
CONSTRAINT PROCESSING
FOR PLANNING & SCHEDULING

Roman Barták
Charles University, Prague (CZ)

roman.bartak@mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak

WHAT AND WHY?
!  What is the topic of the tutorial?

"  constraint satisfaction techniques useful for P&S

!  What is constraint satisfaction?
"  technology for modeling and solving combinatorial optimization

problems

!  Why should one look at constraint satisfaction?
"  powerful solving technology
"  planning and scheduling are coming together and constraint

satisfaction may serve as a bridge between them

!  Why should one understand insides of constraint satisfaction
algorithms?
"  better exploitation of the technology
"  design of better (solvable) constraint models

Constraint Processing for Planning and Scheduling

2

TUTORIAL OUTLINE

! Constraint satisfaction in a nutshell
"  domain filtering and local consistencies
"  search techniques

! Constraints for planning
"  constraint models
"  temporal reasoning

! Constraints for scheduling
"  a base constraint model
"  resource constraints
"  branching schemes

3

Constraint Processing for Planning and Scheduling

CONSTRAINT SATISFACTION
IN A NUTSHELL

STARTING SIMPLE

CONSTRAINT SATISFACTION

Modeling (problem formulation)
"  N queens problem
"  decision variables for positions of queens in rows

r(i) in {1,…,N}
"  constraints describing (non-)conflicts
∀i≠j r(i) ≠ r(j) & |i-j| ≠ |r(i)-r(j)|

Search and inference (propagation)
"  backtracking (assign values and return upon failure)
"  infer consequences of decisions

via maintaining consistency
of constraints

5

failure

× × ×
×
×
×

× ×
×

×
× ×
×
×

×
× ×

× ×

×

Constraint Processing for Planning and Scheduling

CONSTRAINT SATISFACTION

based on declarative problem description via:
"  variables with domains (sets of possible values)

describe decision points of the problem with possible
options for the decisions
e.g. the start time of activity with time windows

"  constraints restricting combinations of values,
describe arbitrary relations over the set of variables
e.g. end(A) < start(B)

A feasible solution to a constraint satisfaction problem
is a complete assignment of variables satisfying all
the constraints.

An optimal solution to a CSP is a feasible solution
minimizing/maximizing a given objective function.

6

Constraint Processing for Planning and Scheduling

CONSTRAINT SATISFACTION

CONSISTENCY TECHNIQUES

DOMAIN FILTERING

! Example:
" Da = {1,2}, Db = {1,2,3}
" a < b
! Value 1 can be safely removed from Db.

! Constraints are used actively to remove
inconsistencies from the problem.
"  inconsistency = a value that cannot be in any

solution
! This is realized via a procedure FILTER that is

attached to each constraint.
8

Constraint Processing for Planning and Scheduling

FILTER
!  Removes all values violating a given constraint.

"  for each value we need to find values (support) in domains of
other variables such that the tuple satisfies the constraint

"  filter for constraints specified using a table of compatible tuples

9

procedure c.FILTER(OrigD)
NewD ← OrigD
for each X in scope(c) do

for each v in NewDX do
 if there is no support for v in c then

 NewDX ← NewDX - {v}
end for

end for
return NewD

end FILTER

Constraint scope is
 a set of constrained variables

Support is
 a tuple of values from
 variables’ domains that
 satisfies the constraint

Constraint Processing for Planning and Scheduling

ARC-CONSISTENCY

!  We say that a constraint is arc consistent (AC) if for
any value of the variable in the constraint there
exists a value (a support) for the other variable(s) in
such a way that the constraint is satisfied (we say
that the value is supported).
Unsupported values are filtered out of the domain.

!  A CSP is arc consistent if all the constraints are arc
consistent.

10

Constraint Processing for Planning and Scheduling

MAKING PROBLEMS AC
! How to establish arc consistency in a CSP?
! Every constraint must be made AC!
Example: X in [1,..,6], Y in [1,..,6], Z in [1,..,6], X<Y, Z<X-2

! Filtering through every constraint just once is not
enough!

!  Filtering must be repeated until any domain is
changed (AC-1).

11

X in [1,..,6]
Y in [1,..,6]
Z in [1,..,6]

X in [1,..,5]
Y in [2,..,6]
Z in [1,..,6]

X<Y
X in [4,5]
Y in [2,..,6]
Z in [1,2]

Z<X-2
X in [4,5]
Y in [5,6]
Z in [1,2]

X<Y

Constraint Processing for Planning and Scheduling

ALGORITHM AC-3
!  Uses a queue of constraints that should be checked for AC.
!  When a domain of variable is changed, only the constraints

over this variable are added back to the queue for filtering.

12

procedure AC-3(V,D,C)
 Q ← C
 while non-empty Q do
 select c from Q
 D’ ← c.FILTER(D)
 if any domain in D’ is empty then return (fail,D’)
 Q ← Q ∪ {c’∈C | ∃x∈var(c’) D’x≠Dx} – {c}
 D ← D’
 end while
 return (true,D)

end AC-3

Mackworth (1977) Constraint Processing for Planning and Scheduling

AC IN PRACTICE
!  Uses a queue of variables with changed domains.

"  Users may specify for each constraint when the filtering should be done
depending on the domain change.

!  The algorithm is sometimes called AC-8.

13

procedure AC-8(V,D,C)
 Q ← V
 while non-empty Q do
 select v from Q
 for c∈C such that v is constrained by c do
 D’ ← c.FILTER(D)
 if any domain in D’ is empty then return (fail,D’)
 Q ← Q ∪ {u∈V | D’u≠Du}
 D ← D’
 end for
 end while
 return (true,D)

end AC-8

Constraint Processing for Planning and Scheduling

ARC-B-CONSISTENCY
!  Sometimes, making the problem arc-consistent is costly (for

example, when domains of variables are large).
!  In such a case, a weaker form of arc-consistency might be

useful.

!  We say that a constraint is arc-b-consistent (bound consistent)
if for any bound values of the variable in the constraint there
exists a value for the other variable(s) in such a way that the
constraint is satisfied.
"  a bound value is either a minimum or a maximum value in domain
"  domain of the variable can be represented as an interval
"  for some constraints (like x<y) it is equivalent to AC

14

Lhomme (1993)

procedure (x<y).FILTER(OrigD)
NewDX ← OrigDX ∩ (inf .. max(OrigDY)-1)
NewDY ← OrigDY ∩ (min(OrigDX)+1 .. sup)
∀Z≠X,Y NewDZ ← OrigDZ
return NewD

end FILTER

Constraint Processing for Planning and Scheduling

PITFALLS OF AC

15

!  Disjunctive constraints
"  A, B in {1,...,10}, A = 1 ∨ A = 2
"  no filtering (whenever A ≠ 1 then deduce A = 2 and vice

versa)
! constructive disjunction

!  Detection of inconsistency
"  A, B, C in {1,…,10000000}, A < B, B < C, C < A
"  long filtering (4 seconds)
! a different model

!  Weak filtering
"  A, B in {1,2}, C in {1,2,3}, A ≠ B, A ≠ C, B ≠ C
"  weak filtering (it is arc-consistent)
! global constraints

Constraint Processing for Planning and Scheduling

GLOBAL CONSTRAINTS (INSIDE ALL-DIFFERENT)

!  a set of binary inequality constraints among all variables
 X1 ≠ X2, X1 ≠ X3, …, Xk-1 ≠ Xk

!  all_different({X1,…,Xk}) = {(d1,…,dk) | ∀i di∈Di & ∀i≠j di ≠ dj}
!  better pruning based on matching theory over bipartite graphs

 Initialization:
1.  compute maximum matching
2.  remove all edges that do not belong to

any maximum matching

 Propagation of deletions (X1≠a):
1.  remove discharged edges
2.  compute new maximum matching
3.  remove all edges that do not belong to

any maximum matching
16

a

b

c

X1

X2

X3

× ×

X1

X2

X3

a

b

c

×

×

Régin (1994) Constraint Processing for Planning and Scheduling

META CONSISTENCY

17

Can we strengthen any filtering technique?
YES! Let us assign a value and make the rest of

the problem consistent.

!  singleton consistency (Prosser et al., 2000)

"  try each value in the domain

!  shaving
"  try only the bound values

!  constructive disjunction
"  propagate each constraint in disjunction separately
"  make a union of obtained restricted domains

Constraint Processing for Planning and Scheduling

PATH CONSISTENCY
Arc consistency does not detect all inconsistencies!

Let us look at several constraints together!

!  The path (V0,V1,…, Vm) is path consistent iff for every pair of
values x ∈ D0 a y ∈ Dm satisfying all the binary constraints on
V0,Vm there exists an assignment of variables V1,…,Vm-1 such
that all the binary constraints between the neighboring
variables Vi,Vi+1 are satisfied.

!  CSP is path consistent iff every path is consistent.

Some notes:
"  only the constraints between the neighboring variables

must be satisfied
"  it is enough to explore paths of length 2 (Montanary, 1974)

18

X

Y
Z

X≠Z X≠Y

Y≠Z

{1,2}

{1,2} {1,2}

Mackworth (1977) Constraint Processing for Planning and Scheduling

PATH REVISION
Constraints represented extensionally via matrixes.
Path consistency is realized via matrix operations
Example:

"  A,B,C in {1,2,3}, B>1
"  A<C, A=B, B>C-2

19

B>C-2
A=B

B>1

A<C C

A

& * *
011
001
000

100
010
001

000
010
001

110
111
111

=
000
001
000

1
2
3

123

Constraint Processing for Planning and Scheduling

CONSTRAINT SATISFACTION

SEARCH TECHNIQUES

SEARCH / LABELING
Inference techniques are (usually) incomplete.

 ! We need a search algorithm to resolve the rest!

Labeling
"  depth-first search

#  assign a value to the variable
#  propagate = make the problem

locally consistent
#  backtrack upon failure

"  X in 1..5 ≈ X=1 ∨ X=2 ∨ X=3 ∨ X=4 ∨ X=5 (enumeration)

In general, search algorithm resolves remaining disjunctions!
"  X=1 ∨ X≠1 (step labeling)
"  X<3 ∨ X≥3 (domain splitting)
"  X<Y ∨ X≥Y (variable ordering)

21

Constraint Processing for Planning and Scheduling

LABELING SKELETON
!  Search is combined with filtering techniques

that prune the search space.
!  Look-ahead technique (MAC)

22

procedure labeling(V,D,C)
 if all variables from V are assigned then return V
 select not-yet assigned variable x from V
 for each value v from Dx do
 (TestOK,D’) ← consistent(V,D,C∪{x=v})
 if TestOK=true then R ← labeling(V,D’,C)
 if R ≠ fail then return R
 end for
 return fail

end labeling

procedure labeling(V,D,C)
 if all variables from V are assigned then return V
 select not-yet assigned variable x from V
 for each value v from Dx do
 (TestOK,D’) ← consistent(V,D,C∪{x=v})
 if TestOK=true then R ← labeling(V,D’,C)
 if R ≠ fail then return R
 end for
 return fail

end labeling

Constraint Processing for Planning and Scheduling

BRANCHING SCHEMES
!  Which variable should be assigned first?

"  fail-first principle
#  prefer the variable whose instantiation will lead to a failure with

the highest probability
#  variables with the smallest domain first (dom)
#  the most constrained variables first (deg)

"  defines the shape of the search tree

!  Which value should be tried first?
"  succeed-first principle

#  prefer the values that might belong to the solution with the
highest probability

#  values with more supports in other variables
#  usually problem dependent

"  defines the order of branches to be explored

23

Constraint Processing for Planning and Scheduling

HEURISTICS IN SEARCH
Observation 1:

 The search space for real-life problems is so huge that it cannot be fully
explored.

!  Heuristics - a guide of search
"  value ordering heuristics recommend a value for assignment
"  quite often lead to a solution

!  What to do upon a failure of the heuristic?
"  BT cares about the end of search (a bottom part of the search tree)

so it rather repairs later assignments than the earliest ones
thus BT assumes that the heuristic guides it well in the top part

Observation 2:
 The heuristics are less reliable in the earlier parts of the search tree (as
search proceeds, more information is available).

Observation 3:
 The number of heuristic violations is usually small.

24

Constraint Processing for Planning and Scheduling

DISCREPANCIES
Discrepancy

= the heuristic is not followed

Basic principles of discrepancy search:
change the order of branches to be explored
" prefer branches with less discrepancies

" prefer branches with earlier discrepancies

25

heuristic = go left

heuristic = go left

is before

is before

Constraint Processing for Planning and Scheduling

DISCREPANCY SEARCH
!  Limited Discrepancy Search (Harvey & Ginsberg, 1995)

"  restricts a maximal number of discrepancies in the iteration

!  Improved LDS (Korf, 1996)
"  restricts a given number of discrepancies in the iteration

!  Depth-bounded Discrepancy Search (Walsh, 1997)
"  restricts discrepancies till a given depth in the iteration

!  …
26

1 2 3 4 5

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

6 7 8 9 10

* heuristic = go left

Constraint Processing for Planning and Scheduling

27

4-QUEENS PROBLEM

CP IS NOT (ONLY) SEARCH!
Backtracking is not very good

19 attempts

Forward checking is better
3 attempts

And the winner is Look Ahead
2 attempts

Constraint Processing for Planning and Scheduling

CONSTRAINT SATISFACTION

EXTENSIONS

OPTIMIZATION PROBLEMS
!  Constraint optimization problem (COP)

= CSP + objective function
!  Objective function is encoded in a constraint.

"  V = objective(Xs)
"  heuristics for bound-estimate encoded in the filter

29

Branch and bound technique
find a complete assignment (defines a new

bound)
store the assignment
update bound (post the constraint that restricts

the objective function to be better than a
given bound which causes failure)

continue in search (until total failure)
restore the best assignment

Constraint Processing for Planning and Scheduling

SOFT PROBLEMS
!  Hard constraints express restrictions.
!  Soft constraints express preferences.
!  Maximizing the number of satisfied soft constraints
!  Can be solved via constraint optimization

"  Soft constraints are encoded into an objective function

!  Special frameworks for soft constraints
"  Constraint hierarchies (Borning et al., 1987)

#  symbolic preferences assigned to constraints
"  Semiring-based CSP (Bistarelli, Montanary, and Rossi, 1997)

#  semiring values assigned to tuples (how well/badly a tuple satisfies
the constraint)

#  soft constraint propagation

30

Constraint Processing for Planning and Scheduling

DYNAMIC PROBLEMS
!  Internal dynamics (Mittal & Falkenhainer, 1990)

"  planning, configuration
"  variables can be active or inactive, only active variables are instantiated
"  activation (conditional) constraints

#  cond(x1,…, xn) → activate(xj)
"  solved like a standard CSP (a special value in the domain to denote

inactive variables)

!  External dynamics (Dechter & Dechter, 1988)
"  on-line systems
"  sequence of static CSPs, where each CSP is a result of the addition or

retraction of a constraint in the preceding problem
"  Solving techniques:

#  reusing solutions
#  maintaining dynamic consistency (DnAC-4, DnAC-6, AC|DC).

31

Constraint Processing for Planning and Scheduling

CONSTRAINTS FOR
PLANNING AND SCHEDULING

TERMINOLOGY

33

“The planning task is to construct a sequence
of actions that will transfer the initial state of the
world into a state where the desired goal is
satisfied“

“The scheduling task is to allocate known
activities to available resources and time
respecting capacity, precedence (and other)
constraints“

Constraint Processing for Planning and Scheduling

CONSTRAINTS AND P&S
!  Planning problem is internally dynamic.

actions in the plan are unknown in advance
! a CSP is dynamic
Solution (Kautz & Selman, 1992):

#  finding a plan of a given length is a static problem
! standard CSP is applicable there!

Constraint technology is frequently used to solve well-defined
sub-problems such as temporal consistencies.

!  Scheduling problem is static.
all activities are known
!variables and constraints are known
! standard CSP is applicable

34

Constraint Processing for Planning and Scheduling

P&S VIA CSP?

!  Exploiting state of the art constraint solvers!
"  faster solver ⇒ faster planner

!  Constraint model is extendable!
"  it is possible immediately to add other variables and

constraints
"  modeling numerical variables, resource and precedence

constraints for planning
"  adding side constraints to base scheduling models

!  Dedicated solving algorithms encoded in the filtering
algorithms for constraints!
"  fast algorithms accessible to constraint models

35

Constraint Processing for Planning and Scheduling

CONSTRAINTS FOR PLANNING

CONSTRAINT MODELS

PLANNING PROBLEM

! We deal with classical AI planning
"  looking for the shortest sequence of actions (a

plan) transferring the initial state of world to the
state satisfying some goal condition

" state is described using a set of multi-valued
variables

" (grounded) action is specified by:
# precondition (required values of some state variables

before action execution)
# effect (values of some state variables after action

execution)

37

Constraint Processing for Planning and Scheduling

EXAMPLE PROBLEM
State Variables

rloc ∈ {loc1,loc2} ;; robot’s location
cpos ∈ {loc1,loc2,r} ;; container’s position

Actions
move(r, loc1, loc2) ;; robot r at location loc1 moves to location loc2

Precond: rloc = loc1
Effects: rloc ← loc2

move(r, loc2, loc1) ;; robot r at location loc2 moves to location loc1
Precond: rloc = loc2
Effects: rloc ← loc1

load(r, c, loc1) ;; robot r loads container c at location loc1
Precond: rloc = loc1, cpos = loc1
Effects: cpos ← r

load(r, c, loc2) ;; robot r loads container c at location loc2
Precond: rloc = loc2, cpos = loc2
Effects: cpos ← r

unload(r, c, loc1) ;; robot r unloads container c at location loc1
Precond: rloc = loc1, cpos = r
Effects: cpos ← loc1

unload(r, c, loc2) ;; robot r unloads container c at location loc2
Precond: rloc = loc2, cpos = r
Effects: cpos ← loc2

38

Constraint Processing for Planning and Scheduling

SOLVING APPROACH
! Formulating the problem as a CSP
!  Iterative extension of the plan length

! Backward search
"  instantiation of action variables
" only actions relevant to the (sub)goal are tried

39

A0

V0
1

An-1

V0
n-1

… …

state transition constraints

V0
0

in
it

ia
l s

ta
te

g
o

al
 s

ta
te

p
re

co
n

d
it

io
n

ef
fe

ct

frame

Constraint Processing for Planning and Scheduling

STRAIGHTFORWARD MODEL
original formulation

" action constraints
As = act → Pre(act)s , ∀act ∈ Dom(As)
As = act → Eff(act)s+1, ∀act ∈ Dom(As)

" frame constraint
As ∈ NonAffAct(Vi) → Vi

s = Vi
s+1, ∀i ∈ 〈0, v-1〉

! problems
" disjunctive constraints do no propagate well

! do not prune well the search space
" a huge number of constraints (depend on the

number of actions)
! the propagation loop takes a lot of time

40

Ghallab et al. (2004)

As = move21 → rlocs = loc2
As = move21 → rlocs+1 = loc1

As = move21→ cposs = cposs+1

Constraint Processing for Planning and Scheduling

MODEL REFORMULATION

41

!  idea
"  encapsulate the logical constraints into a table

constraint describing allowed tuples of values
"  be careful about the size of the table!

reformulated straightforward model
"  action constraint = a single table

"  frame constraint
As ∈ NonAffAct(Vi) → Vi

s = Vi
s+1, ∀i ∈ 〈0, v-1〉

Barták & Toropila (2008) Constraint Processing for Planning and Scheduling

As rlocs cposs rlocs+1 cposs+1

move21 loc2 loc1

move12 loc1 loc2

load1 loc1 loc1 loc1 r

…

GP-CSP
!  for each state variable Vi

s there is a supporting action variable
Si

s describing the action which sets the state variable (no-op
action if the variable is not changed)

original model
"  action constraints

As = act → Pre(act)s , ∀act ∈ Dom(As)
Si

s = act → Vi
s = val, ∀act ∈ Dom(Si

s)
"  frame constraint

Si
s+1 = no-op → Vi

s = Vi
s+1.

"  channeling constraint
As ∈ AffAct(Vi) ↔ Si

s+1 = As, and
As ∈ NonAffAct(Vi) ↔ Si

s+1 = no-op

reformulated model
"  using a single table constraint instead of action constraints
"  using a table constraint for a pair of channeling constraint
"  frame constraints are kept in the logical form

42

Do & Kambhampati (2000)

V0
s

As

V0
s+1 S0

s+1

Constraint Processing for Planning and Scheduling

CSP-PLAN
!  idea

"  focus on modeling the reason for a value of the state
variable (effect and frame constraints are merged)

original model
"  precondition constraint

# As = act → Pre(act)s , ∀act ∈ Dom(As)
"  successor state constraint

# Vi
s = val ↔ As-1 ∈ C(i,val) ∨ (Vi

s-1 = val ∧ As-1 ∈ N(i))
$  C(i,val) = the set of actions containing Vi = val among their effects
$  N(i) = NonAffAct(Vi)

reformulated model
"  use a single table constraint to describe preconditions
"  use ternary table constraints to describe successor state

constraints (one table per state variable)

43

Lopez & Bacchus (2003) Constraint Processing for Planning and Scheduling

MODEL COMPARISON

original reformulated

straightforward n(ap+ae+v) n(1+v)

GP-CSP n(ap+ae+3v) n(1+3v)

CSP-Plan n(ap+vd) n(1+v)

44

The total number of constraints

n - number of actions in the plan
a - number of grounded actions in the problem
v - number of multi-valued variables
p - average number of preconditions per action
e - average number of effects per action

Constraint Processing for Planning and Scheduling

MODEL COMPARISON
The runtime to solve selected problems from
IPC 1-5 (logarithmic scale)

45

driverlo
g-p1

myster
y-p1

pipesw
orld-p01

elev
ator-p-2-1

myster
y-p3

logistic
s-old-p4

schedule-p
-2-1

zen
otrav

el-p
2

blocks-p-4-1

schedule-p
-2-4

psr-p
14
tpp-p03

psr-p
10

schedule-p
-3-9

schedule-p
-3-7

rovers-
p02

psr-p
12

elev
ator-p-3-0

rovers-
p04

zen
otrav

el-p
3

elev
ator-p-3-2

depots-p
1

elev
ator-p-3-1

blocks-p-5-1

rovers-
p01

psr-p
13

psr-p
11
tpp-p04

gripper-p
1

airp
ort-p

03

blocks-p-5-0

schedule-p
-4-0

rovers-
p03

zen
otrav

el-p
4

blocks-p-6-1

blocks-p-5-2

logistic
s-old-p5

1E-3

0,01

0,1

1

10

100

1000

10000

Ti
m

e
(s

)

 Straightforward Model
 Straightforward Model: Refor.
 M. a la GP-CSP
 M. a la GP-CSP: Refor.
 M. a la CSP-PLAN
 M. a la CSP-PLAN: Refor.

Constraint Processing for Planning and Scheduling

TIMELINES
!  Planning can also be seen as synchronized changes of state variables.
!  Evolution of each variable is described using finite state automaton.
!  Planning is about finding synchronized paths in all automata.

move(r,loc1,loc2)

loc1 loc2

rloc
r

loc1 loc2

cpos

loc1
loc2

loc1
loc2

r

rloc

cpos

move(r,loc1,loc2)

no-op(loc2)

no-op(loc2)

load(r,c,loc2)

move(r,loc2,loc1)

unload(r,c,loc1)

no-op(r)

no-op(loc1)

46

Constraint Processing for Planning and Scheduling Barták (2011)

No-op action
= value of state
variable is not
changed

Initial value

goal value

CONSTRAINT MODEL (OVERVIEW)

!  timeline model
!  state and action variables organized to „layers“

…
…

state variables action variables

action sequencing sequencing synchronisation
constraint

47

Constraint Processing for Planning and Scheduling Barták (2011)

SEARCH STRATEGY

!  a more or less standard CP labeling procedure
!  instantiating (by the search algorithm) only the

action variables
"  the state variables are instantiated by inference

!  variable selection
" min-dom heuristic (only variables with real action in

their domain are assumed)
!  value selection (in two steps)

"  split the domain into no-op actions (explored first) and
real actions

" domains with real actions only are enumerated then

48

Constraint Processing for Planning and Scheduling Barták (2011)

SUMMARY RESULTS (SOLVED PROBLEMS)

planning domain SeP PaP
airport (15) 4 6
blocks (16) 7 7
depots (10) 2 2
driverlog (15) 4 12

elevator (30) 30 27

freecell (10) 1 3

openstacks (7) 5 0

rovers (10) 4 6
tpp (15) 4 8
zenotravel (15) 6 11

49

Constraint Processing for Planning and Scheduling

problems from International Planning Competition, runtime limit 30 minutes

Barták (2011)

DETAILED RESULTS (RUNTIMES)

problem
plan length runtime (ms)

SeP PaP SeP PaP par seq
zenotravel-p01 1 1 1 10 20
zenotravel-p02 6 5 6 60 50
zenotravel-p03 6 5 9 300 130
zenotravel-p04 8 5 11 970 130
zenotravel-p05 11 5 14 153 990 240
zenotravel-p06 11 5 12 530 390 510
zenotravel-p07 ≥12 6 16 - 560
zenotravel-p08 ≥10 5 15 - 1 690
zenotravel-p09 ≥11 6 24 - 145 760
zenotravel-p10 ≥12 6 24 - 252 040
zenotravel-p11 ≥9 6 16 - 41 780

50

Constraint Processing for Planning and Scheduling Barták (2011)

CONSTRAINTS FOR PLANNING

TEMPORAL REASONING

FOUNDATIONS
What is time?

 The mathematical structure of time is generally a set with
transitive and asymmetric ordering operation.

 The set can be continuous (reals) or discrete (integers).

The planning/scheduling systems need to maintain consistent
information about time relations.

We can see time relations:
!  qualitatively

relative ordering (A finished before B)
typical for modeling causal relations in planning

!  quantitatively
absolute position in time (A started at time 0)
typical for modeling exact timing in scheduling

52

Constraint Processing for Planning and Scheduling

QUALITATIVE APPROACH (EXAMPLE)

!  Robot starts entering a loading zone at time t1 and stops there at time t2.
!  Crane starts picking up a container at t3 and finishes putting it down at t4.
!  At t5 the container is loaded onto the robot and stays there until time t6.

Networks of temporal constraints:

53

entering t1 t2

i1

picking up and loading t3 t4

i2

loaded t5 t6

i3

i1

i2

i3

before

starts before meets

t1 t2

t3 t4

t5 t6

≤

<

<

<
<

=

Ghallab et al. (2004) Constraint Processing for Planning and Scheduling

QUALITATIVE APPROACH (FORMALLY)

When modeling time we are interested in:
" temporal references

(when something happened or hold)
# time points (instants) when a state is changed

instant is a variable over the real numbers

# time periods (intervals) when some proposition is true
interval is a pair of variables (x,y) over the real numbers,
such that x<y

" temporal relations between the temporal references
# ordering of temporal references

54

Constraint Processing for Planning and Scheduling

POINT ALGEBRA

symbolic calculus modeling relations between instants
without necessarily ordering them or allocating to exact times

There are three possible primitive relations between instants t1 and t2:
"  [t1 < t2], [t1 > t2], [t1 = t2]

!  A set of primitives, meaning a disjunction of primitives, can describe any (even
incomplete) relation between instants:
"  R = { {}, {<}, {=}, {>}, {<,=}, {>,=}, {<,>}, {<,=,>} }

#  {} means failure
#  {<,=,>} means that no ordering information is available

"  useful operations on R:
#  set operations ∩ (conjunction), ∪ (disjunction)
#  composition operation • ([t1 < t2] and [t2 =< t3] gives [t1 < t3])

Consistency:
"  The PA network consisting of instants and relations between them is consistent

when it is possible to assign a real number to each instant in such a way that all
the relations between instants are satisfied.

"  To make the PA network consistent it is enough to make its transitive closure, for
example using techniques of path consistency.

#  [t1 r t2] and [t1 q t3] and [t3 s t2] gives [t1 r ∩ (q•s) t2]

55

Vilain & Kautz (1986) Constraint Processing for Planning and Scheduling

INTERVAL ALGEBRA
symbolic calculus modeling relations between intervals

(interval is defined by a pair of instants i- and i+, [i-<i+])
There are thirteen primitives:

Consistency:
"  The IA network is consistent when it is possible to assign real numbers to xi

-,xi
+

of each interval xi in such a way that all the relations between intervals are
satisfied.

"  Consistency-checking problem for IA networks is an NP-complete problem.
56

x before y x+<y-

x meets y x+=y-

x overlaps y x-<y-<x+ & x+<y+

x starts y x-=y- & x+<y+

x during y y-<x- & x+<y+

x finishes y y-<x- & x+=y+

x equals y x-=y- & x+=y+

b’, m’, o’, s’, d’, f’ symmetrical relations

x y

x y

x y

x

y
x

y
x

y
x

y

Allen (1983) Constraint Processing for Planning and Scheduling

QUALITATIVE APPROACH (EXAMPLE)

!  Two ships, Uranus and Rigel, are directing towards a dock.
!  The Uranus arrival is expected within one or two days.
!  Uranus will leave either with a light cargo (then it must stay in the dock

for three to four days) or with a full load (then it must stay in the dock at
least six days).

!  Rigel can be serviced either on an express dock (then it will stay there
for two to three days) or on a normal dock (then it must stay in the dock
for four to five days).

!  Uranus has to depart one to two days after the arrival of Rigel.
!  Rigel has to depart six to seven days from now.

57

now

ArriveUranus DepartUranus

ArriveRigel

DepartRigel

[1,2]

[6,7]

[1,2]

[3,4] or [6,∞]

[2,3] or [4,5]

Ghallab et al. (2004) Constraint Processing for Planning and Scheduling

QUALITATIVE APPROACH (FORMALLY)

!  The basic temporal primitives are again time points,
but now the relations are numerical.

!  Simple temporal constraints for instants ti and tj:
"  unary: ai ≤ ti ≤ bi
"  binary: aij ≤ ti–tj ≤ bij,
where ai, bi, aij, bij are (real) constants

Notes:
"  Unary relation can be converted to a binary one, if we use

some fix origin reference point t0.
"  [aij,bij] denotes the constraint between instants ti a tj.
"  It is possible to use disjunction of simple temporal

constraints.
58

Constraint Processing for Planning and Scheduling

STN

Simple Temporal Network (STN)
"  only simple temporal constraints rij= [aij,bij] are used
"  operations:

#  composition: rij • rjk = [aij+ajk, bij+bjk]
#  intersection: rij ∩ r’ij = [max{aij,a’ij}, min{bij,b’ij}]

"  STN is consistent if there is an assignment of values to
instants satisfying all the temporal constraints.

"  Path consistency is a complete technique making STN
consistent (all inconsistent values are filtered out, one
iteration is enough). Another option is using all-pairs
minimal distance Floyd-Warshall algorithm.

59

Dechter et al. (1991) Constraint Processing for Planning and Scheduling

ALGORITHMS
Path consistency

"  finds a transitive closure of
binary relations r

"  one iteration is enough for STN
(in general, it is iterated until any
domain changes)

"  works incrementally

Floyd-Warshall algorithm
"  finds minimal distances between

all pairs of nodes
"  First, the temporal network is

converted into a directed graph
#  there is an arc from i to j with

distance bij
#  there is an arc from j to i with

distance -aij.
"  STN is consistent iff there are no

negative cycles in the graph, that
is, d(i,i)≥0

60

one iteration for STN

general

Constraint Processing for Planning and Scheduling

TCSP
Temporal Constraint Network (TCSP)

"  It is possible to use disjunctions of simple temporal
constraints.

"  Operations • and ∩ are being done over the sets of
intervals.

"  TCSP is consistent if there is an assignment of values to
instants satisfying all the temporal constraints.

"  Path consistency does not guarantee in general the
consistency of the TCSP network!

"  A straightforward approach (constructive disjunction):
#  decompose the temporal network into several STNs by choosing one

disjunct for each constraint
#  solve obtained STN separately (find the minimal network)
#  combine the result with the union of the minimal intervals

61

Dechter et al. (1991) Constraint Processing for Planning and Scheduling

CONSTRAINTS FOR SCHEDULING

BASE CONSTRAINT MODEL

SCHEDULING PROBLEM
Scheduling deals with optimal resource allocation of a given
set of activities in time.
Example (two workers building a bicycle):

"  activities have a fixed duration, cannot be interrupted and the
precedence constraints must be satisfied

63

1

2

3

4

5

6

7

8

9 10

7
7

7

3

2

2 2

8 8

18

4 5 6

1 2

3 8 9 10

7

0 32

An optimal schedule minimizing the overall time

activity duration

Constraint Processing for Planning and Scheduling

SCHEDULING MODEL
!  Scheduling problem is static so it can be directly encoded

as a CSP.
!  Constraint technology is used for full scheduling.

Constraint model:
"  Variables

# position of activity A in time and space
#  time allocation: start(A), [p(A), end(A)]
# resource allocation: resource(A)

"  Domain
# release times and deadlines for the time variables
# alternative resources for the resource variables

"  Constraints
# sequencing and resource capacities

64

Constraint Processing for Planning and Scheduling

SCHEDULING MODEL (CONSTRAINTS)

! Time relations
" start(A) + p(A) = end(A)
" sequencing

# B « A
! end(B) ≤ start(A)

! Resource capacity constraints
" unary resource (activities cannot overlap)

# A « B ∨ B « A (∨ resource(A) ≠ resource(B))
! end(A) ≤ start(B) ∨ end(B) ≤ start(A)

65

B

A

Constraint Processing for Planning and Scheduling

CONSTRAINTS FOR SCHEDULING

RESOURCE CONSTRAINTS

RESOURCES

! Resources are used in slightly different
meanings in planning and scheduling!

resources in scheduling
= machines (space) for processing the activities

resources in planning
= consumed/produced material by the activities
" resource in the scheduling sense is often handled

via the logical precondition (e.g. hand is free)

67

Constraint Processing for Planning and Scheduling

RESOURCE TYPES

68

! unary (disjunctive) resource
" a single activity can be processed at any time

! cumulative (discrete) resource
" several activities can be processed in parallel

if capacity is not exceeded.
! producible/consumable resource

" activity consumes/produces some quantity of the
resource

" minimal capacity is requested (consumption) and
maximal capacity cannot be exceeded (production)

Constraint Processing for Planning and Scheduling

UNARY RESOURCES
!  Activities cannot overlap.
!  We assume that activities are uninterruptible.

"  uninterruptible activity occupies
the resource from its start till its
completion

"  interruptible (preemptible) activity
can be interrupted by another
activity

Note:
There exists variants of the presented filtering algorithms
for interruptible activities.

!  A simple model with disjunctive constraints
"  A « B ∨ B « A

! end(A) ≤ start(B) ∨ end(B) ≤ start(A)

69

time

time

start(A) end(A)

Constraint Processing for Planning and Scheduling

EDGE FINDING
What happens if activity A is not processed first?

Not enough time for A, B, and C and thus A must be first!

70

4 16

7 15

6 16

 A (2)

C (5)

Baptiste & Le Pape (1996)

B (4)

A (2)
4 7

7 15

6 16
B (4)

C (5)

Constraint Processing for Planning and Scheduling

EDGE FINDING (INFERENCE RULES)

The inference rules:
p(Ω ∪ {A}) > lct(Ω ∪ {A}) - est(Ω) ⇒ A«Ω
p(Ω ∪ {A}) > lct(Ω) - est(Ω ∪ {A}) ⇒ Ω«A
A«Ω ⇒ end(A) ≤ min{ lct(Ω') - p(Ω') | Ω'⊆Ω }
Ω«A ⇒ start(A) ≥ max{ est(Ω') + p(Ω') | Ω'⊆Ω }

In practice:
"  there are n.2n pairs (A,Ω) to consider (too many!)
"  instead of Ω use so called task intervals [X,Y]

{C | est(X) ≤ est(C) ∧ lct(C) ≤ lct(Y)}
! time complexity O(n3), frequently used incremental algorithm

"  there are also O(n2) and O(n.log n) algorithms
71

Baptiste & Le Pape (1996) Constraint Processing for Planning and Scheduling

NOT-FIRST/NOT-LAST
What happens if activity A is processed first?

Not enough time for B and C and thus A cannot be first!

72

4 16

7 15

6 16
A (2)

C (4)

B (5)

Torres & Lopez (2000)

4 16

7 15

8 16
A (2)

C (4)

B (5)

Constraint Processing for Planning and Scheduling

NOT-FIRST/NOT-LAST (INFERENCE RULES)

Not-first inference rules:
p(Ω∪{A}) > lct(Ω) - est(A) ⇒ ¬ A«Ω
¬ A«Ω ⇒ start(A) ≥ min{ ect(B) | B∈Ω }

Not-last (symmetrical) inference rules:
p(Ω∪{A}) > lct(A) - est(Ω) ⇒ ¬ Ω«A
¬ Ω«A ⇒ end(A) ≤ max{ lst(B) | B∈Ω }

In practice:
" can be implemented with time complexity O(n2)

and space complexity O(n)

73

Torres & Lopez (2000) Constraint Processing for Planning and Scheduling

CUMULATIVE RESOURCES
!  Each activity uses some capacity of the

resource – cap(A).
!  Activities can be processed in parallel if a

resource capacity is not exceeded.
!  Resource capacity may vary in time

"  modeled via fix capacity over time and fixed activities
consuming the resource until the requested capacity level is
reached

74

fix capacity

time us
ed

 c
ap

ac
ity

 fixed activities for making the
capacity profile

Constraint Processing for Planning and Scheduling

AGGREGATED DEMANDS
Where is enough capacity for processing the activity?

How the aggregated demand is constructed?

75

time us
ed

 c
ap

ac
ity

resource capacity

aggregated demand

Baptiste et al. (2001)

time us
ed

 c
ap

ac
ity

resource capacity

aggregated demand

activity must be
processed here

Constraint Processing for Planning and Scheduling

TIMETABLE CONSTRAINT

! How to ensure that capacity is not exceeded at
any time point?*

! Timetable for the activity A is a set of Boolean
variables X(A,t) indicating whether A is
processed in time t.

76

capAcapt
ii AendtAstart
i ≤∀ ∑

<≤)()(

)(

),()()(,

)(),(

tAXAendtAstartit

capAcaptAXt

iii

A
ii

i

⇔<≤∀

≤⋅∀ ∑

* discrete time is expected

Baptiste et al. (2001)

cap=1
in unary resource

Constraint Processing for Planning and Scheduling

TIMETABLE CONSTRAINT (FILTERING EXAMPLE)

!  initial situation

!  some positions forbidden due to capacity

!  new situation

77

{0,1} 0 0 X(A,t)

est(A) ect(A)

lst(A) lct(A)

{0,1} 0 X(A,t) 0

{0,1} 0 0 X(A,t)
est(A)

lst(A)

ect(A)

lct(A)

0 {0,1}

est(A) ect(A)

lst(A) lct(A)

{0,1} {0,1} 1

Constraint Processing for Planning and Scheduling

RESERVOIRS
Producible/consumable resource
!  Each event describes how much it increases or

decreases the level of the resource.

!  Cumulative resource can be seen as a special case
of producible/consumable resource (reservoirs).
"  Each activity consists of consumption event at the start

and production event at the end.
78

A
-1 B

-1 D
+1

Constraint Processing for Planning and Scheduling

RELATIVE ORDERING
When time is relative (ordering of activities)

 then edge-finding and aggregated demand deduce nothing
We can still use information about ordering of events

and resource production/consumption!
Example:

Reservoir: events consume and supply items

79

A
-1 B

-1 C
-1

D
+1

Constraint Processing for Planning and Scheduling

RESOURCE PROFILES

!  Event A „produces“ prod(A) quantity:
"  positive number means production
"  negative number means consumption

!  optimistic resource profile (orp)
"  maximal possible level of the resource when A happens
"  events known to be before A are assumed together with the production

events that can be before A
orp(A) = InitLevel + prod(A) + ∑B«A prod(B) + ∑B?A ∧ prod(B)>0 prod(B)

!  pessimistic resource profile (prp)
"  minimal possible level of the resource when A happens
"  events known to be before A are assumed together with the consumption

events that can be before A
prp(A) = InitLevel + prod(A) + ∑B«A prod(B) + ∑B?A ∧ prod(B)<0 prod(B)

80
*B?A means that order of A and B is unknown yet

Cesta & Stella (1997) Constraint Processing for Planning and Scheduling

ORP FILTERING (INFERENCE RULES)

orp(A) < MinLevel ⇒ fail
" “despite the fact that all production is planned

before A, the minimal required level in the resource
is not reached”

orp(A) – prod(B) – ∑B«C ∧ C?A ∧ prod(C)>0 prod(C) < MinLevel ⇒ B«A
for any B such that B?A and prod(B)>0

" “if production in B is planned after A and the
minimal required level in the resource is not reached
then B must be before A”

81

Cesta & Stella (1997) Constraint Processing for Planning and Scheduling

PRP FILTERING (INFERENCE RULES)

prp(A) > MaxLevel ⇒ fail
" “despite the fact that all consumption is planned

before A, the maximal required level (resource
capacity) in the resource is exceeded”

prp(A) – prod(B) – ∑B«C ∧ C?A ∧ prod(C)<0 prod(C) > MaxLevel ⇒ B«A
for any B such that B?A and prod(B)<0

" “if consumption in B is planned after A and the
maximal required level in the resource is exceeded
then B must be before A”

82

Cesta & Stella (1997) Constraint Processing for Planning and Scheduling

FROM TIME WINDOWS TO ORDERING

DETECTABLE PRECEDENCE

What happens if activity A is processed before B?

"  Restricted time windows can be used to deduce new
precedence relations.
 est(A)+p(A)+p(B) > lct(B) ⇒ B « A

83

7

15 6

16

B (4)

A (5)

Vilím (2002) Constraint Processing for Planning and Scheduling

ALTERNATIVE RESOURCES
!  How to model alternative resources for a given

activity?
!  Use a duplicate activity for each resource.

"  duplicate activity participates in the respective resource
constraint but does not restrict other activities there

#  „failure“ means removing the resource from the domain of
variable resource(A)

#  deleting the resource from the domain of variable resource(A)
means „deleting“ the respective duplicate activity

"  original activity participates in the precedence constraints
(e.g. within a job)

"  restricted times of duplicate activities are propagated to
the original activity and vice versa.

84

Constraint Processing for Planning and Scheduling

ALTERNATIVE RESOURCES (FILTERING RULES)

!  Let Au be the duplicate activity of A allocated to
resource u∈res(A).

u∈resource(A) ⇒ start(A) ≤ start(Au)
u∈resource(A) ⇒ end(Au) ≤ end(A)
start(A) ≥ min{start(Au) : u∈resource(A)}
end(A) ≤ max{end(Au) : u∈ resource(A)}
failure related to Au ⇒ resource(A)\{u}

Actually, it is maintaining constructive disjunction between
the alternative activities.

85

Constraint Processing for Planning and Scheduling

CONSTRAINTS FOR SCHEDULING

SEARCH STRATEGIES

BRANCHING SCHEMES

Branching = resolving disjunctions
Traditional scheduling approaches:
!  take the critical decisions first

"  resolve bottlenecks …
"  defines the shape of the search tree
"  recall the fail-first principle

!  prefer an alternative that leaves more flexibility
"  defines order of branches to be explored
"  recall the succeed-first principle

How to describe criticality and flexibility formally?

87

Constraint Processing for Planning and Scheduling

SLACK
Slack is a formal description of flexibility
!  Slack for a given order of two activities

„free time for shifting the activities“

slack(A « B) = max(end(B)) - min(start(A)) - p({A,B})

!  Slack for two activities
slack({A,B}) = max{ slack(A « B), slack(B « A) }

!  Slack for a group of activities
slack(Ω) = max(end(Ω)) - min(start(Ω)) - p(Ω)

88

A
B slack for A«B

Smith and Cheng (1993) Constraint Processing for Planning and Scheduling

ORDER BRANCHING

A « B ∨ ¬ A « B
! Which activities should be ordered first?

" the most critical pair (first-fail)
" the pair with the minimal slack({A,B})

! Which order should be selected?
" the most flexible order (succeed-first)
" the order with the maximal slack(A??B)

! O(n2) choice points

89

Smith and Cheng (1993)

C«B B«C

A«C C«A A«C C«A

A«B B«A

ACB ABC CAB x x BAC CBA BCA

C«B B«C C«B B«C C«B B«C

Constraint Processing for Planning and Scheduling

FIRST/LAST BRANCHING
(A « Ω ∨ ¬A « Ω) or (Ω « A ∨ ¬ Ω « A)
!  Should we look for the first or for the last activity?

"  select a smaller set among possible first or possible
last activities (first-fail)

!  Which activity should be selected?
"  If first activity is being selected then the activity with the

smallest min(start(A)) is preferred.
"  If last activity is being selected then the activity with the

largest max(end(A)) is preferred.
!  O(n) choice points

90

Baptiste et al. (1995)

C«B B«C A«C

A«B
A«C

C«A
C«B B«A

B«C

ABC ACB BAC BCA CAB CBA

C«A A«B B«A

Constraint Processing for Planning and Scheduling

RESOURCE SLACK

! Resource slack is defined as a slack of the set
of activities processed by the resource.

! How to use a resource slack?
" choosing a resource on which the activities will be

ordered first
# resource with the minimal slack (bottleneck) preferred

" choosing a resource on which the activity will be
allocated
# resource with the maximal slack (flexibility) preferred

91

Constraint Processing for Planning and Scheduling

CONCLUSIONS

SUMMARY (CONSTRAINT SATISFACTION)

Basic constraint satisfaction framework:
!  local consistency connecting filtering algorithms for

individual constraints
!  search resolves remaining disjunctions

Problem solving:
!  declarative modeling of problems as a CSP
!  dedicated algorithms encoded in constraints
!  special search strategies

93

Constraint Processing for Planning and Scheduling

SUMMARY (CONSTRAINTS IN PLANNING AND SCHEDULING)

Constraint satisfaction techniques are used
!  for solving particular sub-problems (temporal and

resource consistency)
!  for modeling and solving a complete problem

It is possible
!  to exploit constraint satisfaction principles in own

algorithms
!  to use an existing constraint solver

(modeling, adding specific inference techniques,
and customizing search strategies)

94

Constraint Processing for Planning and Scheduling

CONSTRAINT SOLVERS
!  It is not necessary to program all the presented techniques

from scratch!
!  Use existing constraint solvers (packages)!

"  provide implementation of data structures for modeling variables’
domains and constraints

"  provide a basic consistency framework
"  provide filtering algorithms for many constraints (including global

constraints)
"  provide basic search strategies
"  usually extendible (new filtering algorithms, new search strategies)

Some systems with constraint satisfaction packages:

"  Prolog: SICStus Prolog, ECLiPSe, CHIP, Prolog IV, GNU Prolog, IF/
Prolog

"  C/C++: ILOG CP Optimizer, Gecode, CHIP++
"  Java: Choco, JCK, JCL, Koalog
"  Oz: Mozart

95

Constraint Processing for Planning and Scheduling

COMMENTED BIBLIOGRAPHY

Allen, J.F. (1983). Maintaining knowledge about temporal intervals. Communications of the
ACM, 21(11): 832-843.
Introduction of interval algebra and description of path-consistency filtering algorithm for handling it.

Baptiste, P. and Le Pape, C. (1996). Edge-finding constraint propagation algorithms for
disjunctive and cumulative scheduling. Proceedings of the Fifteenth Workshop of the
U.K. Planning Special Interest Group (PLANSIG).
Description of edge-finding rules for non-preemptive disjunctive scheduling, preemptive and mixed
disjunctive scheduling, and non-preemptive cumulative scheduling, and a quadratic algorithm for not-
first/not-last rules.

Baptiste, P.; Le Pape, C.; Nuijten, W. (2001). Constraint-based Scheduling: Applying
Constraints to Scheduling Problems. Kluwer Academic Publishers, Dordrecht.
A comprehensive text on using constraint satisfaction techniques in scheduling with detailed description
of many filtering algorithms for resource constraints.

Barták, R. (2005). Constraint Satisfaction for Planning and Scheduling. In Ionannis Vlahavas,
Dimitris Vrakas (eds.): Intelligent Techniques for Planning, Idea Group, 2005, pp. 320-
353
An introductory and survey text about constraint satisfaction techniques for planning and scheduling.

Barták, R. (2011). A Novel Constraint Model for Parallel Planning. In Proceedings of the
Twenty-Fourth International Florida Artificial Intelligence Research Society
Conference (FLAIRS 2011), AAAI Press, pp. 9-14.
Description of planning constraint model based on timelines (finite state automata).

Barták, R. and Čepek, O. (2005). Incremental Propagation Rules for a Precedence Graph with
Optional Activities and Time Windows. In Proceedings of The 2nd Multidisciplinary
International Conference on Scheduling : Theory and Applications (MISTA), Volume
II, Stern School of Business, New York, 552-560.
Description of incremental algorithms for maintaining a transitive closure of the precedence graph with
optional activities and realising the energy precedence constraint on unary resources.

Barták, R. and Toropila, D. (2010). Solving Sequential Planning Problems via Constraint
Satisfaction. In Fundamenta Informaticae, Volume 99, Number 2, IOS Press, pp. 125-
145.
Comparison of several constraint models for planning problems. New models are based on state
variables and tabular constraints.

Brucker, P. (2001). Scheduling Algorithms. Springer Verlag.
A comprehensive book on traditional scheduling algorithms including detailed classification of many
scheduling problems.

Carlier, J. and Pinson, E. (1994). Adjustment of heads and tails for the job-shop problem.
European Journal of Operational Research 78(2), 146-161.
Description of first O(n.log n) algorithm for edge-finding, but this algorithm requires complex data
structures.

Caseau, Y. and Laburthe, F. (1995). Disjunctive scheduling with task intervals. LIENS
Technical Report 95-25, Laboratoire d'Informatique de l'Ecole Normale Superieure.
Description of incremental O(n3) algorithm for edge-finding using task intervals.

Cesta, A. and Stella, C. (1997). A Time and Resource Problem for Planning Architectures.
Recent Advances in AI Planning (ECP’97), LNAI 1348, Springer Verlag, 117-129.
Description of resource profiles and orp/prp filtering rules.

Dechter, R.; Meiri, I.; Pearl, J. (1991). Temporal Constraint Networks. Artificial Intelligence
49: 61-95.
Introduction of Temporal Constraint Networks and Simple Temporal Problems.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.
A comprehensive book on constraint satisfaction techniques, including a detailed description of temporal
constraint networks.

Focacci, F.; Laborie, P.; Nuijten, W. (2000). Solving scheduling problems with setup times
and alternative resources. In Proceedings of the Fifth International Conference on
Artificial Intelligence Planning and Scheduling (AIPS). AAAI Press, 92-101.
Description of path optimization constraint for minimizing setup times/costs in problems with alternative
resources.

Ghallab, M.; Nau, D.; Traverso, P. (2004). Automated Planning: Theory and Practice.
Morgan Kaufmann.
A comprehensive book on planning, including a description of constraint satisfaction techniques for
planning.

Laborie, P. (2003). Algorithms for propagating resource constraints in AI planning and
scheduling: Existing approaches and new results. Artificial Intelligence 143, 151-188.
Introduction of filtering rules for energy precedence and balance constraints (algorithms are not
described).

Lhomme, O. (1993). Consistency techniques for numeric CSPs. In Proc. 13th International
Joint Conference on Artificial Intelligence.
Description of arc-B-consistency algorithm.

Mackworth, A.K. (1977). Consistency in Networks of Relations. Artificial Intelligence 8, 99-
118.
Description of the basic arc and path consistency algorithms – AC-1, AC-2, AC-3, PC-1, PC-2.

Marriott, K. and Stuckey, P.J. (1998). Programming with Constraints: An Introduction. MIT
Press.
A practically oriented book on using constraint satisfaction technology for problem solving.

Martin, P. and Shmoys, D.B. (1996). A new approach to computing optimal schedules for the
job-shop scheduling problem. Proceedings of the 5th International Conference on
Integer Programming and Combinatorial Optimization. LNCS 1084, Springer Verlag,
389-403.
Description of alternative formulation of edge-finding rules.

Montanari, U. (1974). Networks of constraints: fundamental properties and applications to
picture processing. Information Sciences 7, 95-132.
Introduction and formalization of constraint networks, defining path-consistency and algorithm for PC.

Nuijten, W.P.M. (1994). Time and Resource Constrained Scheduling: A Constraint
Satisfaction Approach. PhD thesis, Eindhoven University of Technology.
Description of several filtering algorithms for scheduling problems including the cumulative version of
edge-finding and not-first/not-last rules.

Prosser, P.; Stergiou, K.; Walsh, T. (2000). Singleton Consistencies. Proceedings Principles
and Practice of Constraint Programming (CP2000), 353-368.
Description and a theoretical study of singleton consistency techniques.

Phan-Huy, T. (2000). Constraint Propagation in Flexible Manufacturing. LNEMS 492,
Springer Verlag.
PhD thesis with the description of constraint propagation algorithms for disjunctive scheduling problems.

Régin, J.-Ch. (1994). A filtering algorithm for constraints of difference in CSPs. Proceedings
of 12th National Conference on Artificial Intelligence, AAAI Press, 362-367.
Description of the filtering algorithm behind the all-different constraint – based on matching over
bipartite graphs.

Schulte, Ch. (2002). Programming Constraint Services. LNAI 2302, Springer Verlag.
A book describing insides of constraint solvers.

Torres, P. and Lopez, P. (2000). On Not-First/Not-Last conditions in disjunctive scheduling.
European Journal of Operational Research 127, 332-343.
Description of O(n2) filtering algorithms for not-first/not-last rules.

Tsang, E. (1995). Foundations of Constraint Satisfaction. Academic Press, London.
A comprehensive book on foundational constraint satisfaction techniques with description of many
consistency algorithms and their theoretical study.

Vilain, M. and Kautz, H. (1986). Constraint propagation algorithms for temporal reasoning.
In Proceedings of the National Conference on Artificial Intelligence (AAAI), 377-382.
Introduction of point algebra and proof that consistency-checking problem of the IA problem is an NP-
complete problem, while PA is a tractable problem.

Vilím, P. and Barták, R. (2002). Filtering Algorithms for Batch Processing with Sequence
Dependent Setup Times. Proceedings of the 6th International Conference on Artificial
Intelligence Planning and Scheduling (AIPS). AAAI Press, 312-320.
Description of edge-finding and not-first/not-last algorithms for batch processing with sequence
dependent setup times.

Vilím, P. (2002). Batch processing with sequence dependent setup times: New results. In
Proceedings of the 4th Workshop on Constraint Programming for Decision and Control
(CPDC), Gliwice, 53-58.
Description of edge-finding and not-first/not-last algorithms for problems with sequence dependent setup
times, introduction of detectable precedences.

Vilím, P. (2004). O(n log n) Filtering Algorithms for Unary Resource Constraint. Proceedings
of CPAIOR 2004. LNCS 3011, Springer Verlag, 335-347.
Description of O(n.log n) algorithms for not-first/not-last rules and detectable precedences.

Vilím, P.; Barták, R.; Čepek, P. (2005). Extension of O(n log n) filtering algorithms for the
unary resource constraint to optional activities. Constraints, 10(4): 403-425.
Description of O(n.log n) versions of filtering algorithms for edge finding, not-first/not-last, and
detectable precedences and their extension to optional activities.

Wallace, M. (1994). Applying Constraints for Scheduling. In Mayoh B. and Penjaak J. (eds.),
Constraint Programming. NATO ASI Series, Springer Verlag.
A survey text on using constraint satisfaction technology in scheduling.

	MICAI 2011 Tutorial Slides
	MICAI 2011 Bibliography

