory.

Let X be a set of atoms. X satisfies the body of a clause
if and only if all the atoms in the body of the clause belong
to X . X violates a clause if and only if X satisfies the body
of the clause, but none of the atoms in the head of the clause
belongs to X . X is a model of a theory if none of its clauses
is violated byX . A modelX of a theory T is minimal if there
is no Y ⊂ X , which is also a model of T . Note that positive
theories always have at least one minimal model.

With every theory T we associate a directed graph, called
the dependency graph of T , in which (a) each atom and each
clause in T is a node, and (b) there is an arc directed from a
node a to a clause δ if and only if a is in the body of δ. There
is an arc directed from δ to a if a is in the head of δ2.

A super-dependency graph SG is an acyclic graph built
from a dependency graphG as follows: for each strongly con-
nected component c in G, there is a node in SG, and for each

1Note that the syntax of (1) is a bit unusual for a clause; usually,
the equivalent notation ¬a1 ∨ ¬a2 ∨ ... ∨ ¬am ∨ c1 ∨ c2 ∨ ... ∨ cn
is employed.

2Clause nodes in the dependency graph are mandatory to achieve
a graph which is linear in the size of the theory.

Figure 1: The [super]dependency graph of the theory T .

arc inG from a node in a strongly connected component c1 to
a node in a strongly connected component c2 there is an arc in
SG from the node associated with c1 to the node associated
with c2. A theory T is Head-Cycle-Free (HCF) if there are
no two atoms in the head of some clause in T that belong to
the same component in the super-dependency graph of T [3].

A source in a directed graph is a node with no incoming
edges. By abuse of terminology, we will sometimes use the
term “source” as the set of atoms in the source. A source in a
propositional theory will serve as a shorthand for “a source in
the super dependency graph of the theory.” A source is called
empty if the set of atoms in it is empty. Given a source S of
a theory T , TS denotes the set of clauses in T that uses only
atoms from S.

Our algorithms use function Reduce(T,X, Y ) which re-
sembels many reasoning methods in knowledge representa-
tion, like, for example, unit propagation in DPLL and other
constraint satisfaction algorithms[10; 12]. Reduce returns
the theory obtained from T where all atoms in X are set
to true and all atoms in Y are set to false. More specifi-
cally, Reduce returns the theory obtained by first removing
all clauses that contain atoms in X in the head and atoms
in Y in the body, and second removing all remaining atoms
in X ∪ Y from T . So, for example, Reduce({a ∧ b ⊃ c ∨
d, c ⊃ d, a ⊃ d},{a}, {c}) returns the theory {b ⊃ d, ⊃ d}.
Example 2.1 (Running Example) Suppose we are given the
following theory T

δ1 : a ∨ b δ2 : b ⊃ a δ3 : a ∨ c
δ4 : a ⊃ d ∨ e ∨ f δ5 : e ⊃ f δ6 : f ⊃ e

In Figure 1 the dependency graph of T is illustrated in solid lines.
The nodes of the SG are marked with dotted lines. The arcs of the
SG converge with the arcs of the dependency graph except the arcs
going out of node δ4, which are marked with dotted lines.

3 Modular properties of minimal models
In this section we show that it is possible to compute a min-
imal model of a theory T by computing a minimal model of



TS for each source S of T , and then propagating the values
assigned to atoms in the source to the rest of the theory. We
also prove that in some theories, some of the minimal mod-
els can be decomposed to minimal models of the sources and
minimal models of the rest of the theory.

Theorem 3.1 (Theory decomposition) Let T be a theory,
let G be the SG of T . For any source S in G, let X be a min-
imal model of TS . Moreover, let T ′ = Reduce(T,X, S −X).
Then, for any minimal model M ′ of T ′, M ′ ∪X is a minimal
model of T .

Proof: The proof has two steps. We prove that (1)- (M ′∪
X) is a model of T and (2) - that it is minimal.

1. Assume that (M ′ ∪X) is not a model of T . Then, there
is a rule δ : B ⊃ H in T whose body B is fully contained
in (M ′ ∪ X), and the head H has empty intersection with
(M ′ ∪ X). Note that δ is not in TS . Otherwise it would not
be violated by (M ′ ∪ X), since X is a model of TS , and no
atom in TS is in M ′.

Since B is fully contained in (M ′ ∪X), B can always be
written as (BM ′ ∪ BX), where BM ′ = (B ∩ M ′), BX =
(B ∩ X), and BM ′ ∩ BX = ∅. Analogously, since H has
empty intersection with (M ′ ∪ X), it can always be written
as H ′ ∪HS−X , where HS−X = (H ∩ (S −X)), and H ′ is
the set of all the other atoms occurring in H .

After executing procedure Reduce(), T ′ will contain the
rule δ′ : BM ′ ⊃ H ′. But, since H has an empty intersection
with (M ′ ∪X), H ′ has an empty intersection with M ′, thus
δ′ is violated by M ′, and then M ′ is not a model of T ′ which
contradicts the hypothesis.

2. Assume that (M ′∪X) is not a minimal model of T , then
there is a nonempty set of atoms A, such that (M ′ ∪X)−A
is a model of T . In particular let AX denote the atoms of A
belonging to X and AM ′ the atoms of A belonging to M ′.
For A to be non-empty, AM ′ or AX has to be non-empty. We
prove that in both cases there is a contradiction.

[AX 6= ∅] Since X is a minimal model of TS , (X − AX) is
not a model of TS . Then, in TS there is a clause δS :
B ⊃ H , such that B is fully contained in (X − AX)
and no atom of H is in (X − AX). Since δS is in TS ,
by definition of TS no atom of H is outside S, and then
no atom of H is in M ′. Thus, δS is a clause of TS (and
then of T ) whose body is contained inX−AX (and then
in M ′ ∪ X) and any atom in the head of δ is neither in
M ′ nor in X . Thus, δS is violated by (M ′ ∪ X) − A.
Since δS ∈ T , (M ′ ∪ X) − A is not a model of T , a
contradiction.

[AM ′ 6= ∅] Since M ′ is a minimal model of T ′, (M ′−AM ′)
is not a model of T ′. Then, there is in T ′ a clause δ′ :
B ⊃ H , such that B is fully contained in (M ′ − AM ′)
and no atom of H is in (M ′ −AM ′).
By the way Reduce works, there must be in T the
clause δ : (B ∪BX) ⊃ H ∪HS−X with BX a possibly
empty subset of X and HS−X a possibly empty subset
of S − X . This clause has the body fully contained in
(M ′−AM ′)∪X and then also in (M ′∪X)−A) and no
atom of its head is in (M ′ ∪X)−A. Thus, δ is violated
and (M ′ ∪X)−A is not a model of T , a contradiction.2

Theorem 3.2 (Minimal model decomposition) Let T be a
positive theory, let G be the SG of T , and let M be a min-
imal model of T . Moreover, assume there is a source S in
G such that X = M ∩ S is a minimal model of TS , and let
T ′ = Reduce(T,X, S−X). ThenM−X is a minimal model
of T ′.

Proof: We first show that M ′ = M − X is a model of
T ′. Let B ⊃ H ∈ T ′ and assume B ⊆ M ′. By the way
Reduce works, there must be a possibly empty set D such
that D ⊆ X , (B ∪ D) ⊃ H ∈ T , and H ∩ X = ∅. Since
B ⊆ M ′ and D ⊆ X , B ∪ D ⊆ M , and since M must
satisfy the clause (B∪D) ⊃ H , H ⊆M . Since H ∩X = ∅,
H ⊆ M − X . Hence B ⊃ H is satisfied by M ′. Assume
conversely that M − X is not a minimal model of T ′. Then
there must be a nonempty subset of atoms W , such that M −
X −W is a model of T ′. Note that W ∩ X = ∅ and hence
X ⊆ M −W . We show that M −W is a minimal model of
T , a contradiction to M being minimal. Let B ⊃ H ∈ T and
assumeB ⊆M−W . We have to show thatH∩(M−W ) 6=
∅. H can be written as H ′ ∪ HX ∪ HS−X , where HX =
H ∩X , HS−X = H ∩ (S−X), and H ′ = H −S. B can be
written as B′ ∪BX ∪BS−X , where BX = B ∩X , BS−X =
B∩(S−X), andB′ = B−S. SinceB ⊆M−W , it must be
that BS−X = ∅. In case HX 6= ∅, clearly H ∩ (M −W ) 6= ∅
because X ⊆ M −W . So assume B ⊃ H is actually of the
form (B′∪BX) ⊃ (H ′∪HS−X). Hence the clauseB′ ⊃ H ′

must belong to T ′. Since B′ ⊆ M −W and B′ ∩ S = ∅, it
must be thatB′ ⊆M−X−W . SinceM−X−W is a model
of T ′, it must be that H ′ ∩ (M − X −W ) 6= ∅. So clearly
H ′ ∩ (M −W ) 6= ∅. Since H ′ ⊆ H , H ∩ (M −W ) 6= ∅. 2

4 Minimal model finding
We now show how the graph-based decompositions presented
in the previous section can be exploited for minimal model
finding. We first introduce algorithm ModuMin, which can be
used to perform model finding.

Algorithm ModuMin uses the function head . Given a clause
δ, head returns the set of all atoms belonging to the head of
δ. The algorithm works on the super-dependency graph of
the theory, from bottom to up. It starts with the empty set as a
minimal model and adds to it atoms only when proved to be
necessary to build a model.

Theorem 4.1 Algorithm ModuMin is correct: it outputs a
minimal model of the input theory.

The following example demonstrates how ModuMin works.

Example. Suppose that the theory T of Example 2.1 is given as
input to ModuMin. At Step 1 of ModuMin, M := ∅. The condition
in the If statement at Step 3 is false and we jump to the Else section
in Step 6. The graph G shown in Figure 1 is built, and in Step 8 the
two sources containing δ1 and δ3, respectively, are removed from
the graph because they are empty. At Step 9, we have to choose a
source in G. We can choose either b or c.

1. If we choose b: S is set to {b} and in Step 10, TS is the empty
set, and so in Step 11,X is empty. In Step 12,M is still empty,
and by calling Reduce(T, ∅, {b}), T becomes:
δ1 : a δ3 : a ∨ c
δ4 : a ⊃ d ∨ e ∨ f δ5 : e ⊃ f δ6 : f ⊃ e



Algorithm 1: Algorithm ModuMin
Input: A positive theory T
Output: A minimal model for T

1 M := ∅ ;
2 while T 6= ∅ do
3 if There is a clause δ in T violated by M such that

|head(δ)| = 1 then
4 let X := head(δ); M :=M ∪X ;
5 T := Reduce(T,X, ∅) ;
6 else
7 let G be the super-dependency graph of T ;
8 Iteratively delete from G all the empty sources ;
9 let S be the set of atoms in a source of G ;

10 let TS be the subset of T containing all the clauses
from T having only atoms from S;

11 let X be a minimal model of TS ;
12 M :=M ∪X ;
13 T := T − TS ; T := Reduce(T,X, S −X);

14 return M

Now we go again to the While condition in Step 2. Since
T is not empty, we check the If condition in Step 3. In
Step 4 we set X = {a} and M = {a} and after running
Reduce(T, {a}, ∅), T becomes the following theory:
δ4 : d ∨ e ∨ f δ5 : e ⊃ f δ6 : f ⊃ e

Now we go again to the While condition in Step 2. Since T
is not empty, we check the If condition in Step 3. The condi-
tion is false, and we jump to the Else section in Step 6. The
graph G of T is built. In Step 8 the source containing δ4 is re-
moved from the graph because it is empty. At Step 9 we have
to choose a source in G.
We can choose between two sources : {d}, and {e, f}.
1.1 If we choose {d}: In this case TS is empty and so isX . In

Step 12M is still {a}. After we run Reduce(T, ∅, {d}),
T becomes:
δ4 : e ∨ f δ5 : e ⊃ f δ6 : f ⊃ e

Now we are left with only one source, {e, f}. TS is T .
TS has only one minimal model which is {e, f}. So M
is set to {a, e, f}. Since now T becomes empty, the algo-
rithm terminates returning {a, e, f} as a minimal model
of the input theory.

1.2 When we choose {e, f}: In this case TS = {e ⊃ f ,
f ⊃ e}, and the only minimal model of TS is the empty
set. So in Step 12 nothing is added to M . After run-
ning Reduce(T, ∅, {e, f}), T becomes a theory with
only one clause, d. We then go to Step 3. In Step 4
M becomes {a, d}. Since now T becomes empty, the al-
gorithm terminates returning {a, d} as a minimal model
of the input theory.

2. If we choose c: S is set to {c}. In Step 10 TS is the empty set,
so in Step 11 X is empty. In Step 12 M is still empty. By
calling Reduce(T, ∅, {c}), T becomes:
δ1 : a ∨ b δ2 : b ⊃ a δ3 : a
δ4 : a ⊃ d ∨ e ∨ f δ5 : e ⊃ f δ6 : f ⊃ e

Now we go to Step 2. Since T is not empty, we go to Step 3.
The condition of the if statement is true, and we set X = {a}
andM = {a}. After running Reduce(T, {a}, ∅), T becomes
the following theory:
δ4 : d ∨ e ∨ f δ5 : e ⊃ f δ6 : f ⊃ e

Algorithm 2: Algorithm CheckMin

Input: A positive theory T and a model M of T
Output: true or false

1 Let G be the super-dependency graph of T ;
2 Recursively delete from G all the empty sources;
3 while There is a source S in G such that M ∩ S is a minimal

model of TS do
4 X :=M ∩ S;M :=M −X;

T := Reduce(T,X, (S −X));
G := the super dependency graph of T ;

5 Recursively delete from G all the empty sources;

6 if M = ∅ then
7 return true
8 else
9 return false

It is easy to see that taking steps as in previous cases, there are
two minimal models that the algorithm might return: {a, d}
and {a, e, f}.

2

As far as the complexity of ModuMin is concerned, ini-
tially the dependency graph associated with the whole theory
is considered. This graph and the related super-dependency
graph can be built in linear time with respect to the size of
the theory. At each iteration of the algorithm one connected
component S is taken into account. At the end of each iter-
ation the atoms in S are deleted from the theory. Thus, the
number of iterations is at most linear with the theory size.
As for the cost of a single iteration, it depends on the cost
of computing a minimal model of the theory TS induced by
the source S considered. If, at each iteration, TS is such that
IGEA successfully outputs a minimal model, the cost of the
whole algorithm is polynomial with respect to the size of the
input theory. Conversely, if for one theory TS IGEA fails, an
exponential procedure should be adopted to find a minimal
model of TS and then the computational cost of the algorithm
is exponential in the size of the largest connected component
on which IGEA fails.

Summarizing, let n be the size of a theory T , s the size
of the largest connected component, and k be the number of
connected components in the dependency graph of T . The
cost of ModuMin is upper bounded by

tubModuMin(n) = O(n+ k · 2s).

5 Minimal model checking
In this section we show how the ideas of algorithm ModuMin
can be adopted to solving the minimal model checking prob-
lem. The minimal model checking problem is defined as fol-
lows: Given a theory T and a model M , check whether M is
a minimal model of T .

Algorithm CheckMin in Figure 2 can be used to check
whether a model M of a theory T is a minimal model. It
works through the super dependency graph of T , and it recur-
sively deletes from M sets of atoms that are minimal models
of the sources of T . T is reduced after each such deletion, to



reflect the minimal models found for the sources. This pro-
cess goes on until T shrinks to the empty set. When this hap-
pens, we check if M has shrunk to be the empty set as well.
If this is the case, we conclude that M is indeed a minimal
model of T .

As an example, suppose Algorithm CheckMin is given theory T
from Example 2.1 and the model M = {a, d}. The algorithm con-
siders the super-dependency graph G in Figure 1 bottom to up. First
it removes the empty sources δ1 and δ3, and then it checks whether
there is a source S, such that S ∩M is a minimal model of TS . The
source {b} is a good candidate because T{b} is empty, (there are no
clauses in T written with the atom b only), M ∩ {b} = ∅, and the
empty set is a minimal model of the empty set of clauses. So fol-
lowing the commands inside the While loop, M does not change, T
shrinks to be:

δ1 : a δ3 : a ∨ c
δ4 : a ⊃ d ∨ e ∨ f δ5 : e ⊃ f δ6 : f ⊃ e

and the source {b} is removed from the graph. Then the source
δ2 is removed from G, because it is an empty source. We now have
two sources: {a} and {c}. M ∩ {a} = {a} and {a} is indeed a
minimal model of T{a} which is δ1 : a. So, following the com-
mands inside the While loop, M shrinks to be {d}, and T shrinks
to be: δ4 : d ∨ e ∨ f δ5 : e ⊃ f δ6 : f ⊃ e and the
sources {a} and {c} are removed from the graph. Next, we delete
the source {δ4} because it is an empty source. We are left with two
sources: {d} and {e, f}. The source {e, f} is a good candidate be-
cause T{e,f} is {δ5, δ6}, M ∩ {e, f} = ∅, and the empty set is a
minimal model of the theory that consists of δ5 and δ6. Following
the commands inside the While loop, M does not change, and T
shrinks to be a theory that consists of the clause d. {d} is the only
source left in the graph and M ∩ {d} = {d} is the only minimal
model of d. Following the commands inside the While loop, both
M and T shrink to be the empty set, and the algorithm terminates
returning true. The proof of the following theorem is straight-
forward given the correctness of the algorithm ModuMin. It is
also clear that the time complexity of CheckMin is the same
as the time complexity of ModuMin.

Theorem 5.1 If algorithm CheckMin returns true when
given a theory T and a model of T ,M , then M is a minimal
model of T .

6 Completeness
In this section we discuss the benefits and the limitations of
the algorithms presented.

An important question is, “Can algorithm ModuMin gen-
erate any minimal model of a given input theory T ?” The
answer is that while ModuMin is guaranteed to return a min-
imal model, for some theories there are minimal models that
will never be generated by ModuMin. Consider the following
example.
Example 6.1 Let T ′ be the theory {c, c ⊃ b∨a, a ⊃ d,d ⊃ c}. This
theory has two minimal models: {c, b} and {c, a, d}. However, in
the graph of the theory the component {c, a, d} precedes the com-
ponent {b}, and therefore algorithm ModuMin will always pick the
component {c, a, d} before it picks the component {b}. Therefore
the minimal model {c, a, d} will never be generated by ModuMin.
Moreover, if the algorithm CheckMin gets as input the theory T ′

and the minimal model {c, b}, it will return true. However, when
given T ′ and the model {c, a, d}, CheckMin will return false.

Clearly, there are theories for which ModuMin is complete.
An example is theory T from Example 2.1. We have shown

in Example 1 that all its minimal models can be generated.
It would be useful to identify the class of theories for which
ModuMin is complete. We will now define a subset of theories
for which algorithms ModuMin and CheckMin are complete.
Note that such a subset is orthogonal to the known class of
HCF theories, because the theory T ′ above, for which the al-
gorithms are not complete, is HCF, while the theory T from
Example 2.1 is not HCF, and for T the algorithms are com-
plete.

The question remains if we can find cases in which the al-
gorithms will be complete. We provide a partial answer here,
and leave the rest for further investigations.

We first define recursively a property called the Modular
property.
Definition 6.2 1. A minimal model M of a positive theory

T has the Modular property with respect to T , if the SG
of T has only one component.

2. A minimal model M of a positive theory T has the Mod-
ular property with respect to T , if there is a source S
in T such that X = M ∩ S is a minimal model of
TS , and M − X , which is a minimal model of T ′ =
Reduce(T,X, S−X) according to Theorem 3.2, has the
Modular property with respect to T ′.

The following theorems hold:

Theorem 6.3 Let T be the theory which is input into the al-
gorithm ModuMin. If every minimal model of T has the mod-
ular property w.r.t. T , then ModuMin is complete for T .

Theorem 6.4 Assume the theory T and a minimal model M
of T are given as input to the algorithm CheckMin. If M
has the modular property w.r.t. T , then CheckMin will return
true.

Theorems 6.3 and Theorem 6.4 give us a useful analysis of
the cases in which the algorithms presented in this manuscript
are complete. They guide us to look for subclasses of theories
with respect to which any minimal model has the modular
property. One example is theories that have the OSH Prop-
erty, defined next.

Definition 6.5 (one-source-head (OSH) Property) A the-
ory T has the one-source-head (OSH) Property if there is a
source S in T such that for every atom P ∈ S, if P is in the
head of some clause δ in T , then all the other atoms in the
head of δ are also in S.

Consider, for example, Theory T from Example 6.1. This
theory does not have the OSH property. The SG of T has
only two sources, and the clause c ⊃ b ∨ a has atoms from
both components.

Theories having the OSH property are useful for complete-
ness:

Theorem 6.6 If a theory T has the OSH property, then for
every minimal model M of T there is a sourse S in T such
that X =M ∩ S is a minimal model of TS .

Proof: Assume T has the OSH property. Then there is
a source S such that for every P ∈ S, if P is in the head of
some clause δ in T , then all other atoms in the head of δ are
also in S. Let M be a minimal model of T . We show that



X = M ∩ S is a minimal model of TS . Since M is a model
of T , it is clear that X is a model of TS . We show that X
is minimal. Assume conversely that X is not minimal. Then
there must be a noempty set of atoms W ⊆ X ⊆ S such that
X−W is a model of TS . We show thatM −W is a model of
T , a contradiction of M being minimal. Let (B ⊃ H) ∈ T .
If H ∩ S 6= ∅. Since T has the OSH property, H ⊆ S, and
since S is a source, it must be the case that (B ⊃ H) ∈ TS ,
and since X −W is a model of TS and X −W ⊆ M −W ,
clearly M −W satisfies (B ⊃ H). So assume H ∩ S = ∅,
and assume B ⊆ M −W . It follows that B ⊆ M . Since M
is a model of T , M ∩H 6= ∅. Since H ∩ S = ∅ and W ⊆ S,
it follows that (M −W ) ∩H 6= ∅. So M −W is a model of
T , a contradiction. 2

Corollary 6.7 Assume T has the OSH property, letM be a minimal
model of T , let S be a source such that X = M ∩ S is a minimal
model of TS (note that by Theorem 6.6 there is such S), and let
T ′ = Reduce(T,X, S −X). If M −X (which is a minimal model
of T ′ according to Theorem 3.2) has the modular property w.r.t. T ′,
then M can be generated by ModuMin.

Corollary 6.8 Assume T has the OSH property, letM be a minimal
model of T , let S be a source such that X = M ∩ S is a minimal
model of TS (note that by Theorem 6.6 there is such S), and let
T ′ = Reduce(T,X, S −X). If M −X (which is a minimal model
of T ′ according to Theorem 3.2) has the modular property w.r.t. T ′,
then CheckMin will return true when given T and M as input.

The notion of OSH property has practical implications. If T
and all the smaller and smaller theories generated by algo-
rithm CheckMin while working on a the input theory T and
a candidate minimal model M has the OSH property, then it
can be certain that CheckMin will return true if and only if
M is a minimal model of T . Since the OSH property can be
checked in linear time, we can easily check whether it holds
for the theories generated during the execution of CheckMin.

7 Related Work
Many papers deal with complexity issues that rise due to the
cycles in the dependency graphs of theories. There were also
attempts to exploit parallelism to compute answer sets, but
a different approach than here have been used [15]. In this
section we discuss only the most relevant work that was not
mentioned in previous sections.

The algorithms presented in this paper are based on an idea
that appears in [26], where the authors show that in many
cases a logic program can be divided into two parts. Our
algorithm, using the superstructure of the dependency graph,
exploits a specific method for splitting the program. The work
of [19] is also about splitting a program into several modules
to gain advantages in software development. The authors of
that paper have also found that strongly connected compo-
nents of the dependency graph provide a key criterion when
it comes to confining program composition. Our work is dif-
ferent, as it focuses on computational issues and provides spe-
cific complexity results. Another difference is that the mod-
ules suggested in [19] overlap, while we split the program
into disjoint sets of clauses.

In [31] the authors employ minimal model checking of
strongly connected components while computing stable mod-
els of logic programs. However, the program is decomposed

in a way that is different from what we present here and the
paper deal with normal logic programs and not with disjunc-
tive ones.

The dlv system described in [25; 23] also make use of pro-
gram decomposition based on the strongly connected compo-
nents of the dependency graph. However, they do not split the
program to subprograms having disjoint sets of atoms. As a
result, the upper bound for the algorithm complexity that we
show here is not achieved.

The author of [2] presents a hierarchy of tractable subsets
for computing stable models, which are minimal models. The
idea is to exploit the structure of the theory as is reflected in
its super-dependency graph, but a different algorithm is used.
There are several main differences between the work of [2]
and the current one. First, while we deal with disjunctive
theories, that paper is about non-disjunctive ones. Second,
the graph is built in a different manner. Third, the complexity
estimate in [2] yields sometimes a higher complexity. Fourth,
the decomposition used does not yield subtheories that are
completely independent of each other. Atoms in theories that
correspond to different strongly connected components may
overlap.

In sum, while past algorithms for computing minimal
model did make efforts to exploit the structure of the depen-
dency graph of the theory, they did not manage to decom-
pose the theory to totally independent sub-theories that can
be computed in parallel as we do here. Hence past algorithms
did not achieve the complexity analysis that we provide here,
which shows that the complexity of model finding is exponen-
tial in the size of the largest strongly connected component of
the dependency graph of the theory.

8 Conclusions
We have presented methods for decomposing minimal mod-
els of positive propositional theories based on the dependency
graph of the theory. We have shown how those decomposing
techniques can lead to efficient minimal model finding and
checking for these theories.

It has long been realized that the source of complexity in
computing minimal models of theories is the loops between
atoms that lie in the heads of disjunctive clauses. Algorithm
ModuMin presented in this paper enables us to compute min-
imal models in time complexity that is directly dependent
on the size of the disjunctive head loops. ModuMin has
other virtues as well. First, it is possible to achieve in lin-
ear time, before the computation, a non-trivial upper-bound
for the time it would take to compute a minimal model of
the theory. Second, since any atom that is added to the out-
put model M is guaranteed to be part of a minimal model,
we can answer some queries related to this atom before the
whole model is computed. Third, while working bottom-up,
we can employ AI search methods for picking the next source
to compute. For example, assume each atom has a value, and
we need to compute a minimal model such that the sum of
values of atoms in the model is below some threshold. We
can use branch and bound approach to do this.
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