
Multiple-Origin-Multiple-Destination Path Finding with Minimal Arc Usage:
Complexity and Models

Roman Barták
Charles University in Prague

Prague, Czech Republic

Neng-Fa Zhou
CUNY Brooklyn College

New York, U.S.A.

Agostino Dovier
Università degli Studi di Udine

Udine, Italy

Abstract

The multiple-origin-multiple-destination (MOMD)
problem is a simplified version of the logistics plan-
ning problem in which packages are required to be
transported from their origins to their destinations
by multiple trucks with a minimum total cost. This
paper proves the NP-hardness of the problem, and
gives two SAT-based models for solving the prob-
lem optimally. It also gives experimental results
that compare these two SAT models and ASP and
CP models.

Introduction
Given a weighted directed graph G = (V,E), where V is
a set of vertices, and E is a set of arcs each of which has
an associated weight, and a set of origin-destination pairs,
the multiple-origin-multiple-destination (MOMD) problem
amounts to finding a subgraph G′ of the minimum total
weight that connects each origin-destination pair with a path.
The resulting subgraph G′ is guaranteed to be cycle-free if the
weights are all non-negative. The Floyd-Warshall algorithm
[2] for finding shortest paths is not applicable to the MOMD
problem since it finds a shortest path for each of the pairs sep-
arately, and does not guarantee the minimality of the overall
cost since it does not take into account shared arcs. Tech-
niques for solving closely-related cooperative path-finding
(CPF) problems [9] (also known as multi-agent path-finding
problems) cannot be applied to MOMD due to a significance
difference in problem constraints. While the CPF problem re-
quires that two agents do not share the same link at the same
time and usually the objective is minimizing makespan, the
MOMD problem actually supports sharing the links as the
objective is minimizing the total weight of used links.

The MOMD problem is a simplified version of the logics
planning problem from the International Planning Competi-
tion 2014 [4], in which we can assume there are unlimited
number of trucks each with unlimited capacity for transport-
ing a set of packages from their origins to their destinations.
The optimal solution to the MOMD problem provides a lower
bound for the original logistics problem and hence it can be
used for a better heuristic than the minimum-path heuristic
used for the Transport problem.

The MOMD problem is also related to the road-
building/maintenance problem, which designs/maintains a
transportation network that satisfies connection requirements
with the minimum cost. There exist techniques for spe-
cial versions of the problem, for example, the multiple-
origin-single-destination [10] (or the single-origin-multiple-
destination, or the Steiner tree problem [3]), but we are un-
aware of any studies of the general MOMD problem.

In this paper, we will formally define the multiple-origin-
multiple-destination problem and we will show that its deci-
sion variant is NP-complete. We will then propose an exact
method to solve the problem by modeling it as a SAT prob-
lem. In particular, we will present two models of the problem,
one based on flow constraints and the other based on reach-
ability constraints. The optimization variant of the problem
is then solved using the dichotomic branch-and-bound algo-
rithm. The paper is concluded by experimental comparison of
the models using the Picat system [8].

Problem Formulation and Complexity
The multiple-origin-multiple-destination (MOMD) path find-
ing problem is formulated as follows. Assume a directed arc-
weighted graph G = (V,E,w), where V is a set of ver-
tices, E is a set of directed arcs, and w : E → N is a
mapping of arcs to non-negative weights. Let P be a set of
packages, such that each package p ∈ P is defined as a pair
(orig(p), dest(p)), where orig(p) ∈ V is p’s original loca-
tion and dest(p) ∈ V is p’s destination location. The task is
to select a subset A ⊆ E of arcs such that for each package
p there exists a directed path in the graph G′ = (V,A) from
orig(p) to dest(p) and the sum of weights of arcs in A (that
is
∑

a∈A w(a)) is minimal.
As mentioned in the Introduction, there exists a straight-

forward method to solve the MOMD problem non-optimally.
First, find the shortest path for each package, for example
using an all-pairs-shortest-path algorithm such as the Floyd-
Warshall algorithm [2]. Let sp(p) be the set of arcs used by
the shortest path for package p. Then define A as ∪p∈P sp(p).
Obviously, this method has a polynomial time complex-
ity (the Floyd-Warshall algorithm has the time complexity
O(|V |3) and there are even faster methods, for example, if the
graph is sparse or the number of packages is small then the
Dijkstra’s algorithm is a better option). However, this method
does no guarantee optimality as we will show in the section

with experimental results. In this paper we focus on solving
the MOMD problem optimally; we are not aware about any
known method for the problem.

Let us first show that the MOMD problem is an NP-hard
problem. We will assume the decision variant of the prob-
lem, where the task is for any given number k to verify that
a set A ⊆ E of arcs exists such that

∑
a∈A w(a) ≤ k and

for each package p there exists a directed path in the graph
G′ = (V,A) from orig(p) to dest(p). It is obvious that the
decision variant of the MOMD problem belongs to the NP
complexity class, because, given the set A, it is easy to verify
in polynomial time that A is indeed a solution to the MOMD
problem by finding a path for each package in the reduced
graph G′ = (V,A).

The MOMD problem resembles the well known minimum
Steiner tree problem [3], which is one of Karp’s original 21
NP-complete problems. We will use the following general
version of the minimum Steiner tree problem. We are given
an edge-weighted graph G = (V,E,w) and a subset S ⊆ V
of required vertices. A Steiner tree is a tree in G that spans
all vertices of S. There are two variants of the problem: in the
optimization problem, the task is to find a minimum-weight
Steiner tree; in the decision problem, we are given a value k
and the task is to decide if a Steiner tree of total weight at most
k exists. We shall show now that the Steiner tree problem can
be converted to the MOMD problem, which proves that the
decision variant of the MOMD problem is an NP-complete
problem.

Theorem 1. The Steiner tree problem is reducible to the
multiple-origin-multiple-destination problem in polynomial
time.

Proof. Let the Steiner tree problem be defined using the undi-
rected edge-weighted graph G = (V,E,w) and the subset
S ⊆ V of required vertices. For each non-directed edge
{a, b} ∈ E we introduce two directed arcs (a, b) and (b, a)
both with the same weight as the original undirected edge,
ŵ((a, b)) = ŵ((b, a)) = w({a, b}). So we define the set Ê
of arcs and mapping ŵ to weights as follows:

Ê = {(a, b) | {a, b} ∈ E}, ŵ((x, y)) = w({x, y}).

Let s ∈ S be any vertex. Then we define the set P of packages
as follows:

P = {(s, d) | d ∈ S \ {s}}.
In other words, all packages are originated at some vertex
s and their destinations are the other vertices from S (the
case when S contains a single vertex is trivial). The MOMD
problem then consists of the graph Ĝ = (V, Ê, ŵ) and the
set P of packages. Notice that we actually define a single-
origin-multiple-destinations problems, which is a special case
of MOMD. Obviously this MOMD problem is generated in
the polynomial time from the Steiner tree problem.

Now, we shall show that any Steiner tree of the cost at
most k corresponds to a solution of the MOMD problem
with the cost at most k and vice versa. Assume that T is a
Steiner tree in G covering S. Then we can orient all edges in
T in the direction away from s (start with the direct neigh-
bors of s and continue away from s). This way we get a

s x z
y xy x

s

(a) (b) (c)

s

Figure 1: Cycles in the solution to a MOMD problem.

set T̂ of directed arcs such that there is a directed path in
T̂ from s to each vertex d ∈ S \ {s}. Moreover, it holds∑

a∈T̂ ŵ(a) =
∑

a∈T w(a) = k. Hence any Steiner tree T

with cost k defines a solution T̂ of the MOMD with cost k.
Let us assume now that we have a set A ⊆ Ê of arcs with

the total cost k such that A is a solution to the above MOMD
problem containing only the vertices reachable from s (arcs
leading to vertices that are not reachable from s can be re-
moved from A while still having a solution of the MOMD
problem). Assume that A contains a directed cycle. If this cy-
cle contains the vertex s (the vertex selected as the origin dur-
ing the transformation) then there is also some arc (x, s) ∈ A
in the cycle (see Figure 1(a)). We can remove the arc (x, s)
and the set A \ {(x, s)} is a solution to the MOMD problem
with a smaller cost (every vertex y ∈ S \ {s} is still reach-
able from s). If the cycle does not contain the vertex s then
the cycle contains a vertex y that is reachable from s with-
out using any arc from the cycle (such vertex must exists as
the cycle is reachable from s and s is not part of the cycle),
see Figure 1(b). Let (x, y) ∈ A be the arc from the cycle
going to y. Then we can remove (x, y) from A and all ver-
tices in A (including y) still remain reachable from s so the
set A \ {(x, y)} is a solution to the MOMD with a smaller
cost. Assume now that A contains an undirected cycle (that
is not a directed cycle). It means that there is some vertex y
such that there are arcs (x, y) ∈ A and (z, y) ∈ A in the cy-
cle. According to our assumption about A, both x and z are
reachable from s. Without loss of generality let z be reachable
from s by a path non-containing x. Then we can remove arc
(x, y) and all vertices in S including y will still be reachable
from s.

We just showed that if there exists a solution A with the
cost k of the MOMD problem then it is possible to get a so-
lution A′ with the cost at most k such that this solution does
not contain any cycle (directed or undirected) and all vertices
used by arcs in A are reachable from s.

Now, let us define the set of arcs T = {{a, b} | (a, b) ∈
A′}. As all the vertices from arcs in A′ are reachable and
there is no cycle in A′ then T must be a tree. Moreover
|T | = |A′| because there is no pair of arcs (x, y) and (y, x) in
A (they would form a directed cycle). Hence

∑
a∈T w(a) =∑

a∈A′ ŵ(a) ≤ k. Finally, because A′ is a solution of the
MOMD obtained from the original Steiner tree problem, all
vertices from S are included in some arc from A′ and hence

they are part of tree T . Therefore T is a solution to the origi-
nal Steiner tree problem.

In summary, the problem of finding a Steiner tree of cost
at most k can be solved by converting the undirected graph G

and the set S of vertices to a directed graph Ĝ and the set P
of packages, finding a solution of the corresponding MOMD
problem with the cost at most k, and converting the solution
to the Steiner tree.

Theorem 2. The decision variant of the multiple-origin-
multiple-destination problem is an NP-complete problem.

Proof. The problem of finding a solution of cost at most k of
the MOMD problem belongs to NP. The NP-complete prob-
lem of finding a Steiner tree of cost at most k can be reduced
to the problem of finding a solution of cost at most k of the
MOMD problem. Hence, the decision variant of the MOMD
problem is NP-complete.

SAT Models
We describe two constraint models for the MOMD problem
that can be used to find a solution with cost restricted by lower
and upper bounds. These models will then be used to find an
optimal solution using the dichotomic branch-and-bound al-
gorithm. We will describe the constraint model using arith-
metic constraints over Boolean variables and this model is
then translated to a SAT formula.

The Flow Model
The MOMD problem requires that for each package there ex-
ists a path from the package’s origin to the package’s desti-
nation. The Flow model describes a path separately for each
package, accumulates all the arcs used by the packages, and
restricts the total cost.

Let G = (V,E,w) be a directed arc-weighted graph and P
be a set of packages. For each package p ∈ P and for each arc
a ∈ E we introduce a Boolean decision variable Used [a, p]
that indicates whether or not arc a is used to transport pack-
age p. For each package p ∈ P and for each vertex x ∈ V
a Boolean variable Flow [x , p] indicates whether or not the
transport of package p goes through the vertex x.

Let InArcs(x) be the set of incoming arcs to x and
OutArcs(x) be the set of outgoing arcs from x. Formally,

InArcs(x) = {(y , x) | (y , x) ∈ E},
OutArcs(x) = {(x , y) | (x , y) ∈ E}

To model a transport path for a package we specify the flow
preservation constraints. These constraints describe that each
package must leave its origin and must arrive at its destina-
tion, and if the package goes through some vertex then it must
enter the vertex and leave it (both exactly once). In the case
of origin, the package only leaves it and, similarly, in the case
of destination, the package only enters it. Formally, for each
package p ∈ P we introduce the following flow preserva-
tion constraints (recall that domains of all the variables are
Boolean, that is, {0, 1}):

∀a ∈ InArcs(orig(p)) : Used [a, p] = 0

∀a ∈ OutArcs(dest(p)) : Used [a, p] = 0

Flow [orig(p), p] = 1

Flow [dest(p), p] = 1

∀x ∈ V \ {orig(p)} :
∑

a∈InArcs(x)

Used [a, p] = Flow [x , p]

∀x ∈ V \ {dest(p)} :
∑

a∈OutArcs(x)

Used [a, p] = Flow [x , p]

We use Boolean decision variables Used [a] to describe
whether or not a given arc a ∈ E is used by any package.
This is modeled using the following constraint:

max
p∈P

Used [a, p] = Used [a]

The objective is then expressed using the constraint:

Obj =
∑
a∈E

Used [a]× w(a) (1)

where Obj is a variable describing the total cost of solution.
Notice that the size of the model depends on the number

of packages, vertices, and arcs so for sparse graphs the model
is smaller than for dense graphs. More precisely, the number
of decision variables is nq + eq + e, where n = |V |, e =
|E|, q = |P | and all the decision variables are Boolean.

The Reachability Model
The Flow model finds a path for each package explicitly. As
some packages might share parts of their paths, it might be
beneficial to find a path between vertices just once and then
for each package ensuring that a path exists. This idea is be-
hind our Reachability model that decides for any pair of ver-
tices if a path exists between them (using the selected arcs
only). We will assume the same input G and P as described
above.

We propose a model where for each pair of vertices the
model describes whether or not a path exists between these
vertices. The model basically mimics the Floyd-Warshall
algorithm [2]. Again, we use Boolean decision variables
Used [a] to indicate whether or not a given arc a ∈ E is se-
lected in the solution. Assume that the vertices are indexed
(totally ordered) by numbers from the set {1, 2, . . . , |V |}
(when using “the node x” we will mean its index). The
Boolean decision variables Reach[x , y , z] describe whether
or not there exists a path from x to y using only vertices i
such that i ≤ z. In particular Reach[x, y, 0] says that an arc
from x to y exists and is used in the solution or x = y. The
variables are connected using the following constraints:

∀x, y ∈ V : Reach[x, y, 0] =

1 if x = y,

0 if (x, y) /∈ E,

Used [a] if a = (x, y) ∈ E.

∀x, y, z ∈ V :

Reach[x, y, z] = max(Reach[x, y, z − 1],

Reach[x, z, z − 1]× Reach[z, y, z − 1])

Now, for each package p we require that a path from
orig(p) to dest(p) exists:

∀p ∈ P : Reach[orig(p), dest(p), |V |] = 1

The objective function is expressed using the constraint (1)
as in the Flow model. Now, the number of Boolean decision
variables is (n + 1)n2 + e. Notice that the number does not
depend on the number of packages.

Optimization Procedure

The constraint models specified in the previous section de-
scribe the decision variant of the MOMD problem – the value
k from the problem specification can be used as the upper
bound for the objective variable Obj using the constraint
Obj ≤ k. To solve the minimization problem, we use the
dichotomic version of the branch-and-bound algorithm [5],
where the lower and upper bounds are moving closer to each
other by splitting the interval between them into halves until
the bounds become equal. Let Bound− be the known lower
bound of the objective function and Bound+ be the known
upper bound of the objective function. Then the dichotomic
branch-and-bound algorithm works as follows. It finds a mid-
dle value Bound between Bound− and Bound+ and tries to
find a solution better or equal to Bound. If no solution exists
then the lower bound is increased to Bound+ 1. If a solution
is found then the upper bound is decreased to Bound. This
process is repeated until Bound− = Bound+. The pseu-
docode is shown in Algorithm 1.

repeat
Bound← round((Bound+ + Bound−)/2)
Sol← Solve(Cons ∪ {Obj ≤ Bound}
if Sol=fail then

Bound− ← Bound + 1
else

Bound+ ← Bound
end

until Bound− = Bound+;
Algorithm 1: A dichotomic version of branch-and-
bound.

We calculated the initial bounds as follows. The lower
bound is the maximum from the costs of shortest paths for
all the packages. Obviously, no better solution exists as for
each package we need to go from its origin to its destination.
The upper bound is the cost of the straightforward solution
– the shortest (cost optimal) path is found for each package
and the solution is defined as all the arcs in the union of these
shortest paths.

Translation to SAT

The proposed models are translated to SAT formulas. We use
the Picat SAT compiler, which employs hybrid encodings for
constraints [11]. The following summarizes how the Boolean

constraints used in the models are translated to SAT:
max({X1, X2, . . . , Xn} = Y :

Y = 1⇒ X1 ∨X2 ∨ · · · ∨Xn

Y = 0⇒ ¬X1 ∧ ¬X2 ∧ · · · ∧ ¬Xn

sum({X1, X2, . . . , Xn} = Y :
Y = 1⇒ exactly one({X1, X2, . . . , Xn})
Y = 0⇒ ¬X1 ∧ ¬X2 ∧ · · · ∧ ¬Xn

exactly one({X1, X2, . . . , Xn})⇔
at most one({X1, X2, . . . , Xn})∧
at least one({X1, X2, . . . , Xn})

The at most one constraint ΣiXi ≤ 1 is encoded into CNF
by using Chen’s algorithm [1], which splits the sequence of
Boolean variables into two subsequences, and encodes the
sum Σn

i Xi as the Cartesian product of the two subsequences.
The objective constraint is broken down to primitive con-
straints, which are encoded as adders and multipliers.

ASP Model
We have encoded the MOMD problem in Answer Set Pro-
gramming (ASP). As usual in ASP the coding is very con-
cise and, basically, based on a generate & test programming
scheme. Assume the input graph is encoded by a predicate
road/3 where road(a, b, w) denotes that the arc (a, b) has
cost w. Each origin/destination (o/d) pair is imposed by a bi-
nary predicate trip. We can define the predicate node by
projection. Then, using a choice rule we can either select an
edge or not. Reachability is computed on the subgraph of the
selected nodes, and a constraint is added to force the connec-
tivity between all o/d pairs. Finally, the cost optimization is
imposed.
node(A) :- road(A,_,_).
node(B) :- road(_,B,_).

{selected(A,B,C)} :- road(A,B,C).

reach(A,A) :- node(A).
reach(A,B) :- selected(A,C,_), reach(C,B).

:- trip(Origin,Destination),
not reach(Origin,Destination).

cost(Cost) :- Cost = #sum{C,A,B : selected(A,B,C)}.
#minimize {C:cost(C)}.

Minimum path for each o/d pair in the complete graph can be
modeled with few lines of code in order to compute bounds
that can be used in the successive search. The obtained code
however suffers from huge grounding and the running time is
(slightly) better than the one of the above code only in few
instances.

MiniZinc Model
We have also tested a similar, highly non-deterministic, en-
coding in MiniZinc [6]. Basically, for each o/d pair (assume
there are p of them) we introduce an array path[i] where
i = 1, . . . , p aimed at storing the path using selected edges.
These arrays have length n (number of nodes). path[i, j] is
the j-th node found in the path that leads the i-th origin to the
i-th destination. When the destination d is reached, all succes-
sive values of the vector are d. No other “loops” are possible.

We found also convenient to use an auxiliary successor
predicate that allows to restrict the domain of the next ele-
ment of the path.

% domain for the successor (for the path p)
constraint

forall (i in 1..nodes, p in 1..pairs,
j in 1..nodes where i != trip[p,2])

(graph[i,j]=0 -> successor[p,i] != j);

% the target has no successor (self-loop)
constraint
forall (p in 1..pairs)

(successor[p,trip[p,2]]=trip[p,2]);

% Every path starts from the source
constraint

forall (p in 1..pairs)
(path[p, 1] = trip[p, 1]);

% the target is eventually reached
constraint

forall (p in 1..pairs)
(path[p,nodes]=trip[p,2]);

% Check/Force that the path is feasible
% (use successor)
constraint

forall (p in 1..pairs, i in 2..nodes)
(path[p, i] = successor[p, path[p,i-1]]);

% No self-loops during search
constraint

forall (p in 1..pairs, i in 1..nodes - 1)
(path[p,i+1] = path[p,i] ->

path[p,i] = trip[p,2]);

% Connection between selected and path
constraint

forall (p in 1..pairs, i in 2..nodes)
(path[p, i] > 0 ->

selected[path[p, i - 1], path[p, i]]);

% Cost
constraint

cost = sum (i in 1..nodes, j in 1..nodes)(
selected[i, j] * graph[i, j]

);

The running times are very unsatisfactory. We experimen-
tally found the best results with this program designed search
heuristics
solve::int_search([path[p, i]| p in 1..pairs,

i in 1..nodes],
first_fail, indomain_min, complete)
minimize cost;

Experimental Evaluation
We have implemented the SAT models in Picat [8], which
employs Lingeling as the SAT solver. In Picat, it is also pos-
sible to use CP and MIP solvers for the same models, but
the SAT solver overwhelmingly outperforms the CP and MIP
solvers for these models. We used Picat 1.9b1 running with
MacOS X 10.11.4 on 1.7GHz Intel Core I7 with 8GB 1600

MHz DDR3 RAM. For this comparison we used the instances
of the Transport domain from the optimal track of the Inter-
national Planning Competition 2014 [4]. Table 1 gives char-
acteristics, including the lower bound, the upper bound, and
the optimal solution, of each of the instances.

Table 1 also shows the runtimes (in seconds) for both SAT
models to find and proof optimal solutions. The Flow model
is clearly faster on all the benchmark instances. This is prob-
ably due to the fact that the Flow model uses fewer decision
variables than the Reachability model for the instances.

We also developed models in ASP and MiniZinc for the
problem, both of which use reachability constraints. The
clingo solver [7] with the default setting found optimal so-
lutions for 19 of the 20 instances, 12 of which were found
within 1 minute each, but took considerably more time than
our models on the solved instances, and failed to solve in-
stance p17 within 24 hours. Although both ASP model and
our SAT models use SAT, our models are significantly more
efficient than ASP because of the compact and efficient en-
codings used for the constraints.

We also compared our models with a model implemented
in MiniZinc [6], which uses constraints to prevent cycles.
This model, when run by Gecode, solved 10 of the 20 in-
stances, 7 of which were solved within 1 minute each, but
failed to solve 10 of the instances under the time limit of 24
hours per instance. This comparison once again demonstrates
the effectiveness of the SAT models for the problem.

Conclusions
The paper proposes a path finding problem called multiple-
origin-multiple-destination (MOMD) problem, where the ob-
jective is minimizing the total cost of used arcs. This prob-
lem is motivated by transportation and network problems
where the variation between paths should be minimized. We
showed that this problem is NP-complete, and proposed two
SAT-based models to solve the problem optimally. The model
based on flow-preserving constraints seems computationally
more efficient than the model based on reachability con-
straints. The initial experiments also showed that the SAT
model is more efficient than the CP and ASP models.

There are several open problems to be resolved. First, it
would be interesting to compare both SAT models using prob-
lems with different numbers of packages, in particular be-
cause the number of decision variables in the Flow model
depends on the number of packages while the number of vari-
ables in the Reachability model is independent of the number
of packages. Second, it would be interesting to study better
lower bounds for the objective function, in particular in rela-
tion to the original motivation of computing better heuristic
estimates for the Transport problem. Third, it would be inter-
esting to compare efficiency of the SAT solvers with state-of-
the-art MIP solvers, in particular for the Flow model that uses
linear constraints.

Acknowledgments.
Roman Barták is supported by the Czech Science Foundation
under the project P103-15-19877S.

Table 1: Problem instances and solution times (proof of optimality).

Problem characteristics Runtime in seconds
instance #vertices #arcs #packs lb ub opt Flow model Reach model

p01 5 12 3 58 122 122 0.096 0.183
p02 10 34 4 90 189 162 0.395 0.669
p03 12 40 5 122 235 234 0.568 1.402
p04 15 44 5 86 197 197 0.599 1.913
p05 18 70 6 130 408 284 6.868 6.980
p06 20 62 6 134 408 355 1.330 5.013
p07 10 24 3 307 367 352 0.285 0.554
p08 20 62 4 339 391 362 0.697 2.271
p09 24 84 5 316 440 384 1.366 5.913
p10 30 94 5 334 510 507 2.093 7.101
p11 36 144 6 294 539 529 21.283 30.676
p12 40 138 6 376 603 558 5.634 18.663
p13 15 40 4 263 499 491 0.673 2.642
p14 30 98 4 288 376 376 3.796 7.252
p15 36 124 5 278 693 646 4.159 17.145
p16 45 148 5 310 841 688 4.159 18.554
p17 54 204 6 318 1153 832 31.884 47.948
p18 60 222 6 356 902 890 15.922 46.539
p19 60 222 7 373 966 911 22.287 56.813
p20 60 222 7 373 966 911 22.212 46.377

References
[1] Chen J.: A new SAT encoding of the at-most-one con-

straint. Proc. of the 9th Int. Workshop of Constraint Mod-
eling and Reformulation, 2010.

[2] Floyd R. W.: Algorithm 97: Shortest Path. Communica-
tions of the ACM 5 (6): 345, 1962.

[3] Garey M. R.; Johnson D. S.: Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness, W. H.
Freeman, 1979.

[4] International Planing Competions web site,
http://ipc.icaps-conference.org/, Accessed March
24, 2016.

[5] Land A. H. and Doig A. G.: An automatic method of
solving discrete programming problems. Econometrica
28(3): 497–520, 1960.

[6] MiniZinc web site, http://www.minizinc.org, Accessed
April 22, 2016.

[7] Potassco, the Potsdam Answer Set Solving Collection
web site, http://potassco.sourceforge.net, Accessed April
22, 2016.

[8] Picat web site, http://picat-lang.org/, Accessed March
24, 2016.

[9] Surynek P.: Compact Representations of Cooperative
Path-Finding as SAT Based on Matchings in Bipartite
Graphs, Proceedings of the 26th International Confer-
ence on Tools with Artificial Intelligence (ICTAI 2014),
IEEE, pp. 875–882, 2014.

[10] Thomas R. S. D. and Wells J. M.: Multiple-Origin
Single-Destination Transit Routing. Interfaces 10(2):41–
43, 1980.

[11] Zhou N.-F., Kjellerstrand H.: The Picat-SAT Com-
piler. Practical Aspects of Declarative Languages, LNCS
9585, pp. 48–62 , 2016.

