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WHAT AND WHY? 
!  What is the topic of the tutorial? 

"  constraint satisfaction techniques useful for P&S 

!  What is constraint satisfaction? 
"  technology for modeling and solving combinatorial optimization 

problems 

!  Why should one look at constraint satisfaction? 
"  powerful solving technology  
"  planning and scheduling are coming together and constraint 

satisfaction may serve as a bridge between them 

!  Why should one understand insides of constraint satisfaction 
algorithms? 
"  better exploitation of the technology 
"  design of better (solvable) constraint models 

Constraint Processing for Planning and Scheduling 
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TUTORIAL OUTLINE 

! Constraint satisfaction in a nutshell 
"  domain filtering and local consistencies 
"  search techniques 

! Constraints for planning 
"  constraint models 
"  temporal reasoning 

! Constraints for scheduling 
"  a base constraint model 
"  resource constraints 
"  branching schemes 
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CONSTRAINT SATISFACTION 
IN A NUTSHELL 



STARTING SIMPLE 

CONSTRAINT SATISFACTION 
 

Modeling (problem formulation) 
"  N queens problem 
"  decision variables for positions of queens in rows 

r(i) in {1,…,N} 
"  constraints describing (non-)conflicts 
∀i≠j   r(i) ≠ r(j) & |i-j| ≠ |r(i)-r(j)|  

Search and inference (propagation) 
"  backtracking (assign values and return upon failure) 
"  infer consequences of decisions 

via maintaining consistency 
of constraints 
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CONSTRAINT SATISFACTION 

based on declarative problem description via: 
"  variables with domains (sets of possible values) 

describe decision points of the problem with possible 
options for the decisions 
e.g. the start time of activity with time windows 

"  constraints restricting combinations of values, 
describe arbitrary relations over the set of variables  
e.g. end(A) < start(B) 

A feasible solution to a constraint satisfaction problem 
is a complete assignment of variables satisfying all 
the constraints. 

An optimal solution to a CSP is a feasible solution 
minimizing/maximizing a given objective function. 
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CONSTRAINT SATISFACTION 

CONSISTENCY TECHNIQUES 

DOMAIN FILTERING 

! Example: 
" Da = {1,2}, Db = {1,2,3}  
" a < b 
! Value 1 can be safely removed from Db. 

! Constraints are used actively to remove 
inconsistencies from the problem. 
"  inconsistency = a value that cannot be in any 

solution 
! This is realized via a procedure FILTER that is 

attached to each constraint. 
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FILTER 
!  Removes all values violating a given constraint. 

"  for each value we need to find values (support) in domains of 
other variables such that the tuple satisfies the constraint 

"  filter for constraints specified using a table of compatible tuples 
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procedure c.FILTER(OrigD) 
NewD ← OrigD 
for each X in scope(c) do 

for each v in NewDX do 
     if there is no support for v in c then 

     NewDX ←  NewDX - {v} 
end for 

end for 
return NewD 

end FILTER 

Constraint scope is 
   a set of constrained variables 

Support is 
   a tuple of values from 
   variables’ domains that 
   satisfies the constraint 
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ARC-CONSISTENCY 

!  We say that a constraint is arc consistent (AC) if for 
any value of the variable in the constraint there 
exists a value (a support) for the other variable(s) in 
such a way that the constraint is satisfied (we say 
that the value is supported). 
Unsupported values are filtered out of the domain. 

!  A CSP is arc consistent if all the constraints are arc 
consistent. 
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MAKING PROBLEMS AC 
! How to establish arc consistency in a CSP? 
! Every constraint must be made AC! 
Example: X in [1,..,6], Y in [1,..,6], Z in [1,..,6], X<Y, Z<X-2 

! Filtering through every constraint just once is not 
enough! 

!  Filtering must be repeated until any domain is 
changed (AC-1). 
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X in [1,..,6] 
Y in [1,..,6]  
Z in [1,..,6] 

X in [1,..,5] 
Y in [2,..,6]  
Z in [1,..,6] 

X<Y 
X in [4,5] 
Y in [2,..,6]  
Z in [1,2] 

Z<X-2 
X in [4,5] 
Y in [5,6]  
Z in [1,2] 

X<Y 
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ALGORITHM AC-3 
!  Uses a queue of constraints that should be checked for AC. 
!  When a domain of variable is changed, only the constraints 

over this variable are added back to the queue for filtering. 
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procedure AC-3(V,D,C) 
 Q ← C 
 while non-empty Q do 
  select c from Q 
  D’ ← c.FILTER(D) 
  if any domain in D’ is empty then return (fail,D’) 
  Q ← Q ∪ {c’∈C | ∃x∈var(c’) D’x≠Dx} – {c} 
  D ← D’ 
 end while 
 return (true,D) 

end AC-3  

Mackworth (1977)  Constraint Processing for Planning and Scheduling 



AC IN PRACTICE 
!  Uses a queue of variables with changed domains. 

"  Users may specify for each constraint when the filtering should be done 
depending on the domain change. 

!  The algorithm is sometimes called AC-8. 
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procedure AC-8(V,D,C) 
 Q ← V 
 while non-empty Q do 
  select v from Q 
  for c∈C such that v is constrained by c do 
   D’ ← c.FILTER(D) 
   if any domain in D’ is empty then return (fail,D’) 
   Q ← Q ∪ {u∈V | D’u≠Du} 
   D ← D’ 
  end for 
 end while 
 return (true,D) 

end AC-8  
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ARC-B-CONSISTENCY 
!  Sometimes, making the problem arc-consistent is costly (for 

example, when domains of variables are large). 
!  In such a case, a weaker form of arc-consistency might be 

useful. 

!  We say that a constraint is arc-b-consistent (bound consistent) 
if for any bound values of the variable in the constraint there 
exists a value for the other variable(s) in such a way that the 
constraint is satisfied. 
"  a bound value is either a minimum or a maximum value in domain 
"  domain of the variable can be represented as an interval 
"  for some constraints (like x<y) it is equivalent to AC 
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Lhomme (1993)  

procedure (x<y).FILTER(OrigD) 
NewDX ← OrigDX ∩ (inf .. max(OrigDY)-1) 
NewDY ← OrigDY ∩ (min(OrigDX)+1 .. sup) 
∀Z≠X,Y NewDZ ← OrigDZ 
return NewD 

end FILTER 
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PITFALLS OF AC 
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!  Disjunctive constraints 
"  A, B in {1,...,10}, A = 1 ∨ A = 2 
"  no filtering (whenever A ≠ 1 then deduce A = 2 and vice 

versa) 
! constructive disjunction 

!  Detection of inconsistency 
"  A, B, C in {1,…,10000000}, A < B, B < C, C < A 
"  long filtering (4 seconds) 
! a different model 

!  Weak filtering 
"  A, B in {1,2}, C in {1,2,3}, A ≠ B, A ≠ C, B ≠ C 
"  weak filtering (it is arc-consistent) 
! global constraints 

Constraint Processing for Planning and Scheduling 

GLOBAL CONSTRAINTS (INSIDE ALL-DIFFERENT) 

!  a set of binary inequality constraints among all variables 
 X1 ≠ X2, X1 ≠ X3, …, Xk-1 ≠ Xk 

!  all_different({X1,…,Xk}) = {( d1,…,dk) | ∀i  di∈Di  & ∀i≠j  di ≠ dj} 
!  better pruning based on matching theory over bipartite graphs 

  Initialization: 
1.  compute maximum matching 
2.  remove all edges that do not belong to 

any maximum matching 

  Propagation of deletions (X1≠a): 
1.  remove discharged edges 
2.  compute new maximum matching 
3.  remove all edges that do not belong to 

any maximum matching 
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META CONSISTENCY 

17 

Can we strengthen any filtering technique? 
YES! Let us assign a value and make the rest of 

the problem consistent. 

!  singleton consistency (Prosser et al., 2000) 

"  try each value in the domain 

!  shaving 
"  try only the bound values 

!  constructive disjunction 
"  propagate each constraint in disjunction separately 
"  make a union of obtained restricted domains 
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PATH CONSISTENCY 
Arc consistency does not detect all inconsistencies! 

Let us look at several constraints together! 

!  The path (V0,V1,…, Vm) is path consistent iff for every pair of 
values x ∈ D0 a y ∈ Dm satisfying all the binary constraints on 
V0,Vm there exists an assignment of variables V1,…,Vm-1 such 
that all the binary constraints between the neighboring 
variables  Vi,Vi+1 are satisfied. 

!  CSP is path consistent iff every path is consistent. 

Some notes: 
"  only the constraints between the neighboring variables 

must be satisfied 
"  it is enough to explore paths of length 2 (Montanary, 1974) 
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PATH REVISION 
Constraints represented extensionally via matrixes. 
Path consistency is realized via matrix operations 
Example: 

"  A,B,C in {1,2,3}, B>1 
"  A<C, A=B, B>C-2   
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CONSTRAINT SATISFACTION 

SEARCH TECHNIQUES 



SEARCH / LABELING 
Inference techniques are (usually) incomplete. 

 !  We need a search algorithm to resolve the rest! 

Labeling 
"  depth-first search 

#  assign a value to the variable 
#  propagate = make the problem 

locally consistent 
#  backtrack upon failure 

"  X in 1..5     ≈   X=1 ∨ X=2 ∨ X=3 ∨ X=4 ∨ X=5 (enumeration) 

In general, search algorithm resolves remaining disjunctions! 
"  X=1 ∨ X≠1  (step labeling) 
"  X<3 ∨ X≥3  (domain splitting) 
"  X<Y ∨ X≥Y  (variable ordering) 
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LABELING SKELETON 
!  Search is combined with filtering techniques 

that prune the search space. 
!  Look-ahead technique (MAC) 
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procedure labeling(V,D,C) 
 if all variables from V are assigned then return V 
 select not-yet assigned variable x from V 
 for each value v from Dx do 
  (TestOK,D’) ← consistent(V,D,C∪{x=v}) 
  if TestOK=true then R ← labeling(V,D’,C) 
   if R ≠ fail then return R 
 end for 
 return fail 

end labeling 

procedure labeling(V,D,C) 
 if all variables from V are assigned then return V 
 select not-yet assigned variable x from V 
 for each value v from Dx do 
  (TestOK,D’) ← consistent(V,D,C∪{x=v}) 
  if TestOK=true then R ← labeling(V,D’,C) 
   if R ≠ fail then return R 
 end for 
 return fail 

end labeling 

Constraint Processing for Planning and Scheduling 



BRANCHING SCHEMES 
!  Which variable should be assigned first? 

"  fail-first principle 
#  prefer the variable whose instantiation will lead to a failure with 

the highest probability 
#  variables with the smallest domain first (dom) 
#  the most constrained variables first (deg) 

"  defines the shape of the search tree 

!  Which value should be tried first? 
"  succeed-first principle 

#  prefer the values that might belong to the solution with the 
highest probability 

#  values with more supports in other variables 
#  usually problem dependent 

"  defines the order of branches to be explored  

23 
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HEURISTICS IN SEARCH 
Observation 1: 

 The search space for real-life problems is so huge that it cannot be fully 
explored. 
 

!  Heuristics - a guide of search 
"  value ordering heuristics recommend a value for assignment 
"  quite often lead to a solution 

 

!  What to do upon a failure of the heuristic? 
"  BT cares about the end of search (a bottom part of the search tree) 

so it rather repairs later assignments than the earliest ones 
thus BT assumes that the heuristic guides it well in the top part 

Observation 2: 
 The heuristics are less reliable in the earlier parts of the search tree (as 
search proceeds, more information is available). 

Observation 3: 
 The number of heuristic violations is usually small. 

24 
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DISCREPANCIES 
Discrepancy 

= the heuristic is not followed 

Basic principles of discrepancy search: 
change the order of branches to be explored 
" prefer branches with less discrepancies 

" prefer branches with earlier discrepancies 
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heuristic = go left 

heuristic = go left 

is before 

is before 
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DISCREPANCY SEARCH 
!  Limited Discrepancy Search (Harvey & Ginsberg, 1995) 

"  restricts a maximal number of discrepancies in the iteration  

!  Improved LDS (Korf, 1996) 
"  restricts a given number of discrepancies in the iteration 

!  Depth-bounded Discrepancy Search (Walsh, 1997) 
"  restricts discrepancies till a given depth in the iteration 

!  … 
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* heuristic = go left 
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4-QUEENS PROBLEM 

CP IS NOT (ONLY) SEARCH! 
Backtracking is not very good 

19 attempts 

Forward checking is better 
3 attempts 

And the winner is Look Ahead 
2 attempts 

Constraint Processing for Planning and Scheduling 

CONSTRAINT SATISFACTION 

EXTENSIONS 



OPTIMIZATION PROBLEMS 
!  Constraint optimization problem (COP) 

= CSP + objective function 
!  Objective function is encoded in a constraint. 

"  V = objective(Xs) 
"  heuristics for bound-estimate encoded in the filter 
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Branch and bound technique 
find a complete assignment (defines a new 

bound) 
store the assignment 
update bound (post the constraint that restricts 

the objective function to be better than a 
given bound which causes failure) 

continue in search (until total failure) 
restore the best assignment 
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SOFT PROBLEMS 
!  Hard constraints express restrictions. 
!  Soft constraints express preferences. 
!  Maximizing the number of satisfied soft constraints 
!  Can be solved via constraint optimization 

"  Soft constraints are encoded into an objective function 

!  Special frameworks for soft constraints 
"  Constraint hierarchies (Borning et al., 1987) 

#  symbolic preferences assigned to constraints 
"  Semiring-based CSP (Bistarelli, Montanary, and Rossi, 1997) 

#  semiring values assigned to tuples (how well/badly a tuple satisfies 
the constraint) 

#  soft constraint propagation 
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DYNAMIC PROBLEMS 
!  Internal dynamics (Mittal & Falkenhainer, 1990) 

"  planning, configuration 
"  variables can be active or inactive, only active variables are instantiated 
"  activation (conditional) constraints 

#  cond(x1,…, xn) → activate(xj) 
"  solved like a standard CSP (a special value in the domain to denote 

inactive variables) 

!  External dynamics (Dechter & Dechter, 1988) 
"  on-line systems 
"  sequence of static CSPs, where each CSP is a result of the addition or 

retraction of a constraint in the preceding problem 
"  Solving techniques: 

#  reusing solutions 
#  maintaining dynamic consistency (DnAC-4, DnAC-6, AC|DC). 
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CONSTRAINTS FOR 
PLANNING AND SCHEDULING 



TERMINOLOGY 
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“The planning task is to construct a sequence 
of actions that will transfer the initial state of the 
world into a state where the desired goal is 
satisfied“ 

“The scheduling task is to allocate known 
activities to available resources and time 
respecting capacity, precedence (and other) 
constraints“ 
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CONSTRAINTS AND P&S 
!  Planning problem is internally dynamic. 

actions in the plan are unknown in advance 
! a CSP is dynamic 
Solution (Kautz & Selman, 1992): 

#  finding a plan of a given length is a static problem 
! standard CSP is applicable there! 

Constraint technology is frequently used to solve well-defined 
sub-problems such as temporal consistencies.  

!  Scheduling problem is static. 
all activities are known 
!variables and constraints are known 
! standard CSP is applicable 
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P&S VIA CSP? 

!  Exploiting state of the art constraint solvers! 
"  faster solver ⇒ faster planner 

!  Constraint model is extendable! 
"  it is possible immediately to add other variables and 

constraints 
"  modeling numerical variables, resource and precedence 

constraints for planning 
"  adding side constraints to base scheduling models 

!  Dedicated solving algorithms encoded in the filtering 
algorithms for constraints! 
"  fast algorithms accessible to constraint models 

35 
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CONSTRAINTS FOR PLANNING 

CONSTRAINT MODELS 



PLANNING PROBLEM 

! We deal with classical AI planning 
"  looking for the shortest sequence of actions (a 

plan) transferring the initial state of world to the 
state satisfying some goal condition 

" state is described using a set of multi-valued 
variables 

" (grounded) action is specified by: 
# precondition (required values of some state variables 

before action execution) 
# effect (values of some state variables after action 

execution) 

37 
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EXAMPLE PROBLEM 
State Variables 

rloc ∈ {loc1,loc2}    ;; robot’s location 
cpos ∈ {loc1,loc2,r}  ;; container’s position  

  
Actions 
move(r, loc1, loc2)  ;; robot r at location loc1 moves to location loc2 

Precond:  rloc = loc1 
Effects:  rloc ← loc2 

move(r, loc2, loc1)  ;; robot r at location loc2 moves to location loc1 
Precond:  rloc = loc2 
Effects:  rloc ← loc1 

load(r, c, loc1)  ;; robot r loads container c at location loc1 
Precond:  rloc = loc1, cpos = loc1 
Effects:  cpos ← r 

load(r, c, loc2)   ;; robot r loads container c at location loc2 
Precond:  rloc = loc2, cpos = loc2 
Effects:  cpos ← r 

unload(r, c, loc1)  ;; robot r unloads container c at location loc1 
Precond:  rloc = loc1, cpos = r 
Effects:  cpos ← loc1 

unload(r, c, loc2)  ;; robot r unloads container c at location loc2 
Precond:  rloc = loc2, cpos = r 
Effects:  cpos ← loc2 
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SOLVING APPROACH 
! Formulating the problem as a CSP 
!  Iterative extension of the plan length 

! Backward search 
"  instantiation of action variables 
" only actions relevant to the (sub)goal are tried 
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STRAIGHTFORWARD MODEL 
original formulation 

" action constraints 
As = act → Pre(act)s , ∀act ∈ Dom(As) 
As = act → Eff(act)s+1, ∀act ∈ Dom(As) 

" frame constraint 
As ∈ NonAffAct(Vi) → Vi

s = Vi
s+1, ∀i ∈ 〈0, v-1〉 

! problems 
" disjunctive constraints do no propagate well 

! do not prune well the search space 
" a huge number of constraints (depend on the 

number of actions) 
! the propagation loop takes a lot of time 
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Ghallab et al. (2004) 

As = move21 → rlocs = loc2 
As = move21 → rlocs+1 = loc1 

As = move21→ cposs = cposs+1 

Constraint Processing for Planning and Scheduling 



MODEL REFORMULATION 
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!  idea 
"  encapsulate the logical constraints into a table 

constraint describing allowed tuples of values 
"  be careful about the size of the table! 

reformulated straightforward model 
"  action constraint = a single table 

"  frame constraint 
As ∈ NonAffAct(Vi) → Vi

s = Vi
s+1, ∀i ∈ 〈0, v-1〉 

Barták & Toropila (2008) Constraint Processing for Planning and Scheduling 

As rlocs cposs rlocs+1 cposs+1 

move21 loc2 loc1 

move12 loc1 loc2 

load1 loc1 loc1 loc1 r 

… 

GP-CSP 
!  for each state variable Vi

s there is a supporting action variable 
Si

s describing the action which sets the state variable (no-op 
action if the variable is not changed) 

original model 
"  action constraints 

As = act → Pre(act)s , ∀act ∈ Dom(As) 
Si

s = act → Vi
s = val, ∀act ∈ Dom(Si

s) 
"  frame constraint 

Si
s+1 = no-op → Vi

s = Vi
s+1.  

"  channeling constraint 
As ∈ AffAct(Vi) ↔ Si

s+1 = As, and 
As ∈ NonAffAct(Vi) ↔ Si

s+1 = no-op 

reformulated model 
"  using a single table constraint instead of action constraints 
"  using a table constraint for a pair of channeling constraint 
"  frame constraints are kept in the logical form 

42 

Do & Kambhampati (2000) 
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CSP-PLAN 
!  idea 

"  focus on modeling the reason for a value of the state 
variable (effect and frame constraints are merged) 

original model 
"  precondition constraint 

# As = act → Pre(act)s , ∀act ∈ Dom(As) 
"  successor state constraint 

# Vi
s = val ↔ As-1 ∈ C(i,val) ∨ (Vi

s-1 = val ∧ As-1 ∈ N(i)) 
$  C(i,val) = the set of actions containing Vi = val among their effects 
$  N(i) = NonAffAct(Vi)  

reformulated model 
"  use a single table constraint to describe preconditions 
"  use ternary table constraints to describe successor state 

constraints (one table per state variable) 

43 

Lopez & Bacchus (2003) Constraint Processing for Planning and Scheduling 

MODEL COMPARISON 

original reformulated 

straightforward n(ap+ae+v) n(1+v) 

GP-CSP n(ap+ae+3v) n(1+3v) 

CSP-Plan n(ap+vd) n(1+v) 
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The total number of constraints 

n - number of actions in the plan 
a - number of grounded actions in the problem 
v - number of multi-valued variables 
p - average number of preconditions per action 
e - average number of effects per action 

Constraint Processing for Planning and Scheduling 



MODEL COMPARISON 
The runtime to solve selected problems from 
IPC 1-5 (logarithmic scale) 
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TIMELINES 
!  Planning can also be seen as synchronized changes of state variables. 
!  Evolution of each variable is described using finite state automaton. 
!  Planning is about finding synchronized paths in all automata. 

move(r,loc1,loc2) 

loc1 loc2 

rloc 
r 

loc1 loc2 

cpos 

loc1 
loc2 

loc1 
loc2 
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cpos 
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no-op(loc2) 

no-op(loc2) 

load(r,c,loc2) 

move(r,loc2,loc1) 

unload(r,c,loc1) 

no-op(r) 

no-op(loc1) 
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No-op action 
= value of state 
variable is not 
changed 

Initial value 

goal value 



CONSTRAINT MODEL (OVERVIEW) 

!  timeline model 
!  state and action variables organized to „layers“ 

… 
… 

state variables action variables 

action sequencing sequencing synchronisation 
constraint 
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SEARCH STRATEGY 

!  a more or less standard CP labeling procedure 
!  instantiating (by the search algorithm) only the 

action variables 
"  the state variables are instantiated by inference 

!  variable selection 
" min-dom heuristic (only variables with real action in 

their domain are assumed) 
!  value selection (in two steps) 

"  split the domain into no-op actions (explored first) and 
real actions 

" domains with real actions only are enumerated then 
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SUMMARY RESULTS (SOLVED PROBLEMS) 

planning domain SeP PaP 
airport (15) 4 6 
blocks (16) 7 7 
depots (10) 2 2 
driverlog (15) 4 12 

elevator (30) 30 27 

freecell (10) 1 3 

openstacks (7) 5 0 

rovers (10) 4 6 
tpp (15) 4 8 
zenotravel (15) 6 11 
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problems from International Planning Competition,  runtime limit 30 minutes 

Barták (2011) 

DETAILED RESULTS (RUNTIMES) 

problem 
plan length runtime (ms) 

SeP PaP SeP PaP par seq 
zenotravel-p01 1 1 1 10 20 
zenotravel-p02 6 5 6 60 50 
zenotravel-p03 6 5 9 300 130 
zenotravel-p04 8 5 11 970 130 
zenotravel-p05 11 5 14 153 990 240 
zenotravel-p06 11 5 12 530 390 510 
zenotravel-p07 ≥12 6 16 - 560 
zenotravel-p08 ≥10 5 15 - 1 690 
zenotravel-p09 ≥11 6 24 - 145 760 
zenotravel-p10 ≥12 6 24 - 252 040 
zenotravel-p11 ≥9 6 16 - 41 780 
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CONSTRAINTS FOR PLANNING 

TEMPORAL REASONING 

FOUNDATIONS 
What is time? 

 The mathematical structure of time is generally a set with 
transitive and asymmetric ordering operation.  

 The set can be continuous (reals) or discrete (integers). 

The planning/scheduling systems need to maintain consistent 
information about time relations. 

We can see time relations: 
!  qualitatively 

relative ordering (A finished before B) 
typical for modeling causal relations in planning 

!  quantitatively 
absolute position in time (A started at time 0) 
typical for modeling exact timing in scheduling 
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QUALITATIVE APPROACH (EXAMPLE) 

!  Robot starts entering a loading zone at time t1 and stops there at time t2. 
!  Crane starts picking up a container at t3 and finishes putting it down at t4. 
!  At t5 the container is loaded onto the robot and stays there until time t6. 
 
 
 
 
 
 
Networks of temporal constraints: 

53 

entering t1 t2 

i1 

picking up and loading t3 t4 

i2 

loaded t5 t6 

i3 

i1 

i2 

i3 

before 

starts   before meets 

t1 t2 

t3 t4 

t5 t6 

≤ 

< 

< 

< 
< 

= 

Ghallab et al. (2004)  Constraint Processing for Planning and Scheduling 

QUALITATIVE APPROACH (FORMALLY) 

When modeling time we are interested in: 
" temporal references 

(when something happened or hold) 
# time points (instants) when a state is changed 

instant is a variable over the real numbers 

# time periods (intervals) when some proposition is true 
interval is a pair of variables (x,y) over the real numbers, 
such that x<y 

" temporal relations between the temporal references 
# ordering of temporal references 
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POINT ALGEBRA 

symbolic calculus modeling relations between instants 
without necessarily ordering them or allocating to exact times 

There are three possible primitive relations between instants t1 and t2: 
"  [t1 < t2], [t1 > t2], [t1 = t2] 

!  A set of primitives, meaning a disjunction of primitives, can describe any (even 
incomplete) relation between instants: 
"  R = { {}, {<}, {=}, {>}, {<,=}, {>,=}, {<,>}, {<,=,>} } 

#  {} means failure 
#  {<,=,>} means that no ordering information is available 

"  useful operations on R: 
#  set operations ∩ (conjunction), ∪ (disjunction) 
#  composition operation • ([t1 < t2] and [t2 =< t3] gives [t1 < t3] ) 

Consistency: 
"  The PA network consisting of instants and relations between them is consistent 

when it is possible to assign a real number to each instant in such a way that all 
the relations between instants are satisfied. 

"  To make the PA network consistent it is enough to make its transitive closure, for 
example using techniques of path consistency. 

#  [t1 r t2] and [t1 q t3] and [t3 s t2] gives [t1 r ∩ (q•s) t2] 
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INTERVAL ALGEBRA 
symbolic calculus modeling relations between intervals 

(interval is defined by a pair of instants i- and i+, [i-<i+]) 
There are thirteen primitives: 
 
 
 
 
 
 
 
 

Consistency: 
"  The IA network is consistent when it is possible to assign real numbers to xi

-,xi
+  

of each interval xi in such a way that all the relations between intervals are 
satisfied. 

"  Consistency-checking problem for IA networks is an NP-complete problem. 
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QUALITATIVE APPROACH (EXAMPLE) 

!  Two ships, Uranus and Rigel, are directing towards a dock. 
!  The Uranus arrival is expected within one or two days. 
!  Uranus will leave either with a light cargo (then it must stay in the dock 

for three to four days) or with a full load (then it must stay in the dock at 
least six days). 

!  Rigel can be serviced either on an express dock (then it will stay there 
for two to three days) or on a normal dock (then it must stay in the dock 
for four to five days). 

!  Uranus has to depart one to two days after the arrival of Rigel. 
!  Rigel has to depart six to seven days from now. 
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[2,3] or [4,5] 
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QUALITATIVE APPROACH (FORMALLY) 

!  The basic temporal primitives are again time points, 
but now the relations are numerical. 

!  Simple temporal constraints for instants ti and tj: 
"  unary: ai ≤ ti ≤ bi 
"  binary: aij ≤ ti–tj ≤ bij, 
where ai, bi, aij, bij are (real) constants 

Notes: 
"  Unary relation can be converted to a binary one, if we use 

some fix origin reference point t0. 
"  [aij,bij] denotes the constraint between instants ti a tj. 
"  It is possible to use disjunction of simple temporal 

constraints. 
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STN 

Simple Temporal Network (STN) 
"  only simple temporal constraints rij= [aij,bij] are used 
"  operations: 

#  composition: rij • rjk = [aij+ajk, bij+bjk] 
#  intersection: rij ∩ r’ij = [max{aij,a’ij}, min{bij,b’ij}] 

"  STN is consistent if there is an assignment of values to 
instants satisfying all the temporal constraints. 

"  Path consistency is a complete technique making STN 
consistent (all inconsistent values are filtered out, one 
iteration is enough). Another option is using all-pairs 
minimal distance Floyd-Warshall algorithm. 
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ALGORITHMS 
Path consistency 

"  finds a transitive closure of 
binary relations r 

"  one iteration is enough for STN 
(in general, it is iterated until any 
domain changes) 

"  works incrementally 

Floyd-Warshall algorithm 
"  finds minimal distances between 

all pairs of nodes 
"  First, the temporal network is 

converted into a directed graph 
#  there is an arc from i to j with 

distance bij  
#  there is an arc from j to i with 

distance -aij. 
"  STN is consistent iff there are no 

negative cycles in the graph, that 
is, d(i,i)≥0 
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TCSP 
Temporal Constraint Network (TCSP) 

"  It is possible to use disjunctions of simple temporal 
constraints. 

"  Operations • and ∩ are being done over the sets of 
intervals. 

"  TCSP is consistent if there is an assignment of values to 
instants satisfying all the temporal constraints. 

"  Path consistency does not guarantee in general the 
consistency of the TCSP network! 

"  A straightforward approach (constructive disjunction): 
#  decompose the temporal network into several STNs by choosing one 

disjunct for each constraint 
#  solve obtained STN separately (find the minimal network) 
#  combine the result with the union of the minimal intervals 
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CONSTRAINTS FOR SCHEDULING 

BASE CONSTRAINT MODEL 



SCHEDULING PROBLEM 
Scheduling deals with optimal resource allocation of a given 
set of activities in time. 
Example (two workers building a bicycle): 

"  activities have a fixed duration, cannot be interrupted and the 
precedence constraints must be satisfied 
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SCHEDULING MODEL 
!  Scheduling problem is static so it can be directly encoded 

as a CSP. 
!  Constraint technology is used for full scheduling. 

Constraint model: 
"  Variables 

# position of activity A in time and space 
#  time allocation:  start(A), [p(A), end(A)] 
# resource allocation:  resource(A) 

"  Domain 
# release times and deadlines for the time variables 
# alternative resources for the resource variables 

"  Constraints 
# sequencing and resource capacities 
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SCHEDULING MODEL (CONSTRAINTS) 

! Time relations 
" start(A) + p(A) = end(A) 
" sequencing  

# B « A 
! end(B) ≤ start(A) 

! Resource capacity constraints 
" unary resource (activities cannot overlap) 

# A « B ∨ B « A (∨ resource(A) ≠ resource(B)) 
! end(A) ≤ start(B) ∨ end(B) ≤ start(A) 
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CONSTRAINTS FOR SCHEDULING 

RESOURCE CONSTRAINTS 



RESOURCES 

! Resources are used in slightly different 
meanings in planning and scheduling! 

resources in scheduling 
= machines (space) for processing the activities 

resources in planning 
= consumed/produced material by the activities 
" resource in the scheduling sense is often handled 

via the logical precondition (e.g. hand is free) 
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RESOURCE TYPES 
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! unary (disjunctive) resource 
" a single activity can be processed at any time 

! cumulative (discrete) resource 
" several activities can be processed in parallel 

if capacity is not exceeded. 
! producible/consumable resource 

" activity consumes/produces some quantity of the 
resource 

" minimal capacity is requested (consumption) and 
maximal capacity cannot be exceeded (production) 
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UNARY RESOURCES 
!  Activities cannot overlap. 
!  We assume that activities are uninterruptible. 

"  uninterruptible activity occupies 
the resource from its start till its 
completion 

"  interruptible (preemptible) activity 
can be interrupted by another 
activity 

Note: 
There exists variants of the presented filtering algorithms 
for interruptible activities. 

!  A simple model with disjunctive constraints 
"  A « B ∨ B « A  

! end(A) ≤ start(B) ∨ end(B) ≤ start(A) 

69 

time 

time 

start(A) end(A) 

Constraint Processing for Planning and Scheduling 

EDGE FINDING 
What happens if activity A is not processed first? 
 
 
 
 
 
 
 
 
Not enough time for A, B, and C and thus A must be first! 
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EDGE FINDING (INFERENCE RULES) 

The inference rules: 
p(Ω ∪ {A}) > lct(Ω ∪ {A}) - est(Ω) ⇒ A«Ω 
p(Ω ∪ {A}) > lct(Ω) - est(Ω ∪ {A}) ⇒ Ω«A 
A«Ω  ⇒ end(A) ≤ min{ lct(Ω') - p(Ω') |  Ω'⊆Ω } 
Ω«A ⇒ start(A) ≥ max{ est(Ω') + p(Ω') |  Ω'⊆Ω } 

In practice: 
"  there are n.2n pairs (A,Ω) to consider (too many!) 
"  instead of Ω use so called task intervals [X,Y] 

{C | est(X) ≤ est(C) ∧ lct(C) ≤ lct(Y)} 
! time complexity O(n3), frequently used incremental algorithm 

"  there are also O(n2) and O(n.log n) algorithms 
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NOT-FIRST/NOT-LAST 
What happens if activity A is processed first? 
 
 
 
 
 
 
 
 
Not enough time for B and C and thus A cannot be first! 
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NOT-FIRST/NOT-LAST (INFERENCE RULES) 

Not-first inference rules: 
p(Ω∪{A}) > lct(Ω) - est(A) ⇒  ¬ A«Ω 
¬ A«Ω ⇒ start(A) ≥ min{ ect(B) |  B∈Ω } 

Not-last (symmetrical) inference rules: 
p(Ω∪{A}) > lct(A) - est(Ω) ⇒  ¬ Ω«A 
¬ Ω«A ⇒ end(A) ≤ max{ lst(B) |  B∈Ω } 

In practice: 
" can be implemented with time complexity O(n2) 

and space complexity O(n) 
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CUMULATIVE RESOURCES 
!  Each activity uses some capacity of the 

resource – cap(A). 
!  Activities can be processed in parallel if a 

resource capacity is not exceeded. 
!  Resource capacity may vary in time 

"  modeled via fix capacity over time and fixed activities 
consuming the resource until the requested capacity level is 
reached 
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AGGREGATED DEMANDS 
Where is enough capacity for processing the activity? 
 
 
 
 
 
 
How the aggregated demand is constructed? 
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TIMETABLE CONSTRAINT 

! How to ensure that capacity is not exceeded at 
any time point?* 

! Timetable for the activity A is a set of Boolean 
variables X(A,t) indicating whether A is 
processed in time t. 
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TIMETABLE CONSTRAINT (FILTERING EXAMPLE) 

!  initial situation 

!  some positions forbidden due to capacity 

!  new situation 
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RESERVOIRS 
Producible/consumable resource 
!  Each event describes how much it increases or 

decreases the level of the resource. 

!  Cumulative resource can be seen as a special case 
of producible/consumable resource (reservoirs). 
"  Each activity consists of consumption event at the start 

and production event at the end. 
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RELATIVE ORDERING 
When time is relative (ordering of activities) 

 then edge-finding and aggregated demand deduce nothing 
We can still use information about ordering of events 

and resource production/consumption! 
Example: 

Reservoir: events consume and supply items 
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RESOURCE PROFILES 

!  Event A „produces“ prod(A) quantity: 
"  positive number means production 
"  negative number means consumption 

!  optimistic resource profile (orp) 
"  maximal possible level of the resource when A happens 
"  events known to be before A are assumed together with the production 

events that can be before A 
orp(A) = InitLevel + prod(A) + ∑B«A prod(B) + ∑B?A ∧ prod(B)>0 prod(B) 

!  pessimistic resource profile (prp) 
"  minimal possible level of the resource when A happens 
"  events known to be before A are assumed together with the consumption 

events that can be before A 
prp(A) = InitLevel + prod(A) + ∑B«A prod(B) + ∑B?A ∧ prod(B)<0 prod(B) 
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ORP FILTERING (INFERENCE RULES) 

orp(A) < MinLevel ⇒ fail 
" “despite the fact that all production is planned 

before A, the minimal required level in the resource 
is not reached” 

orp(A) – prod(B) – ∑B«C ∧ C?A ∧ prod(C)>0 prod(C)  < MinLevel ⇒ B«A 
for any B such that B?A and prod(B)>0 

" “if production in B is planned after A and the 
minimal required level in the resource is not reached 
then B must be before A” 
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PRP FILTERING (INFERENCE RULES) 

prp(A) > MaxLevel ⇒ fail 
" “despite the fact that all consumption is planned 

before A, the maximal required level (resource 
capacity) in the resource is exceeded” 

prp(A) – prod(B) – ∑B«C ∧ C?A ∧ prod(C)<0 prod(C)  > MaxLevel ⇒ B«A 
for any B such that B?A and prod(B)<0 

" “if consumption in B is planned after A and the 
maximal required level in the resource is exceeded 
then B must be before A” 

82 

Cesta & Stella (1997)  Constraint Processing for Planning and Scheduling 



FROM TIME WINDOWS TO ORDERING 

DETECTABLE PRECEDENCE 

What happens if activity A is processed before B? 

"  Restricted time windows can be used to deduce new 
precedence relations. 
 est(A)+p(A)+p(B) > lct(B) ⇒ B « A  
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ALTERNATIVE RESOURCES 
!  How to model alternative resources for a given 

activity? 
!  Use a duplicate activity for each resource. 

"  duplicate activity participates in the respective resource 
constraint but does not restrict other activities there 

#  „failure“ means removing the resource from the domain of 
variable resource(A) 

#  deleting the resource from the domain of variable resource(A) 
means „deleting“ the respective duplicate activity 

"  original activity participates in the precedence constraints 
(e.g. within a job) 

"  restricted times of duplicate activities are propagated to 
the original activity and vice versa. 
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ALTERNATIVE RESOURCES (FILTERING RULES) 

!  Let Au be the duplicate activity of A allocated to 
resource u∈res(A). 

u∈resource(A) ⇒ start(A) ≤ start(Au) 
u∈resource(A) ⇒ end(Au) ≤ end(A) 
start(A) ≥ min{start(Au) : u∈resource(A)} 
end(A) ≤ max{end(Au) : u∈ resource(A)} 
failure related to Au ⇒ resource(A)\{u} 

Actually, it is maintaining constructive disjunction between 
the alternative activities. 
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CONSTRAINTS FOR SCHEDULING 

SEARCH STRATEGIES 



BRANCHING SCHEMES 

Branching = resolving disjunctions 
Traditional scheduling approaches: 
!  take the critical decisions first 

"  resolve bottlenecks … 
"  defines the shape of the search tree 
"  recall the fail-first principle 

!  prefer an alternative that leaves more flexibility 
"  defines order of branches to be explored 
"  recall the succeed-first principle 

How to describe criticality and flexibility formally? 
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SLACK 
Slack is a formal description of flexibility 
!  Slack for a given order of two activities 

„free time for shifting the activities“ 

slack(A « B) = max(end(B)) - min(start(A)) - p({A,B})  

!  Slack for two activities 
slack({A,B}) = max{ slack(A « B), slack(B « A) } 

!  Slack for a group of activities 
slack(Ω) = max(end(Ω)) - min(start(Ω)) - p(Ω)  
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ORDER BRANCHING 

A « B ∨ ¬ A « B 
! Which activities should be ordered first? 

" the most critical pair (first-fail) 
" the pair with the minimal slack({A,B}) 

! Which order should be selected? 
" the most flexible order (succeed-first) 
" the order with the maximal slack(A??B) 

! O(n2) choice points 
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FIRST/LAST BRANCHING 
(A « Ω ∨ ¬A « Ω) or (Ω « A ∨ ¬ Ω « A) 
!  Should we look for the first or for the last activity? 

"  select a smaller set among possible first or possible 
last activities (first-fail) 

!  Which activity should be selected? 
"  If first activity is being selected then the activity with the 

smallest min(start(A)) is preferred. 
"  If last activity is being selected then the activity with the 

largest max(end(A)) is preferred. 
!  O(n) choice points 
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RESOURCE SLACK 

! Resource slack is defined as a slack of the set 
of activities processed by the resource. 

! How to use a resource slack? 
" choosing a resource on which the activities will be 

ordered first 
# resource with the minimal slack (bottleneck) preferred 

" choosing a resource on which the activity will be 
allocated 
# resource with the maximal slack (flexibility) preferred 
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SUMMARY (CONSTRAINT SATISFACTION) 

Basic constraint satisfaction framework: 
!  local consistency connecting filtering algorithms for 

individual constraints 
!  search resolves remaining disjunctions 

Problem solving: 
!  declarative modeling of problems as a CSP 
!  dedicated algorithms encoded in constraints 
!  special search strategies 
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SUMMARY (CONSTRAINTS IN PLANNING AND SCHEDULING) 

Constraint satisfaction techniques are used 
!  for solving particular sub-problems (temporal and 

resource consistency) 
!  for modeling and solving a complete problem 

It is possible 
!  to exploit constraint satisfaction principles in own 

algorithms  
!  to use an existing constraint solver 

(modeling, adding specific inference techniques, 
and customizing search strategies) 
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CONSTRAINT SOLVERS 
!  It is not necessary to program all the presented techniques 

from scratch! 
!  Use existing constraint solvers (packages)! 

"  provide implementation of data structures for modeling variables’ 
domains and constraints 

"  provide a basic consistency framework 
"  provide filtering algorithms for many constraints (including global 

constraints) 
"  provide basic search strategies 
"  usually extendible (new filtering algorithms, new search strategies) 

 
Some systems with constraint satisfaction packages: 

"  Prolog: SICStus Prolog, ECLiPSe, CHIP, Prolog IV, GNU Prolog, IF/
Prolog 

"  C/C++: ILOG CP Optimizer, Gecode, CHIP++ 
"  Java: Choco, JCK, JCL, Koalog 
"  Oz: Mozart 
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