Proceedings of the 26" Workshop of
the UK Planning and Scheduling
Special Interest Group

PlanSIG 2007

December 17-18, 2007
Prague, Czech Republic

Editor: Roman Bartak

mis
b

RFTNLr 11 'l't_'."“ﬂi'_' ol i 5
TERINEY |1 4 7

whie Ol M

Proceedings of PlanSIG 2007
The 26™ workshop of the UK Planning and Scheduling Special Interest Group

December 17-18, 2007
Prague, Czech Republic

Workshop Chair

Roman Bartak

Charles University in Prague

Faculty of Mathematics and Physics

Malostranské nam. 2/25, 118 00 Praha 1, Czech Republic
e-mail: bartak@ktiml.mff.cuni.cz

Programme Committee

Ruth Aylett, Herriot-Watt, UK

Chris Beck, University of Toronto, Canada

Ken Brown, University College Cork, Ireland
Edmund Burke, University of Nottingham, UK
Luis Castillo, University of Granada, Spain
Amedeo Cesta, ISTC, Italy

Alex Coddington, University of Strathclyde, UK
Stefan Edelkamp, Universitit Dortmund, Germany
Susana Fernandez, Universidad Carlos III de Madrid, Spain
Maria Fox, University of Strathclyde, UK

Antonio Garrido, Universidad Politecnica Valencia, Spain
Tim Grant, University of Pretoria, South Africa
Joerg Hoffmann, University of Innsbruck, Austria
Peter Jarvis, NASA Ames Research Center, USA
Graham Kendall, University of Nottingham, UK
Philippe Laborie, ILOG, France

John Levine, University of Strathclyde, UK

Derek Long, University of Strathclyde, UK

Lee McCluskey, University of Huddersfield, UK
Amnon Meisels, Ben-Gurion University, Israel
Barry O'Sulivan, University College Cork, Ireland
Sanja Petrovic, University of Nottingham, UK
Nicola Policella, European Space Agency, Germany
Julie Porteous, University of Strathclyde, UK
Patrick Prosser, University of Glasgow, UK

Hana Rudova, Masaryk University, Czech Republic
Wheeler Ruml, University of New Hampshire, USA
Rong Qu, University of Nottingham, UK

Sam Steel, University of Essex, UK

Andrew Tuson, City University, UK

Jozsef Vancza, SZTAKI, Hungary

Roman van der Krogt, 4C, Ireland

Petr Vilim, ILOG, France

ISSN 1368-5708

Table of Contents

Planning-based Scheduling for SLA-awareness and Grid Integration

Dominic Battré, Matthias Hovestadt, Odej Kao, Axel Keller, Kerstin Voss........ccccceeevevuennne.. 1
An Enhanced Weighted Graph Model for Examination/Course Timetabling

Julie R. Carrington, Nam Pham, Rong Qu, Jay Yellencccoovueeeuieeeieeeiiieecieeeieeeeneens 9
A Multi-Component Framework for Planning and Scheduling Integration

Amedeo Cesta, Simone Fratini, Federico Pecora..................cccccoccenveeveinoeincecniiaieenienanen. 17
Scheduling Monotone Interval Orders on Typed Task Systems

Benoit Dupont de DIRECRITcccoecieeiuiiiiieiieeieeee ettt ettt ettt eae e et eeae e 25
A Note on Concurrency and Complexity in Temporal Planning

Maria FOX, Derek LONGcoccueeeecieeieiieeeiie ettt ette s teeesaaeeivaessaeessaeessaaeessseeessseeennseas 32
Optimisation of Generalised Policies via Evolutionary Computation

Michelle Galea, John Levine, Henrik Westerberg, Dave Humphreysccccceeevuveevuveennen. 36
Assimilating Planning Domain Knowledge from Other Agents

TEI GFANE ..ottt ettt ettt et e s bt et e st et e sat e e be e s e e 44
The Dimensions of Driverlog

Peter Gregory, ALan LiNASAYc.oooooueeeeiieeeiie ettt vee e saee e saee e saaee s 52

VLEPpO: A Visual Language for Problem Representation
Ourania Hatzi, Dimitris Vrakas, Nick Bassiliades, Dimosthenis Anagnostopoulos, loannis
VIGRAVASoooooeeeiiieieee e, 60

Constraint Programming Search Procedure for Earliness/Tardiness Job Shop Scheduling
Problem

Jan Kelbel, Zdenek Hanzalekcccccoovveveeeeeeeeiee, 67
Single-machine Scheduling with Tool Changes: A Constraint-based Approach

Andras Kovacs,J. CRFISTOPREE BECKooccuveeeiiieeiieeciee ettt ee et 71
Comprehensive approach to University Timetabling Problem

Wojciech Legierski, £ukasz DOMAZALAccccueeeeuieeiiiiiiiieeiieeeceeeie e siee e 79
Opmaker2: Efficient Action Schema Acquisition

T.L. McCluskey, S.N. Cresswell, N.E. Richardson, M.M. Westc.cccccoevveeivmsoeeseannnnn. 86
Feasibility Criteria for Investigating Potential Application Areas for Al Planning

T.L. MCCIUSKEY ..ottt e st e st e et ae e e sbaeessaeesssaeesssaeessseeesnseeensseeeenseeennsens 93
Planning in Supply Chain Optimization Problem

N.H. Mohamed Radzi, Maria Fox, Derek LONGcccccccoueemiuieencieeiiieeieeeieeeieeeevee e 100
Velocity Tuning in Currents Using Constraint Logic Programming

Michaél Soulignac, Patrick Taillibert, Michel Rueherccccoooeveieioienceesieneeeene. 106
SHORT PAPERS

Planning as a software component: A Report from the trenches

Olivier Bartheye, EViC JACOPINc..cccueecuieieeeiiesiieeie et et eite et st eiee e teesaeesee e 117

Nurse Scheduling Web Application
Zdenék Bdaumelt, Premysl Sticha, Zdenek HAnzalekoooooeeeeeeeeeeeeeeeeeeeeeeeeeeereeeseerans 120

PSPSolver: An Open Source Library for the RCPSP
Javier Roca, Filip Bossuyt, Gaetan LibDertcccoocouievoieencieiiiieeiieeeeieeeieeeieeesvee e 124

Planning-based Scheduling
for SLLA-awareness
and Grid Integration™

Dominic Battré and Matthias Hovestadt

and Odej Kao

Technical University of Berlin, Germany
{battre,maho,okao } @cs.tu-berlin.de

Abstract

Service level agreements (SLAs) are powerful instru-
ments for describing all obligations and expectations
in a business relationship. It is of focal importance
for deploying Grid technology to commercial applica-
tions. The EC-funded project HPC4U (Highly Pre-
dictable Clusters for Internet Grids) aimed at introduc-
ing SLA-awareness in local resource management sys-
tems, while the EC-funded project AssessGrid intro-
duced the notion of risk, which is associated with ev-
ery business contract. This paper highlights the concept
of planning based resource management and describes
the SLA-aware scheduler developed and used in these
projects.

Introduction

In the academic domain Grid computing is well known, if
not even established. Researchers are using Grid middle-
ware systems like Unicore or the Globus Toolkit to create
virtual organizations, dynamically sharing the transparent
access to distributed resources. Grid computing started un-
der the solely technical question of how to provide access to
distributed high performance compute resources. Thanks to
numberless projects and initiatives, funded by national and
international bodies worldwide, Grid systems have signifi-
cantly evolved meanwhile, making Grid technology adopt-
able in a large variety of usage scenarios.

Companies like IBM, Hewlett Packard, and Microsoft
have recognized the potential of Grid Computing already in
the early days of the Grid development, providing noticeable
efforts on research and the support of research communities.
However, the Grid did not really enter the commercial do-
main until the present day. Already in 2003 the European
Commission (EC) convened a group of experts to clarify the

*This work has been partially supported by the EU within the
6th Framework Programme under contract IST-031772 ”Advanced
Risk Assessment and Management for Trustable Grids” (Assess-
Grid) and IST-511531 “Highly Predictable Cluster for Internet-
Grids” (HPC4U)

Axel Keller and Kerstin Voss
Paderborn Center for Parallel Computing
University of Paderborn, Germany
{kel,kerstinv } @upb.de

demands of future Grid systems and which properties and
capabilities are missing in current existing Grid infrastruc-
tures. Their work resulted in the idea of the Next Generation
Grid (NGG) (Priol & Snelling 2003; Jeffery (edt.) 2004;
De Roure (edt.) 2006). This work clearly identified that
guaranteed provision of reliability, transparency, and Qual-
ity of Service (QoS) is an important demand for successfully
commercialize future Grid systems. In particular, commer-
cial users will not use a Grid system for computing business
critical jobs, if it is operating on the best-effort approach
only.

In this context, a Service Level Agreement (SLA) is a
powerful instrument for describing all expectations and obli-
gations in the business relationship between service con-
sumer and service provider (Sahai ef al. 2002). Such an
SLA specifies the QoS requirement profile of a job. At the
Grid middleware layer many research activities already fo-
cus on integrating SLA functionality.

The EC-funded project BeInGrid (Business Experiments
in Grid (BelnGrid), EU-funded Project) aims at fostering
the commercial uptake of the Grid. BelnGrid encompasses
numerous business experiments, where Grid technology is
to be introduced to specific business domains. Successful
experiments reached the goal of proving the benefit of ap-
plying Grid technology for commercial customers. Accord-
ing to the NGG, a major objective in these BelnGrid ex-
periments is the provision of reliability as contractually ex-
pressed in negotiated SLAs.

Current resource management systems (RMS) are work-
ing on the best-effort approach, not giving any guarantees
on job completion to the user. Since these RMS are offering
their resources to Grid systems, Grid middleware has only
limited means in fulfilling all terms of negotiated SLAs.

For closing this gap between the requirements of SLA-
enabled Grid middleware and the capabilities of RMS,
HPC4U (Highly Predictable Cluster for Internet-Grids
(HPC4U)) started working on an SLA-aware RMS, uti-
lizing the mechanisms of process-, storage- and network-
subsystems for realizing application-transparent fault toler-

ance. As central component of the HPC4U project the RMS
OpenCCS has been selected, since its planning based na-
ture seemed to be well-suited for realizing SLA-awareness.
Within the project all features required for SLA-awareness
and SLA-compliance have been developed, e.g. an SLA-
aware scheduler, mechanisms for transparent checkpointing
of parallel applications, or the negotiation of new SLAs.

The HPC4U project will end 2007. The outcome of the
project allows the Grid to negotiate on SLAs with the RMS.
The RMS is only allowed to accept a new SLA, if it can en-
sure its fulfillment. For this, the RMS provides mechanisms
like process and storage checkpointing to realize fault toler-
ance and to assure the adherence with given SLAs even in
the case of resource failures. The HPC4U system is even
able to act as an active Grid component, migrating check-
pointed jobs to arbitrary Grid resources, if that allows the
completion of the job according to its SLA.

In this paper we first highlight the concept of plan-
ning based resource management, a fundament for realizing
SLA-aware RMS. The main part of the paper focuses on the
specific demands of different job types on the scheduling as
well as the scheduling impact of a Grid integration. The pa-
per ends with an overview about related work and a short
conclusion.

Planning Based Resource Management

Compute clusters have a long tradition beginning in the early
1970s with the UNIX operating system (Pfister 1997). Since
then many resource management systems evolved, bringing
functionality targeted to their specific usage domain, e.g.
capabilities on load balancing. Classic systems are mostly
used in capacity computing environments, computing large
amounts of data in time uncritical context.

Most of the resource management systems available to-
day can be classified as queuing based systems. The sched-
uler of these RMS is operating one or more queues, each
of them with different priorities, properties, or constraints
(e. g. high priority queue, weekend queue) (Windisch et al.
1996). Each incoming job request is assigned to one of these
queues. The scheduling component of the RMS then orders
each queue according to the strategy of the currently ac-
tive scheduling policy. A very basic strategy is FCFS (First
Come, First Served), assigning resources to jobs according
to the job’s entry time into the system. Modern RMS are
also using priority queues, reflecting the status of the par-
ticular jobs. However, resources are assigned to jobs from
the queue head, if the system has enough free resources. If
this results in idle resources, backfilling strategies can be ap-
plied for selecting matching jobs from one of the queues for
immediate out-of-order execution.

Many different strategies on backfilling have evolved,
each optimizing according to a specific objective or usage
environment. Commonly known strategies are conservative
and EASY backfilling. Both strategies only differ in their
way of selecting jobs for backfilling. While conservative
backfilling demands that the backfilled job may not delay
other waiting requests (Mu’alem & Feitelson 2001), EASY
backfilling only demands the queue head’s jobs not to be de-
layed (Lifka 1995). For deciding about the impact of a back-

filling decision on the delay of jobs in the queues, the sys-
tem has to have runtime information of these jobs. Hence,
specific backfilling strategies (like EASY and conservative
backfilling) can only be applied to environments where these
statements are available.

By switching the focus from classic high throughput com-
puting to computation of deadline bound and business criti-
cal jobs, also the demand on the RMS and its scheduler com-
ponent changes. If negotiating on service level agreements,
the system has to know about future utilization, i. e. whether
it is possible to agree on finishing the new job as requested.

Planning is an alternative approach on system schedul-
ing (Hovestadt et al. 2003). In contrast to queuing, planning
does not only regard currently free resources and assigns
them to waiting jobs. Instead, planning based systems also
plan for the future, assigning a start time to all waiting re-
quests. This way a schedule is generated, encompassing all
jobs in the schedule. Having such a schedule available, the
system scheduler is able to determine which jobs are sched-
uled to be executed at what time. Table 1 depicts the most
significant differences between queuing and planning based
systems.

A prerequisite for planning based resource management
system is the availability of run time estimates for all jobs.
Without this information the scheduler has no means to de-
cide how long a specific resource will be used by a job.
Hence, the scheduler could not assign a start time to jobs
following in the schedule. In case the user underestimated
the runtime, the system can try to extend the runtime of this
job. If this is not possible because other jobs are scheduled
on the resource, having a high priority so that they cannot be
pushed away, the job has to be terminated or suspended in
order to have the resources available for other jobs. This
may be considered as a drawback of planning based re-
source management. A further drawback regards the cost
of scheduling. The scheduling process itself is significantly
more complex than in queuing based systems.

The novel approach on scheduling in planning based re-
source management systems allows the development of new
scheduling policies and paradigms. Beside the classic poli-
cies like FCFS, SJF (Shortest Job First), or LJF (Longest Job
First), novel policies could help to realize new objectives or
new functionalities. We are convinced that planning based
resource management is a good starting point for realizing
SLA-awareness.

Scheduling for Typical Scenarios

In this section typical scenarios will be described. Starting
with the submission of a regular local job, the degree of ser-
vice quality will increase with each scenario. For realizing
SLA-awareness in the EC-funded projects HPC4U and As-
sessGrid, the resource management system OpenCCS has
been used. OpenCCS is a planning based resource man-
agement system developed at the University of Paderborn.
Details on OpenCCS can be found in (Keller & Reinefeld
2001).

| [queuing system

planning system

planned time frame present
reception of new request || insert in queues

start time known no

runtime estimates not necessary?
reservations difficult

backfilling optional

examples PBS, NQE/NQS, LL

present and future
replanning

all requests
mandatory

yes, trivial

yes, implicit

CCS, Maui Scheduler?

T exception: backfilling

2 Maui may be configured to operate like a planning system (Jackson, Snell, & Clement 2001)

Table 1: Differences of queuing and planning systems (Hovestadt ez al. 2003)

Local Job Submission

The local job submission is the classic case of job submis-
sion, where a user connects locally to the resource manage-
ment system and submits a new job. Since OpenCCS is plan-
ning based, it requires all users to specify the expected dura-
tion of their requests. The OpenCCS planner distinguishes
between Fix-Time and Var-Time resource requests. A Fix-
Time request reserves resources for a given time interval. It
cannot be shifted on the time axis. In contrast, Var-Time re-
quests can move on the time axis to an earlier or later time
slot (depending on the used policy). Such a shift on the time
axis might occur when other requests terminate before the
specified estimated duration.

The Planning Manager (PM) is a central component of
the OpenCCS architecture, responsible for computing a
valid, machine-independent schedule. Likewise, the Ma-
chine Manager (MM) is responsible for machine-dependent
scheduling. The separation between the hardware indepen-
dent PM and the system specific MM allows to encapsu-
late system specific mapping heuristics in separate modules.
With this approach, system specific requests (e. g. for I/O-
nodes, specific partition topologies, or memory constraints)
may be considered. One task of the MM is to verify if
a schedule received from the PM can be realized with the
available hardware. The MM checks this by mapping the
user given specification with the static (e. g. topology) and
dynamic (e. g. PE availability) information on the system re-
sources. Since OpenCCS is a planning-based RMS, the PM
generates a schedule for both current and future resource us-
age. Therewith it supports classic scheduling strategies like
FCFS, SJF, and LJF, considering aspects like project limits
or system wide node limits. The system administrator can
change the strategy during runtime.

The PM manages two lists while computing a schedule,
which are sorted according to the active policy.

e The New list(N-list): Each incoming request is placed in
this list and waits there until the next planning phase be-
gins.

e The Planning list(P-list): These jobs have already been
accepted by the system. The PM takes jobs from this list
to generate the system schedule.

The PM first checks if the N-list has to be sorted accord-
ing to the active policy (e.g. SJF or LJF). It then plans all

elements of N-list. Depending on the request type (Fix-Time
or Var-Time) the PM calls an associated planning function.
For example, if planning a Var-Time request, the PM tries to
place the request as soon as possible. The PM starts in the
present and moves to the future until it finds a suitable place
in the schedule.

Figure 1 depicts a typical schedule situation in a planning-
based RMS. If a user submits a new job request, the sys-
tem is able to match the request properties with the current
schedule, i. e. the PM and MM components of OpenCCS are
checking whether it is possible to generate a new valid sys-
tem schedule. In this case, the user’s job request is accepted,
directly returning the time when the job will be allocated at
the latest. If the request cannot be realized (e. g. because the
user requested for a time slot with insufficient available re-
sources), the job is rejected. In this situation, the user can
query the system for the earliest possible time to start the
job request.

Deadline bound Jobs

Deadline bound jobs have to be completed until a specific
time at the latest. A classic example for such a deadline
bound job is a weather service which has to complete the
computation of a weather forecast until Sam, since the fore-
cast is to be broadcasted on TV at 6am. However, deadlines
are also of particular importance for executing workflows,
where the workflow is executed in multiple branches in par-
allel and where the result needs to be joined until a given
time, so that also the overall workflow result can be deliv-
ered in time.

From the resource management system’s point of view,
a deadline bound job is a Var-Time resource requests. The
user has to provide three key parameters:

e the number of required resources
e the duration of job execution
e the deadline for job completion

The deadline bound job is a specific case of a Var-Time re-
source request, since it may not shift arbitrarily on the time
axis, but only within the boundaries given by the earliest
possible start time and by the deadline. This constraint has
to be regarded during the scheduling process, assigning re-
sources early enough to allow the job to complete in time.

|~ cesSchedule@arminius.uni-paderborn.de

Machines Options Qwit Help
Ky
45855
45338
45282
17 45847 Cia
AEEE
0 46849 TR
1dd +
451 44165
128 +
45348
AL
112 +
96 1 AR 45852
g+ | i
AB0GG 441c4
64 44163
48 +
DN
45387
32 453815
16 - 45777 [
45385 46776
o 3 45352 X 45656 | | | .
00300 Qo300 00:‘00 00:‘00 00:‘00 00:‘00 00:‘00 00:‘00 00:‘0'3
0Z,09 03,09 04,09 05,09 08,09 07,09 08,09 09,09 10,08 |-
[N l -
Request-I0; Actusl time: 2007-09-02, 22:505:41 A
User: Machine: ARMINIUS
Hodes ¢ CPU name Heon < | Q | b |
Start time?: CPU spesd: J200 MHz
Duration: Memory 4095 MB V |
End time: Nodes: 200 (7 not avail,?
State: Scheduler: FCFS {First Come First Serwel Update |

Figure 1: Schedule in a planning based RMS

At this, the latest time for resource allocation conforms to
the specified deadline minus the user’s specified runtime.

In the case of deadline bound jobs, the correctness of the
estimated runtime of the job is crucial for the fulfillment of
the deadline. It is in the responsibility of the user to give
a correct estimate. If the provider assigns a resource at the
latest possible start time, it is the user’s responsibility if the
job did not complete in time, because he underestimated the
job’s runtime. However, users tend to overestimate the run-
time of their jobs to prevent such a situation. Hence in the
typical situation the job ends long before the estimated (and
scheduled) end of time. Generally assuming the specified
runtime to be overestimated allows to postpone the point of
latest ressource allocation by the assumed amount of over-
estimation. However, this strategy is risky since jobs with
correctly estimated runtimes will not be able to finish until
their deadline.

Due to the nature of deadline bound jobs, the sched-
uler has to place them after placing all Fix-Time resource
requests, but before placing regular Var-Time resource re-
quests. At this, it follows the main scheduling policy, e. g.

FCFS. The scheduler executes the following steps on an ini-
tially empty schedule, trying to place Var-Time resource re-
quests at the earliest possible place in the new schedule:

1. sort all requests according to the current policy

2. place all Fix-Time resource requests (from first P-list,
then from N-list)

3. place all deadline bound Var-Time resource requests (first
from P-list, then from N-list)

4. place all remaining Var-Time resource requests (first from
P-list, then from N-list)

Placing deadline bound Var-Time jobs according to poli-
cies like FCFS does not always result in a good schedule
quality. Placing jobs in front of the schedule just because
they arrived at the system at an early point of time (i.e.
blocking valuable resources with this job) prevents execut-
ing other jobs with perhaps even nearer deadlines. Hence,
other strategies could be applied when placing these dead-
line bound requests.

As an alternative approach, Deadline Monotonic Schedul-
ing (DMS) (Audsley 1993) could be applied here, where the

—— no failures
—A— one failure
—+ two failures|

12000
1

10000
Il

8000
Il

Overall Time (sec.)

6000
Il

4000
|

o
N
IN
o
®
IS

Number of Checkpoints

Figure 2: Impact of Checkpoint Frequency on Runtime

priority increases the nearer it gets to its deadline, i.e. the
latest possible start time here. By applying Earliest Dead-
line First (EDF) (Buttazzo & Stankovic 1993), the scheduler
would sort all deadline bound jobs by increasing remaining
time until their latest possible point of start. This ensures
that valuable resources are first used for urgent jobs.

Resource Failures and Fault Tolerance

A cluster system consists of multiple nodes. Partitions of
these nodes are assigned to running applications, so that
multiple applications are executed in parallel. If one of the
nodes of a partition fails (e. g. due to a power outage), the
execution of the application running on this node typically
is aborted. In case of parallel applications, not only the pro-
cesses of the application running on the affected node are
aborted, but the entire parallel application is affected.

Cluster systems are used for speeding up the execution
time of complex problems, but with an increasing grade of
parallelism and an increasing runtime of the job (due to the
complexity of the problem), also the possibility of a job
crash increases, because only one of the nodes has to fail
during the execution. This is a real problem for jobs run-
ning on dozens or hundreds of nodes over multiple days or
weeks.

In the EC-funded project HPC4U mechanisms have been
developed for transparently checkpointing parallel applica-
tions, i. e. all mechanisms can be applied without any mod-
ification of the job or relinking of the binary, even without
having the job owner to take any notice of the mechanisms
at all. This mechanism requires a patch to be applied to the
Linux kernel, so that the process itself then runs inside a vir-
tual bubble. At checkpoint time, the entire bubble is saved.
For parallel applications, also the MPI implementation has

to be enhanced, so that a consistent image of all parallel in-
stances can be generated. For this purpose, the cooperative
checkpoint protocol (CCP) has been developed.

Beside this stack of tools the project also evaluated other
existing checkpointing solutions. At this, fairly good expe-
riences also have been made with the tools Berkeley Check-
pointing and Restart (BLCR) and LAM-MPI. Even if par-
allel checkpointing is possible, these tools have significant
functionality drawbacks compared to the HPC4U stack.

By periodically checkpointing an application, the job can
be restarted from the latest checkpointed state. Hence, only
the computation steps after the latest checkpoint has to be
repeated, instead of restarting the job from scratch. Even if
the mechanisms have negligible impact on the job execution
performance and the checkpointing of large jobs can be exe-
cuted in a few seconds or minutes, this has to be considered
at scheduling time.

Firstly, the effort for performing checkpoints enters the
computation for the latest possible point of start. Since the
time increases with the number of nodes and the amount
of used memory, the system can predict quite exactly the
time required for each checkpoint operation. The number of
checkpoints determines the maximum time that can be lost
due to a resource outage. It is a trade-off between reducing
the worst-case loss of computational results and reducing the
overhead of checkpointing.

The impact of the chosen checkpoint frequency on the
runtime of a job is depicted in Figure 2. It assumes a job
having a total runtime of one hour and a duration of each
checkpoint of two minutes. The three curves represent the
number of assumed resource outages. The curve depicting
the case of no resource outages occurring has its minimum in
n = 0, having no checkpoints generated. Since each check-
point generation delays the completion of the job, each gen-
erated checkpoint is unnecessary overhead in the case of no
resource outages. If no resource outages are expected or if
a job restart is acceptable (like for best effort jobs), the best
option is to execute without checkpoints.

In the case of resource outages occurring, things look dif-
ferent. An increasing number of checkpoints decreases the
amount of lost compute steps lost through a resource outage,
since the system is able to resume from the latest check-
pointed state. The curves have their minima at the point of
optimal trade-off between lost computation power and addi-
tional effort for executing the checkpoint operation. More-
over this number increases on increasing the number of ex-
pected outages. Where it is optimal to generate approxi-
mately four checkpoints in the case of one expected outage,
it is approximately 7 in the case of two outages.

Secondly, the scheduling policy has to be adopted for han-
dling the case of failures. If a job is affected by a resource
outage, the entire job (not only the part of the failed node) is
removed from the schedule. It leaves the P-list and is added
to the Defect list(D-list), encompassing all jobs affected by
failures.

Then the scheduler starts the computation of a new sys-
tem schedule, following the policies described above, plac-
ing jobs from D-list after jobs from P-list, but before placing
jobs from N-list. This impacts new jobs (which may be re-

jected now), but does not impact other already planned jobs.
However, if applying policies like DMS, the time until the
job’s latest point of start has to be recomputed, not taking
the originally user specified job runtime into account, but
the remaining runtime at the time of the last checkpoint.

The impact of resource failures on the system schedule
can be reduced by introducing a failure horizon. A resource
management system uses its internal monitoring mecha-
nisms to detect problems within the cluster as soon as possi-
ble. If such a problem can not be solved by internal recovery
mechanisms of the RMS itself, the cluster administrators are
informed. The failure horizon represents the typical time re-
quired by administrators to solve such reported errors (e. g.
12 hours). The RMS only moves those jobs to the D-list
which are planned on the defect resources within the fail-
ure horizon, assuming that the resource is available again at
allocation time of all other jobs.

SLA Negotiation

The process of SLA-negotiation differs significantly from
the regular job submission interface of a resource manage-
ment system. There, a user submits his job description, di-
rectly getting an information about rejection or acceptance
in return. In the latter case, the job has already entered the
system schedule.

In case of service level agreements, a multi-phase nego-
tiation is conducted before the job finally enters the system.
The GRAAP working group (MacLaren 2003) of the Open
Grid Forum (OGF) (Open Grid Forum) described such a
negotiation process in the WS-Agreement Negotiation spec-
ification (Andrieux et al. 2004). Here the provider answers
a job request with an SLA offer. The user has to commit to
this offer before the SLA is actually enforced.

For the scheduling component of an RMS this negotiation
process has significant implications: once the RMS has is-
sued an SLA offer, it has to adhere to this offer until it has
been committed or canceled by the user. Timeout mecha-
nisms ensure that SLA offers automatically expire after a
given time period (e.g. some seconds). However, at least
during this timeout period the system has to reserve system
capacity for the job in negotiation.

For this purpose, a novel list is introduced into the system:
the SLA-offer list(O-list). Jobs from this list are scheduled
within the regular scheduling process in the order P-list be-
fore D-list before O-list before N-list. It is preferable to priv-
ilege jobs from D-list than O-list, since jobs in O-list are not
yet affirmative, so that the system would not actually break
an SLA-contract but only an SLA-offer. Again, the general
policy of handling failures is to not affect other jobs, to keep
the implication of a failure as local as possible. This also
implies, that given SLA-offers should be kept if possible.

Data Staging of Grid Jobs

A second significant difference between locally submitted
jobs and jobs coming from the Grid is the aspect of data
staging. In case of local jobs it can be assumed that all
necessary job data (e.g. the application binary and all in-
put data) are available on a local computer system, so that
fast local network connections can be used for transferring

the data to the compute cluster. The time necessary for this
can be neglected in general. In case of Grid jobs, this so
called stage-in process has to be executed using slow WAN
connections.

For this reason, the Grid user does not only have to spec-
ify parameters like estimated runtime, number of nodes, or
deadline in the negotiation process, but also the earliest time
for starting. The deadline can only be met if both the com-
putation and the stage-in can be completed until this time.
Since providers are usually connected over high bandwidth
connections to the Internet, the bottleneck usually is the In-
ternet network connection of the customer. Knowing the
total amount of data that needs to be staged-in, he has to
estimate the time required for transferring it over the Inter-
net. The earliest point for starting the job is the time where
the SLA has been committed (i. e. when the stage-in process
could start) plus the total transfer time.

As long as the schedule has sufficient free space, the job
may directly start after the estimated duration of the stage-in
process. Overestimating the time for stage-in is uncritical,
because this would only result in having the data available
at RMS side earlier than expected. In contrast, if the user
underestimated the stage-in time, the RMS is unable to start
the job at the planned time. This directly threatens the ful-
fillment of the deadline, if the runtime is estimated correctly
and there is no buffer between the planned end of the job
and the deadline. The RMS has two options to handle such
a situation, differing significantly in their demands on sys-
tem management:

1. keeping the partition available for the job, waiting the start
until stage-in is completed

2. assigning other waiting jobs to the pending job’s re-

sources, executing the pending job as soon as stage-in is
completed

The first option does not require any specific RMS mech-
anisms, since the nodes of the pending job’s partition simply
remain idle. As soon as the stage-in process has been com-
pleted, the RMS starts the job. Even if this option is sim-
ple and easily manageable, it has two major disadvantages.
First, the job is in danger of not finishing until the planned
end, since the allocation time (i.e. the estimated runtime)
is running while nodes are idle. Secondly, the overall clus-
ter utilization is impacted, because nodes run idle instead of
computing jobs.

The second option solves both of these problems, since
nodes are used for computing other jobs and allocation time
only starts when stage-in is completed. However, this option
demands the system to support preemption of jobs. For this,
we again use the checkpointing mechanisms developed in
the HPC4U project. Since this solution provides transparent
checkpointing for parallel applications, we are able to real-
ize preemption for parallel jobs. For preempting a job, the
job is first checkpointed and then stopped.

If other jobs are started in the partition of the pending job,
these jobs have to be preempted. The scheduler is now able
to rebuild the schedule after:

e subtracting the already executed runtime of the preempted
jobs from their estimated runtime.

e setting the end of node allocation to the minimum of spec-
ified deadline and current time plus estimated job runtime.

This way, the job would have its entire estimated runtime
available, as long as the delay in stage-in is not larger than
the original buffer between end of computation and dead-
line. It has to be noted, that the deadline compliance of the
preempted jobs is not endangered, because they already ex-
ecuted the time that they now get started later.

Accepting or Rejecting New Job Requests

In the previous sections it has been outlined how the de-
mands on scheduling and system management increase with
demands coming from deadline support or Grid interface.
However, the general procedure of accepting or rejecting
new job requests remains the same.

If a resource request is submitted to the RMS, the sched-
uler tries to build a new valid schedule that contains this new
request. In case the scheduler succeeds, e. g. if the deadline
of the new job can be realized without violating any other
Fix-Time resource request or deadline bound Var-Time re-
quest, the new request is accepted by the system.

Related Work

The worldwide research in Grid computing resulted in nu-
merous different Grid packages. Beside many commodity
Grid systems, general purpose toolkits exist such as Uni-
core (UNICORE Forum e.V.) or Globus (Globus Alliance:
Globus Toolkit). Although Globus represents the de-facto
standard for Grid toolkits, all these systems have proprietary
designs and interfaces. To ensure future interoperability of
Grid systems as well as the opportunity to customize instal-
lations, the OGSA (Open Grid Services Architecture) work-
ing group within the OGF aims to develop the architecture
for an open Grid infrastructure (GGF Open Grid Services
Architecture Working Group (OGSA WG) 2003).

In (Jeffery (edt.) 2004), important requirements for the
Next Generation Grid (NGG) were described. Among those
needs, one of the major goals is to support resource-sharing
in virtual organizations all over the world. Thus attract-
ing commercial users to use the Grid, to develop Grid en-
abled applications, and to offer their resources in the Grid.
Mandatory prerequisites are flexibility, transparency, relia-
bility, and the application of SLAs to guarantee a negotiated
QoS level.

An architecture that supports the co-allocation of multi-
ple resource types, such as processors and network band-
width, was presented in (Foster ef al. 1999). The Globus
Architecture for Reservation and Allocation (GARA) pro-
vides “wrapper” functions to enhance a local RMS not ca-
pable of supporting advance reservations with this function-
ality. This is an important step towards an integrated QoS
aware resource management. In our paper, this approach is
enhanced by SLA and monitoring facilities. These enhance-
ments are needed in order to guarantee the compliance with
all accepted SLAs. This means, it has to be ensured that the
system works as expected at any time, not only at the time a
reservation is made. The GARA component of Globus cur-
rently does neither support the definition of SLAs or mal-

leable reservations, nor does it support resilience mecha-
nisms to handle resource outages or failures.

The requirements and procedures of a protocol for nego-
tiating SLAs were described in SNAP (Czajkowski et al.
2002). However, the important issue of how to map, im-
plement, and assure those SLAs during the whole lifetime
of a request on the RMS layer remains to be solved. This
issue is also addressed by the architecture presented in this
paper.

The Grid community has identified the need for a stan-
dard for SLA description and negotiation. This led to the
development of WS-Agreement/-Negotiation (Andrieux et
al. 2004).

Conclusion and Future Work

Introducing SLA-awareness is a mandatory prerequisite for
the commercial update of the Grid. Consequently SLA-
awareness also has to be introduced to local resource man-
agement systems which are currently operating on a best-
effort approach. The EC-funded project HCP4U aims at pro-
viding an application-transparent and software-only solution
of such an SLA-aware RMS, demanding for reliability and
fault tolerance. The HPC4U system already allows the Grid
user to negotiate on new SLAs, which will be realized by
means like process-, network,- and storage-checkpointing.

In this paper we have described the requirements of vari-
ous job types and their demands on an SLA-aware schedul-
ing. In particular we addressed the implications of a Grid in-
tegration on the scheduling policies. The described schedul-
ing rules have been implemented within the OpenCCS re-
source management system, which is used in the HPC4U
project. Benefiting from the mechanisms of checkpointing
and restart, the scheduler has proved to be well suited for ex-
ecuting jobs to their negotiated SLAs. Presuming that spare
resources are not allocated by other SLA bound jobs, the
system is able to cope with resource outages, fulfilling the
SLAs of all jobs. Thanks to the transparent checkpointing
capabilities, these mechanisms also apply for the execution
of commercial applications, where no source code is avail-
able and recompiling or relinking is not possible. The user
even does not have to modify the way of executing the job
in the Grid. Hence, HPC4U reached its goal of providing
transparent fault tolerance.

However, the availability of spare resources proved to be
the limiting factor at restart time. If all resources of the clus-
ter system are allocated by SLA bound jobs, the system has
no means of restarting the failure affected job, thus violating
the terms of its SLA.

Improving this situation is subject of currently ongoing
work. Firstly, the notion of buffer nodes is introduced to the
SLA-aware scheduler. These buffer nodes may only be used
for executing best-effort jobs, so that outages either affect
these buffer nodes or running best-effort jobs can be dis-
placed by SLA-bound jobs that are affected by the resource
outage. Secondly, the checkpoint and restart mechanisms
will be used for suspending the execution of running jobs
with respect to their SLA, thus freeing allocated resources
for restarting outage affected jobs. Thirdly, the scheduler
will actively select jobs for migration over the Grid, so that

they can be finished on remote resources according to their
SLA.

The scheduler is also the fundament for work done in
the EC-funded project AssessGrid. Here, the notion of risk
awareness and risk management is introduced into all layers
of the Grid. This implies that the scheduler of the RMS has
to consider risks of SLA violations in all scheduling deci-
sions.

References

Andrieux, A.; Czajkowski, K.; Dan, A.; Keahey,
K.; Ludwig, H.; Nakata, T.; Pruyne, J.; Rofrano, J;
Tuecke, S.; and Xu, M. 2004. Web Services Agree-
ment Specification (WS-Agreement). http://www.
gridforum.org/Meetings/GGF11/Documents/
draft—-ggf-graap—agreement.pdf.

Audsley, N. 1993. Deadline monotonic scheduling theory
and application. Control Engineering Practice 1:71-78.

Business Experiments in Grid (BelnGrid), EU-funded
Project. http://www.beingrid.eu.

Buttazzo, G. C., and Stankovic, J. 1993. Red: A robust ear-
liest deadline scheduling algorithm. In 3rd intl. workshop
on responsive computing systems.

Czajkowski, K.; Foster, I.; Kesselman, C.; Sander, V.;
and Tuecke, S. 2002. SNAP: A Protocol for Nego-
tiating Service Level Agreements and Coordinating Re-
source Management in Distributed Systems. In D.G. Feit-
elson, L. Rudolph, U. S. E., ed., Job Scheduling Strategies
for Parallel Processing, Sth InternationalWorkshop, Edin-
burgh,.

De Roure (edt.), D. 2006. Future for European Grids:
GRIDs and Service Oriented Knowledge Utilities. Techni-
cal report, Expert Group Report for the European Commis-
sion, Brussel.

Foster, 1.; Kesselman, C.; Lee, C.; Lindell, B.; Nahrstedt,
K.; and Roy, A. 1999. A Distributed Resource Manage-
ment Architecture that Supports Advance Reservations and
Co-Allocation. In 7th International Workshop on Quality
of Service (IWQoS), London, UK.

GGF Open Grid Services Architecture Working Group
(OGSA WG). 2003. Open Grid Services Architecture:
A Roadmap.

Globus Alliance: Globus Toolkit.
globus.org.

Highly Predictable Cluster for Internet-Grids (HPC4U),
EU-funded project IST-511531. http://www.hpcdu.
org.

Hovestadt, M.; Kao, O.; Keller, A.; and Streit, A.
2003. Scheduling in HPC Resource Management Systems:
Queuing vs. Planning. In Job Scheduling Strategies for
Parallel Processing: 9th International Workshop, JSSPP,
Seattle, WA, USA.

Jackson, D.; Snell, Q.; and Clement, M. 2001. Core
Algorithms of the Maui Scheduler. In D. G. Feitelson
and L. Rudolph., ed., Proceddings of 7th Workshop on

http://www.

Job Scheduling Strategies for Parallel Processing, vol-
ume 2221 of Lecture Notes in Computer Science, 87-103.
Springer Verlag.

Jeffery (edt.), K. 2004. Next Generation Grids 2: Require-
ments and Options for European Grids Research 2005-
2010 and Beyond. ftp://ftp.cordis.lu/pub/
ist/docs/ngg2_eg_final.pdf.

Keller, A., and Reinefeld, A. 2001. Anatomy of a resource
management system for hpc clusters. Annual Review of
Scalable Computing 3:1-31.

Liftka, D. A. 1995. The ANL/IBM SP Scheduling System.
In D. G. Feitelson and L. Rudolph., ed., Proc. of 1st Work-
shop on Job Scheduling Strategies for Parallel Processing,
volume 949 of Lecture Notes in Computer Science, 295—
303. Springer Verlag.

MacLaren, J. 2003. Advanced Reservations - State of the
Art. Technical report, GRAAP Working Group, Global
Grid Forum, http://www.fz-Jjuelich.de/zam/
RD/coop/ggf/graap/sched-graap—2.0.html.

Mu’alem, A., and Feitelson, D. G. 2001. Utilization,
Predictability, Workloads, and User Runtime Estimates in
Scheduling the IBM SP2 with Backfilling. In IEEE Trans.
Parallel & Distributed Systems 12(6), 529-543.

Open Grid Forum. http://www.ogf.org.
Pfister, G. 1997. In Search of Clusters. Prentice Hall.

Priol, T., and Snelling, D. 2003. Next Genera-
tion Grids: European Grids Research 2005-2010.
ftp://ftp.cordis.lu/pub/ist/docs/ngg_
eg_final.pdf.

Sahai, A.; Graupner, S.; Machiraju, V.; and van Moorsel,
A. 2002. Specifying and Monitoring Guarantees in Com-
mercial Grids through SLA. Technical Report HPL-2002-
324, Internet Systems and Storage Laboratory, HP Labora-
tories Palo Alto.

UNICORE Forum e.V. http://www.unicore.org.
Windisch, K.; Lo, V.; Feitelson, D.; and Nitzberg, B. 1996.
A Comparison of Workload Traces from Two Production

Parallel Machines. In 6th Symposium Frontiers Massively
Parallel Computing, 319-326.

An Enhanced Weighted Graph Model
for Examination/Course Timetabling

JulieR. Carrington”, Nam Pham', Rong Qu', Jay Yellen’

+

"Department of Mathematics and Computer Science, Rollins College
Winter Park, Florida, USA
{jcarrington, jyellen} @rollins.edu

"Automated Scheduling, Optimisation and Planning Research Group
School of Computer Science, University of Nottingham, Nottingham, UK
{nxp, rxq, jzy} @ cs.nott.ac.uk

Abstract

We introduce an enhanced weighted graph model whose
vertices and edges have severa attributes that make it
adaptable to a variety of examination and course time-
tabling scenarios. In addition, some new vertex- and col-
our-selection heuristics arise naturaly from this model,
and our implementation allows for the use and manipula
tion of various combinations of them aong with or sepa-
rate from the classical heuristics that have been used for
decades. We include a brief description of some prelimi-
nary results for our current implementation and discuss
the further development and testing of the ideas intro-
duced here.

I ntroduction

Background

Using graph colouring to model timetabling problems
has a long history (e.g., Broder 1964, Welsh and Powell
1967, Wood 1968, Neufeld and Tartar 1974, Brelaz
1979, Mehta 1981, and Krarup and de Werra 1982). Sev-
eral survey papers have been written on this topic (e.g.,
Schmidt and Strohlein 1980, de Werra 1985, Carter
1986, Schaerf 1999, Burke, Kingston, and deWerra
2004, and Qu et al. 2006).

In a standard graph representation for a timetabling prob-
lem, the events to be scheduled are represented by verti-
ces. A congtraint (conflict) between two events indicat-
ing that they should be assigned different time dots is
represented by an edge between the two corresponding
vertices. In our case, the events are exams (or courses)
and the constraints might be that some students are en-
rolled in both exams or the same professor is giving both
courses. Ideally, then, such exams (courses) would be
assigned different time dlots. If we associate each possi-
ble time dot with a different colour, then creating a con-
flict-free timetable is equivalent to constructing a feasi-
ble (or proper or valid) colouring of the vertices of the
graph, that is, a vertex colouring such that adjacent ver-
tices (two vertices joined by an edge) are assigned dif-
ferent colours.

Given that vertex colouring is NP-Hard (Papadimitriou
and Steiglitz 1982), the development of heuristics and
corresponding approximate algorithms, which forfeit the
guarantee of optimality, has been a central part of the
research effort.

Two events with a constraint between them are generally
prohibited from being assigned the same time dot, i.e.,
the edge represents a hard constraint. In some university
timetabling scenarios, another objective is to minimize
the number of students that have to take exams close
together (or courses far apart). This proximity restriction
isgenerally regarded as a soft constraint.

The weighted graph model introduced in 1992 (Kiaer
and Yellen 19924) was designed to handle timetabling
instances for which the number of available time sots
(colours) is smaller than the minimum needed to con-
struct a feasible colouring. (This minimum number is
called the chromatic number of the graph.) For instance,
in course timetabling, there islikely to be alimited num-
ber of time dots that can be used during the week, and a
conflict-free timetable may not exist. If conflicts are un-
avoidable, then a choice must be made on which ones to
accept.

Distinguishing among conflicts

Clearly, certain conflicts are worse than others. If two
exams (or courses) require the same professor to be pre-
sent or use the same equipment that cannot be shared,
then those two exams must not be scheduled at the same
time. On the other hand, if two exams happen to have
one student in common, then scheduling those two ex-
ams in the same time slot may need to be considered
acceptable. In fact, there may be situations where the
distinction between hard and soft constraints becomes
less clear. For instance, a timetable having a single stu-
dent scheduled to take two exams in the same time slot
(forcing some specia accommodation) may actually be
preferred to one that has 50 students taking back-to-back
exams.

Scope of Paper

This paper introduces an extension of the weighted graph
model of Kiaer and Yellen (1992a). This enhanced
model holds and keeps track of more of the information
relevant to the two sometimes opposing objectives —
minimizing total conflict penalty (or keeping it zero) and
minimizing total proximity penalty. A natural byproduct
of this approach is the emergence of some new heuristics
that appear to hold promise for their use, separately or in
combination, in fast, one-pass, approximate algorithms.

Such algorithms can prove useful in a number of ways.
Because solutions are produced quickly, they can be
used within a flexible, interactive decision-support sys-
tem that can be adapted to a variety of timetabling sce-
narios.

These solutions can aso be used as initial solutions in
local search and improvement based techniques, (e.g.,
Tabu Search, Simulated Annealing, Large Neighborhood
Search, Case-Based Reasoning), or as upper bounds for a
branch-and-bound algorithm (Kiaer and Yellen 1992b).
Recent research has demonstrated that these algorithms,
when hybridized effectively or integrated with other
technigues such as meta-heuristics, are highly effective
on solving timetabling problems (Qu et al. 2006).

Also, because the model lends itself to using various
combinations of heuristics for vertex and colour selec-
tion, it may prove useful in the context of hyper-
heuristics (Burke et a. 2003) and/or in an evolutionary
computation approach that might involve automatic gen-
eration of combinations and switching from one combi-
nation to another as the colouring progresses (see Burke
et al. 2007).

For an up-to-date survey that includes a broad overview
and extensive bibliography of the research in this areain
the last ten years (see Qu et al. 2006).

Description of the M odel

Although we restrict our attention for this paper to ex-
amination timetabling, our model is aso applicable to
course timetabling. Moreover, it incorporates more of the
problem information at input and keeps track of more
information pertaining to the partial colouring during the
colouring process than do existing timetabling models.
These features led us to the design of some new vertex-
and colour-selection heuristics, which we introduce in
this paper.

Each vertex in the graph corresponds to an exam to be
scheduled and each colour corresponds to a different
time dot. Accordingly, assigning colour c to vertex v is
taken to mean that the exam corresponding to v is sched-
uled in the time slot corresponding to c.

We represent various components of atypical instance of
an Examination Timetabling problem using a weighted
graph model. Each vertex and each edge are weighted
with several attributes, some that hold information from

10

the problem instance and others that hold and update
information that helps guide the colouring process.

Associated with each vertex is the set of students who
must take that exam. Two vertices are joined by an edge,
and are said to be adjacent or neighbors, if it is undesir-
able to schedule the corresponding exams in the same
time slot. Each edge carries information that tells us how
undesirable it would be for the corresponding exams to
be scheduled in the same time dot or in time slots near
each other. In particular, each edge has two attributes:
the set of students taking both exams (intersection sub-
set); and a positive integer indicating the conflict severity
if the exams are scheduled in the same time dlot. This
second attribute is currently tied to the size of the inter-
section subset. However, it can aso reflect factors not
tied to this intersection. For instance, if the same profes-
sor is assigned to both exams, then the severity is likely
to be set at ahigh level.

To illustrate our model, suppose there are four available
time dots, 0, 1, 2, and 3 for five exams, E1, E2, E3, E4,
and E5. The set of students taking each of the exams is
asfollows:

El {ab,...,j}
E2: {k I, ..., 2}
E3: {3 e k}

E4:{b,c,d,Xx,Yy, z}
E5: {aceq,i,j}

Each edge in the graph shown in Figure 1 has the subset
of students enrolled in both exams corresponding to the
endpoints of that edge.

In general it may be undesirable to assign the same time
slot (colour) to a given pair of exams for a variety of
reasons. For this example, however, we consider two
vertices to be adjacent only if thereis at least one student
taking both exams.

{a.e}

{xy.z}

Figure 1: Student intersections for pairs of exams.

For our example, we set the conflict severity equal to 1,
5, or 25, according to the size of the intersection. In par-
ticular, we set the conflict severity to 1 if the intersection
sizeislor 2,to5if theintersection sizeis3 or 4, and to
25 if the intersection size is 5 or greater (see Figure 2).
We emphasize that these thresholds for conflict severity
are arbitrarily chosen here. If a conflict-free timetable is
arequirement, asit isin the University of Toronto prob-
lem instances (Carter, Laporte, and Lee 1996), then all

conflict severities can simply be set to one since al con-
flicts are regarded as equally bad.

Of course, as mentioned, there will be many situationsin
which the conflict severity depends on other factors. In
these situations, an edge might exist even when it corre-
sponds to an empty intersection of students.

[conflictSeverity, intersectionSize]

[5, 3]
Figure 2: Additional edge attributes.

The proximity penalty of assigning colours ¢j and ¢; to
the endpoints of an edge is a function of how close c;
and c; are and the size of the intersection. For the To-
ronto problem instances, where the time dots are simply
¢ =i,i=0,1,..., theintersection size is multiplied by a
proximity weight that equals 2°™ when |i — j|<5 and
0, otherwise. Our implementation uses this same evalua-
tion for comparison purposes with the Toronto bench-
mark results. However, if the time dlots are specified by
aday, astart time, and a duration, then our colour attrib-
utes can easily be modified to allow for the appropriate
change in the proximity evaluation function.

Our overall objective is to produce colourings (timeta-
bles) with minimum total conflict (zero may be required)
and minimum total proximity penalty.

Knowing the conflict severity and size of the intersection
for each edge makes it straightforward to keep track of
the two kinds of penalties as the colouring progresses.
When a vertex gets coloured c, that colour becomes less
desirable (or forbidden) to its neighbors, as do coloursin
proximity with colour c.

Our model keeps track of these two kinds of colour un-
desirability as follows. Each vertex v has a colour-
penalties vector that indicates the undesirability of as-
signing each colour to that vertex with respect to conflict
penalty and proximity penalty. That is, the component of
the colour penalties vector corresponding to colour ¢ has
two values, one is the conflict penalty incurred if v is
coloured ¢, and the other is the resulting proximity pen-
alty.

Using our example and a simplified proximity function,
we illustrate how the colour-penalties vectors change as
the graph is coloured. Suppose that any two coloursi and
j of the colours 0, 1, 2, and 3 are within proximity if they
differ by 1, then the proximity penalty incurred when the
colours of the endpoints of an edge differ by 1 equals the
intersection size. Suppose further that the colour-

11

penalties vectors for al of the vertices are initialized
with [0, O] for al of their colour components. Figure 3
shows the result of colouring vertex E1 with colour 1.

(10,2], [1,0], [0,2], [0,0]) ([0,6], [25,0], [0,6], [0,0])

(1, 2]

[5.3]

&

(10,01, [0,0], [0,0], [0,01)
Figure 3: Colour-penalties vectors after E1 is coloured 1.

([0.3], [5.01, [0,3], [0,0])

There may be other factors that make certain time slots
undesirable for an individual exam. For instance, if pro-
fessor X isassigned to exam A and cannot be on campus
before noon. So any colour corresponding to a morning
time slot for exam A would be given a prohibitively
large conflict penalty value before the colouring begins.

As each vertex is coloured, its adjacent vertices colour-
penalties vectors are updated. The ease with which we
are able to keep track of both hard and soft constraints as
the colouring progresses creates new opportunities for
the use of more sophisticated heuristics tied to this read-
ily accessible information.

The Basic Approximate Algorithm

Our basic algorithm consists of two steps, select a vertex
and then colour that vertex. We repeat these two steps
until al vertices are coloured. Notice that while our
model will easily accommodate more computation-
intensive algorithms involving backtracking, local im-
provement, etc., we chose for this first phase of our re-
search to concentrate on producing fast, essentially one-
pass colourings.

Summary of the Model Featuresand Parameters

In preparation for the next section’s discussion of heuris-
tics, we list the key features and parameters on which the
heuristics are based. The two edge attributes, conflict
severity and intersection size, give rise to two different
versions of the traditional concept of weighted degree of
avertex.

e Conflict severity (of an edge) — a measure of how
undesirable it is to assign the same colour to both
endpoints of the edge. In general, this would depend
on severa factors, and it could be set interactively by
the end-user.

» Intersection size (of an edge) — the size of the inter-
section of the two sets corresponding to the endpoints
of the edge. In exam timetabling, this is simply the
number of students taking both exams.

« Conflict degree (of avertex) —the sum of the conflict
severities of the edges incident on the vertex.

e Intersect degree (of a vertex) — the sum of the inter-
section sizes of the edges incident on the vertex.

» Bad-conflict edge — an edge whose conflict severity
exceeds a specified threshold value. If a conflict-free
timetable (i.e., a feasible colouring) is required, then
this threshold is set to zero, as we do for the Toronto
problem instances.

e Bad-intersect edge — an edge whose intersection size
exceeds a specified threshold. In our current imple-
mentation, this threshold is a function of the average
of the intersection sizes of all edges; specifically, we
use the average intersection size times some constant
multiplier.

e Conflict penalty (for the colour assignment of a ver-
tex) — a measure of how undesirable it is to assign
that colour to the vertex. This will depend on the col-
our assignments of the vertex’s neighbors and the
conflict severities of the relevant edges, but it could
also depend on other factors (e.g., professor, room, or
equipment constraints).

* Proximity (of two colours) — a measure of how close
together (in the case of exam timetabling) or spread
apart (for course timetabling) the two colours are.
This is often a secondary objective to optimize in
school timetabling and is typically referred to as a
soft constraint.

* Proximity penalty (for the colour assignment of a
vertex) — the sum of the proximity penalties resulting
from that colour assignment and the colour assign-
ments of all neighbors of that vertex (determined by
the function described immediately following Figure
2).

» Colour-penalties vector (of a vertex) — indicates for
each colour the conflict penalty and proximity pen-
alty of assigning that colour to the vertex. When a
vertex is coloured, the colour-penalties vector of each
of that vertex’s neighbors must be updated accord-
ingly.

» Bad-conflict colour (for a vertex) — a colour whose
conflict penalty for that vertex exceeds some speci-
fied threshold (also set to zero for the Toronto in-
stances since feasible colourings are required).

e Bad-proximity colour (for a vertex) — a colour whose
proximity penalty for that vertex exceeds some speci-
fied threshold. Similar to the bad-intersect-edge
threshold, we use average intersection size times a
(possibly different) constant multiplier.

The thresholds for badness are easily adaptable to the
requirements of the problem, and, in a decision support
system, they could be specified by the end-user interac-
tively. Part of this ongoing research is to study the effect
that the values of the thresholds have on the quality of
the solution and to identify features of a problem in-
stance that determine that effect.

Heuristics

Vertex selection and color selection are the two key
components of our simple, constructive algorithm, and
our strategies for both are flexible in the varied ways
they use new heuristics and variations of the traditional

12

ones. Our current implementation uses 10 ‘primitive
heuristics for selecting the next vertex to be coloured and
four to select a colour for that vertex.

Ten Primitive Vertex-Selection Heuristics

Our colouring strategies are based on the classical and
intuitive idea that the most troublesome vertices should
be coloured first. Some of the commonly used heuristics
based on this idea have been largest saturated degree,
largest degree, and largest weighted degree.

We use variations of these, and we introduce some new
ones that focus more on the number of bad edges and the
number of bad colours. Some of these new heuristics rely
on the information kept in each vertex’s colour-penalties
vector, while others use information tied to the edges
incident on each vertex. The primitive heuristics on
which our vertex selectors are based are:

0. Maximum number of bad-conflict edges to uncol-
oured neighbors — vertices having the most bad-
conflict edges among their incident edges to uncol-
oured neighbors.

1. Maximum number of bad-conflict colours — vertices
having the most bad-conflict colours. For the Toronto
data set, this heuristic reduces to largest saturation
degree.

2. Maximum number of bad-proximity colours — verti-
ces having the most bad-proximity colours.

3. Maximum conflict sum — vertices with the largest sum
of their conflict colour penalties.

4, Maximum proximity sum — vertices with the largest
sum of their proximity colour penalties.

5. Maximum conflict degree to uncoloured neighbors —
vertices whose incident edges to uncoloured
neighbors have the largest sum of the conflict sever-
ities.

6. Maximum number of bad-conflict edges — vertices
having the most bad-conflict edges among their inci-
dent edges. For the Toronto data set, this reduces to
largest degree (since every edge is considered a bad-
conflict edge).

7. Maximum number of bad-intersect edges to uncol-
oured neighbors — vertices having the most bad-
intersect edges among their incident edges to uncol-
oured neighbors.

8. Maximum intersect degree to uncoloured neighbors—
vertices whose incident edges to uncoloured
neighbors have the largest sum of the intersection
sizes.

9. Maximum number of bad colours— a consolidation of
heuristics 1 and 2; a bad colour is one whose conflict
penalty or whose proximity penalty exceeds its re-
spective threshold.

Observe that heuristic 7 may be better at evaluating the
difficulty of a vertex than its sum counterpart, heuristic
8. Toillustrate, suppose that the edge weightsin Figure 4
represent intersection size and that all neighbors of verti-
ces vl and v2 are uncoloured. Then heuristic 8 would
select v1, whereas, for any bad-intersect-edge threshold
greater than one, heuristic 7 would select v2, which ap-

pears to be more difficult. A similar observation can be
made for heuristic 2 versus heuristic 4.

Figure 4: Heuristic 8 would select v1 before v2.

Four Primitive Colour-Selection Heuristics

Given a vertex v that has been selected, the primitive
heuristics that we use to choose a colour for v are:

0. Minimum conflict penalty — a colour that has mini-
mum conflict penalty for vertex v.

1. Minimum proximity penalty —a colour that has mini-
mum proximity penalty for vertex v.

2. Least bad for neighbors with respect to conflict pen-
alty — a colour which when assigned to v causes the
fewest good-to-bad conflict penalty switches for the
uncoloured neighbors of v.

3. Least bad for neighborswith respect to proximity
penalty — same as heuristic 2 but with respect to
proximity penalty.

Combining Heuristics

One of the innovations of our model and implementation
is the ability to combine any number of the primitive
heuristics to form compound vertex selectors and com-
pound colour selectors. A compound vertex selector
starts with one of the 10 primitive vertex-selection heu-
ristics listed above. Typically there will be several verti-
ces identified as the most difficult with respect to that
heuristic. This subset of vertices is then narrowed down
by applying a second primitive heuristic, and so on.
Thus, a compound vertex selector consists of a sequence
of primitive heuristics, where al but the first one in the
sequence, is regarded as atiebreaker for the ones before
it. Once the subset of verticesis pared down by the com-
bination of heuristics, some vertex is chosen from the
subset (typically the first one in the list). Compound col-
our selectors are similarly constructed from the four
primitive colour-selection heuristics listed above.

Switching Selectorsin the Middle of a Coloring

Another feature of our model isthe ability to switch from
one combination of heuristics to another at various stages
of the colouring. Including this feature was motivated by
the general observation that the effectiveness of a heuris-
tic is likely to change as the colouring progresses. The
primitive vertex-selection heuristic 1 is perhaps the sim-
plest illustration of this behavior. As we mentioned ear-
lier, this heuristic is essentialy the traditional saturation
degree, which has proven to be among the most preferred
heuristics for classical graph colouring. However, apply-
ing heuristic 1 in the very early stages of a colouring will
produce a huge number of ties. Moreover, early in a col-

13

ouring, the only vertices with any bad-conflict col-
ourswill tend to be those few that have neighbors that
have aready been coloured. Thus, until several vertices
are coloured, the order in which they are selected will
tend toward a simple breadth-first order and not be an
effective predictor of the difficult-to-colour vertices.

Accordingly, the compound vertex selectors used early
in the colouring process begin with a primitive heuristic
based on the weights of incident edges (e.g., heuristic 0).
Then, after a designated number of vertices have been
selected and colored, we switch to a compound selector
that begins with heuristic 1 when it is more likely to be a
stronger predictor of the difficulty of avertex.

Vertex Partitioning

A fina innovation involves a preprocessing step that
partitions the vertex set and allows us to reduce the
amount of computation without incurring additional con-
flict penalties. The preprocessing is based on the follow-
ing simple observation. If v is a vertex with degree less
than k, and v initially has k colours available, then v can
safely be left until last to colour, since it will aways
have at least one non-conflict colour available, inde-
pendent of how its neighbors are coloured and how
heavy the edge-weights are between v and its neighbors.

The preprocessing uses an iterative partitioning algo-
rithm that places all vertices whose colouring can be
done last into the easiest-to-colour subset, say S;. Next,
for each vertex in S, we calculate a reduced (quasi-)
degree of each of its neighbors and put all vertices whose
reduced degree is less than the number of colours avail-
able into the next-easiest-to-colour subset, S,. Again, as
long as a vertex in Sy is coloured before any of its
neighborsin Sy, it can safely be left uncoloured until its
other neighbors are coloured. The process continues until
no additional vertices can be removed from
the ‘hardest’ subset and the vertices in that last subset of
the partition must be coloured first using the specified
selection criteria.

As long as the subsets are done in order (last to first),
vertices in all subsets except for the hardest one can be
selected arbitrarily with no possibility of incurring a con-
flict penalty. One simply chooses an available colour,
whose existence is guaranteed by the construction. Thus,
in afairly sparse graph, computation can be considerably
reduced. Notice that because any penalties that result
from the colouring occur in the process of colouring the
hardest cell, any local improvement algorithms could be
applied only to that set of vertices before moving on to
colour the rest of the graph, again without incurring addi-
tional penalties at alater stage.

Another potential advantage to this partitioning strategy
is that the vertex-selection process after the hardest sub-
set has been coloured can be based solely on proximity
considerations.

Some Preliminary Results

We present the preliminary results of applying our ap-
proach on the Toronto benchmarks, which is available at
ftp://ftp.mie.utoronto.ca/publ/carter/testprob/. This dataset
was first introduced in (Carter, Laporte, and Lee 1996),
and since then has been extensively studied using a wide
range of agorithms in the literature. We set the number
of colors equal to the number of time dotsin the Toronto
dataset. Due to the fact that two versions of the datasets
have been circulated under the same name in the last ten
years, we have renamed the problemsin (Qu et a. 1996).
We used version | of the datain our experiments.

Testing is ongoing and much more needs to be done.
However, we can make some initial observations.

Table 1 presents the best results we have obtained so far.

Although we haven't fully tested it yet, partitioning ap-
pears to improve solution quality most of the time. Ex-
cept for the “sta83 1" problem instance, al results in col-
umn 2 of the table were produced using the partitioning
pre-processing.

We obtained them using the following two groups of
three compound vertex selectors:

vsl:078124|102478|2478
vs2:07894|907824|2478

The numbers refer to the primitive vertex-selection heu-
ristics introduced earlier, and the vertical lines separate
the three compound selectors that form each group. The
first compound selector in a group is applied to the hard-
est subset until a designated fraction (the switch fraction)
of the vertices have been selected and coloured. Then the
second compound selector is applied to the rest of the
hardest subset. Finally, the third selector, which consists
of the four proximity-related primitive heuristics, is ap-
plied to the remaining (non-hard) vertices.

We used the following two groups of two compound
color selectors:

cs0:0123]013
csl:0231|031

The first compound selector in each group was applied to
the entire subset of hardest-to-color vertices, and the
second one was applied to the rest of the vertices.

As we described earlier, the thresholds for a bad-
proximity color and a bad-intersect edge were set equa
to the average intersection size times two different con-
stant multipliers. In the table, PC is the multiplier for the
bad-proximity color, and IE is the one for the bad-
intersect edge.

The Settings column gives the values of the switch frac-
tion and the multipliers, PC and IE, and indicates the
vertex and color selectors used to produce the given re-
sult.

14

Problem Best _ Settings Best
results switch |PC | IE |vs|cs | reported
car9l | 5.22 1/23]90|1|vs2|cs0 4.97
car92 | 4.40 1/13|126|2|vs2 | cs0 4.32
ear83 | 39.28 | 1/5.2]1155]1,2|vs2|cs0 36.16
hec92 | 12.35 1/5]16]1,2|vsl|csO 10.8
kfu93 | 19.04 1/14]1134]1,2|v2 | cs0 14.0
1se91 12.05 1/32]1192]1,2|vs2 | cs0 10.5
rye92 10.21 1/281133.5]2|vs2 | cs0 7.3
sta83 | 163.05 1/26.5|81|1|vs2|csl 158.19
tre92 8.62 1/39 20720 |vs2 | cs0 8.38
ute92 3.62 1/16|50] 1,2 | vsl | cs0 3.36
utad? | 30.60 1/51369]1,2]vs2|csl 25.8
yor83 | 42.05 1/17]340|2|vs2 | cs0 39.8

Table 1. Best results with the corresponding settings for To-
ronto benchmarks.

Results from Table 1 demonstrate that for vertex selec-
tion, vs2 outperforms vsl; 10 of the 12 best results were
achieved using vs2. Changing threshold values for bad-
ness and changing the switch point between the first and
second compound vertex selector clearly affect the per-
formance of our algorithm.

In Table 1, we also gave the best results reported in the
literature which used different constructive methods.
Although our totals for proximity penalty are, on the
average, 13% worse than the best ones reported, we be-
lieve our approach still holds promise, particularly in
view of thefact that it is, at the moment, a one-pass algo-
rithm without any backtracking or local improvement.
The best results reported in the last column were by dif-
ferent approaches cited in the literature. No single algo-
rithm outperformed others on all problems tested here.

In general, these preliminary results indicate that the
performance of the algorithm is sensitive to the settings
of the switch points and thresholds. Although we have
some initial observations on which settings perform bet-
ter on which Toronto problems, the setting of these pa-
rameters in relation to particular problems is not clear.
More research effort needs to be spent to develop more
intelligent mechanisms to adaptively choose these set-
tings for different problems.

One of our future directions isto use heuristics to choose
how to construct the combinations of heuristics. This
hyper-heuristic approach (see Burke et a. 2003) has
been applied successfully in a range of scheduling and
optimization problems, including timetabling. It is well
known in meta-heuristics research that different heuris-
tics perform better on different problems, or even differ-
ent instances of the same problem. One of the research
challenges is concerned with the automatic design of
heuristics in solving a wider range of problems. Devel-
oping an automatic algorithm that can intelligently oper-
ate on a search space of vertex and colour selectors,
switch point selectors and threshold settings will become
one of our primary research effortsin the future.

Features of the Model Not Being Used Yet

There are some features of our model not used in our
current implementation that add to its robustness.

Our model can handle pre-colored vertices, that is, ex-
ams that must be assigned to certain time sots. Further-
more, if certain time dots are forbidden for a particular
exam (for example, the professor is only available on
certain days and times), then this can easily be handled
by setting an initia nonzero penalty for the relevant
color.

As we noted earlier, each color, which represents a time
dot, can have attributes associated with fairly general
information, like start time, duration and/or finish time.
For this paper we used only a single attribute, an integer
value between zero and the maximum number of time
dotsin use, since we were testing our implementation on
the Toronto benchmark problems.

Ongoing and Future Work

The robust model presented in this paper can be easily
extended or integrated with other techniques to develop
more advanced and powerful algorithms. We give below
some possible (and ongoing) research directions.

» Study the effects of varying the switch points, the
badness threshold values, and the use of different
heuristic combinations. In the context of hyper-
heurigtics, there are a number of different search
spacesto consider:

0 The set of all the combinations of one or more of
the primitive vertex selectors and of the color-
selectors.

o For agiven group of compound vertex selectors,
the set of all switch points.

o For agiven group of compound vertex selectors,
the set of threshold values for badness.

» In the context of case-based reasoning, test heuristic
combinations, thresholds, and switch points with ran-
domly generated problem instances that are in the
Toronto format to see if certain performance patterns
emerge. Previous work on using case-based reason-
ing (see Burke, Petrovic and Qu, 2006) to intelli-
gently select graph colouring heuristics demonstrated
that there are significant, wide-ranging possibilities
for research in knowledge-based heuristic design.

» Adding a backtracking component to the algorithm is
likely to lower the total proximity penalty. For in-
stance, when every colour assignment for a selected
vertex incurs a proximity penalty above some thresh-
old, the algorithm un-colours or re-colours some
other vertex in order to reduce the selected vertex’'s
proximity penalty.

* Write an improvement method that takes a given col-
ouring produced by our algorithm and looks for ver-
tices whose colours can be changed to decrease the
total proximity penalty while maintaining feasibility.

* With the current implementation, we have not yet
made full use of the varying conflict severity of

15

edges, nor have we alowed any trade-off between
conflict penalty and proximity penalty. In timetabling
situations where conflicts must be tolerated, the end-
user might specify that a certain amount of conflict
penalty is equivalent to a certain amount of proximity
penalty, e.g., a proximity violation involving 50 stu-
dents equals a conflict involving one student. This
might lead naturally to a single objective function to
be minimized.

« As we mentioned at the start, the model can be
adapted to a variety of scenarios, in which a number
of parameters would be specified interactively by the
end user through an appropriate interface. Follow-up
work will include building such an interface.

Acknowledgements

The research for this paper was supported by Nottingham
University, UK, the Engineering and Physics Science
Research Council (EPSRC), UK, and an Ashforth Grant
from Rollins College, USA.

References

Broder, S., Fina Examination Scheduling, Comm. of the
ACM 7 (1964), 494-498.

Brelaz, D., New methods to color the vertices of a graph.
Comm. of the ACM 22 (1979), 251-256.

Burke, E.K., Hart, E., Kendall, G., Newall, J., Ross, P.
and Schulenburg, S.: Hyperheuristics. an Emerging Di-
rection in Modern Search Technology. In: Glover, F. and
Kochenberger, G.: Handbook of Metaheuristics, 457-
474, 2003.

Burke, E. K., Kingston, J. H., and de Werra, D., Applica-
tions to Timetabling, In: J. L. Gross and J. Yellen (eds.)
The Handbook of Graph Theory, Chapman Hall/CRC
Press, (2004), 445-474.

Burke, E.K., McCollum, B., Meisdls, A., Petrovic, S. and
Qu, R.: A Graph-Based Hyper Heuristic for Timetabling
Problems. European Journal of Operational Research,
176 (2007) 177-192.

Burke, E.K., Petrovic, S., and Qu R., Case Based Heuris-
tic Selection for Timetabling Problems. Journal of
Scheduling, 9 (2006) 115-132.

Carter, M. W., A Survey of Practical Applications of
Examination Timetabling Algorithms, Operations Re-
search 34 (1986), 193-201.

Carter, M. W., Laporte, G., and Lee, S., Examination
Timetabling: Algorithmic Strategies and Applications, J.
of the Operations Research Society 47 (1996), 373-383.

de Werra, D., An Introduction to Timetabling, Euro. J.
Oper. Res. 19 (1985), 151-162.

Kiaer, L., and Yélen, J., Weighted Graphs and Univer-
sity Timetabling, Computers and Operations Research
Vol. 19, No. 1 (1992a), 59-67.

Kiaer, L., and Yellen, J., Vertex Coloring for Weighted
Graphs With Application to Timetabling, Technical Re-
port Series— RHIT, MS TR 92-12 (1992b).

Krarup, J.,, and de Werra, D., Chromatic Optimisation:
Limitations, Objectives, Uses, References, Euro. J. Oper.
Res. 11 (1982), 1-19.

Mehta, N. K., The Application of a Graph Coloring
Method to an Examination Scheduling Problem, Inter-
faces 11 (1981), 57-64.

Neufeld, G. A. and Tartar, J., Graph Coloring Conditions
for the Existence of Solutions to the Timetable Problem,
Comm. of the ACM 17 (1974), 450-453.

Papadimitriou, C. H. and Steiglitz, K., Combinatorial
Optimization: Algorithms and Complexity, Prentice-
Hall, 1982.

Qu, R., Burke, E.K., McCollum, B., Merlat, L. T. G.,
and Lee, S. Y., A survey of Search Methodologies and
Automated Approaches for Examination Timetabling,
Technical Report, NOTT-CS-TR-2006-4 (2006).

Schaerf, A., A Survey of Automated Timetabling, Artifi-
cid Intelligence Review 13 (1999), 87-127.

Schmidt, G., and Strohlein, T., Timetable Construction--
an Annotated Bibliography, The Computer Journa 23
(1980), 307-316.

Welsh, D. J. A., and Powell, M. B., An Upper Bound for
the Chromatic Number of a Graph and its Application to
Timetabling Problems, The Computer Journal 10 (1967),
85-86.

Wood, D. C., A System for Computing University Ex-
amination Timetables, The Computer Journal 11 (1968),
41-47.

16

A Multi-Component Framework for Planning and Scheduling Integration

Amedeo Cesta, Simone Fratini and Federico Pecora
ISTC-CNR, National Research Council of Italy
Institute for Cognitive Science and Technology
Rome, Italy
{name.surname} @istc.cnr.it

Abstract

This paper presents our recent work on OMPS, a new
timeline-based software architecture for planning and
scheduling whose features support software development for
space mission planning applications. The architecture is
based on the notions of domain components and is deeply
grounded on constraint-based reasoning. Components are en-
tities whose properties may vary in time and which model one
or more physical subsystems which are relevant to a given
planning context. Decisions can be taken on components, and
constraints among decisions modify the components’ behav-
iors in time.

Introduction

This paper describes OMPS, the Open Multi-component
Planning and Scheduling architecture. OMPS implements
a timeline-driven solving strategy. The choice of using
timelines lies in their suitability for real-world problem
specifications, particularly those of the space mission plan-
ning context. Furthermore, timelines are very close to the
operational approach adopted by human planners in cur-
rent space mission planning. Previous timeline-based ap-
proaches have been described in (Muscettola ef al. 1992;
Muscettola 1994; Cesta & Oddi 1996; Jonsson et al. 2000;
Frank & Jénsson 2003; Smith, Frank, & Jonsson 2000). We
are evolving from our previous work on a planner called
OMP (Fratini & Cesta 2005) in which we have proposed a
uniform view of state variables and resources timelines to in-
tegrate Planning & Scheduling (P&S). While the OMP ex-
perience lead to a proof of concept solver for small scale
demonstration, the current development of OMPS is taking
place within the Advanced Planning and Scheduling Initia-
tive (APSI) of the European Space Agency (ESA). This has
lead to a a substantial effort both in re-engineering and in
extending our previous work.

The general goal in OMPS is to provide a development
environment for enabling the design and implementation
of mission planning decision support systems to be used
by ESA staff. OMPS also inherits our previous experi-
ence in developing planning and scheduling support tools
for ESA, namely with the MEXAR, MEXAR2 and RAXEM
systems (Cesta et al. 2007), currently in active duty at ESA’s
control center. Our aim within APSI is to generalize the ap-
proach to mission planning decision support by creating a

17

software framework that facilitates product development.

The OMPS architecture is not only influenced by
constraint-based reasoning work, but introduces also the no-
tion of domain components as a primitive entity for knowl-
edge modeling. Components are entities whose properties
may vary in time and which model one or more physical sub-
systems which are relevant to a given planning context. De-
cisions can be taken on components, and constraints among
decisions modify the components’ behaviors in time. Com-
ponents provide the means to achieve modular decision sup-
port tool development. A component can be designed to
incorporate into a constraint-based reasoning framework en-
tire decisional modules which have been developed indepen-
dently. The underlying philosophy of OMPS is to provide a
development environment within which different, indepen-
dently developed reasoning modules can be integrated seam-
lessly. It is useful to see a component as an entity having
both static and dynamic aspects. Static descriptions are used
to describe “what a component is”, e.g., the static property
of a light bulb is that it can be “on” or “off”. Dynamic prop-
erties are instead those features which define how the static
properties of the component may vary over time, e.g., a light
bulb can go from “on” to “off” and vice-versa.

It is tempting to associate components to the concept
of state variable a la HSTS (Muscettola et al. 1992;
Muscettola 1994). The reason for not doing so is that a state
variable models an entity with static properties. The way this
entity can change over time is typically specified through
constraints on the possible transitions and durations of the
states (e.g., through a timed automaton). A component as we
define it here represents a more general concept: its behavior
over time can be determined by non-trivial reasoning which
is internal to the component itself. This distinction is impor-
tant, as it provides a way to seamlessly incorporate into the
OMPS reasoning framework objects which are themselves
capable of modifying their behavior according to non-trivial
processes, such as sophisticated reasoning algorithms.

This paper is organized as follows. First, we define the
basic building block, namely the component, providing ex-
amples which show how such an entity can be instantiated
to represent a “classical” state variable, a resource, or even
a more complex object whose temporal behavior can be de-
scribed according to its own “internal dynamics”. Second,
we describe the notion of decision on a component. Again,

we provide examples to show how this concept is instan-
tiated on different common types of components. Third,
we introduce the concepts of timeline and domain theory,
the former providing the driving feature of the solving ap-
proach, the latter describing how components interact, and
how decisions taken on components affects other compo-
nents. Finally, we briefly illustrate the solving strategy im-
plemented in the current OMPS framework and provide an
example. It is worth saying that this paper describes the gen-
eral approach underlying the OMPS architecture. We do not
dwell on the theoretical aspects underlying the architecture,
for which the interested reader is referred to (Fratini 2006).

Components and Behaviors

An intrinsic property of components is that they evolve over
time, and that decisions can be taken on components which
alter their evolution. In OMPS, a component is an entity
that has a set of possible temporal evolutions over an inter-
val of time H. The component’s evolutions over time are
named behaviors. Behaviors are modeled as temporal func-
tions over H, and can be defined over continuous time or as
stepwise constant functions of time.

In general, a component can have many different behav-
iors. Each behavior describes a different way in which the
component’s properties vary in time during the temporal in-
terval of interest. It is in general possible to provide differ-
ent representations for these behaviors, depending on (1) the
chosen temporal model (continuous vs. discrete, or time
point based vs. interval based), (2) the nature of the func-
tion’s range D (finite vs. infinite, continuous vs. discrete,
symbolic vs. numeric) and (3) the type of function which
describes a behavior (general, piecewise linear, piecewise
constant, impulsive and so on).

Not every function over a given temporal interval can be
taken as a valid behavior for a component. The evolution
of components in time is subject to “physical” constraints
(or approximations thereof). We call consistent behaviors
the ones that actually correspond to a possible evolution in
time according to the real-world characteristics of the entity
we are modeling. A component’s consistent behaviors are
defined by means of consistency features. In essence, a con-
sistency feature is a function f¢ which determines which
behaviors adhere to physical attributes of the real-world en-
tity modeled by the component.

It is in general possible to have many different representa-
tions of a component’s consistency features: either explicit
(e.g., tables or allowed bounds) or implicit (e.g., constraints,
assertions, and so on). For instance, let us model a light bulb
component. A light bulb’s behaviors can take three values:
“on”, “off” and “burned”. Supposing the light bulb cannot
be fixed, a rule could state that any behavior that takes the
value “burned” at a time ¢ is consistent if and only if such a
value is taken also for any time ¢’ > ¢. This is a declarative
approach to describing the consistency feature f©. Different
actual representations for this function can be used, depend-
ing also on the representation of the behavior.

A few more concrete examples of components and their
associated consistency features are the following.

18

State variable. Behaviors: piecewise constant functions
over a finite, discrete set of symbols which represent the
values that can be taken by the state variable. Each be-
havior represents a different sequence of values taken by
the component. Consistency Features: a set of sequence
constraints, i.e., a set of rules that specify which transi-
tions between allowed values are legal, and a set of lower
and upper bounds on the duration of each allowed value.
The model can be for instance represented as a timed au-
tomaton (Alur & Dill 1994) (e.g., the three state variables
in Figure 2).

Note that a distinguishing feature of a state variable is that
not all the transitions between its values are allowed.

Resource (renewable). Behaviors: integer or real func-
tions of time, piecewise, linear, exponential or even more
complex, depending on the model you want to set up.
Each behavior represents a different profile of resource
consumption. Consistency Feature: minimum and max-
imum availability. Each behavior is consistent if it lies
between the minimum and maximum availability during
the entire planning interval.

Note that a distinguishing feature of a resource is that there
are bounds of availability.

In general, the component-based approach allows to ac-
commodate a pre-existing solving component into a larger
planning problem. For instance, it is possible to incorporate
the MEXAR2 application (Cesta et al. 2007) as a compo-
nent, the consistency property of which is not computed di-
rectly on the values taken by the behaviors, but as a function
of those behaviors!.

Component Decisions

Now that we have defined the concept of component as the
fundamental building block of the OMPS architecture, the
next step is to define how component behaviors can be al-
tered (within the physical constraints imposed by consis-
tency features).

We define a component decision as a pair (T, v), where 7
is a given temporal element, and v is a value. Specifically, 7
can be:

e A time instant (TI) ¢ representing a moment in time.

e A time interval (TIN), a pair of TIs defining an interval
[ts,te) such that t, > ts.

The specific form of the value v depends on the type of com-
ponent on which the decision is defined. For instance, this
can be an amount of resource usage for a resource compo-
nent, or a disjunction of allowed values for a state variable.
Regardless of the type of component, the value of any
component decision can contain parameters. In OMPS, pa-
rameters can be numeric or enumerations, and can be used
to express complex values, such as “transmit(?bitrate)” for a

"Basically, it is computed as the difference between external
uploads and the downloaded amount stated by the values taken by
the behaviors. See (Cesta et al. 2007) for details on the MEXAR?2
application.

state variable which models a communications system. Fur-
ther details on value parameters will be given in the follow-
ing section.

& V\/

o o gt

Figure 1: The update function computes the results of a decision
on a component’s set of behaviors. The figure exemplifies this ef-
fect given the two decisions: §’ imposes a value d’ for the behaviors
of the component in the time instant ¢1; §’" imposes that the values
of all behaviors converge to d” after time instant ¢».

Overall, a component decision is something that happens
somewhere in time and modifies a component’s behaviors
as described by the value v. In OMPS, the consequences of
these decisions are computed by the components by means
an update function fU. This is a function which determines
how the component’s behaviors change as a consequence of
a given decision. In other words, a decision changes a com-
ponent’s set of behaviors, and fU describes how. A decision
could state for instance “keep all the behaviors that are equal
to d’ in t;” and another decision could state “all the behav-
iors must be equal to d”’ after ¢5”. Given a decision on a
component with a given set of behaviors, the update func-
tion computes the resulting set (see Figure 1).

In the following, we instantiate the concept of decision for
the two types of components we have introduced so far.

State variable. Temporal element: a TIN. Value: a subset
of values that can be taken by the state variable (the range
of its behaviors) in the given time frame. Update Func-
tion: this kind of decision for a state variable implies the
choice of values in a given time interval. In this case the
subset of values are meant as a disjunction of allowed val-
ues in the given time interval. Applying a decision on a
set of behaviors entails that all behaviors that do not take
any of the chosen values in the given interval are excluded
from the set.

Resource (renewable). Temporal element: a TIN. Value:
quantity of resource allocated in the given interval — a
decision is basically an activity, an amount of allocated
resource in a time interval. Update Function: the resource
profile is modified by taking into account this allocation.
Outside the specified interval the profile is not affected.

Domain Theory

So far, we have defined components in isolation. When com-
ponents are put together to model a real domain they cannot

19

be considered as reciprocally decoupled, rather we need to
take into account the fact that they influence each other’s
behavior.

In OMPs, it is possible to specify such inter-component
relations in what we call a domain theory. Specifically,
given a set of components, a domain theory is a function
FPT which defines how decisions taken on one component
affect the behaviors of other components. Just as a con-
sistency feature ¢ describes which behaviors are allowed
with respect to the features of a single component, the do-
main theory specifies which of the behaviors belonging to
all modeled components are concurrently admissible.

In practice, a domain theory is a collection of synchro-
nizations. A synchronization essentially represents a rule
stating that a certain decision on a given component (called
the reference component) can lead to the application of a
new decision on another component (called target compo-
nent). More specifically, a synchronization has the form
(C;, V) — (C;,V', R), where: C; is the reference com-
ponent; V is the value of a component decision on C; which
makes the synchronization applicable; Cj; is the target com-
ponent on which a new decision with value V’ will be im-
posed; and R is a set of relations which bind the reference
and target decisions.

In order to clarify how such inter-component relationships
are modeled as a domain theory, let us give an example.

Example 1 The planning problem consists in deciding data
transmission commands from a satellite orbiting Mars to
Earth within given visibility windows. The spacecraft’s or-
bits for the entire mission are given, and are not subject to
planning. The fundamental elements which constitute the
system are: the satellite’s Transmission System (TS), which
can be either in “transmit mode” on a given ground sta-
tion or idle; the satellite’s Pointing System (PS); and the
satellite’s battery (BAT). In addition, an external, uncontrol-
lable set of properties is also given, namely Ground Station
Visibility (GSV) and Solar Flux (SF). Station visibility win-
dows are intervals of time in which given ground stations
are available for transmission, while the solar flux repre-
sents the amount of power generated by the solar panels
given the spacecraft’s orbit. since the orbits are given for
the entire mission, the power provided by the solar flux is a
given function of time sf(t). The satellite’s battery accumu-
lates power through the solar flux and is discharged every
time the satellite is slewing or transmitting data. Finally, it
is required that the spacecraft’s battery is never discharged
beyond a given minimum power level (in order to always
maintain a minimum level of charge in case an emergency
manoeuvre needs to be performed).

Instantiation this example into the OMPS framework thus
equates to defining five components:

PS, TS and GSV. The spacecraft’s pointing and transmis-
sion systems, as well as station visibility are modeled with
three state variables. The consistency features of these
state variables (possible states, bounds on their duration,
and allowed transitions) are depicted in Figure 2. The fig-
ure also shows the synchronizations involving the three
components: one states that the value “locked(?st3)” on

Solar Flux

=

time Lo time
- J

cons(t) A, Transmission System

Pointing System

Slewing(?st1,?st2)
1 1= 22 [1.30] B
4= 21 / \73‘2 =3

a3 =245

3= 6
Ground Station Visibifity

e
Visible(2st6)
[1,+INF]

Figure 2: State variables and domain theory for the running ex-
ample.

component PS requires the value “visible(?st6)” on com-
ponent GSV (where ?st3 = ?st6, i.e., the two values must
refer to the same station); another synchronization asserts
that transmitting on a certain station requires the PS com-
ponent to be locked on that station; lastly, both slewing
and transmission entail the use of a constant amount of
power from the battery.

SF. The solar flux is modeled as a reusable resource. Given
that the flight dynamics of the spacecraft are given (i.e.,
the angle of incidence of the Sun’s radiation with the so-
lar panels is given), the profile of the solar flux resource is
given function time sf(¢) which is not subject to changes.
Thus, decisions are never imposed on this component
(i.e., the SF component has only one behavior), rather its
behavior is solely responsible for determining power pro-
duction on the battery (through the synchronization be-
tween the SF and BAT components).

BAT. The spacecraft’s battery component is modeled as fol-
lows. Its consistency features are a maximum and mini-
mum power level (max, min), the former representing the
battery’s maximum capacity, the latter representing the
battery’s minimum depth of discharge. The BAT compo-
nent’s behavior is a temporal function bat(¢) representing
the battery’s level of charge. Assuming that power con-
sumption decisions resulting from the TS and PS com-
ponents are described by the function cons(t), the update
function calculates the consequences of power production
(sf(t)) and consumption on bat(t) as follows:

Lo+« fot(sf(t) — cons(t))dt

if Lo+« fg(sf(t) — cons(t))dt < max;
max

otherwise.

bat(t) =

where L is the initial charge of the battery at the begin-
ning of the planning horizon and « is a constant parameter
which approximates the charging profile.

20

In summary, we employ components of three types: state
variables to model the PS, TS and GSV elements, a reusable
resource to maintain the solar flux profile, and an ad-hoc
component to model the spacecraft’s battery. Notice that this
latter component is essentially an extension of a reusable
resource: whereas a reusable resource’s update function is
trivially the sum operator (imposing an activity on a reusable
resource entails that the resource’s availability is decreased
by the value of the activity), the BAT’s update function cal-
culates the consequences of activities as per the above inte-
gration over the planning horizon.

Decision Network

The fundamental tool for defining dependencies among
component decisions are relations, of which OMPS provides
three types; temporal, value and parameter relations.

Given two component decisions, a temporal relation is
a constraint among the temporal elements of the two deci-
sions. A temporal relation among two decisions A and B
can prescribe temporal requirements such as those modeled
by Allen’s interval algebra (Allen 1983), e.g., A EQUALS
B, or A OVERLAPS [l,u] B.

A value relation between two component decisions is a
constraint among the values of the two decisions. A value
relation among two decisions A and B can prescribe require-
ments such as A EQUALS B, or A DIFFERENT B (mean-
ing that the value of decision A must be equal to or different
from the value of decision B). Notice that temporal relations
can involve any two component decisions, e.g., an activity (a
resource decision) should occur BEFORE a value choice (a
state variable decision). Conversely, value relations are de-
fined among decisions pertaining to components of the same
type.

Lastly, a parameter relation among component decisions
is a constraint among the values of the parameters of the
two decisions. Such relations can prescribe linear inequal-
ities between parameter variables. For instance, a param-
eter constraint between two decisions with values “avail-
able(?antenna, ?bandwidth)”” and “transmit(?bitrate)”” can be
used to express the requirement that transmission should not
use more than half the available bandwidth, i.e., ?bitrate
< 0.5-?bandwidth.

Component decisions and relations are maintained in a
decision network: given a set of components C, a decision
network is a graph (V| E), where each vertex dc € V is a
component decisions defined on a component C' € C, and
each edge (6%, 0.,) is a temporal, value or parameter rela-
tion among component decisions d.%; and 6%,

We now define the concepts of initial condition and goal.

An initial condition for our problem consists in a set of
value choices for the GSV state variable. These decisions
reflect the visibility windows given by the Earth’s position
with respect to the (given) orbit of the satellite. Notice that
the allowed values of the GSV component are not references
for a synchronization, thus they cannot lead to the insertion
in the plan of new component decisions.

Conversely, a goal consists in a set of component deci-
sions which are intended to trigger the solving strategy to ex-

ploit the domain theory’s synchronizations to synthesize de-
cisions. In our example, this set consists in value choices on
the TS component which assert a desired number of “trans-
mit(?st5)” values. Notice that these value choices can be
allocated flexibly on the timeline.

In general, the characterizing feature of decisions which
define an initial condition is that these decisions do not lead
to application of the domain theory. Conversely, goals di-
rectly or indirectly entail the need to apply synchronizations
in order to reach domain theory compliance. This mecha-
nism is the core of the solving process described in the fol-
lowing section.

Reasoning About Timelines in OMPS

OMPS implements a solving strategy which is based on the
notion of timeline. A timeline is defined for a component as
an ordered sequence of its values. A component’s timeline is
defined by the set of decisions imposed on that component.
Timelines represent the consequences of the component de-
cisions over the time axis, i.e., a timeline for a component
is the collection of all its behaviors as obtained by applying
the fY function given the component decisions taken on it.
The overall solving process implemented in OMPS is
composed of three main steps, namely domain theory ap-
plication, timeline management and solution extraction.
More in detail, timeline management consists in extraction,
scheduling and completion. Indeed, a fundamental principle
of the OMPS approach is its timeline-driven solving process.

Domain Theory Application

Component decisions possess an attribute which changes
during the solving process, namely whether or not a deci-
sion is justified. OMPS’s domain application step consists
in iteratively tagging decisions as justified according to the
following rules (iterated over all decisions ¢ in the decision
network):

1. If § unifies with another decision in the network, then
mark § as justified;

2. If &’s value unifies with the reference value of a synchro-
nization in the domain theory, then mark ¢ as justified and
add the target decision(s) and relations to the decision net-
work;

3. If ¢ does not unify with any reference value in the domain
theory, mark 0 as justified.

The previous definition of initial condition and goal can be
understood in terms of domain theory application as follows:
an initial condition is a set of component decisions whose
justification follows trivially from the domain, i.e., it is the
direct result of the application of step 3; a goal, on the other
hand, is a set of component decisions whose justification
leads to the application of synchronizations in the domain
theory (i.e., step 2).

Timeline Management

Timeline management is a collection of procedures which
are necessary to go from a set of decision network to a com-
pletely instantiated set of behaviors. These behaviors ulti-

21

mately represent a solution to the planning problem. Time-
line management may introduce new component decisions
as well as new relations to the decision network. For this
reason, the OMPS solving process iterates domain theory ap-
plication and timeline management steps until the decision
network is fully justified and a consistent set of behaviors
can be extracted from all component timelines. The specific
procedures which compose timeline management are time-
line extraction, timeline scheduling and timeline completion.
Before showing how these procedures are composed to form
the core of our planning approach, we describe the three
steps in detail.

Timeline Extraction. The outcome of the domain theory
application step is a decision network where all decisions are
justified. Nevertheless, since every component decision’s
temporal element (which can be a TT or TIN) is maintained
in an underlying flexible temporal network, these decisions
are not fixed in time, rather they are free to move between
the temporal bounds obtained as a consequence of the tem-
poral relations imposed on the temporal elements. For this
reason, a timeline must be extracted from the decision net-
work, i.e., the flexible placement of temporal elements im-
plies the need of synthesizing a total ordering among floating
decisions. Specifically, this process depends on the com-
ponent for which extraction is performed. For a resource,
for instance, the timeline is computed by ordering the allo-
cated activities and summing the requirements of those that
overlap. For a state variable, the effects of temporally over-
lapping decision are computed by intersecting the required
values, to obtain (if possible) in each time interval a value
which complies with all the decisions that overlap during
the time interval.

Component decisions
dur € [30,77]
A(X), B(Y)
\[1‘0, o)

! dur € [10,23] dur € [20, 45]

o) L_B®:C

/
¥, AK.BY) * B(y), C(2)

NN\

o 10 30 40 60 time
Timeline (EST)

Figure 3: Three value choices on a state variable, and the resulting
earliest start time (EST) timeline.

In the current implementation, we follow for every type
of component an earliest start-time (EST) approach, i.e., we
have a timeline where all component decisions are assumed
to occur at their earliest start time and last the shortest time
possible. Figure 3 shows the timeline extraction mechanism
for a state variable. The example illustrates two properties
of timelines, namely flaws and inconsistencies.

The first of these features depends on the fact that deci-

sions imposed on the state variable do not result in a com-
plete coverage of the planning horizon with decisions. This
timeline in the figure contains what we call a flaw in the
interval [30,40]. A flaw is a segment of time in which no
decision has been taken, thus the state variable within this
segment of time is not constrained to take on certain val-
ues, rather it can, in principle, assume any one of its allowed
values. The process of deciding which value(s) are admis-
sible with respect to the state variable’s internal consistency
features (i.e., the component’s ¢ function) is clearly a non-
trivial process. Indeed, this is precisely the objective of time-
line completion.

In addition to flaws, inconsistencies can arise in the time-
line. The nature of inconsistencies depends on the spe-
cific component we are dealing with. In the case of state
variables, an inconsistency occurs when two or more value
choices whose intersection is empty overlap in time. In the
example above, this occurs in the interval [0, 10]. As op-
posed to flaws, inconsistencies do not require the generation
of additional component decisions, rather they can be re-
solved by posting further temporal constraints. For instance,
the above inconsistency can be resolved by imposing a BE-
FORE constraint which forces (C(z)) to occur after (A(x),
B(y)). In the case of the BAT component mentioned earlier,
an inconsistency occurs when slewing and/or transmission
decisions have lead to a situation in which bat(t) < min
for some ¢ € H. As in the previous example, BAT incon-
sistencies can be resolved by posting temporal constraints
between the over-consuming activities. In general, we call
the process of resolving inconsistencies timeline scheduling.

Timeline Scheduling. The scheduling process deals with
the problem of resolving inconsistencies. Once again, the
process depends on the component. For a resource, activ-
ity overlapping results in an inconsistency if the combined
usage of the overlapping activities requires more than the
resource’s capacity. For a state variable, any overlapping of
decision that requires a conflicting set of decisions must be
avoided. The timeline scheduling process adds constraints to
the decision network to avoid such inconsistencies through
a constraint posting algorithm (Cesta, Oddi, & Smith 2002).

Timeline Completion. This process is required for com-
ponents such as state variables, where it is required that any
interval of time in a solution is covered by a decision (this is
trivially true for reusable resources as we have defined them
in this paper). If it is not possible to force an ordering among
decisions in such a way that entire planning horizon is de-
cided, then a flaw completion routine is triggered. This step
adds new decisions to the plan.

Solution Extraction

Once domain application and timeline management have
successfully converged on a set of timelines with no incon-
sistencies or flaws, the next step is to extract from the time-
lines one or more consistent behaviors. Recall that a behav-
ior is one particular choice of values for each temporal seg-
ment in a component’s timeline. The previous domain the-
ory application and timeline management steps have filtered

22

out all behaviors that are not, respectively, consistent with
respect to the domain theory and the components’ consis-
tency features. Behavior extraction deals with the problem
of determining a consistent set of fully instantiated behav-
iors for every component. Since every segment of a time-
line potentially represents a disjunction of values, behavior
extraction must choose specific behaviors consistently. Fur-
thermore, not all values in timeline segments are fully in-
stantiated with respect to parameters, thus behavior extrac-
tion must also take into account the consistent instantiation
of values across all components.

Overall Solving Process

In the current OMPS solver the previously illustrated steps
are interleaved as sketched in Figure 4.

ROLLBACK)
AND BACKTRACK 1. Apply Domain Theory
TO DOMAIN TEORY -

APPLICATION
/
/ N

ROLLBACK
AND BACKTRACK
TO DOMAIN TEORY
A'\‘PPLICATION

FAILURE!!

1 YES
5. Complete Timelines

2. Extract Timelines Conflict?

SOLUTION!!

ROLLBACK
AND BACKTRACK
TO TIMELINE
COMPLETION

Figure 4: The OMPS solving process.

The first step in the planning process is domain theory ap-
plication, whose aim is to support non-justified decisions. If
there is no way to support all the decisions in the plan, the
algorithm fails.

Once every decision has been supported, the solver tries
to extract a timeline for each component. At this point, it can
happen that some timelines are not consistent, meaning that
there exists a time interval over which conflicting decisions
overlap (an inconsistency). In such a situation, a scheduling
step is triggered. If the scheduler cannot solve all conflicts,
the solver backtracks directly to domain theory application,
and searches for a different way of supporting goals.

If the solver manages to extract a conflict-free set of time-
lines, it then triggers a timeline-completion step on any time-
line which is found to have flaws. It may happen that some
timelines cannot be completed. In this case, the solver back-
tracks again to the previous domain theory application step,
and again searches for a way of justifying all decisions. If
the completion step succeeds for all timelines, the solver re-

turns to domain theory application, as timeline completion
has added decisions which are not justified.

Once all timelines are conflict-free and complete, the
solver is ready to extract behaviors. If behavior extraction
fails, the solver attempts to backtrack to timeline comple-
tion. This is because our currently implemented completion
algorithm attempts to complete all incomplete timelines sep-
arately: thus it may easily happen that a completion over
a timeline compromises behavior extraction on a different
timeline (since values are linked with synchronizations). If
this fails, the solver must return to domain theory application
in order to search for a different plan altogether.

Finally, the whole process ends when the solver succeeds
in extracting at least one behavior for each timeline. This
collection of mutually consistent behaviors represents a fully
instantiated solution to the planning problem.

Simple Timeline (EST)

il i i) iy (nulny dleap)

20 40 60 B0 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

(lone@)) Nonedn] (Nonedm] lnvoneqn))| Noned)]

Station Visibility SVValues Transmission System SWalues

20 40 60 B0 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Time

Figure 5: EST timelines for the TS and GSV state variables.

Going back to our running example, the timelines of the
GSV and TS components resulting from the application of
a set of initial condition and goal decisions are shown in
Figure 5 (no initial decision or goal is specified for the PS
component). Notice that the GSV timeline is fully defined,
reflecting the fact that the GSV component is not control-
lable, rather it represents the evolution in time of station vis-
ibility given the fully defined flight dynamics of the satel-
lite. The TS timeline contains five “transmit” value choices,
through which we represent our goal. These value choices
are allocated within flexible time bounds (the figure shows
an EST timeline for the component, in which these deci-
sions are anchored to their earliest start time and duration).
As opposed to the GSV timeline, the TS timeline contains
flaws, and it is precisely these flaws that will be “filled” by
the solving algorithm. In addition, the application during
the solving process of the synchronization between the GSV
and PS components that will determine the construction of
the PS’s timeline (which is completely void of component
decisions in the initial situation), reflecting the fact that it
is necessary to point the satellite towards the visible target
before initiating transmission.

The behaviors extracted from the TS and PS components’
timelines after applying this solving procedure on our ex-
ample are shown in Figure 6.

Related Work

The synthesis of OMPS is aimed at creating an extensible
problem solving architecture to support development of dif-

23

Piecewise Constant Behaviors (EST)

e Ielle)y e[y

Transmission System

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Unlocked (stat1])

Unlocked(stat2])

Painting System

20 40 €0 80 100 130 140 160 180 200 220 240 260 280 300 320 340 360 3B0 400 420 440 460 480 500

Figure 6: EST behaviors for the TS and PS state variables.

ferent applications. It is worth making a comparison with
other systems that, for different reasons, share the same goal
with OMPS.

Similarly to OMPS’s timelines, IxTeT (Ghallab & Laru-
elle 1994) follows a domain representation ontology based
on state attributes which assume values in a given domain.
Unlike OMPS in IxTeT system dynamics are represented
with a STRIPS-like logical formalism. Resource reasoning
is used as a conflict analyzer on top of the plan representa-
tion.

Visopt ShopFloor (Bartak 2002) is grounded on the the
idea of working with dynamic scheduling problems where it
is not possible to describe in advance activity sets that have
to be scheduled. That is the same principle behind the inte-
gration of planning into scheduling done in both OMP and
OMPS: to put a domain theory behind a scheduling problem
to gain flexibility in managing tasks and goal driven prob-
lem solving. Dynamic aspects of the problem are described
using resources with complex behaviors. These resources
are close to our state variable, but they are managed using
global constraints instead of a precedence constraint posting
approach as we are currently doing. Moreover, although we
are working on P&S integration we maintain a clear distinc-
tion between planning and scheduling at the level of model-
ing problem features.

HSTS (Muscettola et al. 1992; Muscettola 1994), has
been the first to propose a modeling language with explicit
representation of timelines, using the concept of state vari-
ables. In fact we are extending an HSTS-like state vari-
ables modeling language with a generic timeline oriented
approach: in OMPS timelines represents not only state vari-
able evolutions, but also multi-capacity and consumable re-
sources, and may arrive to include generic components hav-
ing temporal functions as behaviors. A clear difference w.r.t.
HSTS is that in our approach we see different types of time-
lines as separate modules, while HSTS, and its derivatives
RAX-PS and EUROPA, view resources as specialized state
variables. Their view is certainly appealing but leaves the
problem of integrating in a clean way multi-capacity re-
sources open. In fact, while it is immediate to represent bi-
nary resources as state variables, it is quite difficult to model
and handle cumulative resources. We believe that in these
cases the best way is to exploit state of the art scheduling
technologies hence our direction of seeing resources as an
independent type of components.

statl)

Conclusions

In this article we have given a preliminary overview of
OMPS a P&S system which follows a component-based,
timeline-driven approach to planning and scheduling inte-
gration. The approach draws from and attempts to general-
ize our previous experience in mission planning tool devel-
opment for ESA (Cesta et al. 2007) and to extend our pre-
vious work on the OMP planning system (Fratini & Cesta
2005).

A distinctive feature of the OMPS architecture is that it
provides a framework for reasoning about any entity which
can be modeled as a component, i.e., as a set of proper-
ties that vary in time. This includes “classical” concepts
such as state variables (as defined in HSTS (Muscettola
et al. 1992; Muscettola 1994) and studied also in sub-
sequent work (Cesta & Oddi 1996; Jonsson et al. 2000;
Frank & Jénsson 2003)), and renewable/consumable re-
sources (Laborie 2003; Cesta, Oddi, & Smith 2002).

Another feature of the component-based architecture is
the possibility to modularize the reasoning algorithms that
are specific to each type of component within the component
itself, e.g., profile-based scheduling routines for resource in-
consistency resolution are implemented within the resource
component itself. The more important consequence of this is
the possibility to include previously implemented/deployed
ad-hoc components within the framework. We have given
an example of this in this paper with the battery component,
which essentially extends a reusable resource. The ability
to encapsulate potentially complex modules within OMPS
components provides a strong added value in developing
real-world planning systems. Specifically, this capability
can be leveraged to include entire decisional modules which
are already present in the overall decision process within
which OMPS is deployed. An example is the MEXAR?2 sys-
tem (Cesta et al. 2007)%, whose ability to solve the Mars
Express memory dumping problem can be encapsulated into
an ad-hoc component.

The ability to employ previously developed subsystems
like MEXAR?2 benefits decision support system development
in a number of ways. From the engineering point of view, it
facilitates the task of fast prototyping, providing a means
to incorporate complex functionality by employing previ-
ously developed decision support aids. Also, this feature
contributes to increasing the reliability of development pro-
totypes, as existing components (especially in the context
of ESA mission planning) have typically undergone inten-
sive testing before being deployed. Second, the component-
based architecture allows to leverage the efficiency of prob-
lem de-composition. Again, MEXAR?2 provides a meaning-
ful example, as it is a highly optimized decision support sys-
tem for solving the very specific problem of memory dump-
ing. Lastly, the ability to re-use components brings with it
the advantage of preserving potentially crucial user interface
paradigms, the re-engineering of which may be a strong de-
terrent for adopting innovative problem solving strategies.

>The MEXAR2 system is a specific decision support aid devel-
oped by the Planning and Scheduling Team which is currently in
daily use within ESA’s Mars Express mission.

24

Acknowledgments

The Authors are currently supported by European Space
Agency (ESA) within the Advanced Planning and Schedul-
ing Initiative (APSI). APSI partners are VEGA GmbH, ON-
ERA, University of Milan and ISTC-CNR. Thanks to Angelo
Oddi and Gabriella Cortellessa for their constant support,
and to Carlo Matteo Scalzo for contributing an implementa-
tion of the battery component.

References

Allen, J. 1983. Maintaining knowledge about temporal intervals.
Communications of the ACM 26(11):832—-843.

Alur, R., and Dill, D. L. 1994. A theory of timed automata. Theor.
Comput. Sci. 126(2):183-235.

Bartak, R. 2002. Visopt ShopFloor: On the edge of planning and
scheduling. In van Hentenryck, P., ed., Proceedings of the Sth In-
ternational Conference on Principles and Practice of Constraint
Programming (CP2002), LNCS 2470, 587-602. Springer Verlag.

Cesta, A., and Oddi, A. 1996. DDL.1: A Formal Description
of a Constraint Representation Language for Physical Domains.
In M.Ghallab, M., and Milani, A., eds., New Directions in Al
Planning. 10S Press.

Cesta, A.; Cortellessa, G.; Fratini, S.; Oddi, A.; and Policella, N.
2007. An innovative product for space mission planning — an a
posteriori evaluation. In Proceedings of the 17th International
Conference on Automated Planning & Scheduling (ICAPS-07).

Cesta, A.; Oddi, A.; and Smith, S. F. 2002. A Constraint-based
method for Project Scheduling with Time Windows. Journal of
Heuristics 8(1):109-136.

Frank, J., and Jonsson, A. 2003. Constraint-based attribute and
interval planning. Constraints 8(4):339-364.

Fratini, S., and Cesta, A. 2005. The Integration of Planning into
Scheduling with OMP. In Proceedings of the 2nd Workshop on
Integrating Planning into Scheduling (WIPIS) at AAAI-05, Pitts-
burgh, USA.

Fratini, S. 2006. Integrating Planning and Scheduling in a
Component-Based Perspective: from Theory to Practice. Ph.D.
Dissertation, University of Rome “La Sapienza”, Faculty of En-
gineering, Department of Computer and System Science.

Ghallab, M., and Laruelle, H. 1994. Representation and Control
in IxTeT, a Temporal Planner. In Proceedings of the Second Inter-
national Conference on Artifial Intelligence Planning Scheduling
Systems. AAAI Press.

Jonsson, A.; Morris, P.; Muscettola, N.; Rajan, K.; and Smith,
B. 2000. Planning in Interplanetary Space: Theory and Practice.
In Proceedings of the Fifth Int. Conf. on Artificial Intelligence
Planning and Scheduling (AIPS-00).

Laborie, P. 2003. Algorithms for Propagating Resource Con-
straints in Al Planning and Scheduling: Existing Approaches and
new Results. Artificial Intelligence 143:151-188.

Muscettola, N.; Smith, S.; Cesta, A.; and D’ Aloisi, D. 1992. Co-
ordinating Space Telescope Operations in an Integrated Planning
and Scheduling Architecture. IEEE Control Systems 12(1):28-37.
Muscettola, N. 1994. HSTS: Integrating Planning and Schedul-
ing. In Zweben, M. and Fox, M.S., ed., Intelligent Scheduling.
Morgan Kauffmann.

Smith, D.; Frank, J.; and Jonsson, A. 2000. Bridging the gap be-

tween planning and scheduling. Knowledge Engineering Review
15(1):47-83.

Scheduling Monotone Interval Orders
on Typed Task Systems

Bendt Dupont de Dinechin
STMicroelectronics STS/CEC
12, rue Jules Horowitz - BP 217. F-38019 Grenoble
benoit.dupont-de-dinechin@st.com

Abstract

We present a modification of the Leung-Palem-Pnueli parallel
processors scheduling algorithm and prove its optimality for
scheduling monotone interval orders with release dates and
deadlines on Unit Execution Time (UET) typed task systems
in polynomial time. This problem is motivated by the relax-
ation of Resource-Constrained Project Scheduling Problems
(RCPSP) with precedence delays and UET operations.

Introduction

Scheduling problems dgped task systenf3affe 1980) gen-
eralize the parallel processors scheduling problems by intro-
ducingk types{7, }1<,<, and)_, ., ., m, processors with

m,. processors of type,. Each operatiorQ; has a type

7; € {7 }1<r<k and may only execute on processors of type
7;. We denote typed task systems with P in thea-field of
the | 5|y scheduling problem denotation (Brucker 2004).

Scheduling typed task systems is motivated by two main
applications: resource-constrained scheduling in high-level
synthesis of digital circuits (Chaudhuri, Walker, & Mitchell
1994), and instruction scheduling in compilers for VLIW
processors (Dupont de Dinechin 2004). In high-level syn-

thesis, execution resources correspond to the synthesized

functional units, which are partitioned by classes such as
adder or multiplier with a particular bit-width. Operations

interval-ordered typed UET operations. Verriet (Verriet
1998) solves proble®* P|intOrder; ¢! = 1;p; = 1|Cpaz

in polynomial time, that is, interval-ordered typed UET op-
erations subject to unit communication delays.

Interval ordersare a class of precedence graphs where
UET scheduling on parallel processors is polynomial-time,
while non-UET scheduling on 2 processors is strongly NP-
hard (Papadimitriou & Yannakakis 1979). In particular,
Papadimitriou and Yannakakis sol\B|intOrder;p; =
1|Cpaz In polynomial-time. Scheduling interval orders
with communication delays on parallel processors is also
polynomial-time, as the algorithm by Ali and EI-Rewini
(Ali & EI-Rewini 1992) solvesP|intOrder;c] = 1;p;
1|Craz- Verriet (Verriet 1996) further proposes a dead-
line modification algorithm that solveB|intOrder; ¢! =
15745 p; = 1| Linag in polynomial-time.

Scheduling interval orders with precedence delays on par-
allel processors was first considered by Palem and Simons
(Palem & Simons 1993), who introduced monotone inter-
val orders and solvé|intOrder(mono I]);p; = 1|Lmax
in polynomial-time. This result is generalized by Leung-
Palem-Pnueli algorithm (Leung, Palem, & Pnueli 2001).

In the present work, we modify the algorithm of Leung,
Palem and Pnueli (Leung, Palem, & Pnueli 2001) in order

to solveX* P|intOrder(mono 12);ri;di;p; = 1|— feasi-

are typed by these classes and may have non-unit executionPility problems in polynomial time. The resulting algorithm

time. In compiler VLIW instruction scheduling, operations
usually have unit execution time (UET), however on most
VLIW processors an operation requires several resources
for execution, like in the Resource-Constrained Project
Scheduling Problems (RCPSP) (Brucksral. 1999). In
both cases, the pipelined implementation of functional units
yield scheduling problems with precedence delays, that is,
the time required to produce a value is larger than the mini-
mum delay between two activations of a functional unit.

We are aware of the following work in the area of typed
task systems. Jaffe (Jaffe 1980) introduces them to for-
malize instruction scheduling problems that arise in high-
performance computers and data-flow machines, and stud-
ies the performance bounds of list scheduling. Jansen
(Jansen 1994) gives a polynomial time algorithm for prob-
lem ¥ PlintOrder;p; = 1|Chas, that is, scheduling

25

thus operates on typed tasks, allows precedence delays, and
handles release dates and deadlines. Thanks to these proper-
ties, it provides useful relaxations of the RCPSP with UET
operations and precedence delays.

The Leung-Palem-Pnueli algorithm (Leung, Palem, &
Pnueli 2001) is a parallel processors scheduling algorithm
based on deadline modification and the use of lower mod-
ified deadline first priority in a Graham list scheduling al-
gorithm. The Leung-Palem-Pnueli algorithm (LPPA) solves
the following feasibility problems in polynomial time:

. 1|p7“66(l§ € {0,1});risdispi = 1]—

o P2lprec(l] € {~1,0});ri;dispi = 1]—
e PlintOrder(mono I2);r;; di; p; = 1|—
o PlinTree(l! =1);di;p; = 1|—

Here, thel/ are precedence delays wijth+ 17 > 0.

Presentation is as follows. In the first section, we extend
the ||y scheduling problem denotation and we discuss the
Graham list scheduling algorithm (GLSA) for typed task
systems. In the second section, we present our modified
Leung-Palem-Pnueli algorithm (LPPA) and prove its opti-
mality for scheduling monotone interval orders with release
dates and deadlines on UET typed task systems in polyno-
mial time. In the third section, we discuss the application of Figure 1: Set of intervals and the corresponding interval or-
this algorithm to VLIW instruction scheduling. der graph.

Deterministic Scheduling Background
Machine Scheduling Problem Denotation

In parallel processors scheduling problems, an operation se .
{Oi}1<i<n is processed om identical processors. Eachop- intOrder(mono I7) The precedence graph weighted by

prec(ll =1) All the precedence delay$ equall.
tinT'ree The precedence graph is an in-tree.

erationO; requires the exclusive use of one processopfor def i .

time units, s'?arting atitschedule date;. Schtfduling erc))b- w(0;,0;) = p; + I} is a monotone interval order.

lems may involverelease dates; anddue datesi;. This An interval orderis the transitive orientation of the com-
constrains the schedule datgof operationO; aso; > r; plement of an interval graph (Papadimitriou & Yannakakis
and there is a penalty whenev@y > d;, with C; the com- 1979) (see Figure 1). The important property of interval

orders is that given any two operatiots andO;, either
predO; C predO; or predO; C predO; (similarly for suc-
cessors). This is easily understood by referring to the un-
strains the schedule with +p; < o;. In case oprecedence ~ derlying intervals that define the interval order. Adding or
delavi’ betweenO. andO.. the scheduling constraint be- emoving operations without predecessors and successors to
Y Tt J 9 an interval order is still an interval order. Also, interval or-
comess; +p; +1; < o;. Theprecedence graphasone arc ders are transitively closed, that is, any transitive successor
(0;,0;) for each precedend®; < O;. Given an operation (predecessor) must be a direct successor (predecessor).
O,, we denotauccO; the set of direct successors@f and A monotone interval ordegraph (Palem & Simons 1993)
predO; the set of direct predecessorgafin the precedence is an interval order whose precedence graphFE) is
graph. The seihdepO; contains the operations that are not yejghted with a non-negative functian on the arcs such

pletion dateof O; defined ag’; Y o; + p;. For problems
whereC; < d; is mandatory, the; are calleddeadlines
A precedence); < O; between two operations con-

connected t@); in the undirected precedence graph. that, given any(0;,0;),(0;,0x) € E : predO; C
Given a scheduling problem over operation set ,eq0, = w(0;,0;) < w(0;,0y). Monotone interval
{Oitici<n with release dates{r;}:<i<, and dead- orders are motivated by the application of interval orders
lines {di}i<i<n, the precedence-consistent re- properties to scheduling problems with precedence delays.
lease dates {r;}1<i<, are recursively defined as Indeed, in scheduling problems with interval orders, the
T;r def max(r;, Maxo, epredo, (T;r +pj + l;'.)). Likewise, the precedence arc weight considered between any two opera-

. . def . .
precedence-consistent deadlies },<;<,, are recursively tionsO; andO; is w(0;, 0;) = p; with p; the processing

' 4 def . . n 7 time of O;. In case of monotone interval orders, the arc
defined asl;” = min(d;, minp, esucco, (dj —p; —17)).) def o .

o _ _ weights arew(0;,0;) = p; + I with I] the precedence
Machine scheduling problems are denoted by a triplet delay betweerO; andO;. An interval order graph where
a|Bly (Brucker 2004), where: describes the processing en- all arcs leaving any given node have the same weight is
vironment,3 specifies the operation properties andefines obviously monotone, so interval order precedences without

the optimality criterion. Values aof, 3, v include: precedence delays imply monotone interval order graphs.

« : 1 for a single processol? for parallel processor?m i i . .
for the givenm parallel processors. We denote typed task Graham List Scheduling Algorithm Extension
systems withk: types by>* P. The Graham list scheduling algorithm (GLSA) is a classic
B : r; for release dates; for deadlines (ify = —) or due scheduling algorithm where the time steps are considered in
datesp; = 1 for Unit Execution Time (UET) operations. ~ non-decreasing order. For each time step, if a processor is
idle, the highest priority operation available at this time is
scheduled An operation is available if the current time step
is not earlier than the release date and all direct predecessors

~ : — for the feasibility,C,,,q.. O L, for the minimiza-
tion of these objectives.

The makesparis Cynap = max; C; and themaximum late- have completed their execution early enough to satisfy the
nessis I, del s Lo L O — 4. The meaning of precedence delays. On typed_task systems, the operation
the addi%arfaw fields: isl' T ¢ v type must match the type of an idle processor.

_ o _ The GLSA is optimal for P|r;;d;;p; = 1|]— and
prec(l]) Precedence delays assuming! > —p;. P|ri; pi = 1| Lma. When using the earliest deadlines (or due

26

dates)d; first as priority (Brucker 2004) (Jackson’s rule). (3) Update the modified deadline 6F; asd; — o} + 1.

This property directly extends to typed task systems:
Theorem 1 The GLSA with Jackson’s rule optimally solves
EkP‘Ti;di;pi = 1|_ andzkp‘ri;pi = 1|L’rnaa:-

Proof: In typed task systems, operations are partitioned by
processor type. In problem* P|r;;d;;p; = 1|— (respec-
tively X¥ P|r;; p; = 1|Lymaz), there are no precedences be-

(4) Update the modified deadlines of ea@h € predO; with

dj, < min(d},,d, — 1 —1}).

(5) Go to (1) until a fixpoint of the modified deadlines

{d'}1<i<n is reached.

In our modified LPPA, we define theackward schedul-
ing problem B(O;, S;) as the search for a set of dates

tween operations. Therefore, optimal scheduling can be {07 }o,ec(0.3us, that satisfy:

achieved by considering operations and processors of each

type independently. For each type, the problem reduces dd) VO; € 5;: 0; <Oy = oj +1+1] < o}

P|ri;di; pi = 1|— (respectivelyP|r;; p; = 1| Lmaz), Which
is optimally solved with Jackson’s rule. 0

In this work, we allow precedences deldys= —p; =
o; < 0j, that is, precedences with zero start-start time lags.
Thus we extend the GLSA as follows: in cases of available
operations with equal priorities, schedule first the earliest
operations in the precedence topological sort order.

The Modified Leung-Palem-Pnueli Algorithm
Algorithm Description

The Leung-Palem-Pnueli algorithm (LPPA) is similar to
classic UET scheduling algorithms on parallel processors
like Garey & Johnson (Garey & Johnson 1976), in that it
uses a lower modified deadlines first priority in a GLSA.
Given a scheduling problem with deadlingd; }1<;<x,
modified deadline§d;},<;<, are such thati € [1,n] :
o; +p; < d} < d, for any scheduldo; }1<;<,. The distin-
guishing feature of the LPPA is the computation of its mod-
ified deadlines, which we cdiixpoint modified deadlinés
Precisely, the LPPA definesteckward scheduling prob-
lem denotedB(0;, S;) for each operatio®,. An optimal
backward schedulingrocedure computes the latest possi-
ble schedule date; of operationO; in eachB(O;, S;). Op-
timal backward scheduling aB(O;, S;) is used to update
the current modified deadline @f; asd, — o} + p;. This
process of deadline modification is iterated over all prob-
lems B(0O;, S;) until a fixpoint of the modified deadlines
{df}1<i<n is reached (Leung, Palem, & Pnueli 2001).

We modify the Leung-Palem-Pnueli algorithm (LPPA) to
compute the fixpoint modified deadlinés; }1<;<,, by exe-
cuting the following procedure:

(i) Compute the precedence-consistent release datesB

{T’;_}lgign; the precedence-consistent deadlines
{df}1<i<n and initialize the modified deadlines
{d} }1<i<n With the precedence-consistent deadlines.

(i) For each operatio;, define the backward scheduling
problemB(0;, S;) with S; dZEfsuccOi U indepO;.

(1) Let O; be the current operation in some iteration over

z‘}1§z‘§n-

(2) Compute the optimal backward schedule agtef O; by

optimal backward scheduling &(O;, S;).

!Leung, Palem and Pnueli call them “consistent and stable mod-
ified deadlines”.

27

(b) Vt € N,Vr € [1,]6] : |{O7 S {Ol} u.s; ANT; = T‘/\O‘; =

th < my

(C) VO] S {OL}USL : ’I“;_ < 0';— < d;

Constraints (a) state that only the precedences bet@Ween
and its direct successors are kept in the backward scheduling
problemB(0O;, S;). Constraints (b) are the resources limi-
tations of typed task systems with UET operations. Con-
straints (c) ensure that operations are backward scheduled
within the precedence-consistent release dates and the cur-
rent modified deadlines. Aoptimal backward schedufer
O; maximizess, in B(O;, S;).

Let {T;_}lgign be the precedence-consistent release dates
and{d}}lgign be the current modified deadlines. The sim-
plest way to find the optimum backward schedule dai@ of
in B(0O;, S;) is to search for the lateste [r;", d; — 1] such
that the constrained backward scheduling problerh =
s) A B(0O;, S;) is feasible. Even though each such con-
strained problem can be solved in polynomial time by reduc-
ing to somex* P|r;;d;; p; = 1|— over{O;} U S;, optimal
backward scheduling oB(O;, S;) would require pseudo-
polynomial time, as there are updp—r;" constrained back-
ward scheduling problems to solve. Please note that a sim-
ple dichotomy search for the latest feasible [r;", d, — 1]
does not work, aso, = s) A B(O;, S;) is infeasible does
not imply that(c, = s + 1) A B(0;, S;) is infeasible.

In order to avoid the pseudo-polynomial time complexity
of optimal backward scheduling, we rely instead on a pro-
cedure with two successive dichotomy searches for feasible
relaxations of constrained backward scheduling problems,
like in the original LPPA. Describing this procedure requires
further definitions. Assumé = —oo if O; 4 O;. Given a
constrained backward scheduling problési € [p,q]) A
(04,5;), we define a relaxatio™* P|7;; dj;p; = 1]|—
over the operation sé0;} U S; such that:

~ def

Ty =D

CL’ (j:efq+1
0;,€8 = 7 d:”max(r}",q+l+l{)
Oj €S — CZj d:efd;‘

In other words, the precedences fr@m to each direct
successof); € S; are converted into release dates assuming
the release date and deadlinefrespectively equah and
q + 1. We calltype 2 relaxationthe resulting scheduling

problem¥*P|#;:d;;p; = 1|— andtype 1 relaxationthis

typen /—> O,

typeT; Or]
{ 0 0]
4 4 4
p pt+1 2 q+1

Figure 2: Optimal backward scheduling proof.

problem when disregarding the resource constraini9,of
Both type 1 and type 2 relaxations are optimally solved by
the GLSA with the earllest first priority (Theorem 1). If
any relaxation is |nfeaS|bIe so is the constrained backward
scheduling problenio; € [p, ¢]) A B(O;, S;).

Observe that the type 1 relaxation is increasingly con-
strained ag increases, independently of the valuepofAnd
for any fixedq, the type 2 relaxation is increasingly con-
strained a® increases. Therefore, it is correct to explore
the feasibility of any of these relaxations using dichotomy
search. So the optimal backward scheduling procedure is
based on two dichotomy searches as foIIows

The first dichotomy search initializes = 7 andqg =
d; — 1. Then it proceeds to find the Iate;tsuch that the
type 1 relaxation is feasible. The second dichotomy search
keepsq constant and finds the latestsuch that the type 2

relaxation is feasible. Whenever both searches succeed, the

optimum backward schedule date(®fis taken ag; = p so
the new modified deadline i§ = p + 1. If any dichotomy
search fails B(0O;, S;) is assumed infeasible.

Algorithm Proofs

Theorem 2 The optimal backward scheduling procedure
computes the latest schedule dafef O; among the sched-
ules that satisfy conditions (a), (b), (c) BfO;, S;).

Proof: The two dichotomy searches are equivalent to linear
searches, respectively by increasingnd by increasing.

If no feasible relaxatiort® P|7;; d;; p; = 1|— exist in any

O]‘// OrL
N
te tu+1 d;y o;

Figure 3: Modified Leung-Palem-Pnueli algorithm proof.

[p +1,4]) A B(O;, ;) is infeasible imply there is a sét
of operations that fill all slots of type; in range[p + 1, ¢
and prevents the GLSA from schedullng@;c in that range
(Figure 2). SO, eE:>d <d; =q+1A7;>p+1.
Now assume eX|sts somec [p + 1, ¢] such that problem
(o} € [s,8])AB(0;, S;) is feasible. This imply that problem
(o} € [p+ 1,s]) A B(O;,S;) is also feasible. The type 2
relaxation of(o; € [p + 1,s]) A B(O;, S;) differs from the
type 2 relaxation ofo; € [p+1,q]) AB(O;, S;) only by the
decrease of the release datesf some operation®; € S;,
yetr]>p+1a37“]dfmax(sH14+)y >p+1+
14 /. As all the operations oE must still be scheduled
in range[p + 1,¢| in the type 2 relaxation ofs} € [p +
,8]) A B(O;, S), there is still no scheduling slot f@p; in
that range. So problertv; € [p + 1,s]) A B(O;, S;) and
problem(c; € [s, s]) A B(O;, S;) are infeasible.

U
Theorem 3 The modified algorithm of Leung,
Palem and Pnueli solves any feasible problem

YF PlintOrder(mono lf);ri; di;p; = 1]—.

Proof: The correctness of this modified Leung-Palem-
Pnueli algorithm (LPPA), like the correctness of the origi-
nal LPPA, is based on two arguments. The first argument
is that the fixpoint modified deadlines are indeed deadlines
of the original problem. This is apparent, as each backward
scheduling problenB(0;, S;) is a relaxation of the orig-
inal scheduling problem and optimal backward scheduling
computes the latest schedule dat®gfnithin B(O;, S;) by

of these linear searches, the backward scheduling problem Theorem 2. Let us cattorethe GLSA that uses the earli-

B(0;, S;) is obviously infeasible.

If a feasible relaxation exists in the second linear search,
this search yields a backward schedule wifh= p. Indeed,
let {6 }0,e{0,3us; be schedule dates for the type 2 relax-
ation of (o} € [p, q]) A B(O;, S;). We haves; = p because
the type 2 relaxation of proble(@; € [p+1, ¢]) AB(O;, S;)
is infeasible and the only difference between these two re-
laxations is the release date 6. Moreover, the dates
{6;}0,e10.3us, satisty (@), (b), (c). Condition (a) is sat-
isfied from the definition of; and becausé; = p < q.
Conditions (b) and (c) are satisfied by the GLSA.

Let us prove that the backward schedule found by the sec-
ond search is in fact optimal, that is, there isshe [p+1, ¢
such that problen{s] € [s,s]) A B(O;,S;) is feasible.
This is obvious ifp = ¢, so consider cases whepe< gq.

The type 2 relaxation of probleifw € [p,q]) A B(O;, S;)
is feasible while the type 2 relaxation of problem, €

28

est fixpoint modified deadlines first as priorities. The second
correctness argument is a proof that the core GLSA does not
miss any fixpoint modified deadlines.

Precisely, assume that sorok is the earliest operation
that misses its fixpoint modified deadlirg in the core
GLSA schedule. In a similar way to (Leung, Palem, &
Pnueli 2001), we will prove that an earlier operat@pnec-
essarily misses its fixpoint modified deadliigin the same
schedule. This contradiction ensures that the core GLSA
schedule does not miss any fixpoint modified deadline. The
details of this proof rely on a few definitions and observa-
tions illustrated in Figure 3.

Letr = 7; be the type of operatio®;. An operationO;
is saidsaturatedif 7; = r andd}; < d;. Definet, < d}
as the latest time step that is not filled with saturated opera-
tions on the processors of type If ¢, < 0, the problem is
infeasible, as there are not enough slots to schedule opera-

tions of typer onm,. processors within the deadlines. Else,
some scheduling slots of typeat ¢, are either empty or
filled with operation0,, : d;, > d of lower priority than

saturated operations in the core GLSA. Define the operation
def

set¥ = {0, saturated ¢, < 0, < d*} U {O;}. Define the
operation subset’ & {0, €% rj <t.}.

Consider problemP* |intOrder(mono 1));r:;di;pi =
1|—. In an interval order, given two operatiofs andO;,
eitherpredO; C predO; or predO; C predO;. SelectO;
amongO; € X' such thatpredO;| is minimal. AsO;: € ¥
is not scheduled at datg or earlier by the core GLSA, there
must be a constraining operaticn, that is a direct prede-

cessor of operatlorj) o with o, + 1 + lk =05 >ty =

or+1>t,— li, . Note thatO;, can have any type. Opera-
tions inpredO;. are the direct predecessors of all operations
O; € ¥ and no predecessor Of; is in ¥/. ThusO;, ¢ ¥’
andOj, is a direct predecessor of all operatians € 3'.

We call stable backward schedusmy optimal backward
schedule ofB(Oy, Si) where the modified deadlines equal

the fixpoint modified deadlines. Sinc®, £ succO; U
indepOy, we haveX C Sj. By the fixpoint property, we
may assume that a stable backward schedulB (6}, Si)
exists. Such stable backward schedule must slotth@ —
1—t,)+1 operations ok befored! onm, processors, so at
least one operatio@; € X' is scheduled at datg or earlier
by any stable backward schedule®fOy, Sy).

Theorem 2 ensures that optimal backward scheduling of
B(Oy, Sy) satisfies the precedence delays betw@grand

0;. Thusay +1+1, < t,s0df —1+1+1 <t,. By

the monotone interval order properpyedO g predO; =

w(Ok, 0;) < w(Ok,0;) = 1410 <141 = 1 <1 for
Oj selected above ar@; € ¥', sod; <t, — li However

in the core GLSA schedule, +1 > ¢, — lfc s00;, misses
its fixpoint modified deadlind;;. 0

The overall time complexity of this modified LPPA is
the sum of the complexity of initialization steps (i-ii), of
the number of iterations times the complexity of steps (1-5)
and of the complexity of the core GLSA. Leung, Palem and
Pnueli (Leung, Palem, & Pnueli 2001) observe that the num-
ber of iterations to reach a fixpoint is upper boundechby
a fact that still holds for our modified algorithm. As the time
complexity of the GLSA on typed task systems witkypes
is within a factork of the time complexity of the GLSA on
parallel processors, our modified LPPA has polynomial time
complexity.

In their work, Leung, Palem and Pnueli (Leung, Palem,
& Pnueli 2001) describe further technigues that enable to
lower the overall complexity of their algorithm. The first
is a proof that applying optimal backward scheduling in re-
verse topological order of the operations directly yields the
fixpoint modified deadlines. The second is a fast implemen-
tation of list scheduling for problem®|r;; d;; p; = 1|—.
These techniques apply to typed task systems as well.

29

Table 1: ST200 VLIW processor resource availabilities and
operation class resource requirements

Resource | Issue Memory Control Align

Availability 4 1 1 2
ALU 1 0 0 0
ALUX 2 0 0 1
MUL 1 0 0 1
MULX 2 0 0 1
MEM 1 1 0 0
MEMX 2 1 0 1
CTL 1 0 1 1

Application to VLIW Instruction Scheduling
ST200 VLIW Instruction Scheduling Problem

We illustrate VLIW instruction scheduling problems on the
ST200 VLIW processor manufactured by STMicroelectron-
ics. The ST200 VLIW processor executes up to 4 oper-
ations per time unit with a maximum of one control op-
eration (goto, jump, call, return), one memory operation
(load, store, prefetch), and two multiply operations per time
unit. All arithmetic operations operate on integer values with
operands belonging either to the General Register file{64
32-bit) or to the Branch Register file (8 1-bit). In order

to eliminate some conditional branches, the ST200 VLIW
architecture also provides conditional selection instructions.
The processing time of any operation is a single time unit

(pi = 1), while the precedence delaj/sbetween operations
range from -1 to 2 time units.

The resource availabilities of the ST200 VLIW proces-
sor and the resource requirements of each operation are dis-
played in Table 1. The resources arssue for the in-
struction issue widthMemory for the memory access unit;
Control for the control unit. An artificial resourcalign is
also introduced to satisfy some encoding constraints. Oper-
ations with identical resource requirements are factored into
classes ALU, MUL, MEM and CTL correspond respec-
tively to the arithmetic, multiply, memory and control op-
erations. The classes ALUX, MULX and MEMX represent
the operations that require an extended immediate operand.
Operations namedDH MULL ADDQD CMPNEBRF belong
respectively to classes MEM, MUL, ALU, ALU, CTL.

A sample C program and the corresponding ST200 VLIW
processor operations for the inner loop are given in Fig-
ure 4. The operations are numbered in their appearance
order. In Figure 5, we display the precedence graph be-
tween operations of the inner loop of Figure 4 after remov-
ing the redundant transitive arcs. As usual in RCPSP, the
precedence graph is augmented with dummy nagieand
Op+1 @ n = 7 with null resource requirements. Also, the
precedence arcs are labeled with the corresponding start-
start time-lag, that is, the values pf + l7 The critical path
of this graph iDg — 01 — Oy — O3 2 O7 — Og so the
makespan is lower bounded by 7.

This example illustrates that null start-start time-lags, or
precedence delayl§5 —p;, occur frequently in actual
VLIW instruction scheduling problems. Moreover, the start-

int L?_ 0 8
prod(int n, short af], short b) { LDH_1 gl31 = 0, G127
int s=0, i MULL_2 g132 = G126, g131
for (i=0;i<n;i++) { ADD_3 G129 = G129, g132
s += ai*b; ADD_4 G128 = G128, 1
ADD_5 G127 = G127, 2
return s; CMPNE_6 b135 = G118, G128
} BRF_7 b135, L?__0_8

Figure 4: A sample C program and the corresponding ST200 operations

0 1
)
Q)
PO e ©
3

Figure 5: Precedence graph of the inner loop instruction scheduling problem

start time-lags are non-negative, so classic RCPSP sched-precedence graph properties. From the way we defined the
ule generation schemes (Kolisch & Hartmann 1999) (list relaxation to typed task systems, it is apparent that these fix-
scheduling) are guaranteed to build feasible (sub-optimal) point modified deadlines are also deadlines of the original
solutions for these VLIW instruction scheduling problems. problem (UET RCPSP with non-negative time-lags).

In this setting, the main value of VLIW instruction schedul- _

ing problem relaxations such as typed task systems is to In Table 2, we collect the results of lower bounding the
strengthen the bounds on operation schedule dates includ-makespan of ST200 VLIW instruction scheduling problems
ing the makespan. Improving bounds benefits scheduling With our modified LPPA for typed task systems. These
techniques such as solving time-indexed integer linear pro- results are obtained by first computing the fixpoint mod-

gramming formulations (Dupont de Dinechin 2007). ified deadlines on the reverse precedence graph, yielding
strengthened release dates. The modified LPPA is then
ST200 VLIW Compiler Experimental Results applied to the precedence graph with strengthened release

dates, and this computes fixpoint modified deadlines includ-
ing a makespan lower bound. The benchmarks used to ex-
tract these results include an image processing program, and
thec-lex Specint program.

The first column of Table 2 identifies the code block that
defined the VLIW instruction scheduling problem. Column
n gives the number of operations to schedule. Columns
Resource, Critical, MLPPA respectively give the makespan
e Expand each operation that requires several resources tolower bound in time units computed with resource use,

a chain of sub-operations that use only one resource type critical path, and the modified LPPA. The last column

per sub-operation. Set the chain precedence delays to -11LP gives the optimal makespan as computed by solving a

(zero start-start time-lags). time-indexed linear programming formulation (Dupont de
« Assign to each sub-operation the release date and deadlinePin€chin 2007). According to this experimental data, there

of its parent operation. exists cases where using the moc_j|_f|ed LPPA yields a_5|gn|f|-

cantly stronger relaxation than critical path computation.

We implemented our modified Leung-Palem-Pnueli algo-
rithm in the instruction scheduler of the production compiler
for the ST200 VLIW processor family. In order to apply this
algorithm, we first relax instances of RCPSP with UET op-
erations and non-negative start-start time-lags to instances of
scheduling problems on typed task systems with precedence
delays, release dates and deadlines:

The resultis a UET typed task system with release dates and

deadlines, whose precedence graph is arbitrary. ;
Applying our modified Leung-Palem-Pnueli algorithm to Summary and Conclusions

an arbitrary precedence graph implies that optimal schedul- We present a modification of the algorithm of Leung, Palem

ing is no longer guaranteed. However, the fixpoint modified and Pnueli (LPPA) (Leung, Palem, & Pnueli 2001) that

deadlines are still deadlines of the UET typed task system schedules monotone interval orders with release dates and

considered, as the proof of Theorem 2 does not involve the deadlines on UET typed task systems (Jaffe 1980) in poly-

30

Table 2: ST200 VLIW compiler results of the modified
Leung-Palem-Pnueli algorithm

Label n | Resource Critical MLPPA ILP
BB26 41 11 15 19 19
BB23 34 10 14 18 18
BB30 10 3 5 5 5
BB29 16 5 10 10 10
131 34 9 14 18 18
BB9_Short | 16 4 10 10 10
BB22 16 4 10 10 10
LAOO021 22 6 6 7 7
LAOO11 20 6 18 18 18
BB80 14 6 17 17 17
LAOO033 41 11 31 32 32
41362 23 9 38 38 38
BB916 34 14 30 31 31
41181 15 8 18 19 19
41180 7 2 9 10 10
4.998 14 4 10 11 11
41211 9 2 9 9 9
41209 14 7 18 18 18
41388 6 2 8 9 9
4.949 13 5 12 13 13
BB740 11 4 13 14 14
LAOO0160 | 17 7 7 11 11

nomial time. In an extended|3|y denotation, this is prob-
lem Xk PlintOrder(mono I});ri; di; pi = 1|—.

Compared to the original LPPA (Leung, Palem, & Pnueli
2001), our main modifications are: use of the Graham list
scheduling algorithm (GLSA) adapted to typed task systems
and to zero start-start time-lags; new definition of the back-
ward scheduling problen3(O;, S;) that does not involve
the transitive successors of operatiof core LPPA proof
adapted to typed task systems and simplified thanks to the
properties of monotone interval orders.

Like the original LPPA, our modified algorithm opti-
mally solves a feasibility problem: after scheduling with
the core GLSA, one needs to check if the schedule meets
the deadlines. By embedding this algorithm in a dichotomy
search for the smalledt,, ... such that the scheduling prob-
lem with deadlines!; + L, is feasible, one also solves
¥ PlintOrder(mono 1));ri;pi = 1|Lpas in polyno-
mial time. This is a significant generalization over the
Yk PlintOrder;p; = 1|Cpae problem solved by Jansen
(Jansen 1994) in polynomial time.

Our motivation for the study of typed task systems with
precedence delays is their use as relaxations of the Resource-
Constrained Scheduling Problems (RCPSP) with Unit Exe-
cution Time (UET) operations and non-negative start-start
time-lags. In this setting, precedence delays are important,
yet no previous polynomial-time scheduling algorithms for
typed task systems consider them. The facts that interval
orders include operations without predecessors and succes-
sors, and that the LPPA enforces releases dates and dead-
lines, are also valuable for these relaxations.

31

References

Ali, H. H., and EI-Rewini, H. 1992. Scheduling Inter-
val Ordered Tasks on Multiprocessor Architecture SIRC

'92: Proceedings of the 1992 ACM/SIGAPP Symposium on
Applied computing792—797. New York, NY, USA: ACM.

Brucker, P.; Drexl, A.; Mhring, R.; Neumann, K.; and
Pesch, E. 1999. Resource-Constrained Project Scheduling:
Notation, Classification, Models and Methodsuropean
Journal of Operational Researci2:3—41.

Brucker, P. 2004. Scheduling Algorithms, 4th edition
SpringerVerlag.

Chaudhuri, S.; Walker, R. A.; and Mitchell, J. E. 1994. An-
alyzing and Exploiting the Structure of the Constraints in
the ILP Approach to the Scheduling ProblellBEE Trans-
actions on VLSR(4).

Dupont de Dinechin, B. 2004. From
Machine Scheduling to VLIW Instruction
Scheduling. ST Journal of Research1(2).

http://www.st.com/stonline/press/magazine/stjournal/vol0102/.

Dupont de Dinechin, B. 2007. Time-Indexed
Formulations and a Large Neighborhood Search for
the Resource-Constrained Modulo Scheduling Prob-
lem. In 3rd Multidisciplinary International Schedul-

ing conference: Theory and Applications (MISTA)
http://www.cri.ensmp.fr/classement/2007.html.

Garey, M. R., and Johnson, D. S. 1976. Scheduling Tasks
with Nonuniform Deadlines on Two Processors. ACM
23(3):461-467.

Jaffe, J. M. 1980. Bounds on the Scheduling of Typed Task
SystemsSIAM J. Comput9(3):541-551.

Jansen, K. 1994. Analysis of Scheduling Problems
with Typed Task SystemsDiscrete Applied Mathematics
52(3):223-232.

Kolisch, R., and Hartmann, S. 1999. Algorithms for Solv-
ing the Resource-Constrained Project Scheduling Prob-
lem: Classification and Computational Analysis. In J., W.,
ed.,Handbook on Recent Advances in Project Scheduling
Kluwer Academic. chapter 7.

Leung, A.; Palem, K. V.; and Pnueli, A. 2001. Schedul-
ing Time-Constrained Instructions on Pipelined Proces-
sors.ACM Trans. Program. Lang. Sy&3(1):73-103.

Palem, K. V., and Simons, B. B. 1993. Scheduling Time-
Critical Instructions on RISC Machine&CM Trans. Pro-
gram. Lang. Systl5(4):632—658.

Papadimitriou, C. H., and Yannakakis, M. 1979. Schedul-
ing Interval-Ordered TasksSIAM J. Comput8(3):405—
4009.

Verriet, J. 1996. Scheduling Interval Orders with Re-
lease Dates and Deadlines. Technical Report UU-CS-1996-
12, Department of Information and Computing Sciences,
Utrecht University.

Verriet, J. 1998. The Complexity of Scheduling Typed Task
Systems with and without Communication Delays. Tech-
nical Report UU-CS-1998-26, Department of Information
and Computing Sciences, Utrecht University.

A Note on Concurrency and Complexity in Temporal Planning

Maria Fox and Derek Long
Department of Computer & Information Sciences
University of Strathclyde, Glasgow, UK

Abstract

Rintanen recently reported (Rintanen 2007) that
the complexity of temporal planning with dura-
tive actions of fixed durations in propositional do-
mains depends on whether it is possible for multi-
ple instances of the same action to execute concur-
rently. In this paper we explore the circumstances
in which such a situation might arise and show
that the issue is directly connected to previously
established results for compilation of conditional
effects in propositional planning.

1 Introduction

In his paperComplexity of Concurrent Temporal
Planning (Rintanen 2007), Jussi Rintanen shows
that temporal planning in propositional domains,
with durative actions of fixed durations, can be en-
coded directly in a propositional planning frame-
work by using (propositionally encoded) coun-
ters to capture the passage of time. Actions are
split into their end points, in much the same way
as shown in the semantics of PDDL2.1 (Fox &
Long 2003) and as implemented in some plan-
ners (Halsey, Long, & Fox 2004; Long & Fox
2003). This encoding allows him to deduce that
the complexity of this form of temporal planning
is equivalent to that of classical planning when the
number of such counters is polynomial in the size
of the original (grounded) domain. However, if
multiple instances of the same action may exe-
cute concurrently then it is not sufficient to have
a single counter for each action instance, but in-
stead as many counters are required as potential
instances of the same action that may run con-
currently. Rintanen observes that this could be
exponential in the size of the domain encoding,
placing the planning problem into a significantly
worse complexity class than classical planning:
EXPSPACE-hard instead of PSPACE-hard.

In this paper, we explore the situations in which
instances of the same action can run concur-
rently and link the complexity costs the previ-
ously recognised problem of compiling condi-

32

tional effects into classical propositional encod-
ings (Gazen & Knoblock 1997; Nebel 2000).

2 Preliminaries

We begin by providing some definitions on which
the remainder of the paper is based.

Definition 1 A classical propositional planning
action q, is a triple, (P, A, D), where each of,

A and D is a set of atomic propositions. The ac-
tion is applicable in a state$, also represented
by a set of atomic propositions,# C S. The ef-
fect of execution aof will be to transform the state
into the new state(S) = (S — D) U A.

Although states are sets of propositions, not all
sets of propositions form valid states for a given
domain. For a given domain, consisting of an ini-
tial state, a collection of actions and a goal con-
dition, the set of states for the domain is the set
of all sets of propositions that can be reached by
legal applications of the actions. In the rest of the
paper, when we quantify over states we intend this
to be over all the valid states for the (implicit) do-
main in question.

Definition 2 A simple durative propositional ac-
tion, D, with fixed duration (Fox & Long 2003), is
the 4-tuple(A,, A., I, d), whered is the duration
(a fixed rational),A, and A. are classical propo-
sitional planning actions that define the pre- and
post-conditions at the start and end pointdofe-
spectively, and is an invariant condition, which
is a set of atomic propositions that must hold in
every state throughout the execution/af

We do not choose to emphasise the conditions
under which two classical actions are considered
mutex, here (see (Fox & Long 2003) for de-
tails), but note that concurrent execution of two
instances of the same durative action in which the
end points coincide will not be possible if the end
points are mutex. This means that they cannot
delete or add the same propositions, so that they
actually have no effects. Hence, there is no role
for these actions in a plan and they can be ignored

in planning. Therefore, we assume that all our du-
rative actions must, if two instances of the same
action are to run concurrently, be executed with
some offset between them.

3 Key Properties of Actions

We now proceed to define some essential proper-
ties that help to characterise the ways in which ac-
tions can interact with one another or with aspects
of the states to which they are applied.

Definition 3 A classical propositional action,
a = (P, A, D) is repeatabldf in every stateS
in whicha is applicable,P C a(S).
A repeatable action can be applied twice in suc-

cession without any intervening action to reset the
state of resources that might be used by the action.

Definition 6 A classical propositional action =
(P, A, D) is anull-effect actionif for every state
SsuchthatP C S, S = a(S).

Note that one way in which an action can be
a null-effect action is that the action simply re-
asserts any propositions it deletes and all of its ef-
fects are already true in the state to which it is ap-
plied. Actions that reassert conditions they delete
are not entirely useless, provided they also achieve
some other effects that are not already true. Some
encodings of the blocks world domain can lead to
ground actions that both delete and add the propo-
sition that there is space on the table, simply to
avoid having to write special actions to deal with
the table. Also observe that null actions are a spe-
cial case of null-effect actions.

We can now prove a useful property of repeat-

As we shall see, repeatable actions are constrained able actions:

in the impact they may have on a state.

Definition 4 A classical propositional action,
a = (P, A, D) is weakly conditionalf there are
two statesS; and .S, such thata is applicable in
both states and either there is a propositjipg A
such thatp € S; andp ¢ S, or there is a propo-
sitionp € D such thap € S; andp & S5.

A weakly conditional action is one that can be
executed in situations in which some of its posi-
tive effects are already true, despite not being pre-
conditions of the action, or some of its negative

Theorem 1 Any repeatable action is either a
weakly conditional action, a null action or a null-
effect action.

Proof: Suppose a repeatable action,
(P, A, D), is not a null-effect action (and, there-
fore, not a null action). Then there must be some
state in whicha can be appliedS,, such that
a(S,) # S.. Sincea is repeatable, it must be
thatP C a(S,) = (Se — D)U A # S,.

Supposer is not weakly conditional. Then for
everyp € D,p € S, iff p € a(Ss) and for every

effects are already false. The reason we call these p € A4, p € S, iff p € a(S,). SinceA C a(S,),

actions weakly conditional is that these effects
are semantically equivalent to the simple condi-
tional effects(when (not p) p)and (when p (not
p)) for positive and negative effects respectively.
These expressions are obviously part of a richer
language than the classical propositional actions.
In fact, they make use of both negative precondi-
tions and conditional effects. This combination is
known to be an expensive extension to the classi-
cal propositional framework (Gazen & Knoblock
1997; Nebel 2000). Nevertheless, weakly con-
ditional actions are obviously valid examples of
classical propositional actions. Notice that we re-
quire weakly conditional actions to be applicable
in states that capture both possibilities in the im-
plicit condition. This constraint ensures that situ-
ations in which the preconditions of an action im-
ply that a deleted condition must also hold, with-
out that condition being explicitly listed as a pre-
condition (or the analogous case for an add effect)
are not treated as examples of weakly conditional
behaviour.

We now define some actions with reduced
structural content of one form or another.

Definition 5 A classical propositional action =
(P, A, D) is anull actionif P, A and D are all
empty.

33

the latter implies thatd C S,. The fact that
a(S,) # S, thenimplies that there is sorpes D
such thap € S, andp ¢ a(S,). This contradicts
our assumption, se must be weakly conditional.
O

We now consider the ways in which these clas-
sical actions can appear in certain roles in durative
actions.

Definition 7 A simple durative action,D
(As, A, I,d), is a pseudo-durative actioif A,
is a null action and! is empty.

Definition 8 A simple durative action,D
(As, Ae, I,d), is apurely state-preserving action
if A, = (P, A, D) is a null-effect action and every
state satisfyind also satisfies.

3.1 Deadlocking Actions

One last variety of action is so significant we
choose to devote a separate subsection to it.

Definition 9 A simple durative action,D
(As, Ae, I,d), is adeadlocking actiorif there is
a state,S, such thatl C S but A, is not applica-
bleinS.

Thus, a deadlocking action is one that could be-
gin execution and then, either by execution of in-
tervening actions, or possibly simply by leaving

Figure 1: The intervals created by overlapping ex-
ecution of two instances of the same action.

the state unchanged, it is possible to arrive in a
situation in which the action cannot terminate be-
cause the conditions for its termination are not sat-
isfied.

Deadlocking actions are clearly no natural ac-
tions: there is no real situation in which it is pos-
sible to stop time advancing by entering a state in
which an action must terminate before time pro-
gresses, but cannot because the conditions for its
termination are not satisfied. If we adopt a model
in which a durative action has a fixed duration
then the conditions for its termination must be in-
evitable, but the effects it has might well be condi-
tional on the state at that time. In domains where
deadlock is possible (for example, in the execu-
tion of parallel processes), the effect is not to stop
time, of course, but to stop execution of the pro-
cesses. This means that if one were to consider the
behaviour of the parallel processes to be modelled
by durative actions, the failure to terminate is han-
dled by the actions having unlimited duration.

Therefore, we contend that no natural domains
require to be modelled with deadlocking actions.

4 Self-Overlapping Actions

We now turn our attention to the circumstances
in which two instances of the same simple dura-
tive action can be executed concurrently. Figure 1
shows the intervals that are created by the overlap-
ping execution of such a pair of action instances.
Note that when such an overlap occurs there are
two places where classical propositional actions
might be repeatedd, and A..

Theorem 2 If two instances of a simple dura-
tive action,a = (A;, A.,I,d) can execute con-
currently, then eithew is either a deadlocking,
pseudo-durative or purely state-preserving action,
or elseA. is weakly conditional.

Proof: Suppose that two instances @fttan exe-

cute concurrently and consider the two instances
of A, at the ends of the action instances. Either
a is deadlocking, or else it must be possible for

be either a null action, a null-effect action or else
weakly conditional. IfA. is a null action ther

is either pseudo-durative (if is empty) or else
it is purely state-preserving. Finally, if is not
deadlocking and4. is a null-effect action, then
any preconditions off, must be true in any state
satisfyingI (otherwise there would be a state in
which I was satisfied, yet could not terminate,
implying thata is deadlocking) and therefore

is either pseudo-durativd {s empty) or else it is
purely state-preservingl

Now that we have classified the simple durative
actions that may execute concurrently with them-
selves, we briefly analyse the alternatives. We
have already argued that deadlocking actions do
not appear in natural domains. Pseudo-durative
actions can be treated as though they were clas-
sical propositional actions, without duration, pro-
vided that a simple check is carried out on com-
pleted plans to ensure that adequate time is al-
lowed for any instances of these actions to com-
plete. Purely state-preserving actions are more
interesting. An example of such an action is an
action that interacts with a savings account that
then triggers a constraint that the money in the ac-
count must be left untouched for some fixed pe-
riod. Clearly, such an action is not unreasonable,
even if it is uncommon. Fortunately, Rintanen’s
translation of temporal domains into classical do-
mains can be achieved for purely state-preserving
actions without additional counters to monitor the
duration of overlapping instances of these actions.
This is because the only important thing about
these actions is how long the conditions they en-
capsulate must be preserved. Each time a new in-
stance is executed, the clock must be restarted to
ensure that the preservation period continues for
the full length of the action from that point. Since
the end of the action has no effects it is not nec-
essary to apply it except when the counter reaches
zero, at which point the invariant constraint be-
comes inactive.

Thus, the source of the complexity gap that Rin-
tanen identifies can be traced, for all practical pur-
poses, to the use of durative actions terminated by
weakly conditional actions. Weakly conditional
actions can be compiled into non-weakly condi-
tional actions by the usual expedient of creating
multiple versions of the actions. The idea is to
have one version for the case where the condition
is true and one for the case where the condition is
false, each with the appropriate additional precon-
dition to capture the case and the appropriate ver-
sion carrying the conditional effect, but now as an
unconditional effect. The problem with this com-

these two instances to be repeatable, since there pilation is that it causes an exponential number of

is no requirement that an action be inserted in the
period Z. Then, by our earlier result4d, must

34

variants to be created in the size of the collection
of conditional effects.

In general, the current collection of benchmark
domains do not appear to contain durative actions
with repeatable terminating actions (although in

6 Conclusions

We have shown what kinds of simple durative ac-
tions can run concurrently with instances of them-

many cases this is because the states in which the se|ves. Identifying the conditions that allow this

end actions can be executed are limited by the nec-
essary application of the start effects of the dura-
tive actions to which they belong). This means
that the problem of self-overlapping actions does
not arise in these domains.

In domains in which there are repeatable termi-
nating actions, it is non-trivial to identify which
effects contribute to the weakly conditional be-
haviour. Delete effects are simpler to manage: any
delete effect that is not listed as a precondition can
be assumed to have the potential to be a weakly
conditional effect. Add effects are more problem-
atic: unless an add effect is shown to be mutually
exclusive with the preconditions of the action, it
must be assumed that it is weakly conditional. It
is possible to use mutex inference, such as that
used in Graphplan (Blum & Furst 1995) or that
performed byrim (Fox & Long 1998), to identify
which add effects must be considered as weakly
conditional. In general, to ensure that the weakly
conditional behaviour has been completely com-
piled out, it is necessary to make a conservative
assumption about any effects that cannot be shown
to be ruled out. Nevertheless, in practical (propo-
sitional) domains the number of effects is tightly
limited (ADL domains with quantified effects are
not quite so amenable) and this makes it possible
to compile out the weakly conditional effects with
a limited expansion in the number of actions.

5 Relevance to Practical Planning

The relevance to practical planner design of the
result we have demonstrated is two-fold. Firstly,
we have shown that treatment of overlapping in-
stances of the same action can only occur under
limited conditions. These conditions can often
be identified automatically using standard domain
analysis techniques (Fox & Long 1998). This
means that it is possible to determine whether ma-
chinery is required to be activated to handle the
special case. Avoiding the use of techniques that
would be redundant is useful in practical planner
design, as a way to achieve improved efficiency.

Secondly, the results demonstrate that the focus
of temporal planning should be, in the first place,
on handling concurrency between distinct action
instances and on the treatment of weakly condi-
tional effects. The latter phenomenon is one that
has not, to the best of our knowledge, been high-
lighted in the past, but is clearly a significant is-
sue, since compilation of such effects into uncon-
ditional actions is both non-trivial and also, poten-
tially, exponentially costly.

35

has led to the discovery of a close link between
the complexity gap identified by Rintanen and the
complexity induced by the extension of proposi-
tional domains to those with conditional effects.
A further important consequence of this analy-
sis is to learn that if actions have bounded ef-
fect lists then the complexity of temporal planning
is PSPACE-complete, even if self-overlapping ac-
tions are allowed.

References

Blum, A., and Furst, M. 1995. Fast planning
through plan-graph analysis. Proceedings of
the Fourteenth International Joint Conference on
Artificial Intelligence (IJCAI95)1636-1642.

Fox, M., and Long, D. 1998. The automatic
inference of state invariants in TIMJournal of
Al Researcl®.

Fox, M., and Long, D. 2003. PDDL2.1: An ex-
tension of PDDL for expressing temporal plan-
ning domains. Journal of Al Researcl20:61—
124.

Gazen, B., and Knoblock, C. 1997. Combining
the expressivity of UCPOP with the efficiency of
Graphplan. IrECP-97 221-233.

Halsey, K.; Long, D.; and Fox, M. 2004. Crikey -

a planner looking at the integration of scheduling
and planning. IProceedings of the Workshop on
Integration Scheduling Into Planning at 13th In-

ternati onal Conference on Automated Planning
and Scheduling (ICAPS’0346-52.

Long, D., and Fox, M. 2003. Exploiting a graph-
plan framework in temporal planning. IRro-
ceedings of ICAPS’Q3

Nebel, B. 2000. On the expressive power of
planning formalisms: Conditional effects and
boolean preconditions in the STRIPS formalism.
In Minker, J., ed.Logic-Based Atrtificial Intelli-
gence Kluwer. 469-490.

Rintanen, J. 2007. Complexity of concurrent
temporal planning. IrProceedings of Interna-
tional Conference on Automated Planning and
Scheduling280-287.

Optimisation of Generalised Palicies via Evolutionary Computation

Dave Humphreys'
CISA, School of Informatics
University of Edinburgh
Edinburgh EH8 9LE, UK

Michelle Galea and John Levine and Henrik Wester berg*
Department of Computer & Information Sciences
University of Strathclyde
Glasgow G1 1XH, UK

Abstract

Planner

This paper investigates the application of Evolutionaryrco

putation to the induction of generalised policies. A polisy
here defined as a list of rules that specify which actions to
be performed under which conditions. A policy is domain-

Domain C

Domain C w

Domain B)

Domain A
model

policy

Domain B
Domain A

specific and is used in conjunction with an inference mech-

anism (to decide which rule to apply) to formulate plans 1
for problems within that domain. Evolutionary Computation
is concerned with the design and application of stochastic Inference Plan
population-based iterative methods inspired by naturaluev method
tion. This work illustrates how it may be applied to the in- \)
duction of policies, compares the results on one domain with
those obtained by a state-of-the-art approximate polesait
tion approach, and highlights both the current limitati(gwch

as a simplistic knowledge representation) and the advastag
(including optimisation of rule order within a policy) of pu
system.

Problem

Figure 1: Planning using generalised policies and infezenc
mechanisms

Introduction It should be noted that these policies containla particylar
type of control knowledge. Control knowledge is domain-
We present an evolution-inspired system that induces gener specific knowledge often used by some planners to prune
alised policies from available solutions to planning peshs. search during the construction or identification of a plan.
The term generalised policy was coined by Martin & Geffner Control knowledge is often expressedasrHEN type rules,
(2004) for a function that maps pairs of initial and goalesat but the conditions and actions relate to goal, domain opera-
to actions. The actions outputted should, when performed, tor and/or variable binding decisions to be taken during the
achieve the specified goal state from the specified iniést ~ search process. Examples of work that induce such knowl-

Figure 1 presents a simplified view of a planner based on edge include (Leckie & Zukerman 1998) and (Aler, Borrajo,
generalised policies. A distinction is made here between a & Isasi 2002).
policy — the knowledge used to solve a problem, and the in- | this work a policy determines domain operator selec-
ference mechanism that utilises the policy —the decision pr tion and each rule describes the conditions necessary for a
cedure that dictates when and how the knowledge is applied. particular operator to be applied. The inference mechanism
A domain model defines a specific domain in terms of rele- js responsible for deciding all other decisions (which role
vant objects, actions and their effects. apply, and which variable bindings to implemewijhoutre-

A policy in this work is a list of domain-specifi¢-THEN course to any search, leading to highly efficient planners.
rules. If the conditions stated in the- part of a rule match The induction of policies is carried out using Evolution-
the current state, then the action in tfieEN partmaybe ap- 5y computation (EC) in a supervised learning context. EC
plied. The currently implemented inference mechanism is a ig he application of methods inspired by Darwinian princi-
common and simple one — rules within a policy are ordered |5 of evolution to computationally difficult problems cbu
and the action of the first rule that may be applied is per- 55 search and combinatorial optimisation. Its populasty i
formed. If more than one valid combination of variable bind- - §ye in great part to its parallel development and modificatio
ings exists then orderings on the variables and their valtees ot myltiple solutions in diverse areas of the solution space
adopted and the first valid combination is effected. discouraging convergence to a suboptimal solution.

We compare the performance of one evolved policy with
that obtained using a state-of-the-art Approximate Pdlicy
eration (API) (Bertsekas & Tsitsiklis 1996) approach. We

«Currently at Systems Biology Unit, Centre for Genomic Regjah, C/Dr Aiguader
88, Barcelona 08003, Spain
fCurrently at Mobile Detect Inc., Ottawa, Ontario, Canada K6P5

36

focus on the knowledge representation language (KR) and from that on which it was trained, even a simplified one such

learning mechanism highlighting both the current limaas

and strengths of our system. The rest of this paper reviews

the literature on generalised policy induction, describes

as (ONBA).
Another experiment seeks a program capable of achiev-
ing 4 different goals states (maximum 3 blocks), from differ

implemented system, and discusses experiment results ancent initial states. This evolved program is capable of atai

future research directions.

Related Wor k

Early work on inducing generalised policies utilises ge-
netic programming (GP) (Koza 1992), a particular branch of
EC. Evolutionary algorithms in general re-iteratively gpp

genetic-inspired operators to a population of solutionigh w

fitter individuals of a generation (according to some prede-
fined fitness criteria) more likely to be selected for modifi-
cation and insertion into successive generations thaneveak

ing any of the 4 specified goal states from initial states not
observed during the evolutionary process. The author indi-
cates that it is also capable of solving some 4-block problem
though its generalisation power for this and larger prolslem
has not been fully analysed.

The work of Khardon (1999) for inducing policies has in-
spired and/or often been cited by later work. It uses a deter-
ministic learning method to induce decision listsBfTHEN
rules from examples of solved problems, with the first rule
in the list that matches the observed state being applied. Th

members. On average, therefore, each new generation tend$£arning strategy is one of iterative rule learning wher th
to be fitter than the previous one. GP is distinguished byea tre following step is iterated until no examples are left in the

representation of individuals that makes it a natural cdenei
for the representation of functional programs.

Koza (1992) describes a GP algorithm for solving a
blocksworld problem variant — the goal is a program capa-
ble of producing a tower of blocks that spells “UNIVER-
SAL", starting from a range of different initial tower con-
figurations. The tree-like individuals in a generation are
constructed from sets dfinctions(such asmve_t o_st ack
and nove_to._tabl e) and terminals that act as argu-
ments to the functions (such asp_bl ock_of st ack and
next _needed_bl ock).

Each individual in the population is assessed by its perfor-
mance on a set of 166 initial configurations. Generation 10

training set — a number of rules are generated, the best (ac-
cording to some criterion) is determined, examples that are
covered by this rule are removed from the training data, and
the rule is added to a growing rulebase. The number of rules
generated in each iteration must be finite and tractable and
this is controlled in part by setting limits to the number of
conditions and variables in the- part of a rule; all possi-

ble rules for each action are then generated in each itaratio
The training data is formulated by extracting examples from
planning problems and their solutions — each state andmactio
encountered in a plan constitutes one example.

In addition to the training examples and a standard STRIPS
domain description Khardon provides the learning algarith

produces a program that correctly stacks the tower for each With background knowledge he calisipport predicates-

of the given configurations, though it uses unnecessarkbloc

movements and contains unnecessary functions. When el-

concepts such asbove andi npl ace for the blocksworld
domain. The resulting policy is an ordered list of existalhi

ements are included in the fithness assessment that penaliséluantified rules with predicates in the condition part thaym

against these inefficiencies, the algorithm outputs a parsi

or may not be negated, and may or may not refer to a sub-

nious program that produces solutions that are both correct90al. For instanceholding(xz1) —clear(z2) G(on(z1,22)) —

and optimal (in terms of plan length).
Spector (1994) uses Koza’s algorithm with different func-

PUTDOWN(z1), represents a rule that saysaif is currently
held, - is not clear, and in the goal state should be o,

tion and terminal sets to induce solutions to the Sussman Put downz;.

Anomaly — the initial state is block C on block A, with blocks
A and B on the table; the goal state is block A on B, which
is on C, which is on the table. In a first experiment the au-
thor uses functions such aswt ower (move X to table if X

is clear) andbut on (put X on Y if both are clear), and the

Blocksworld policies are generated using different train-
ing sets containing examples drawn from solutions to 84bloc
problems, and are tested on new problems of sizes ranging 7—
20 blocks. Their performance varies from a high of 83% of
7-block problems solved, down to 56% of 20-block problems.

terminals are the names of the blocks A, B and C. The goal is Similar experiments are carried out for the logistics damai

a program that can attain the goal state from the initiaéstat

with training of policies on examples obtained from solotio

and individuals are assessed on this one problem. The fitnesgo problems with 2 packages, 3 cities, 3 trucks, 2 locations
function includes elements that reward parsimony and effi- per city, and 2 airplanes. Polices are tested on problents wit
ciency as well as correctness, and the goal is achieved well similar dimensions to the testing problems, and the number
before the final generation. of packages is varied from 2, solving 80% of problems, to
In further experiments the author introduces new functions 30, solving 68% of problems.
and replaces the block-specific terminals with ones that ref Martin & Geffner (2004) suggest that the generalisation
to blocks by their positions in goals. The number of problems power of Khardon’s policies over large problems is weak, and
on which individuals are assessed is also increased. One exthat obtaining domain-dependent background knowledge is
periment is designed to produce a program that achieves thenot always a trivial task. They use the same learning method
Sussman goal state from a range of different initial states. as Khardon but propose to overcome both weaknesses by us-
The resulting program achieves this particular goal stedé@e ing description logics (Baadet al. 2003) as the KR. This
from initial configurations that are not used during leagnin ~ enables the representation of concepts that desclisses
However, it is incapable of achieving a different goal state of objects, such as the concept of a well-placed block.

37

A blocksworld policy induced from 5-block problem ex-
amples solves 99% of the 25-block test problems. With the
addition of an incremental refinement procedure a policy is
eventually induced that solves 100% of test problems: a pol-
icy is induced and tested on 5-block problems; optimal so-
lutions are found for the problems it fails on, and examples
are extracted from these and added to the training set; ¢hen,
new policy is induced from the larger dataset. The authers re
peat this procedure several times until a policy solveshall t
25-block test problems presented (test problems are ndw eac
time the policy is tested). It should be noted however that as
well as the KR and the refinement extension to the learning
algorithm, the way training examples are extracted from so-

(1) Create initial population

(2) WH LE termination criterion false
(3) Eval uate current generation
(4) WHI LE new generation not full
(5) Per f orm r eproduction

(6) Per f orm reconbi nati on

(7) Perform nut ation

(8) Perform | ocal search

(9) ENDWHI LE

(10) ENDWHI LE

(11) CQutput fittest individual

Figure 2: Pseudocode outlinelo?Plan

Learning Policiesusing L2Plan

lutions is different from that in Khardon’s work — Martin &
Geffner use as examplaft actions for each state that lead to

an optimal plan; this may have some impact on the quality of

the induced policies.

Fern, Yoon, & Givan (2006) learn policies for a long ran-
dom walk (LRW) problem distribution using a form of API.
A policy is a list of action-selection rules where the action

L2Plan (Learn to Plan) induces policies of rules similar to
Khardon’s, but the learning mechanism used is a population-
based iterative approach inspired by natural evolution.

Input to L2Plan consists of an untyped STRIPS domain
description, additional domain knowledge if availableg(e.
concept of a well-placed block), and domain examples on
which to evaluate the policies being learned. The output is

of the first rule that matches the current and goal states is a domain-specific policy that is used in conjunction with an

applied. An LRW distribution randomly generates an initial

inference mechanism to solve problems within that domain.

state for a problem, executes a long sequence of random ac- A policy consists of a list of rules with each rule being a

tions, and sets the goal as a subset of properties of the fina

resulting state. For a given domain API iteratively impreve
a policy until no further improvement is observed or some

other stopping criterion is used. The expectation is that if

a learned policyr,, performs well on problems drawn from
random walks of length, then it will provide reasonable per-

formance or guidance on problems drawn from random walks

of lengthm, wherem is only moderately larger thamn ,, is
therefore used to bootstrap API iterations to fing, i.e. to

find a policy that handles problems drawn from increasingly

longer random walks.
Within each iteration, trajectories (sequences of alterna

|Specialisedr-THEN rule (also known as a production rule).

TheF- part is composed of two condition statements where
each is a conjunction of ungrounded predicates which may be
negated:

I'F condition AND goal Conditi on THEN acti on

condition relates to the current state amgbal -
Condi ti on to the goal state. If variable bindings exist such
that predicates ircondi t i on match with the current state,
and predicates igoal Condi t i on match with the goal state,
then the action may be performed. Note though that the ac-
tion’s precondition must also be satisfied in the curreriesta
The list of rules is ordered and the first applicable rule edus
Variable and domain orderings are followed if more than one

ing states and actions) for an improved policy are generated combination of bindings is possible.

using policy rollout (Tesauro & Galperin 1996), and then an
improved policy is learned using the trajectories as trajni
data. The policy learning component follows an iterativie ru
learning strategy. The difference between this learnireg-st
egy and that of Khardon and Martin & Geffner lies in the

Figure 2 presents an outline of the system. Each itera-
tion starts with a population of policies (line(2)). The per
formance of these policies is evaluated on training data gen
erated from planning problems from the domain under con-
sideration (line (3)). The resulting measure of fitness for a

rule generation procedure where a greedy heuristic search i policy is used to determine whether it is replicated in thetne
used instead of exhaustively enumerating all rules. The KR iteration (line (5)), or whether it may be used in combinatio
(based on taxonomic syntax) is also different, and is expres with another policy to reproduce ‘offspring’ that may be in-
sive enough so that no support predicates need be supplied tcserted into the next iteration (also called crossover, (@)

the learning process.
This work is currently state-of-the-art in this particular

research area, i.e. where policies that are learned are use
with a simple and efficient decision procedure to solve plan-
ning problems. It presents policies for several domains and
tests them rigorously on deterministic and stochastic prob

lems from an LRW distribution and from the 2000 planning

competition; the results compare favourably with those ob-

tained by thé=F planning system (Hoffmann & Nebel 2001).
In this paper we explore the Briefcase domain API-

All policies to be inserted in the next iteration may undergo

some form of random mutation (i.e. small change, line (7)),
nd a local search procedure that attempts to increase-the fit
ess of the policy (line (8)).

The system terminates if a predefined maximum number
of generations have been created, or a policy attains maxi-
mum fitness by correctly solving all examples, or, the aver-
age difference in policy fitness in an iteration falls below a
predefined user-set threshold (indicating convergencdl of a
individuals to similar policies).

Since the results of the evaluation process influence the

generated policy and compare its performance with one creation of the next generation, the average fitness of &l po

evolved by our system, focusing on the limitations of our KR
and the strength of our policy optimisation mechanism.

38

cies is expected to improve from one generation to the next.
The fact that several policies are in each iteration alldves t

(:rule positionbriefcase_to_pi ckup_ni spl aced-obj ect
:condition (and (at ?obj ?to))
:goal Condition (and (not(at ?obj ?to)))
raction novebriefcase ?bc ?from ?to)

Figure 3: Example of a briefcase rule with a variable in
condi ti on that is not a parameter of the action

possibility of exploring different regions of the solutispace
at once. This, coupled with an element of randomness that is
used in the selection of policies crossover and mutatiory, ma
help to prevent all policies from converging to a local opti-
mum solution.

The following paragraphs describe the creation of the ini-
tial population, policy evaluation, and the genetic oparsat
used to create new policies from old.

Generating the Initial Population

L2Planfirst generates an initial — the first generation — popu-
lation of policies, Fig. 2 line (1). The number of individsal
in a population is predefined by the user (generally 100), and
stays fixed until the system terminates. The number of rules
in a policy at this stage is randomly set between user-defined
minimum and maximum values (4 and 8 respectively).

Thecondi ti on andgoal Condi ti on statements of a rule
are also generated randomly, within certain constrainte T
action, i.e. theHEN part of thelF-THEN rule, is first selected
randomly from all domain actions.

The size ofgoal Condi ti on in the IF- part of the rule
is determined by drawing a random integer between user-
defined minimum and maximum values (set to 1 and 3 re-
spectively), which determines the number of predicates. A
predicate is first selected, and then the appropriate nuafber
variables are randomly selected from all possible vargable
Predicates are randomly negated.

The size ofcondi ti on in the IF- part of the rule is cur-
rently determined by the number of parameters of the selecte
action, and a random selection of predicates. A predicate is

define (exanple blocksl.1)
: domai n bl ockswor | d)
:objects 54 3 2 1)
cinitial)
: goal o)
;actions
nove- b-
nove-
(nmove-
En‘ove—
nove-

(
€
?
(

a1 o1

NN O Ol
PREPP

nove-
nove-
(nove-

TTTeeeT
Aas AL
co~~ocooo
S5 RN YNNI
P RERWNN W

NNt

00000000
S S S

-
~

Figure 4: A training example generated from a blocksworld
problem

of a rule is liable to change with the application of genetic
operators.

Evaluating a Paolicy

The training data on which a policy is evaluated is composed
of a number of examples that are generated from a number
of planning problems. Each example consists of a state en-
countered on an optimal plan for the problem from which it is
extracted, and a number of actions which may be taken from
that state, each with an associated cost.

Consider a planning problem that includes an initial state
S7 and a goal stat&;. Each possible action that may be
taken fromS; is performed, leading to new states. For each
new state a solution that attaig; is found using an avail-
able planner. The length of each solution is determined, and
the smallest-size solution is deemed the optimal plan. A cos
is now attached to each action performed fréim the ac-
tion that leads to the optimal plan is given a cost of zero, and
all other actions are given a cost that is the difference be-
tween the length of the solution that they form a part of, and
the length of the optimal plan. This now forms one training
example on which an evolving policy may be evaluated. Fig-
ure 4 shows the representation used for a training example,
which is consistent, as far as possible, with STRIPS syntax.

For each state on the optimal plan just determineds the

selected randomly, and then variables for the predicate aresame procedure is followed as f6f, i.e. all possible ac-

randomly selected from the action’s parameters. Predicate
are selected, and variables assigned, until all of an dstien
rameters are present in at least one predicat@ndii t i on.
Each predicate is randomly negated.

However, early experiments highlighted that restrictimg t
parameters irtondi t i on strictly to those in the set of pa-
rameters for an action, severly limits the knowledge that ca

tions from the next state on the optimal plan, $ay are per-
formed, solutions for each of the resulting states are found
and costs for each possible action taken frém are de-
termined from the solutions’ length. Each training problem
therefore yields as many examples as there are states encoun
tered on the optimal plan. Duplicate training examples are
removed so as not to bia2Plantowards any particular sce-

be expressed by a rule. For example, the system is unablenario(s).

to learn the rule in Fig. 3 due to this constraint. This rule
specifies that if an object is misplaced (i.e. its currenaioc
tion is not the location specified for it in the goal stategrh
a briefcase is moved to the current location of the object. A
temporary quickfix has been implemented that inserts an ex-
tra unary predicate in the domain description. With thigipre
icate added to the precondition of each action/operatal; it
lows L2Planthe possibility of creating rules such as the one
in Fig. 3.

Note, that a policy need not contain a rule to describe each
action in the domain, and that the initially set number oésul
for a policy, and the number of predicates in the conditions

39

The planner used to generate training examples, i.e. when
determining plans t& ¢ from any stateS,,, is a simple one
using breadth-first search. This ensures that an optimal pla
is obtained and that actions in examples designated as opti-
mal are in fact actions for states encountered on some plan
of minimal length. For some domains (e.g. blocksworld and
briefcase), in order to speed up the generation of examples
hand-coded control rules to prune branches from the search
are used; these control rules are designed to ensure that an
optimal plan is still determined.

The fitness of a policy is determined by averaging its per-
formance over all examples, where for each example pre-

sented it is scored based on whether the selected actios form Rule Deletion Mutation A randomly selected rule is re-
part of an optimal plan or not. Formula (1) below describes moved from the policy (if the policy contains more than one
the fithess function where is the number of training exam- rule).

ples andactionCost; is the cost of the action taken by the Rule Swap Mutation Two randomly selected rules have
policy for training examplé: their position swapped in the policy (if the policy has more
m than one rule.).. .
Fitness = — Z 1 1) ~ Rule Condition Mutation A randomly selected rule has
m 41 + actionCost; its condi t i on and/orgoal Condi ti on statement mutated,
=t by replacing the condition statement with a newly generated
Creating a New Generation of Policies one, or by removing a predicate from the statement, or by

_ N . adding a new predicate.

CurrentL2Plansettings are such that the individuals compris- The'|gcal search procedure currently used is aimed at in-
ing the fittes6% of a generation are reproduced, improved by ¢reasing the fitness of a policy as quickly as possible. K per
alocal search mechanism, and then inserted into the next gen foyms rule condition mutations a predefined number of times
eration. The remainder of the next generation is populafed b (c5|ied the local search branching factor). The fittest miuta
|nd!V|duaIs sel.ected fro.m the current generation qnd o_rmlwh! replaces the original policy, and again, rule condition anut
various genetic operations are performed. The fitter nddlw_ tions are performed on the new policy the same predefined
uals in the current population have a greater chance of beingy,ymper of times. This process is repeated until either no
selected for recombination and mutation, in the expegtatio jmprovement in fitness is exhibited by any mutant over their

that their offspring and/or mutations result in even fittetit originator policy, or for a preset maximum number of times
viduals. However, randomness plays a part in their selectio (called the local search depth factor).

and in the application of genetic operators in an attempt to
search different areas of the solution space and to avoad loc A Comparison of Two Policies
minima.

Selection of two individuals is performed using tourna-
ment selection with a size of 2 (Miller & Goldberg 1995).
Crossover or mutation is then applied with_some predefined
probability (0.9 for crossover, 0.1 for mutation). The autp 4%t highiights a current limitation ot 2Plan, which is the
of these operators is a single policy — for crossover thesfitte limited expressiveness of the KR: and
of parents and offspring, and for mutation the fittest of the o gemonstrates the advantage offered by its policy discovery

original policy or mutants. _Local search is perfqrmed os thi mechanism, which optimises the rule order in a policy.
policy before it is inserted into the new generation. This-pr

cedure is repeated until the new generation is full.

There are three types of crossover that may be performe
on the 2 selected policies, and 4 types of mutation that may
be performed on the first selected policy:

Single Point Rule Level Crossover A crossover point is
randomly chosen in each of the 2 policies, with valid points e AP Policy
being before any of the rules (points need not be the same
in the 2 policies). Two offspring policies are then creatgd b
merging part of the policy of one parent (as delineated by the
crossover point), with a part of the other parent (the first pa
of parent A with the second part of parent B, and the second
part of parent A with the first part of parent B).

Single Rule Swap Crossover A randomly selected rule
from policy A is swapped with a randomly selected rule from
policy B, resulting in two new policies. The replacing rule
is inserted in the same position in the policy as the one it is
replacing.

Similar Action Rule Crossover Two rules with the same
action are randomly selected from the parent policies, one
from each. Two new rules are created from the selected rules,
one by usingcondi ti on from the first selected rule and
goal Condi ti on from the second, and the other new rule is be possible

created by usingoal Condi ti on from the first selected rule Below is a simpler example policy for illustrating the main

andcondi t i on from the second. Each of the two newly cre- features of the KR used. It is a policy for a blocksworld do-
ated rules replaces the original rule in each of the two garen main where the goal in all problems is to make all red blocks

This study focusses on comparing two policies for the brief-
case domain, one generatedl®Plan and the other by the
API approach introduced in thHeelated Worlsection (Fern,
Yoon, & Givan 2006). The comparison serves two purposes:

The Briefcase domain is chosen partly because it is as yet
gone of the few domains for which we have evolezPlan
policies, and partly because the knowledge expressed in the
API induced policy is such that can be expressedasHEN
rules.

Figure 5 presents the briefcase domain policy induced
by the API algorithm. A policy provides a mapping
from states to actions for a specific domain and consists
of a decision list of ‘action-selection rules’ of the form
a(x1,...,xx) : L1, La,...Ly, Wherea is ak-argument action
type, z; an action argument variable add is a literal. An

API policy is utilised in the same way as a2Plan policy.
Each rule describes the action to be taken if a variable bgndi
exists for the rule that matches both the current state and th
goal. The current state must also satisfy the preconditibns
the action specified by the rule. The rules in a policy are or-
dered and the rule that is applied in a state is the first rule fo
which a valid variable binding exists. A lexicographic arde
ing is imposed on objects in a problem to deal with situations
where more than one variable binding for the same rule may

policies, resulting in 4 new policies. clear is: ‘
Rule Addition Mutation A new rule is generated and in- 1. putdowng.) : z1 € holding
serted at a random position in the policy. 2. pickup@1) : z1 € clear, z1 € (on*(on red))

40

PUT-IN: X; € (GAT™! (NOT IS — AT)))

MOVE: (X» € (AT (NOT (CAT~' LOCATION)))) A
(X2 € (NOT (AT (GAT ™' CIS — AT))))

. MOVE: (X, € (GAT IN)) A (X1 € (NOT (CAT IN)))
TAKE-OUT: (X1 € (CAT* IS — AT))

MOVE: (X2 € GIS — AT)

MOVE: (X2 € (AT (GAT™' CIS — AT)))

PUT-IN:(X; € UNIVERSAL)

n

No oo

Figure 5: API briefcase policy in taxonomic syntax

1. pPUT-IN misplaced package in briefcase

MOVE briefcase to pickup misplaced package, if briefcase is at
its goal location and package does not have same goal locdio
briefcase

MOVE to goal location of package in briefcase, if there is no pack-
age in briefcase whose goal location is the same as the turren
location of briefcase

TAKE-OUT package that has arrived at its goal location
MOVE briefcase to its goal location

MOVE to pickup misplaced package, if briefcase is at its goal lo-
cation and package has same goal location as briefcase

PUT-IN package in briefcase.

Figure 6: API briefcase policy in common language

The primitive classes (unary predicates) in this domain are
red, clear, andholding, while on is a primitive relation (bi-

TAKE-OUT package that has arrived at its goal location
PUT-IN misplaced package in briefcase

MOVE briefcase to pickup misplaced package

MOVE to goal location of package in briefcase

MOVE briefcase to its goal location

o s wbhPeE

Figure 7:L2planbriefcase policy in common language

Table 1:L2Planparameter settings

Parameter Setting
Range of initial policy size [4-8]
Population size 100
Maximum number of generations 100
Proportion of policies reproduced 5%
Crossover probability 0.9
Mutation probability 0.1
Local search branching 10
Local search depth 10
Tournament selection size 2

moved to a goal location of a package withinahly if there
are NO other packages in the briefcase whose goal locations
are the same as the current location of the briefcase. If this
is so, then rule 4 is fired instead of rule 3, i.e. packages at
their goal location are taken out of the briefcase before the
briefcase is moved, despite the order and actions suggested
by these two rules.

As yet we cannot write rule 3 ih2Plan-style rules. This
limitation is partly due to the fact that we can only specify

nary predicate). If a domain contains predicates of greater individual packages using this KR and not sets of packages.

arity, these are converted to equivalent multiple binasdpr
icates. A prefix ofg indicates a predicate in the goal state
(e.g.gclear), while a comparison predicateindicates that

a predicate is true in both the current state and the goal (e.g
cclear). A primitive class (relation) is a current-state predi-
cate, goal predicate or comparison predicate, and it is-inte
preted as the set of objects for which the class (relation) is
true in a states. Compound expressions are formed by the
‘nesting’ of classes/relations, and/or the applicatiomadi-
tional language features such RS indicating a chain of a
relation R. Expressions have a depth associated with them
so that, for intstance, the first expression in rule 2 aboge ha
depth 1 and the second expression has depth 3.

Figure 6 is a translation of the policy in Fig. 5 into common
language. Upon inspection it is clear that there is potkintia
this policy to perform unnecessary steps. For instance, rul
2 moves the briefcase away from its current location without

However, if we simplify the API policy’s rule 3 and switch
the order of the simplified rule 3 with rule 4, then we obtain
an equivalent policy we can test and compare WwiPlans
policy. The new rule 3 statesaAKE-OUT package that is at
its goal location, and the new rule 4 igDVE to goal location

of package in briefcase.

The L2Plan Policy

Figure 7 presents the2Plan evolved policy against which
the API policy is compared. Note that the first four rules
are equivalent to the hand-coded control policy introduned
(Pednault 1987) and which is used to prune search for this
domain by theTLPlansystem (Bacchus & Kabanza 2000).

To produce this policy.2Planwas run 15 times with iden-
tical parameter settings (Table 1) though each time the-trai
ing examples were generated from 30 different randomly
generated problems and their solutions. The training prob-

first depositing any packages it contains that have as a goallem complexity is however the same: 5 cities, 2 objects and

location the current briefcase location. Furthermore, tfvo
the fourMOVE rules have as a necessary condition that the

briefcase must be at its goal location — this can cause prob-

lems and is discussed later on.
This API policy is translated inte.2Planstyle IF-THEN

1 briefcase. Using different training data for differenpex-
ments gives some indication of the impact of different exam-
ples on the induced policies, though it should be noted that
the element of randomness used in solution constructidn wil
also have some influence.

rules and tested using our implemented inference mechanism Three of the 15 policies solve all test problems presented

on the same problems as our evolved policy. However, it is
important to note differences in the KR which highlight the
limited expressiveness of our current formulationrefrTHEN
rules. Consider rule 3 in Fig. 6 — it states that the brieféase

41

(i.e. problems different from the ones used for training) a

the policy in Fig. 7 was selected from one of these three.
Note that though additional domain knowledge other than the
standard STRIPS description may used for inducing a policy,

©—L2Plan —= -AP| <©—L2Plan —= -API

100 3.0 4
90 l
2 ° < 251 ..
S 80 g -
5 | c .-
3 70 . ° g 201 e
T 601 | —n
£ o = .-
g 50 & S154 ==
2 40 To~ 3
S 7 S ® o <
E 30 4 el i a_ 2 1.0 <
£ = S ®
2 209 I <05
~
10 4 -
0 ‘ ‘ ‘ 0.0 ‘ ‘ ‘
[2-5] [2-10] [4-5] [4-1c [2-9] [2-10] [4-5] [4-1¢
Problem size [objects-cities] Problem size [objects-cities]

Figure 8: Number of optimal plans produced by a policy Figure 9: Average number of extra steps in suboptimal plans

Table 2: Performance of briefcase policies on problems-with
out a goal location for the briefcase. (Number of optimal
plans found in brackets)

Problem size [objects-cities]

none was used during the induction of briefcase policies. Fu
thermore, little system parameter tuning has been donésat th
stage, and the settings in Table 1 appear to provide realgonab
policies for evolving both briefcase and blocksworld piglgc

. . [2-5] [2-10] [4-5] [4-10]
(to be discussed briefly later). L2Plan 100 (93) 100 (94) 100 (72) 100 (74)
API 10 10) 4 (4 13 (11) 4 (4

Results

Both the APl and_2Planpolicies are run on the same 400 test

problems with 1 briefcase: 100 problems each with 2 objects The| 2planpolicy again solves all 400 problems with a high
and 5 cities, 2 objects and 10 cities, 4 objects and 5 citieh, & hroportion of them solved optimally.

4 objgcts and 10 Qities. These test problems all containk goa ™ e performance of the API policy on this suite of prob-
location for_the briefcase. . lems is however quite different — only a small number of

_Each policy solves all 400 problems. Figure 8 however de- ,5plems are solved, though most of these are solved op-
picts the number of problems that a policy manages to solve imaly. This behaviour is a direct consequence of the re-
optimally, i.e. where the plan produced by the policy is no g irement placed on two of it8oVE rules that the briefcase
longer than a known optimal plan. Figure 9 shows the aver- gjq|d e at its goal location before it may be moved. If the
age number of extra steps produced per plan by each policy yjefcase is not at its goal location and no other action can
for the problems that were solved suboptimally (i.e. the t0- e taken, then rule 5 in this policy moves the briefcase to its
tal of extra steps over all 400 solutions is divided by only 44| |ocation and other actions then become possible. The
the number of suboptimally solved solutins). Inboth respec 1y e of problems that this policy has a chance of solving are
the L2Plan policy considerably outperforms the API policy thse where the briefcastarts outby being in the same lo-
— it finds more optimal solutions for problems and generates c4tjon as one or more of the misplaced packages. The policy
shorter plans than the AP policy when a suboptimal solution gictates that the misplaced packages are put in the briefcas
is found. i (rule 1), the briefcase is moved to the goal location of one of

These results are a consequence of the rule order in theihe packages (rule 3), and the package deposited (rule d). Th
respective policies. The API policy moves the briefcaseyawa policy again dictates that any misplaced packages are gicke
from its current location without first checking whether an , from this new location, and again the briefcase is moved to
object inside it might be deposited in the current location. ihe goallocation of a package inside it. However, if theforie
L2Planuses several of the crossover and mutation operations c3se ends up at some location empty after having delivered a
to optimise rule order so that the policy is evolved such that ispiaced package, and there are still misplaced packages i
it does the most it can do in the current briefcase location gther [ocations then no further action will be possible ¢sin
— pickups misplaced objects or deposits ones arrived at thei {here js no goal location in the problem to which the briefcas
current location — before the briefcase is moved. can be taken by rule 5).

The API policy also exhibits an apparent dependency on The | 2pjan policy has evolved such that the briefcase is
the goal location of the briefcase with several rules chegki ,5ved to its goal location only when all objects have been

its location before an action may be taken. To confirm this yeposited at their own goal locations (rule 5), and no other
dependency both policies are run on a new suite of 400 test e is dependent on the location of the briefcase.

problems, with the same complexity as the previous suite but
without a goal location for the briefcase. Table 2 gives the :
results achieved by each policy — it shows the total number of Conclusions and Future Work

problems solved for each problem type, with the number of This work suggests that EC is a viable approach for learning
problems solved optimally (out of the total given) in bratske generalised policies, and highlights both the limitatiemsl

42

strengths of the current implementation. by the early convergence, and therefore termination of the
IF-THEN rules are a highly comprehensible but also a sim- learning process, to policies that do not perform partityla
plistic KR. As discussed in a previous section currentlythe —well ontest problems. If the system were allowed to explore a
cannot capture knowledge that concerns a group of objects, larger area for longer, then it may be possible to evolvesbett
though this may be resolved by the addition of existential policies.
and universal quantifiars. Even so, it is doubtful that using With regards to improving system efficiency an area of in-
this KR L2Plan could evolve policies that include recursive vestigation will be the impact of training examples on the
concepts. In experiments on the Blocksworld domain, for in- quality of the induced policies. A significant computatibna
stance, efficient and effective policies have been evolugd b expense is spent in the production of optimal plans from
only by adding similar support predicates to those used by Which to generate training examples. One approach, natu-

Khardon (1999) — the concept of a well-placed block is added
to the domain description.

WhatL2Plan currently lacks in KR expressiveness, how-
ever, it compensates for by optimising rule order in poficie
An iterative rule learning strategy is highly dependentiua t
training data, which is often biased towards a few actioast th
occur frequently in plan solving. Since criteria for defigin
a ‘best’ rule often concern the number of training examples
covered, it is therefore quite likely that the first rules edd
to any policy dictate the most frequent action found in exam-
ples. However, the most frequent actions need not, indeed
should not, always be performed first if the aim is an efficient
solution. Several crossover and mutation operatok2Plan
essentially optimise this aspect of the policy.

This is early-stage work on utilising EC for generalised
policy induction and our experiments suggest several aagnu
for investigation. As indicated the KR is a major theme, and
exploring how far we can push a comprehensible though sim-
plistic language, i.e. which domains and which specific fea-
tures of these domains require a more expressive language
will be highly informative. Description logics and taxonam
syntax are certainly more expressive (at some cost to com-
prehensibility), and well-worth investigating. It is imésting
to note though, that Fern, Yoon, & Givan (2006) cite as a
possible reason for their weak policies for the Logisticd an
Freecell domains a limitation in their KR.

Not explored in this work i& 2Plaris potential for also op-
timising individual rules within a policy. (Khardon 1999),
(Martin & Geffner 2004) and (Fern, Yoon, & Givan 2006)
all impose limits on the size of rules that may be constructed
(as otherwise the search would be prohibitive), thereby re-
stricting a search in the solution space of rules to prefipdci
regions. One crossover and mutation operatiorL@Rlan
rules enables their size to vary, thereby allowing a seareh i
much wider solution space.

A future improvement is expected from the implementa-
tion of typing. The current untyped system means that at leas
some rules in some policies will be invalid (since predisate
can be created that contain variables of the wrong type), pre
senting lost opportunities for acting on training exampled
learning from the evaluation. Typing is therefore expected
to reduce the number of iterations necessary to evolve good
policies, and/or to present increased opportunities famle
ing better ones.

Furthermore, analysis of some experiment results also sug-
gest that the current learning process is too highly setecti
For instance, only the very best individuals are inserteal in
the following generation, restricting exploration perbapo

rally, is the use of non-optimal planners to generate smhsti
from which to extract examples. The impact of suboptimal
examples on induced policies will therefore also be explpre
as empirical studies suggest that a noisy training enviestm

is not necessarily detrimental to the learning process (Ram
sey, Schultz, & Grefenstette 1990).

References

Aler, R.; Borrajo, D.; and Isasi, P. 2002. Using genetic paog-
ming to learn and improve control knowledgértificial Intelli-
gencel41:29-56.

Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; aridlPa
Schneider, P. 2003The Description Logic Handbook: Theory,
Implementation, and Application€ambridge University Press.

Bacchus, F., and Kabanza, F. 2000. Using temporal logicg-to e
press search control knowledge for planniAgtificial Intelligence
116:123-191.

Bertsekas, D. P., and Tsitsiklis, J. N. 1996euro-Dynamic Pro-
gramming Athena Scientific.

Fern, A.; Yoon, S.; and Givan, R. 2006. Approximate poli@r-t
ation with a policy language bias: Solving relational markieci-

' sion processesJournal of Artificial Intelligence Resear@b:75—
118.

Hoffmann, J., and Nebel, B. 2001. The FF planning systent Fas
plan generation through heuristic seardournal of Artificial In-
telligence Research4:263-302.

Khardon, R. 1999. Learning action strategies for planniog d
mains. Artificial Intelligence113:125-148.

Koza, J. R. 1992.Genetic Programming: On the Programming
of Computers by Means of Natural Selecti®radford Book, The
MIT Press.

Leckie, C., and Zukerman, I. 1998. Inductive learning ofrclea
control rules for planningAtrtificial Intelligence101:63-98.

Martin, M., and Geffner, H. 2004. Learning generalized gieb
from planning examples using concept languaggplied Intelli-
gence20:9-19.

Miller, B. L., and Goldberg, D. E. 1995. Genetic algorithms,
tournament selection, and the effects of noise. TechniealoR
95006, Department of General Engineering, University lafdis

at Urbana-Champaign, Urbana, IL.

Pednault, E. 1987Toward a Mathematical Theory of Plan Syn-
thesis Phd, Stanford University, USA.

Ramsey, C. L.; Schultz, A. C.; and Grefenstette, J. J. 1990.
Simulation-assisted learning by competition: Effects oie dif-
ferences between training model and target environmerferdo.

7th International Conference on Machine Learni2d1-215.

Spector, L. 1994. Genetic programming and Al planning sgste
In Proc. 12th National Conference on Atrtificial IntelligendeXAl-
94), 1329-1334.

Tesauro, G., and Galperin, G. 1996. On-line policy improgam

using Monte-Carlo search. lkdvances in Neural Information Pro-
cessing 9

soon in other regions of the search space. This is suggested

43

Assimilating Planning Domain Knowledge from Other Agents

Tim Grant

Netherlands Defence Academy
P.O. Box 90.002
4800 PA Breda, Netherlands
tji.grant@nlda.nl / tgrant@cs.up.ac.za

Abstract

Mainstream research in planning assumes that input
information is complete and correct. There are branches
of research into plan generation with incomplete planning
problems and with incomplete domain models.
Approaches include gaining knowledge aimed at making
the input information complete or building robust
planners that can generate plans despite the
incompleteness of the input. This paper addresses
planning with complete and correct input information, but
where the domain models are dstributed over multiple
agents. The emphasis is on domain model acquisition, i.e.
the first approach. The research reported here adopts the
view that the agents must share knowledge if planning is
to succeed. This implies that a recipient must be able to
assimilate the shared knowledge with its own. An
agorithm for inducing domain models from example
domain states is presented. The paper shows how the
algorithm can be applied to knowledge assimilation and
discusses the choice of representation for knowledge
sharing The algorithm has been implemented and applied
successfully to eight domains. For knowledge
assimilation it has been applied to date just to the blocks
world.

Introduction

The plan generation process takes as its input a planning
problem consisting of initial and goal states and a
domain model typically consisting of planning operators.
Its output is a sequence of actions— a plan - that will, on
execution, transform the initial state to the goal state.

To locate the research reported here, we place the
planning process into its wider context. In Figure 1 the
Planning process is central. Its output — a plan —is
ingested by the Controlling process. In executing the
plan, the Controlling process issues commands to the
Process Under Control (PUC), and receives sensory
information back.

The Planning process itself has inputs: the domain model
and the initial and goal states. The usual assumption is
that these inputs come directly from the Controlling
process. However, we take the view that each input is
developed by an intervening process: initial states result
from State Estimation’, goal states from Goal Setting,
and domain models from Modelling. It is these three

Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

! The term is borrowed from the process control literature.

44

processes that receive feedback from the Controlling
process in the form of the observed sensory information.
State Estimation uses the feedback to identify the PUC’s
current state. Goal Setting determines whether the
current goal state has been achieved, can be maintained,
or must be replaced by another goal state. Modelling
assesses Whether the domain model remains a complete
and correct description. If not, it uses the feedback to
modify or extend the domain model. This paper centres
on the Modelling process.

goa
date

State Estimation

i
-

| Plar;'ni ng|p'i>| Controlling

~ 13

oot et eme s ms eme e e et ems ememe s s s s sms e e s

Figurel. Planningin context.

Mainstream research in planning assumes that the input
information is complete and correct?. In practica
applications, however, information about the domain
model, the planning problem, or both may be incomplete
and/or incorrect. In the literature there are two
approaches to planning with incomplete and/or incorrect
input information (Garland & Lesh, 2002):

» Gain better information, either during plan generation
or during plan execution. This may be done by using
sensors embedded in the PUC to acquire information,
by consulting an oracle (e.g. an expert), or by trial-
and-error learning from performing experiments in the
domain. The acquired information may be used in
state estimation, in goal setting, and/or in modelling.

e Build robust planners that can generate plans that
succeed regardless of the incompleteness and/or

2 By convention, the goa state is usually aformula describing a set of
(god) states.

incorrectness of the input information. Conformant
planning (Goldman & Boddy, 1996) is planning with
incomplete knowledge about the initial state and/or the
effects of actions. Model-lite planning (Kambhampati,
2007) is planning with an incomplete or evolving
domain model. Erroneous planning (Grant, 2001) has
the more limited aim of characterizing the types of
erroneous plans generated if the planner is not robust
(the error phenotypes), based on concepts drawn from
the literature on human error, and trying to understand
the causes for the observed errors (the error
genotypes). Knowledge of the error phenotypes and
genotypes could then be used for plan repair (Krogt,
2005).
By contrast, this paper is concerned about planning with
complete and correct input information, but where that
information is distributed across multiple agents. In
particular, it is concerned with distributed domain
models. While the domain model is complete for some
set of agents, each individual agent’s domain model is
(initially) incompl ete.
This paper adopts the view that, where knowledge about
the planning domain is distributed over multiple agents,
the agents must share that knowledge if planning is to
succeed. To do so, they must be interoperable. The
source of the knowledge and its recipient must adopt a
common knowledge representation, as well as
coordinating their knowledge-sharing actions. Moreover,
the recipient must be capable of assimilating the
knowledge gained (Lefkowitz & Lesser, 1988) into other
knowledge it may already have. Assimilation of another
agent’s domain model is an extension of the Modelling
process. This paper focuses on the knowledge
assimilation capability and choosing a suitable
representation for knowledge sharing.
The subject matter in this paper touches on severa
theoretical areas. Firstly, it is based on the application of
machine learning to planning, because knowledge
assimilation is a learning process. More specificaly, it is
concerned with applying machine learning techniques to
the acquisition of planning operators. Secondly, because
the recipient’s domain model is evolving, it touches on
model-lite and erroneous planning. Thirdly, it is based on
communication theory and, in particular, on information
or knowledge sharing concepts drawn from management
and organization theory.
The paper is divided into seven chapters. Chapter 2
describes the author’s algorithm for modelling planning
domains by acquiring planning operators from example
domain states. Chapter 3 introduces knowledge sharing
based on the Shannon (1948) model of communication.
Chapter 4 describes the assimilation of planning domain
knowledge, and chooses a suitable representation for
sharing that knowledge between agents. Chapter 5
describes two simple worked examples. Chapter 6
surveys related research. Finally, Chapter 7 draws
conclusions, identifying the key contributions of this
paper, its limitations, and where further research is
needed.

45

Modelling Planning Domains

The author’s algorithm for modelling planning domains
by acquiring planning operators from example domain
states is known as Planning Operator Induction (POI)
(Grant, 1996). As the name indicates, POl employs
inductive learning from examples. More specificaly, it
embeds Mitchell’s (1982) version space and candidate
elimination agorithm, taking selected domain states as
input examples and inducing STRIPS-style planning
operators.

The POI algorithm has been implemented and applied
successfully to eight domains (Grant, 1996), including
the blocks world, the dining philosophers problem, and a
model of a real-world spacecraft payload based on a
chemical laboratory instrument. For knowledge
assimilation it has been applied to date just to the blocks
world.

The ontology employed in POl separates the domain
representation into static and dynamic parts. The static
part of the POI ontology represents invariant domain
entitiesin terms of object-classes and -instances, of inter-
object relationships, and of inter-relationship constraints.
By convention, relationships and constraints are binary>.
For example, the blocks world consists of Hand, Block,
and Table object-classes. The hol di ng relationship
links an instance of the Hand (object-) class to an
instance of the Block class, and the onTabl e
relationship links a Block instance to a Table instance.
The holding and onTabl e relationships are
constrained in that no Block instance may be both held
and on the table simultaneously. Such constraints are
known in the planning literature as domain axioms or
invariants and in the database literature as cardinality
and exclusion constraints (Nijssen & Halpin, 1989). The
static part of the ontology (less the exclusion constraints)
may be depicted using Chen's (1976) Entity-
Relationship Diagramming (ERD) notation®.

The dynamic part of the POI ontology represents domain
entity behaviour in terms of states, transitions, and
planning operators. Planning operators are
reformulations of classes of domain transitions.
Instantiated relationships synchronise the states of
objects. For example, the hol di ng handl bl ock2
relationship synchronises the states of the objectshand1
and bl ock2: handl must be holding bl ock2 and
bl ock2 must be held by handl simultaneously. If
handl ceases to be tolding bl ock2, then bl ock2
must simultaneously cease being held by handl.
Transitions combine synchronised changes in
relationships. For example, the cessation of the

3 Higher arity relationships and constraints can be reduced to binary
relationships and constraints by changing how the object - and
relationship -dasses, respectively, are modelled. Details are given in
Grant (1996).

“# The ERD notation islimited to depicting constraints between two
instances of the same relationship, i.e. cardinality constraints. It cannot
depict constraints between instances of two different relationships, i.e.
exclusion constraints. The POI ontology and algorithm is not so
limited.

hol ding handl bl ock2 relationship may be
combined with the advent of the onTabl e bl ock2
tabl el relationship. In terms of Allen's (1983)
temporal logic, we would say that the relationships meet.
Note that they meet because the domain constraint from
the previous paragraph forbids them from overlapping.
Grant (1995) says that the transition pivots around the
(instantiated) binary domain constraint.

The POI ontology is similar to McCluskey and Porteus’
(1997) object-centred representation for the specification
of planning domains. The key differences are that, in
POI, the relationships and constraints are strictly binary.
Moreover, the constraints hold only between
relationships. In addition, objects, relationships,
constraints, states, and transitions all have classes, i.e.
sortsin McCluskey and Porteus’ terminology.

The POI algorithm has two parts:

 Part 1: Acquisition. The purpose of thefirst part of POI
is to acquire a static, object-oriented model of the
domain from example domain states. POl does not
require that the example domain states form a valid
sequence, plansegment, or plan, unlike other
algorithms for acquiring planning operators. However,
the examples may have to be carefully chosen. Part 1
subdivides into three steps:

* Step 1.1: Acquire domain state description(s).

* Step 1.2: Recognise the objects and relationships in
the state description(s).

e Sep 1.3: Compile cardinality and exclusion
constraints from the objects and relationships. The
constraints can be generated exhaustively by
constructing al possible pairs between relationships
that share an object. For example, pairing the
relationship hol di ng ?Handl ?Bl ockl with
hol di ng ?Handl 7Bl ock2 expresses the
domain constraint that a hand cannot hold two (or
more) blocks simultaneously®. By default, a
constraint is assumed to hold if no counterexample
can be found among the acquired domain state
descriptions. Thus, if an agent observed a domain
state in which two hands were indeed holding the
same block then this constraint would no longer
hold.

 Part 2: Induction. The purpose of the second part of
POI is to induce a dynamic model of domain
behaviour from the static, object-oriented domain
model. Domain behaviour is modelled using a state-
transition network from which planning operators can
be extracted. Part 2 sub-dividesinto six steps:

* Sep 2.1: Generate the description language for the
domain. The description language is the set of all
relationships between object-instances that satisfy
the cardinality and exclusion constraints.

e Sep 2.2: Construct the version space for the
description language using the cardinality and
exclusion constraints to eliminate invalid candidate

® By convention, the same instance of the Block object-
class cannot be matched to the two different variables
?Bl ock1 and ?BIl ock?2.

46

nodes. The version space is a partial lattice of valid
nodes, with each node being described in terms of
relationshi ps between the domain object-instances.

* Step 2.3: Extract the domain states from the version
space. The domain states are the lattice nodes in the
maximally specific boundary of the version space.

e Sep 2.4: Using the Single Actor / Single State-
Change (SA/SSC) meta-heuristic, determine the
domain transitions between the domain states. The
SA/SSC heuristic is that a single object (the actor)
initiates the transition, undergoing a change in just
one of its relationships. The actor is at the root of a
causal hierarchy of state-changes in the other
participating objects. For example, in the blocks
world when a robot hand picks up a block from the
table, the hand is the actor, making true its
hol di ng relationship with the block being picked
up. The hand's action causes the block both to act
on itself so that it is no longer cl ear and to act on
the table, breaking theonTabl e relationship.

« Step 2.5: Generalise the domain transitions as
transition-classes.

» Step 2.6: Reformat the transition-classes as planning
operators.
Depending on how POI is to be used, Part 1 may be
optional. If an agent observes an existing domain and
uses POI to gain knowledge about how to plan actions in
that domain, then Part 1 is essential. By contrast, if an
ERD or equivalent static model of a domain (which may
not yet exist) is available, then modelling can proceed
directly to Part 2. In knowledge assimilation, one agent
(the source) performs Part 1 and another (the recipient)
performs Part 2.

Knowledge Sharing

Information and knowledge sharing has been extensively
studied in management and organization theory. For
simplicity, we will take the terms “information” and
“knowledge” as being interchangeable, pace Ackoff
(1989). Information sharing is a dyadic exchange of
information between a source and a recipient (adapted
from Szulanski (1996), p.28). Sharing involves the dual
problem of “searching for (looking for and identifying)
and transferring (moving and incorporating) knowledge
across organizational subunits” (Hansen, 1999, p.83).
For the purposes of this paper, we will take knowledge
sharing as meaning knowledge transfer. Searching for or
discovery of other agents that have suitable
complementary knowledge about a domain is an area for
future research.

Shannon’s (1948) model of communication is useful for
thinking about knowledge sharing. In the Shannon
model, the source and recipient each operate within their
own organizational contexts. Information transfer begins
when the source generates a message. The message is
encoded into a form (a signal) in which it is transmitted
by means of a communications medium, such as
el ectromagnetic waves, telephone cables, optical fibres,
or a transportable electronic storage medium. Random
noise and systematic distortion may be added during

transmission. The recipient decodes the signal and
assimilates the decoded message into its own store of
knowledge.

Botrce Recapent

—=—= I
5 | [
S

Figure2. Linking source and recipient agentsusing
Shannon (1948) model.

For the purposes of this paper, we assume that the source
and recipient are agents with an internal structure as
shown in Figure 1. In general the agents should be able
to exchange the outputs of their respective Planning,
Controlling, State Estimation, Goa Setting, and
Modelling processes, given suitable encoders and
decoders (Figure 2). We concentrate here on the
Modelling process, how the source's knowledge should
be encoded, and what decoder the recipient needs to
assimilate that knowledge. We neglect the issue of noise
and distortion in this paper.

Assimilating Planning Domain Knowledge

Lefkowitz and Lesser (1988) discuss knowledge
assimilation in the context of acquiring domain
knowledge from human experts. Their implemented
system, K'ac, was developed to assist experts in the
construction of knowledge bases using a frame-like
representation. Assimilated knowledge represented
domain objects, relationships, and events. The main
contribution of their research was in developing several
generic techniques for matching sets of entities and
collections of constraints. Research questions included:

» How does the expert's domain description correlate
with the description contained in the knowledge base?

» How should the knowledge base be modified based on
the expert’s new information?

* What should be done when the expert’s description
differsfrom the existing one?
Despite the contextual differences, there are strong
parallels between Lefkowitz and Lesser's (1988) work
and assimilating planning domain knowledge.
Assimilation of domain knowledge should be integrated
with plan generation and execution. It should permit a
variety of ways of learning, including learning-by-seeing
(i.e. by observing the domain and inferring what actions
are possible), learning-by-being-told (e.g. by domain
experts or other agents), and learning-by-doing (i.e. by
generating and executing plans). When knowledge is
distributed over multiple agents, then individual agents
may need to combine different ways of learning. In
particular, an agent may well need to combine
knowledge it gained from its own observations d a
domain with information it has gained by being told by
another agent. Like Lefkowitz and Lesser, learning
concerns domain objects, relationships, constraints, and

47

events. Analogues of Lefkowitz and Lesser’s research
questions apply; here we are concerned with the planning
analogue of their second question.

Considering the POI algorithm from the viewpoint of
encoding and decoding, we see that there are three forms
in which knowledge relating to the domain model could
be exchanged:

 As cases. The source agent could transmit the domain
states it has observed, i.e. the input information to Part
1 of the POI algorithm. The source agent would not
have to process its observations before transferring
them to the recipient. The recipient agent would then
have to add the source’'s domain states to its own
database of domain states, and perform Parts 1 and 2
of the POl algorithm to obtain a set of planning
operators. Exchanging knowledge in thisform is likely
to be verbose for real-world domains, possibly with
duplicated observations. More importantly, it would
limit knowledge assimilation to learning-by-seeing.
The only thing that knowledge sharing achieves is that
the recipient can “see” both what it can itself observe
and what the source has observed.

e As static domain models. The source agent could
transmit its static domain model, i.e. the information
as output by Part 1 and as input to Part 2. The source
agent would have had to perform Part 1 before
transmitting its static domain model to the recipient.
The recipient agent would then have to add the
source’s objects, relationships, and constraints to its
own database of objects, relationships, and constraints.
Where source and recipient agents disagree on
whether a constraint holds, then the constraint is
assumed not to hold (because one of the agents will
have seen a counterexample). The recipient retains its
own list of object-instances and does not assimilate the
source’s object-instances list, because the recipient
may not be able to execute plans on objects that it
cannot see. Then the recipient would perform Part 2 of
the POl algorithm to obtain a set of planning
operators. Exchanging knowledge in thisformis likely
to be concise. Moreover, it would alow learning-by-
seeing, learning-by-being-told, and their combination.

« As planning operators. The source agent could transmit
its dynamic domain model, i.e. the information as
output by Part 2. The recipient agent would then
simply have to add the planning operators obtained
from the source to its own planning operators.
Exchanging knowledge in this form is still more
concise, but assumes that (1) the source and the
recipient agents' observations are sufficiently rich for
both of them to be able to induce a set of planning
operators, and that (2) their sets of planning operators
are complementary. There is no way for additional
planning operatorsto beinduced by synergy.

In this research, the encoding-decoding schema has been

determined by the researcher. Ideally, the source and

recipient agents should themsdves be able to negotiate a

suitable encoding-decoding schema, depending on

considerations such as privacy, security, and
communications bandwidth. Further research is needed
to provide agents with such a capability.

Worked Examples

Two worked examples should make the key issues clear.
The first example is the one-block world and the second
is taken from the three-blocks world. Because the one-
block world is simple, the first example is described in
more detail. The second example illustrates the need to
select example states carefully if the agents are to induce
afull set of planning operators.

Suppose two agents each observe a different state of a
one-block world (Slaney & Thiebaux, 2001), as
represented by Nilsson (1980)°. There are two possible
states”: [[hol di ng handl blockl] [onTabl e
blockl nil] [onTable nil tablel]] and
[[hol di ng handl nil][hol ding nil blockl]
[onTabl e bl ockl tablel]]. Let us suppose that
Agentl is given the first state description and Agent2 the
second.

The following table depicts the static domain model that
would result from their performing Part 1 separately, i.e.
without knowledge sharing and assimilation:

Agentl’'s model Agent2's model

Object - Hand, Block, Table Hand, Block, Table

classes

Object - hand1, blockl, tablel hand1, blockl, tablel

instances

Relations | hol di ng ?Hand Mlock | hol di ng ?Hand nil
onTabl e ?Block nil hol di ng nil 2Block
onTabl e nil ?Table onTabl e 2Block ?Table

Constraints [|F hol di ng ?Hand1 IF hol di ng ?Hand1 nil

?Blockl AND hol di ng ?Hand2 nil

AND hol di ng ?Handl | THEN INVALID

?Block2 -- multiple hands cannot be

THEN INVALID empty at sametime

-- hand cannot hold

multiple blocks IF hol di ng nil 2Blockl
AND hol di ngnil

IF hol di ng ?Hand1 ?Block2

?Blockl THEN INVALID

AND hol di ng Hand2 | -- multiple blocks cannot be

?Blockl not held

THEN INVALID

-- block cannot be held IF hol di ng nil 2Blockl

by multiple hands AND onTabl e ?Block1

?Tablel
IF hol di ng ?Hand1 THEN INVALID
?Blockl -- block cannot be not held

6 Distinguishing three object-classes(Hand, Bl ock, Tabl e) and
yielding four operators (pi ckup, put down, st ack, unst ack). See
Grant et a, 1994.

7 A third state would be observed in an orbiti ng spacecraft:

[[hol di ng handl nil][hol ding nil bl ockl][onTabl e
bl ockl nil][onTabl e nil tabl el]]. During development of
the POI algorithm the three states were indeed induced, resulting in the
induction of aset of six operators (pi ckup, put down,

floatoff, floaton, |etgo, capture).Theauthor
observed that he had failed to represent the action of gravity. To do so
whileretaining the Nilsson (1980) domain representation requiresa
triple congtraint, stating in effect that a block must be either held by a
hand or supported by atable or by another block. This can be solved by
extending the POI ontology, either by alowing congtraints of arity
higher than two or by introducing an inheritance hierarchy of object-
classes. The author adopted the | atter solution, because this has the
synergistic consequence of reducing the complexity of the version
space, leading to savings in induction time and memory requirements
(Grant, 1996).

AND onTabl e ?Blockl
nil

THEN INVALID

-- block cannot be held
and not on atable
NOTE: Thisconstraint
does not hold because
the observed stateisa
counterexample.

IF onTabl e ?Blockl
nil

AND onTabl e ?Block2
nil

THEN INVALID

-- multiple blocks cannot
be off thetable

IF onTabl e nil 7Tablel

AND onTabl enil
?Table2

and on atable

NOTE: Thisconstraint does
not hold because the
observed stateis a
counterexample.

IF onTabl e ?Blockl
7Tablel

AND onTabl e ?Blockl
?Table2

THEN INVALID

-- block cannot be on
multipletables

IF onTabl e ?Blockl
7Tablel

AND onTabl e ?Block2
7Tablel

THEN INVALID

-- table cannot hold
multiple blocks

THEN INVALID
-- multiple tables cannot
be clear at sametime

48

Neither of the agents would be able to induce any
planning operators, because POl Part 2 would simply
result in the induction of a single state, namely the state
each agent had observed originaly. There needs to be a
minimum of two states for the SA/SSC heuristic to find
any transitions.

Now suppose that the agents share their domain
knowledge. Since neither of them can induce planning
operators separately, exchanging data in the form of
planning operators is not feasible. However, they can
exchange knowledge in the form either of cases or of
their static domain models. For the one-block world it is
simpler for the agents to exchange cases, but this does
not apply to complex, real-world examples.

Sharing their domain models enables the agents to create
synergistic knowledge. Firstly, Agentl learns from
Agent2 that blocks can be on tables, and Agent2 learns
from Agentl that hands can hold blocks. Secondly,
additional constraints can be identified, as shown in the
following table:

Synergistic knowledge

hol di ng Hand ?Block
hol di ng ?Hand nil
hol di ng nil 2Block
onTabl e ?Block ?Table
onTabl e ?Block nil
onTabl e nil 7Table

Relations

IF hol di ng ?Hand1nil

AND hol di ng ?Hand1 ?Block1

THEN INVALID

-- hand cannot be both empty and holding a block

Constraints

IF hol di ng nil 2Blockl

AND hol di ng ?Hand1 ?Block1

THEN INVALID

-- hand cannot be both held by a hand and not held

IF hol di ng ?Hand1 ?Block1

AND onTabl e ?Blockl ?Tablel

THEN INVALID

-- block cannot be both held and on atable

IF onTabl e nil ?Tablel

AND onTabl e ?Block1 ?Tablel
THEN INVALID
-- table cannot be supporting both a block and nothing

IF onTabl e ?Blockl nil

AND onTabl e ?Blockl ?Tablel

THEN INVALID

-- block cannot be both off and supported by atable

The synergistic knowledge, together with the additional
constraints, enables the agents to induce the pi ckup
and put down planning operators. They do not have
enough knowledge to induce the st ack and unst ack
operators because stacks of blocks and the on
relationship between blocks does not exist in the one-
block world.

The three-blocks world has 22 states, falling into five
state-classes (Grant et al, 1994). Experiments with the
implemented POI algorithm, adapted for knowledge
assimilation, showed that it is not necessary for the
agents to observe all 22 states (Grant, 1996). Just two,
judiciously-chosen, example states sufficed®. In one state
the hand must be empty, and in the other it must be
holding a block. One state must show a stack of at least
two blocks, and one stack must show two or more blocks
on the table. Inspection shows that there are four pairings
of the five state-classes that can meet these regquirements.
Two can be rejected on the grounds that they are
adjacent, i.e. that they are separated by the application of
just one operator. Successful knowledge assimilation has
been demonstrated for the remaining two state-pairs: for
al three blocks on the table paired with the state in
which one block is held and the other two are stacked,
and for a stack of three blocks paired with the state in
which one block is held and the other two are on the
table. Moreover, the induced set of planning operators
can be used to generate and successfully execute a plan
that passes through at least one novel state, i.e. a state
that the agents had not previously observed.

It is not known whether two (judiciously-chosen)
example states suffice in al domains for the induction of
a full set of planning operators. Hand simulations and
experiments have only been done for the (one-hand, one-
table, and) one- and three-blocks worlds. More research
is needed, e.g. by applying knowledge assimilation using
POl to the International Planning Competition
benchmark domains and to real-world domains where
planning knowledge is distributed geographically or
organizationally.

Related Work

In 2003, Zimmerman and Kambhampati surveyed the
research on applying machine learning to planning. They
identified three opportunities for learning: before
planning, during planning, and during execution.
Learning techniques applied fell into two groups:
inductive versus deductive (or analytical) learning.
Inductive techniques used included decision tree

8 ntrospection suggests that there may be asingle statein the two-
hands, four-block world that could provide al the information needed
to induce al four operators, but then the knowledge could not be
distributed over multiple agents.

49

learning, neural network, inductive logic programming,
and reinforcement learning. They observed that early
research emphasised learning search control heuristics to
speed up planning. This has fallen out of favour as faster
planners have become available. There is now a trend
towards learning or refining sets of planning operators to
enable a planner to become effective with an incomplete
domain model or in the presence of uncertainty.
“Programming by demonstration” can be applied so that
the user of an interactive planner could create plans for
example problems that the learning system would then
parseto learn aspects peculiar to the user.

In terms of Zimmerman and Kambhampati’'s (2003)
survey, this paper applies Mitchell’s (1982) inductive
version space and candidate elimination algorithm to
planning. The POI agorithm could be used before
planning, during planning, or during execution. It centres
on the learning of domain modelsin the form of planning
operators. It exhibits an element of “programming by
demonstration” in that the user shows POl example
domain states, rather than example plans or execution
traces.

In his 2006 lectures on learning and planning at the
Machine Learning Summer School, Kambhampati
distinguished three applications of learning to planning:
learning search control rules and heuristics, learning
domain models, and learning strategies. Research in
learning domain models could be classified along three
dimensions. the availability of information about
intermediate states, the availability of partial action
models, and interactive learning in the presence of
humans. POl does not need information about
intermediate states nor partial action models, and it does
not require the presence of humans. By comparison,
other operator learning algorithms require asinput:.

e Background domain knowledge: Porter & Kibler
(1986), Shen (1994), Levine & DeJong (2006).

« Partial domain model (i.e. operator refinement, rather
than ab initio operator learning): Gil (1992),
DesJardins (1994), McCluskey et al (2002).

« Example plans or traces: Gites and Cohen (1996),
Wang (1996), Yong et al (2005).

e Input from human experts. McCluskey et a (2002).
POI can accept a static domain model from a human
expert (e.g. for a domain that does not yet exist)
instead of observing domain states, but this is not
applicable to assimilating domain knowledge
distributed over multiple agents.

POI is closest to Mukherji and Schubert (2005) in that it

takes state descriptions as input and discovers planning

invariants. The differences are that POl also discovers
objects and relationships and uses the information it has
discovered to induce planning operators. Like

McCluskey and his collaborators (McCluskey & Porteus,

1997; McCluskey et a, 2002), POl models domains in

terms of object-classes (sorts, in McCluskey’'s

terminology), relationships, and constraints.

Conclusions

This paper has addressed the topic of planning with a
domain model that is complete and correct but
distributed across multiple agents. The paper takes the
view that the agents must share their knowledge if
planning is to succeed. The Planning Operator Induction
(PQI) agorithm (Grant, 1996) has been introduced as a
means of acquiring planning operators from carefully-
chosen examples of domain states. Unlike other
algorithms for acquiring planning operators (Porter &
Kibler, 1986) (Gil, 1992) (Shen, 1994) (DesJardins,
1994) (Wang, 1996) (Oates & Cohen, 1996) (McCluskey
et al, 2002) (Yang et a, 2005) (Mukherji & Schubert,
2005) (Levine & DelJong, 2006), the example domain
states do not need to form a valid sequence, plan-
segment, or plan, nor do preceding or succeeding
transitions have to be given. When agents share their
partial knowledge of the domain model, the two parts of
the POI algorithm can be divided between the source and
recipient in the knowledge-sharing process. The agents
exchange the static, object-oriented domain model
resulting from Part 1 of the POI agorithm. This enables
the recipient to identify synergies between the shared
knowledge and knowledge it already has and to perform
theinduction, i.e. Part 2 of the algorithm.

This paper makes several contributions. Its primary
contribution is in showing how planning domain
knowledge that is distributed across multiple agents may
be assimilated by sharing partidl domain models.
Secondary contributionsinclude:

» The POI domain-modelling algorithm is presented that
acquires planning operators from example domain
states. The example domain states do not need to form
a valid sequence, plan-segment, or plan, nor do
preceding or succeeding transitions have to be given.

* The ontology used in the POI algorithm extends
McCluskey and Porteus (1997) object-centred
representation. Relationships and constraints are
strictly binary. Constraints are between pairs of
relationships, rather than domain-level axioms. Hence,
both relationships and constraints are associated with
(classes of) domain objects.

A key limitation of the research reported here is that,

while knowledge assimilation using the POI algorithm

has been implemented, it has only been tested for the

(one-hand, one-table, and) one- and three-blocks worlds.

Future research should include:

» Applying POIl-based knowledge assimilation to a wider
variety of planning domains, e.g. International
Planning Competition benchmark domains. One
research question to be addressed is whether two
(judiciously-chosen) example states suffice in al
domains for the induction of a full set of planning
operators.

e Elucidating the conceptual links between the POI
algorithm and plan generation using planning graphs.

» Applying the POI algorithm to sensemaking, i.e. the
modelling of novel situations (Weick, 1995). An
approach has been outlined in Grant (2005).

50

« Extending the POI ontology to model inheritance and
aggregation relationships, with the eventual aim of
using the Unified Modeling Language (UML) as a
representation for the static, object-oriented and
dynamic, behavioural domain models in the POI
agorithm.,

« Developing an integrated planning environment that
incorporates domain modelling, plan generation, plan
execution, state estimation, and goal setting to act on
real and simulated domains.

« Extending agent capability to (1) negotiating mutually-
acceptable encoding-decoding schemes, and (2)
discover agents that have complementary knowledge.

« Investigating the application of knowledge assimilation
using POI to real-world domains where planning
knowledge is distributed geographically or
organizationally. Example domains include air traffic
control and military Command & Control (Grant,
2006).

Refer ences

Ackoff, R. 1989. From Data to Wisdom Journa of
Applied Systems Analysis, 16, 3-9.

Allen, JF. 1983. Maintaining Knowledge about
Temporal Intervals. Communications of the ACM, 26,
11, 832-843.

Chen, P.P-S. 1976. The Entity-Relationship Model:
Towards a unified view of data. ACM Transactions on
Database Systems, 1, 9-36.

DesJardins, M. 1994. Knowledge Development Methods
for Planning Systems. Proceedings, AAAI-94 Fal
Symposium series, Planning and Learning: On to real
applications. New Orleans, LA, USA.

Fikes, R., & Nilsson, N.J. 1971. STRIPS A new
approach to the application of theorem proving to
problem solving. Artificia Intelligence Journal, 2, 189
208.

Garland, A., & Lesh, N. 2002. Plan Evaluation with
Incomplete Action Descriptions TR2002-05, Mitsubishi
Electric Research Laboratories, Cambridge,
Massachusetts, USA.

Gil, Y. 1992. Acquiring Domain Knowledge for
Planning by Experimentation. PhD thesis, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA.

Goldman, R., & Boddy, M. 1996. Expressive Planning
and Explicit Knowledge. Proceedings, AIPS-96, 110-
117, AAAI Press.

Grant, T.J. 1995. Generating Plans from a Domain
Model. Proceedings, 14th workshop of the UK Planning
and Scheduling Special Interest Group, 22-23 November
1995, University of Essex, Colchester, UK.

Grant, T.J. 1996. Inductive Learning of Knowledge-
Based Planning Operators. PhD thesis, University of
Maastricht, The Netherlands.

Grant, T.J. 2001. Towards a Taxonomy of Erroneous
Planning. Proceedings, 20th workshop of the UK
Planning and Scheduling Special Interest Group, 13-14
December 2001, University of Edinburgh, Scotland.
Grant, T.J. 2005. Integrating Sensemaking and Response
using Planning Operator Induction. In Van de Walle, B.

& Carlé, B. (eds), Proceedings, 2nd International
Conference on Information Systems for Crisis Response
and Management (ISCRAM), Royal Flemish Academy
of Science and the Arts, Brussels, Belgium, 18-20 April
2005. SCK.CEN and University of Tilburg, 89-96.

Grant, T.J. 2006. Measuring the Potentia Benefits of
NCW: 9/11 as case study. In Proceedings, 11™
International Command & Control Research &
Technology Symposium (ICCRTS06), Cambridge, UK,
paper 1-103.

Grant, T.J., Herik, H.J. van den, & Hudson, P.T.W.
1994. Which Blocks World is the Blocks World?
Proceedings, 13th workshop of the UK Planning and
Scheduling Special Interest Group, University of
Strathclyde, Glasgow, Scotland.

Hansen, M. T. 1999. The Search-Transfer Problem: The
role of weak ties in sharing knowledge across
organization subunits. Administrative Science Quarterly,
44 (1), 82-111.

Kambhampati, S. 2006. Lectures on Learning and
Planning. 2006 Machine Learning Summer School
(MLSS 06), Canberra, Australia.

Kambhampati, S. 2007. Model-lite Planning for the Web
Age Masses. The challenges of planning with incomplete
and evolving domain models. Proceedings, American
Association for Artificia Intelligence.

Krogt, R. van der. 2005. Plan Repair in Single-Agent
and Multi-Agent Systems. PhD thesis, TRAIL Thesis-
series T2005/18, TRAIL Research School, Netherlands.
Lefkowitz, L. S., and Lesser, V. R. 1988. Knowledge
Acquisition as Knowledge Assimilation. International
Journal of Man-Machine Studies, 29, 215-226.

Leving, G.,, & Delong, G. 2006. Explanation-Based
Acquisition of Planning Operators. Proceedings, ICAPS
2006.

McCluskey, T.L., & Porteus, JM. 1997. Engineering
and Compiling Planning Domain Models to Promote
Validity and Efficiency. Artificial Intelligence Journal,
95, 1-65.

McCluskey, T.L., Richardson, N.E., & Simpson, R.M.
2002. An Interactive Method for Inducing Operator
Descriptions Proceedings, ICAPS 2002.

Mitchell, T.M. 1982. Generalization as Search. Artificia
Intelligence Journal, 18, 203-226.

Mukherji, P., & Schubert, L.K. 2005. Discovering
Planning Invariants as Anomalies in Sate Descriptions.
Proceedings, ICAPS 2005.

Nijssen, G.M., & Halpin, T.A. 1989. Conceptual Schema
and Relational Database Design: A fact-oriented
approach. Prentice-Hall Pty Ltd, Sydney, Australia.
Nilsson, N.J. 1980. Principles of Artificial Intelligence.
Tioga Publishing Company, Palo Alto, California, USA.
Oates, T., & Cohen, P.R. 1996. Searching for Planning
Operators with Context-Dependent and Probabilistic
Effects. Proceedings, AAAI, 865-868.

Porter, B., & Kibler, D. 1986. Experimental Goal
Regression: A method for learning problemsolving
heuristics. Machine Learning, 1, 249-284.

Shannon, C.E. 1948. A Mathematical Theory of
Communication. Bell System Technical Journal, 27, 379
423 (July) & 623-646 (October).

Shen, W.-M. 1994. Discovery as Autonomous Learning
from the Environment. Machine Learning, 12, 143-156.

51

Slaney, J., & Thiébaux, S. 2001. Blocks World Revisited.
Artificial Intelligence Journal, 125, 119-153.

Szulanski, G. 1996. Exploring Internal Stickiness:
Impediments to the transfer of best practice within the
firm. Strategic Management Journal, 17, 27-43.

Wang, X. 1994. Learning Planning Operators by
Observation and Practice. PhD thesis, Computer Science
Department, Carnegie Mellon University, Pittsburgh,
PA, USA.

Weick, K. 1995. Sensemaking in Organizations. Sage,
Thousand Oaks, CA, USA. ISBN 0-8039-7178-1.

Yang, Q., Wu, K., & Jiang, Y. 2005. Learning Action
Models from Plan Examples with Incomplete
Knowledge. Proceedings, |CAPS 2005, 241-250.
Zimmerman, T., & Kambhampati, S. 2003. Learning-
Assisted Automated Planning: Looking back, taking
stock, going forward. Al magazine, 73-96 (Summer
2003).

The Dimensions of Driverlog

Peter Gregory and Alan Lindsay
University of Strathclyde
Glasgow

UK

{pglal }@cis.strath.ac.uk

Abstract

The International Planning Competition has provided a
means of comparing the performance of planners. It is sup-
posed to be a driving-force for planning technology. As the
competition has advanced, more and more complex domains
have been introduced. However, the methods for generating
the competition instances are typically simplistic. At best,
this means that our planners are not tested on the broad range
of problem structures that can be expressed in each of the do-
mains. At worst, it means that some search techniques (such
as symmetry-breaking and graph-abstraction) are ineffective
for the competition instances.

It is our opinion that a competition with interesting instances
(those with varied structural properties) would better drive the
community to developing techniques that address real-world
issues, and not just solving contrived competition test-cases.
Towards this end, we present a preliminary problem genera-
tor for the Driverlog domain, and introduce several important
qualities (or dimensions) of the domain. The performance
of three planners on instances generated by our generator
are compared with their performance on the competition in-
stances.

Introduction

The International Planning Competitions have been a driv-
ing force for the development of planning technology. Each
competition in turn has added to the expressivity of the stan-
dard language of Al Planning: PDDL. The domains that

asks whether or not the competition results accurately re-
flect the performance of the competing planners across the
benchmark problems that have been created.

Ideally, a set of benchmarks should test current planning
technology to its limits. More than simply supplying prob-
lems that reach outside of the scope of current planners,
a benchmark set should highlight the particular structural
properties that planners struggle with. This provides focus
for future research. Studying the reasons why our planners
fail to solve certain types of problems reveals where future
improvements might be made.

Benchmarks should, when appropriate, model reality in
a useful way. Of course, it is infeasible to expect planners
to solve problems on a massive scale. But it is possible to
retain structural features of real-world problems. Nobody
would write a logistics instance in which a particular pack-
age was in more than one location in the initial state, al-
though this would probably be allowed by the domain file.
The structural property that objects cannot occupy more than
one location is intuitive, but there may be other real-world
structural properties that are not as obvious.

The final function that a good benchmark set should pro-
vide is a solid foundation for critical analysis of different
planners. One criticism of the IPC could be that there are
simply not enough instances to know which planner is best
and when. ldeally, there should be enough results to prove
that some planner is faster, or produces higher quality plans

have been created for each competition have also increasedto a statistically significant level.

in complexity and structure. For domains tested in the early
planning competitions, such as Blocksworld, problem gen-
eration was not considered a difficult problem: generate two

random configurations of the blocks and use those as the ini-

tial and goal states.
Slaney and Thiebaux showed that even for Blocksworld,
problem generation is an interesting problem. Using the in-

tuitive technique to generate states will not generate all pos-

sible states (Slaney & Tébaux 2001). If a simple, intu-
itive problem generation strategy is not satisfactory for a do-
main such as Blocksworld, it seems highly unlikely that a
similar strategy would be satisfactory for a modern, highly-
structured domain.

This work addresses two questions. The first is how to

generate an interesting benchmark set for a complex struc-

tured domain (the Driverlog domain). The second question

52

The Driverlog Problem

A transportation problem involves a set of trucks moving
packages from a starting location to a goal destination in
an efficient way. The trucks drive along roads that connect
the locations together, and a package can be picked up from
or dropped off to a truck’s current location. The Driverlog
domain extends this model by introducing drivers. Drivers
have their own path network that connects the locations to-
gether, allowing them to walk between locations. Trucks in
Driverlog can only move if they are being driven by a driver.
This introduces an enabler role moving away from a simple
deliverable/transporter model. As well as this, goal loca-
tions are often set for the drivers and the trucks, not just the
packages.

Transportation domains can cover problems with inter-
esting road structures. However, Driverlog adds interesting
challenges, as there can be complicated interaction between
the two graphs structures and there are many more factors to
consider when deciding how to deliver the packages, includ-
ing additional goal types and useful driver truck pairings.

The Dimensions of Driverlog

A Driverlog problem comprises the following things: a set
of drivers, a set of trucks, a set of packages and a set of
locations. All of the drivers, trucks and packages are initially
at a location. A subset of the drivers, trucks and packages
have a goal location. Locations are connected in two distinct
ways: by paths (which drivers can walk along) and by roads
(which trucks can drive along).

We propose eight dimensions that we feel could be com-
bined to create interesting and challenging Driverlog prob-
lems. The dimensions largely focus on introducing struc-
tural features to the graphs, however, we also consider the
types of goals and number of the separate objects in the
problem. These could greatly affect the difficulty of the
problem.

Graph topology There are several options relating to the
graph topology, connectivity and planar or non-planar.
Planar graphs are graphs that can be drawn on a plane,
with no intersecting edges, a property existing in many
real road networks. This domain can be used to represent
other problems and it is likely that non-planar graphs will
also be of interest and increase the problem space. The
connectivity of the graph, from sparse to dense can also
be set, allowing a whole range of interesting structures to
be explored.

Numbers of objects The number of trucks, drivers, pack-
ages and locations are the traditional parameters for gen-
erating Driverlog problems. This dimension can be used
to set the size of the problem and can have some effect on
the difficulty.

Types of goals There are only three possible types of goal
in Driverlog: the goal location for trucks, drivers or pack-
ages. In real world transportation problems, the planner
can never consider delivering the packages in isolation;
the final destination of the drivers and trucks is also ex-
tremely important. Allowing the types of goals to be se-
lected provides control over the emphasis of the problem.

Disconnected drivers There are two separate graphs in the
Driverlog domain, the road graph and the path graph. The
interesting interactions that can happen between the two
graph structures are usually ignored. We want to en-
courage exploration of these interactions. Disconnected
drivers provide problems where drivers must traverse both
graphs (walking, or in a truck) to solve the problem.

One-way streetsLinks can be added between two locations
in a single direction. This means that trucks can move
from one location to another, but may have to find a differ-
ent route to return to the original location. Solving prob-
lems with directed graph structure forces careful planning
of how the trucks are moved around the structure. If the

53

wrong truck is moved down one of the one-way streets,
then many wasted moves could be incurred as the truck
traverses back through the graph. As well as adding an
interesting level of difficulty, we think this dimension is
particularly relevant, because of the increasing number of
one-way streets in the transport network.

Dead endsDead ends are locations, or groups of locations
that are joined to the main location structure in one direc-
tion only. This means that a truck cannot return once it has
moved into one of these groups of locations. This forces
the planner to carefully decide when to send the truck into
one of these groups, as it will be lost for the remainder of
the plan. For example, on difficult terrain there can be
craters that a robot can manage to move into, but are too
steep for the robot to get out again. In this case the planner
may want to balance the importance of the scientific gain
with the cost of the robot and termination of the mission.

SAT/ UNSAT This dimension allows the possibility of un-
solvable problems. Solvable means that there is a se-
guence of actions moving the state from the initial state to
a state that satisfies the goal formula. This option might
allow the exploration of more interesting properties in the
other dimensions, as sometimes it is impossible to ensure
that certain combinations are solvable.

Symmetry in objects Symmetry occurs in the Driverlog
problem when different objects or configurations of ob-
jects are repeated. For example, three trucks that have
the same start and goal conditions are symmetric. Also,
the underlying road network may be symmetric. Planners
that perform symmetry breaking can exploit symmetry to
reduce the amount of necessary search.

The Instance Generators

Four different generators have been written for this work.
In the future, these will be reduced to a single generator.
But since this is preliminary work, different generators were
produced for different important dimensions. These are Pla-
nar, Non-Planar, Dead-ends and Disconnected Drivers. The
generators explore the different dimensions identified as in-
teresting in the previous section. Three of these dimensions
are not explored: Symmetry in objects, types of goals and
SAT/UNSAT. The majority of modern planners have been
built around the assumption that instances will be satisfi-
able, and so this dimension may not produce any interest-
ing discussion. In all of the instances, each driver, truck and
package has a goal destination (unless otherwise specified).
Symmetry in objects cannot be explicitly varied in any of
the generators. It is our intention to add the capacity to vary
these dimensions in the future. One more restriction is that
except in the Disconnected Drivers generator, the path map
is identical to the link map. The generators do the following:

Planar

Generates instances with planar maps. The user can vary
the number of drivers, trucks, packages and locations. The
user is required to supply the probability of two locations

being connected. The user specifies if the map is directed

or not. All of the generated maps will be connected. In the interesting selection of problems that covered a range of
implementation, if a generated map is not connected, it is difficulty for all of the planners. We highly recommend

simply discarded and a new one generated. this method. Without preliminary tests, it is impossible to
know what range of problems may provide difficulties for
Non-Planar the planners. It is far too easy to construct a benchmark set

The Non-Planar generator is similar to the Planar generator cOmposed entirely of either very easy or impossible to solve

except that the user specifies a particular number of links in Problems. . .
the road_map and' Of course, the resu|tant road_maps may We pI’OVIde deta”ed I’eSU|tS f0r p|anar road maps W|th four

not be planar. drivers, four trucks, nine packages, and number of locations
varying between 10 and 30, in steps of five. For each size
Dead-ends of map, we generated 50 instances with probability of two

nodes being connected of between 0.1 and 0.9 both for di-
rected and undirected graphs. This gives 250 instances for
directed and undirected graphs. Planar graphs were selected
as they have a similar structure to real-world road networks.

We also used 180 of the generated Dead End instances.
These instances have between one and four trucks, they have
9 packages and all have 15 locations.

To test road maps with dead-ends, the following method is
used for generating an instance. A tree is constructed as the
road map randomly, connecting locatianwith a random
location, lower tham. There are trucks and drivers, ini-
tially located at location 1. The lastocations are then used
as destination locations for the packages. The trucks do not
have a destination location specified.

Each package is randomly assigned a destination from

those last locations. Each package is then initially placed) Results i
at any location on the path between location 1 and its des- The results of performing the above experiments can be seen

tination. The challenge in this problem is simply to drive a 1N Figure 2 to Figure 5. These graphs show the planar di-
truck to each destination and only load a truck with pack- Fécted results (both time and quality) for FF vs. LPG, FF vs.
ages that are supposed to be delivered to that truck’s desti- SGPlan and LPG vs. SGPlan respectively. The graphs of the
nation. Figure 1 shows one example. In this example, nor- imings are log-scaled, whereas the graphs showing quality
mal fonts represent the initial location of packages, italicised '€ linear scaled.

fonts represent their goal locations. Time vs. Quality

Disconnected Drivers The results shown in Figure 2 to Figure 5 show that there is
little to choose between the planners in terms of plan quality.
In each comparison, the two compared planners seem to gain
wins in what seems about half of the cases. However, of
the three planners, LPG is considerably better in terms of
time taken than the other planners. This highlights the fact
that planners have been built specifically with the task of
attaining satisfiability, rather than trying to optimise metrics.

The Disconnected Driver generator is designed to explore
the Disconnected Driver dimension. In order to do this, a
map with no paths is created. Each driver is paired with
a truck: the goal locations of the truck and driver are the
same. Their initial locations are not the same (although each
driver has a truck available). The challenge in the instances
generated is in swapping the drivers into the truck that shares

its goal location. SGPlan Dependence on FF

. It was noticed that in many problems that were found diffi-
Experiments cult by FF, SGPIan also struggled. FF’'s performance seems
To test the generators, we have used three of the most suc-to dominate that of SGPIlan. This is unusual, as each goal in
cessful planners of recent times, FF (Hoffmann & Nebel a Driverlog problem should be reasonably straightforward
2001), LPG (Gerevini & Serina 2002) and SGPlan (Chen, to solve in isolation. However, it is perhaps due to the fact
Wah, & Hsu 2006). We used FF version 2.3, LPG version that some of the goals in Driverlog are strongly dependent
1.2 and SGPlan version 41. All of the tests were performed on resources that participate in other goals. This could mean
on a desktop computer with a dual-core Intel Pentium 4 that combining the sub-plans becomes difficult for SGPIlan.
2.60GHz CPU. The tests were limited to using 10 minutes
and 300MB of memory. The timings for FF and LPG mea- Dead-end Example
sure system time + user time. Sadly, there is no simple way Figure 1 shows an example of the Dead End instances gen-
of calculating this measure for SGPlan, and so clock time is erated. This instance had three trucks. The numbers in Fig-
used. This could mean that SGPIlan seems slightly slower ure 1 represent package locations. The italicised numbers
than in reality. However, system load was minimal during represent the goal locations of the packages. All three plan-
testing, and any scaling in performance should be a very ners were incapable of solving this simple problem.
small constant factor. The quality of plans is measured by This highlights the fact that the planners do not reason
number of actions. As FF only produces sequential plans, about resource allocation intelligently. If the problem is
and LPG by default optimises number of actions, this was viewed as a task of assigning packages to trucks, then the
thought a fairer measure than makespan. problem becomes very simple. It also shows that the plan-
We generated a huge number of benchmark test cases,ners do not reason about the consequences of irreversible
and then after some preliminary small-scale tests chose anactions.

54

features and we feel our results provide more understand-
ing of the planners’ strengths and weaknesses. We believe
that this provides a far stronger base for making compar-
isons between the planners. In this section we describe the
Driverlog generator used in the competitions and discuss the
differences between the results of the competition and the
results found in this study.

Driverlog is a domain that is rich in structure, however the
current competition generator uses a very simple approach
to creating the test cases. The parameters to the generator,
are the number of trucks, drivers, packages and road loca-
tions. The connectivity of the road graph is determined by
making (number of road locations4) connections between
any two random locations. If the graph is not connected,
then additional connections are added between disconnected
locations until it is. It is highly likely that this method will
Figure 1: Dead-end instance in which all three planners fail produce a very densely connected graph. The same hap-
pens for the path graph, except there are (the number of

ntance} 1 | 2 | s 144t o [7 1 8 15 110 locations) instead, thus increasing the chances of a sparser
FF 9 23 13 17 23 14 18 24 32 21 . .

LPG 7 | 27| 13| 16| 3| 14 | 21 | 25 | 32 | 22 path graph. These graphs are both undirected, removing any
ISG"'a” 191 i‘z‘ E i i;‘ i;‘ i*; ig i: ;i chances of one way streets or dead-ends and each cover all
L LB the road locations, removing the possibility of disconnected
LPG 25 | 42 | 33 | 78 | 60 | 284 | 143 | 179 | 230 | 176 drivers. As the graphs are so densely connected it is unlikely

SGPlan 25 39 36 44 47 — - — - -

that they will be planar and even less likely that they will re-
Table 1: Plan Quality for the 2002 IPC Benchmark Instances Semble real-world road networks. _
The objects are positioned randomly across the locations
and their goal locations (if required) are chosen randomly
Directed vs. Undirected too. The decision on whether an object has a goal is ran-
domly made, with 95% chance of a package having a goal
destination and 70% for both drivers and trucks. This means
'that no control is given to the types of goal in the problem
and no effort is made to position the goals in an interesting

Figure 2 and Figure 3 show the results of the Planar Directed
and Undirected tests respectively. For each of the planners
there was no large difference in the results between the di-
rected and undirected test cases. It was thought that for the
same reason the planners deal badly with dead-ends, they
may also deal badly with one-way streets. This appears not

to be the case, although further experiments may reveal more
specific forms of dead-end roads in which the planners strug-

gle.

We feel that the planning competition should be able to
prove that a planner is faster or produces better quality plans
to a statistically significant level. Also, that how a planner
performs in a particular area of planning should be identi-
fiable. In our approach we generated problems that incor-
.. . porated several interesting structural features and spanned a

Competition Comparisons whole range of difficulties. This provides a solid base for
The planning competition provides a strong motivation in judging the performance of the planners across the whole
our field and directs the activity of the community. In this domain and additionally provides invaluable insight into
study we examined the generator used in the 2002 IPC (Long how the planner behaves when faced with specific structural
& Fox 2003): the Driverlog problem generator. We feel that features. We believe that the competition generator fails to
the generator does not provide problems that capture the full explore the interesting features of this domain and makes no
potential of what is a structurally rich domain. Therefore it attempt to incorporate real-world structures into the prob-
is our opinion that the competition has failed to fully explore lems. Also, we feel that too few problems were generated
how the planners behave in this domain. Our approach fo- to determine the performance of the planners. Our results
cusses on generating problems with several varied structural show that our problems spanned a whole range of difficul-
ties, whereas the competition problems were found either
too hard or too easy. It is our opinion that the results pre-

Fance B T N N A sented here are sufficient to determine the best planner over
LPG o|lo|o|o| o |o|o0] o0 0 the whole domain and in addition, provide useful informa-
Soran R O D 0 0 - - tion to the planner designer, regarding the planner's capabil-

2] 13 | 14 | 15 | 16 | 17 | 18 | 19 20 o
04] 02] 03|01 = — - - - ities.
01| 01| 02| 04| 89| 28| 81| 521 | 721

02| 01| 01| 01| - - -

Instance
FF

LPG
SGPlan

coolf||looolr

Depth of results: Number and Range

Table 2: Execution Time for the 2002 IPC Benchmark In- One of the motivations for this work was to improve the
stances quality of results that the planning competition could pro-

95

LPG Time (sec)

LPG Time (sec)

LPG Quality (#actions)

150

100

50

100
FF Quality (#actions)

(b) Quality

Figure 2: FF vs. LPG Planar Directed Road Network

1000 T T
100 |
10 |
WL
0.1 & o L L
0.1 10 100 1000
FF Time (sec)
(a) Time
1000 ps
100 k|
10 k!
ik]
0.1 o L L
0.1 10 100 1000

FF Time (sec)

(a) Time

LPG Quality (#actions)

150

200

200

150

100

50

.
100
FF Quality (#actions)

(b) Quality

Figure 3: FF vs. LPG Planar Undirected Road Network

56

150

200

SGPlan Time (sec)

SGPlan Time (sec)

SGPIan Quality (#actions)

H

)

3
T

50

100
FF Quality (#actions)

(b) Quality

SGPlan Planar Directed Road Network

1000

1000 T T
100 |
10 |
n
0.1« -
0.1 10 100 1000
FF Time (sec)
(a) Time
Figure 4: FF vs.
1000 T T
100 k|
10 E|
n |
0.1 o L L
0.1 10 100

LPG Time (sec)

(a) Time

SGPlan Quality (#actions)

200

200

150

,_‘
1)
3

+
+ o+
+ +ory A
s R B
+ o TR 4
+ L T, o+
by T e "
L b]
€3 +
+ +
N
4
. I -
0 50 100 150

LPG Quality (#actions)

(b) Quality

Figure 5: LPG vs. SGPlan Planar Directed Road Network

57

200

(a) Competition (b) Planar Undirected

Figure 6: Competition Benchmark vs. Planar Undirected Graph Density

vide. We feel that the competition would greatly benefit the The competition generator constructs the graphs by ran-
community if it not only suggested an overall winner, but domly forming many connections between nodes, and this
also highlighted particular features of planning that individ- results in densely connected graphs. All of the graphs are
ual planners excelled in. The Driverlog domain provides an undirected and the road and path graphs must visit every
opportunity to test the planners on many interesting struc- point. This means that the dimensions that we highlighted
tural problems. However, in the competition only 20 prob- either can not, or are very unlikely to appear in any of the
lem instances are generated, hardly enough to make a full problems generated for the competition. The competition
exploration of the domain. Table 2 shows the time results therefore fails to explore much of the interesting structure
for FF, LPG and SGPIlan for the competition instances. It possible in this domain.
is difficult to form any kind of of comparison, as the results Our generators cover several structural features; the prob-
are so similar. In contrast, Figure 2 b) shows the time result lems therefore test the planners across these features. This
for FF and LPG for our planar problem set. The large prob- means that our results can be used to determine more than
lem set ranging over the entire dimension, provides results just the best planner: they also identify how a planner per-
that clearly shows how the planners compare throughout an forms on problems with a particular structural feature. In the
entire range of problem difficulties. results section, we identified the dead-end feature as a par-
The results that we present for each dimension come from ticular problem for FF, LPG and SGPlan. We feel that this
a full range of problem difficulties. We feel that this gives sort of information will provide invaluable feedback to the
us a strong base to make informed claims about each plan- planner designer, allowing them to focus their research on
ner's abilities in terms of these dimensions. In the 2002 the areas of weak performance. As discussed, it is unlikely
competition, the first 15 of the problems for Driverlog pro- that the competition generator will provide many problems
vided no challenge to the planners, and the last 5 were all with interesting structure. As a result, it is impossible to
found extremely difficult (mostly impossible) (Long & Fox identify when a planner performs poorly using the competi-
2003). The problems failed to provide a smooth range of dif- tion instances.
ficulty. We feel that if claims are going to be made about the
quality of plans a planner makes or how quickly it produces Density and realism

those plans, then the planner must have been tested across,l_h lanni . f hat di he ol
the whole range of possible problems. e planning competition is a force that directs the plan-

ning community and in our opinion it should be used to
push planning towards dealing with real-world situations.
Although current planners cannot deal with large real-world
Driverlog problems have the potential of containing all sorts problems, we feel that realistic structures should be incor-
of structural features. We feel that the dimensions intro- porated into planning problems wherever possible. The road
duced earlier, capture a very interesting selection of these. connections in real-world transport network often form pla-

Interesting structure

58

nar graphs. As we described previously, the competition ated which would be able to generate instances of any do-
Driverlog generator is likely to generate very dense graphs, main that have interesting structure.

contrasting with the real model. Figure 6 a) highlights the

connectivity of a typical competition problem, where b) Conclusions

shows the more realistic, sparse structure generated by our|, yhis paper, we have tried to show that the problem of in-
planar graph generator. The dimensions that we have pre- giance generation is of critical importance to the planning
sented in this work, have been designed specifically to test community. Having complex domains is not enough. To test

planners on real-world structural features. Itis therefore our 5nners effectively, then benchmarks that explore all possi-
opinion that our generator is more likely to include realistic e stryctural dimensions of our domains have to be created.
structures within the problems it generates. We have identified several structural dimensions for the
Driverlog domain, and have created instance generators that
Future Work explore several of these. After creating many instances our

This short study aims to motivate researchers to take the results show that, for the planners tested, there is little dif-

problem of instance generation more seriously. To further ference in P'af? quf':llity._The planners aIsp cannot handle re-
this work, several things can be done: source allocation intelligently (as seen in the dead-end ex-

ample).

Create More Generators Driverlog is just one domain We have shown that the IPC generator does not gener-
from many previous competition domains. Instance ate structurally interesting instances, and have made various
generators for the full range of competition domains criticisms of the competition benchmarks. It must be re-
would help to further refine where planning technology’s membered that running the IPC already requires a great deal
strengths and weaknesses are. of work, and so this work is not created to undermine the ef-

Complete Driverlog Generator Even the Driverlog gener- [0'tS of the organisers. However, it does show that creating
ators as described in this work are not complete. New in- NStance generators should not simply be the responsibility
teresting dimensions may be identified, which would re- of the competition organisers.

quire extending the generator to create problems across Th's work is still preliminary, and a completely unified .
this new dimension. One of the current dimensions Driverlog generator that can generate instances anywhere in

(amount of symmetry) is not yet varied explicitly in the the structural dimensions is essential. There is still plenty

- - e work to be done to understand what structural properties
?Oerrlﬁir:tsrrosj.eﬁ:jdmg this capacity is part of the future work underlie difficult instances. Hopefully this work will con-

vince its readers that instance generation is an important
Richer Modelling Language PDDL is capable of express- topic both for comparing our planners and for understand-
ing far more than the propositional instances generated ing what makes a difficult planning problem.
by our current generator. In the IPC, numeric and tempo-
ral versions of Driverlog were tested alongside the purely References

propositional forms of the problem. These included dura- Chen, Y.; Wah, B. W.; and Hsu, C. 2006. Temporal Plan-

tions on each of the actions, and also fuel costs for driving. ; RS co

They also had different metrics to optimise. Clearl exg ning using Su.b_g_oal Partitioning and Resolution in SGPlan.
Y : S2= ye Journal of Artificial Intelligence Resear@6:323-369.

panding the generators to these dimensions is essential to .)

further planning technology in these areas. Gerevini, A., and Serina, |. 2002. LPG: A Planner Based

) o on Local Search for Planning Graphs with Action Costs. In
Real-world Derived Instances Real logistics problems are AIPS 13-22.

different from typical Driverlog instances both in size
and structure. Real logistics problems have huge num- "o i 110 generation through heuristic seafohirmal
bers of locations. The structure of their underlying maps

X .)) of Artificial Intelligence Research
will remain constant: road networks rarely change sig- -~ .
nificantly. If one goal of the planning community is to ~ Koehler, J.- 1999. RIFO within IPP. Technical report,
address real-world problems, then real-world benchmarks ~Albert-Ludwigs University at Freiburg.
are required. Techniques to exploit structures that are con- Long, D., and Fox, M. 2003. The 3rd international plan-
stant between different instances could be developed to ning competition: Results and analysixurnal of Al Re-
tackle these problems. search20:1-59.

structures that occur in different planning domains. For Artif. Intell. 125(1-2):119-153.
instance, there are many problems similar to Driverlog,

in which movement across a graph is required. If these

structures can be identified, then the dimensions identi-

fied here that relate to graph structures could be used as

generic dimensions in other problems with similar struc-

tures. Therefore, if enough different structures could be

identified, then a generic problem generator could be cre-

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-

59

VLEPpPO: A Visual Language for Problem Representation

Ourania Hatzi', Dimitris Vrakas®, Nick Bassiliades?, Dimosthenis Anagnostopoulos' and
loannis Vlahavas®

"Harokopio University of Athens, Athens, Greece
{raniah, dimosthe} @hua.gr
2Dept. Of Informatics, Aristotle University Of Thessaloniki, Thessaloniki, 54124, Greece
{dvrakas, nbassili, vlahavas}@csd.auth.gr

Abstract

Al planning constitutes a field of interest as its techniques
can be applied to many areas. Contemporary systems that
are being developed deal with certain aspects of planning
and focus mainly on dealing with advanced features such
as resources, time and numerical expressions. This paper
presents VLEPpO, a Visual Language for Enhanced
Planning problem Orchestration. VLEPpO is a visual
programming environment that allows the user to easily
define planning domains and problems, acquire their
PDDL representations, as well as receive solutions,
utilizing web services infrastructure.

1. Introduction

Al planning has been an active research field for a long
time, and its applications are manifold. A great number of
techniques and systems have been proposed during this
period in order to accommodate designing and solving of
planning domains and problems. In addition, various
formalisms and languages have been developed for the
definition of these domains, with Planning Domain
Definition Language (PDDL) [4][5][6] being dominant
among them.

Research among contemporary planning systems has
revealed a lack of appropriate integrated visual
environments for representing accurately PDDL elements
and structures, and consequently using these structures to
produce quality plans. This provided the motivation for
the work presented in this paper.

The proposed visual tool is intended to cover the need
for such an environment by providing an easy to use,
efficient graphical user interface, as well as
interoperability with planning systems implemented as
web services. The elements offered in the interface
correspond to PDDL elements and structures, making the
representation of most contemporary planning domains
possible. Furthermore, importing from and exporting to
PDDL features are provided as well. Drag and drop
operations along with validity checks make the use of the
environment easy even for users not particularly familiar
with the language.

The rest of the paper is organised as follows: Section
2 reviews related work in the field by presenting several
planning systems, while Section 3 discusses the eminent
formalisms for representing planning domains and
problems. Section 4 presents our visual tool and
demonstrates its use through examples, and finally,
Section 5 concludes and discusses future goals.

60

2. Related Work

There have been a few experimental efforts to construct
general-purpose tools which offer user interfaces for
defining planning domains and problems, as well as
executing planners which provide solutions to the
problems.

The GIPO system [1] is based on an object-centric
view of the world. The main idea behind it is the notion
of change in the state of objects throughout plan
execution. Therefore, the domains are modelled by
describing the possible changes to the objects existing in
the domain. The GIPO system is designed to work with
both classical and HTN (Hierarchical Task Networks)
domains. In both cases, it offers graphical editors for
domain creation, planners, animators for the derived
plans and validation tools. The domain models are
represented mainly in an internal representation language
called OCL (Object Centered Language) [8], which is, as
the name implies, object oriented, in accordance with the
GIPO system. Translators from and to PDDL have been
developed, which cover only a few parts of the language
(typed / conditional PDDL).

SIPE-2 [2] is another system for interactive planning
and execution of the derived plans. As it is designed to be
performance-oriented, it embodies many heuristics for
increased efficiency. Another useful feature is the plan
execution monitoring, which enables the user to feed new
information to the system in case there is some change in
the world. In addition, the system offers graphical
interfaces for knowledge acquisition and representation,
as well as plan visualization. SIPE-2 is an elaborate
system with a wide range of capabilities. However, it
uses the ACT formalism, which is quite complicated and
does not correspond directly to PDDL, although PDDL
descended partially from this formalism, but also from
other formalisms such as ADL. Therefore, there is no
way to easily use a PDDL file to construct a domain in
SIPE-2, or export the domain or problem to PDDL.

ASPEN is an environment for automated planning and
scheduling. It is an object-oriented system, originally
targeted to space mission operations. Its features include
an expressive constraint modelling language which is
used for defining the application domain, systems for
defining activity requirements and resource constraints,
as well as temporal constraints. In addition, a graphical
user interface is included, but its use in confined to

visualization of plans and schedules, in systems where
the problem solving process is interactive.

ASPEN was developed for the specific purposes of
space mission operations and therefore, it has only a few
vague correspondences to PDDL. Furthermore, it does
not offer a graphical interface for creating the planning
domains.

In conclusion, although the above systems are useful,
none of them offers direct visual representation of PDDL
elements, a feature which would make the design very
efficient for the users already familiar with the language.
Moreover, even the systems which offer translation to
PDDL do not cover important features of the language. It
should be mentioned that a couple of other systems which
provide user interfaces can be found in the literature, but
they are not mentioned in this section because of their
being developed for specific purposes.

The VLEPpO tool is based on ViTAPlan [3] a
visualization environment for planning based on the
HAPgc planning system. VLEPpO extends ViTAPlan in
numerous ways providing the user with visualization
capabilities for most of the advanced features of PDDL
[6] and a more accurate and expressive visual language.

3. Problem Representation

A crucial step in the process of solving a search problem
is its representation in a formal language. The choice of
the language can significantly affect not only the
comprehensiveness of the representation but also the
efficiency of the solver. The PDDL language is nowadays
the standard for representing planning problems. PDDL is
partially based on the STRIPS [7] formalism. Since the
environment presented in this work has a close
connection with PDDL, a brief description of the most
important language elements will be provided in the
following section.

3.1. The PDDL Definition Language

PDDL [4] stands for Planning Domain Definition
Language. Although it was initially designed for planning
competitions such as AIPS and IPC, it has become a
standard in the planning community for modelling
planning domains. PDDL focuses on expressing the
physical properties of the domain at hand in each
planning problem, such as the available predicates and
actions. However, at the same time, there are no
structures or elements in the language to provide the
planner with advice, that is, guidelines about how to
search the solution space, although extended notation
may be used, depending on the planner.

Each domain definition in PDDL consists of several
declarations, which include types of entities, variables,
constants, literals that are true at all times called timeless,
and predicates. In addition, there are declarations of
actions, axioms and safety constraints. These elements
are explained in the following paragraphs.

Variables have the same semantics as in any other
definition language, and are used in conjunction with
built-in functions for expression evaluation. In more
recent versions of PDDL, fluents seem to gain

61

momentum instead of variables when there is a need for
values that can change over time, as a result of an action.

Constants represent objects that do not change values
and can be used in the domain operators or the problems
associated with a domain.

Relations between objects in the domain are
represented by predicates. A predicate may have an
arbitrary number of arguments, whose ordering is
important in PDDL. Predicates are used to describe the
state of the world at a specific moment. Moreover, they
are used as preconditions and results of an action.

Timeless predicates are predicates that are true at all
times. Therefore, they cannot appear as a result of an
action unless they also appear among its preconditions. In
other words, timeless predicates are not affected by any
actions available to the planner.

Actions enable transitions between successive
situations. An action declaration mentions the parameters
and variables involved, as well as the preconditions that
must hold for the action to be applied. PDDL offers two
choices when it comes to defining the results of the
action: The results can either be a list of predicates called
effects, or an expansion, but not both at the same time.
The effects, which can be both conditional and
universally quantified, express how the world situation
changes after the action is applied. More specifically,
inspired by the STRIPS formalism, the effects include the
predicates that will be added to the world state and the
predicates that will be removed from the world state.

Axioms, in contrast to actions, state relationships
among propositions that hold within the same situation.
The necessity of axioms arises from the fact that the
action definitions do not mention all the changes in all
predicates that might be affected by an action. Therefore,
additional predicates are concluded by axioms after the
application of each action. These are called derived
predicates, as opposed to primitive ones. In more recent
versions of the language the notion of derived predicates
has replaced axioms, but the general idea described
remains the same.

Safety constraints in PDDL are background goals
which may be broken during the planning process, but
ultimately they must be restored. Constraint violations
present in the initial situation do not require to be fulfilled
by the planner.

After having defined a planning domain, problems can
be defined with respect to it. A problem definition in
PDDL must specify an initial situation and a final
situation, referred to as goal. The initial situation can be
specified either by name, or as a list of literals assumed to
be true, or a combination of both. In the last case, literals
are treated as effects; therefore they are added to the
initial situation stated by name. Again, the closed-world
assumption holds, unless stated otherwise. Therefore, all
predicates which are not explicitly defined to be true in
the initial state are assumed to be false. The goal can be
either a goal description, using function-free first order
predicate logic, including nested quantifiers, or an
expansion of actions, or both. The solution given to a
problem is a sequence of actions which can be applied to
the initial situation, eventually producing the situation
stated by the goal description, and satisfying the
expansion, if there is one.

PDDL 2.1 [5] was designed to be backward
compatible with PDDL 1.2, and to preserve its basic
principles. It was developed by the necessity for a
language capable of expressing temporal and numeric
properties of planning domains.

The first of the extensions introduced were numeric
expressions. Primitive numeric expressions are values of
functions which are associated with tuples of domain
objects. Further numeric expressions can be constructed
using primitive ones and arithmetic operators. In order to
support numeric expressions, new elements were added
to the language. Functions are now part of the domain
definition and, as mentioned above, they associate a
number of objects with an arithmetic value. Moreover,
conditions were introduced, which are in fact
comparisons between pairs of numeric expressions.
Finally, assignment operations are possible, with the use
of built-in assignment operators such as assign, increase
and decrease. The actual value for each combination of
objects given by the functions is not stated in the domain
definition but must be provided to the planner in the
problem definition.

A further extension to PDDL facilitated by numeric
expressions is plan metrics. Plan metrics specify the way
a plan should be evaluated, when a planner is searching
not for any plan, but for the optimal plan according to
some metric.

Other extensions in this version include durative
actions, both discretised and continuous. Up to now,
actions were considered instantaneous. Durative actions,
as the term implies, have a duration which is declared
along with their definition. Furthermore, as far as
discretised durative actions are concerned, temporal
annotations are introduced to their conditions and effects.
A condition can be annotated to hold at the start of the
interval, at the end of the interval, or all over the interval
during which the action lasts. An effect can be annotated
as immediate, that is, it takes place at the start of the
interval, or delayed, that is, it takes place at the end of the
interval.

In PDDL 3.0 [6] the language was enhanced with
constructs that increase its expressive power regarding
the plan quality specification. The constraints and goals
are divided into strong, which must be satisfied by the
solution, and soft, which may not be satisfied, but are
desired. In addition, the notion of plan trajectories is
introduced, which allows the specification of
intermediate states that a solution has to reach, before it
reaches the final state.

4. The Visual Language

VLEPpO (Visual Language for Enhanced Planning
problem Orchestration) is an integrated system for
visually designing and solving planning problems,
implemented in Java. It offers an efficient and easy-to-
use graphical interface, as well as compatibility and
interoperability with PDDL. The main goal during the
implementation of the graphical component of the tool
was to keep the interface as simple and efficient as
possible, but, at the same time, represent accurately and
flexibly the features of PDDL. The range of PDDL
elements that can be represented in the tool is quite wide,

62

and covers the elements that are used more frequently in
contemporary planning domains and problems. In the
following, the features of the tool will be discussed in
more detail.

4.1. The Entity — Relation Model

The entity — relation model is used to design the structure
of data in a system. Our visual tool employs this well-
known formalism, adapting it to PDDL. Therefore, the
entities in a planning domain described in PDDL are the
objects of the domain, while the relations are the
predicates. These elements are represented visually in the
tool by various shapes and connections between them.

A class of objects in the tool is represented visually by
a coloured circle. A class in PDDL represents a type of
domain objects or action parameters. From a class the
user can create parameters of this type in operators, and
objects of this type in problems, by dragging and
dropping the class on an operator or a problem,
respectively. The type of a parameter or object is denoted
by their colour, which is the same as the corresponding
class.

Consider the gripper domain for example, where there
is a robot with N grippers that moves in a space,
composed of K rooms that are all connected with each
other. All the rooms are modelled as points and there are
connections between each pair of points and therefore the
robot is able to reach all rooms starting from any one of
them with a simple movement. In the gripper domain
there are L numbered balls which the robot must carry
from their initial position to their destination.

Following a simple analysis the domain described
above can be encoded using four classes: robot, gripper,
room and ball. However, since the domain does not
support the existence of multiple robots, the class robot
can be implicitly defined and therefore there is no need
for it. The three remaining classes are represented in
VLEPpO using three coloured circles as outlined in
Figure 1.

BALL ROOM GRIPPER

Figure 1. The classes in Gripper domain.

A relation is represented by a coloured rectangle with
black outline. A relation corresponds to a domain
predicate in PDDL and it is used for defining connections
among classes. The relations in PDDL and therefore in
VLEPpO are of various arities. Unary relations are
usually used to define properties of classes that can be
modeled as binary expressions that are either true or false
(e.g. closed(Doorl)).

If at least one pair of class and relation is present in
the domain, the user can add connections between them.
Each connection represents an argument of a relation, and
the class shows the type of this argument. A relation may
have as many arguments as the user wishes, of any type
the user wishes. The arguments are ordered according to
the numbers on each connection, because this ordering is
important to PDDL.

The Gripper domain has four relations, as depicted in
Figure 2: a) at-robot, which specifies the position of the

robot and it is connected only with one instance of room,
b) at which specifies the room in which each ball resides
and therefore is connected with an instance of ball and an
instance of room, ¢) holding which defines the alternative
position of a ball, i.e. it is held by the robot and therefore
it is connected with an instance of ball and an instance of
gripper and d) empty which is connected only with an
instance of gripper and states that the current gripper does
not hold any ball.

el ROOM GRIPPER

xz 1

Figure 2. The relations in the Gripper domain.

Note here that although non-typed PDDL requires
only the arity for each predicate and not the type of
objects for the arguments, the interface obliges the user to
connect each predicate with specific object classes and
this is used for the consistency check of the domain
design. According to the design of Figure 2, the arity of
predicate holding, for example, is two and the specific
predicate can only be connected with one object of class
ball and one object of class gripper.

The aforementioned elements, classes, relations and
connections combined together form the entity — relation
model of the data for the planning domain the user is
dealing with.

4.2. Representing Operators

Operators have direct correspondence to PDDL actions,
which enable transitions between successive situations.
The main parts of the operator definition are its
preconditions and results, as well as the parameters.
Preconditions include the predicates that must hold for
the action to be applied. Results are the predicates that
will be added or removed from the world state after the
application of the action. Operators in the visual tool are
represented by light blue resizable rectangles in the
Operator Editor, comprised by three columns. The left
column holds the preconditions, the right column holds
the effects, and the middle one the parameters.

Dragging and dropping a relation on an operator will
add the predicate to the preconditions or effects,
depending on which half of the operator the shape was
dropped on. Parameters can be created in operators by
dropping classes on them. Adding a connection in the
ontology enables the wuser to add corresponding
connections in the operators. Other elements that can be
imported in operators will be discussed in more detail in
the section about advanced features.

For example, in the gripper domain there are three
operators: a) move which allows the robot to move
between rooms, b) pick which is used in order to lift a
ball using a gripper and c) drop which is the direct
opposite of pick and is used to leave a ball on the ground
(Figure 3)

63

s [Rasuts

o okl

Figure 3. The operators in the Gripper domain.

The default view for an operator is in preconditions /
results view which follows a declarative schema that is
different from the classical STRIPS/PDDL approach.
However, there is a direct way to transform definitions
from one approach to the other.

Although the preconditions / results view is more
appropriate for visualizing operators, the system gives the
user the option to use the classical add / delete lists view,
therefore the STRIPS formalism is accommodated as
well. If selected, the column on the left, as before, shows
the preconditions that must hold for the action to be
executed, but the column on the right shows the facts that
will be added and deleted from the current state of the
world upon the execution of the action.

Pick

Preconcditions

Parameters Add List

PHErObit- g holding

at-robot

at RoomObj1
| =

Figure 4. Pick operator in add/delete lists view.

As an example, the pick operator of the Gripper
domain is considered. According to the STRIPS
formalism, the operator is defined by the following three
lists, also depicted in Figure 4.

prec = {empty(GripperObj1l), at-robot(RoomObj1),
at(BallObj1,RoomObj1)}

add = {holding(GripperObj1, BallObj1)}

del = {empty(GripperObj1), at(BallObj1, RoomObj1)}

The equivalent operator in Preconditions / Results
view is presented in Figure 5.

Pick
Precanditions Parameters Resuts
erohjl
1 holding
at-rohot Ballof)1
at-robot
at 2 RoomOhj1 1
‘ |

Figure 5. Pick operator in preconditions / results view.

4.3. Representing Problems

For every domain defined in PDDL a large number of
problems that correspond to this domain can also be
defined. Problem definitions state an initial and a goal
situation, and the task of a planner is to find a sequence
of operators that, if applied to the initial situation, will
provide the goal situation. The problem shape in the
visual tool is much like an operator in form, but different
semantically. It is represented by a three-column
resizable rectangle in the Problem Editor. Left column
holds the predicates in the initial state, right column holds
the predicates in the goal state, and middle column holds
the objects that take part in the problem definition.

Problem
Initial State

Parameters
ightGripper

Target State

ripper

2 Bedroom ‘ at-rohot

1

at-robot ~
1 Kitchen
|

Figure 6. A Problem instance of the Gripper domain.

Figure 6 presents a problem instance of the gripper
domain, which contains two rooms (Bedroom and
Kitchen), one ball (Balll) and the robot has two grippers
(rightGripper and leftGripper). The initial state of the
problem defines the starting locations of the robot and the
ball (Kitchen and Bedroom respectively) and that both
grippers are free. The goals specify that the destination of
both the ball and the robot is the kitchen.

4.4, Advanced Features

The basic PDDL features described above are adequate
for simple planning domains and problems. However, the
language has many more features divided into subsets
referred to as requirements. An effort has been made in
order for the visual tool to embody the most significant
and frequently used among them.

An advanced design element offered by the system,
which has direct representation in PDDL, is a constant.
The constant is visually represented similarly to a class,
but it is enhanced with a red circle around it to
discriminate it from a class. The constant must be of a
type, and the tool enables the user to drag and drop it on a
class to denote that. Constants can be used either in an
operator or in a problem, where they are treated similarly
to parameters or objects, respectively.

A derived predicate is another advanced PDDL feature
that is represented by a group of design elements in the
visual tool. The term refers to predicates that are not
affected by operators, but they are derived by other
relations using a set of rules. Derived predicates in fact
existed in the first version of the PDDL language as well,
under the notion of axioms. Visually, they are represented
by a rounded rectangle with a specific colour, but they
are not complete unless they are enhanced with an
AND/OR tree that indicates the way they are derived by
other relations. Consequently, AND, OR and NOT nodes
for the construction of the tree are also offered as design

64

elements. In the current implementation, AND and OR
nodes are binary, that is, they accept only two possible
arguments, while NOT nodes are by default unary. Each
of the node arguments can be either another node of any
type, or a relation. An example of a derived predicate is
depicted in Figure 7.

Figure 7. A derived predicate with AND/OR tree.

Among the advanced features is the option to indicate
that a predicate is timeless, that is, the predicate is true at
all times. This operation involves a lot of validity checks,
which will be explained in the corresponding paragraph.

Another PDDL feature incorporated in the tool are
numerical expressions. In order for numerical expressions
to function properly, the definition of a number of other
elements is involved. Consequently, a combination of
design elements in each frame is used. First of all, in the
ontology frame the user can import functions, which are
represented by rectangles with double outline. These
functions may or may not have arguments. As with
simple relations, functions can be dragged on operators.
However, in order to appear in the PDDL description of
an operator, they must be involved in a condition or in an
assignment. The next step is to actually import conditions
and assignments which involve these functions in the
operator. In that case, a dialog box appears facilitating the
import of a condition or an assignment, by showing all
the available options that the user can select among.
Furthermore, for each function imported in the tool, a
new rectangle appears in the problem frame, which
corresponds to this function. This rectangle is used to
declare the initial values of the function for the problem
at hand.

Furthermore, the system supports discretised durative
actions. The definition of a durative action includes
setting the duration of an operator, in combination with
temporal annotations (Figure 8). In this case, the action is
considered to last a specific period of time, while the
preconditions can be specified to hold at the beginning of
this period, at the end of this period, or all over the period
(combination of these choices is also possible). Effects
can be immediate, that is, happen at the beginning of the
action, or delayed, that is happen at the end of the action.

Operator1

Conditions

Temporal Annotations
Relation1 [
Relation2 {

Relation3 o

Effects 0 26.0
Relationd v

Relations ¥
u
Figure 8. An example of a durative action.

Finally, a very useful element for problem designing is
maps. Maps represent a special kind of relations that have
exactly two arguments of the same type, and are expected
to have many instances in the initial state of a problem
(Figure 9). For each relation that fulfills these conditions
a map can be created. Objects which take part in the
instances of the relation can then be dragged on the map,
and connections can be created between them. Each of
these connections represents an instance of the relation
that the map corresponds to. In conclusion, maps do not
have an exact representation to PDDL, but they express a
part of the initial state of the world, thus making the
problem shape more readable. The use of maps is not
mandatory, as the same relations can be simply
represented in the problem shape.

Map:connected

city1 city2

cityd cityd

[
Figure 9. A map for the relation connected(C1, C2).

4.5. Syntax and Validity Checking

A very important aspect in every tool for designing and
editing planning domains is syntax and validity checking.
Planning domains have to be checked for consistency
within their own structures, and planning problems have
to be checked for consistency and correspondence to the
related domains. This visual tool attempts to detect
inconsistencies at the moment they are created and notify
the user about them, before they propagate in the domain.
In the remainder of this paragraph several examples will
be given, in order to illustrate the validity checking
processes of the system.

Whenever the user attempts to insert a new connection
in an operator or in a problem, necessary checks are
performed and if a corresponding connection cannot be
found in the ontology an appropriate error message is
shown. Special care must be taken to verify that the types
of parameters and objects match to the types of
arguments of the predicates.

As already mentioned, the system supports timeless
predicates, which are, by definition, true at all times.
Therefore, they are allowed to appear in the preconditions
of an operator, but not in the add or delete lists. As a
consequence, if the user tries to add a timeless predicate
in the preconditions part of an operator, it will
automatically appear in the effects part, so the add and
delete lists will not be affected. Furthermore, if the user
tries to set a predicate timeless, checks will be performed
to determine if this operation is allowed. Finally, timeless
predicates are not allowed to appear in a problem. In all
above cases, error messages occur in order to warn the
user and help them correct the domain inconsistencies.

Another example is that of constants. Checks are
performed to confirm that the class of a constant has
already been defined before the user attempts to use the
constant in an operator or a problem. Furthermore,

65

additional checks are performed about the types of
arguments, similar to those performed for simple objects.

4.6. Translation to and from PDDL

The capability to export the domains and problems
designed in the tool to PDDL constitutes another
important feature. All of the design elements that the user
has imported in the domain, such as predicates and
operators, along with comments, are exported to a PDDL
file, which is enhanced with the appropriate requirements
tag. The user is offered the option to use typing,
therefore, the same domain can produce two different
PDDL files, one with the :typing requirement and one
without it. Details about exporting are presented in the
remainder of the paragraph.

Despite the fact that a class in the visual tool always
represents the same notion, that is, the type of domain
objects or parameters, it takes different forms when it
comes to exporting the domain. In case the requirement
:typing is declared, the class name is included in the
(:types) construct of the domain definition, and for each
object, parameter and constant a type must be declared.
In case typing is not used, classes are treated as timeless
unary predicates and appear in the corresponding part of
the domain definition. In addition, for each parameter in
an operator, a precondition that denotes the type of the
parameter must be added in the PDDL definition,
although it does not appear visually in the tool. Likewise,
for each object, a new initial literal denoting the type of
this object must be included in the problem definition.

The elements in the Ontology Editor are combined
together in order to formulate the domain constructs in
the syntax that the language imposes. For example,
relations, connections and, if typing is used, classes are
combined to formulate the predicates construct. Likewise,
functions and derived predicates constructs are formed.
As far as constants are concerned, they may appear in the
place of parameters in operators and objects in problems,
and they also appear in the special construct (:constants)
in the domain definition.

Exporting the operators is quite more complicated,
because a combination of several elements of the
Operator Editor and the Ontology Editor is needed. Slight
changes occur to an operator definition depending on
whether the :typing requirement is declared.

Finally, exporting the problems is quite similar to
exporting the operators, but the problems are stored in a
different PDDL file. Therefore, numerous problems can
be defined for the same domain. If maps are used, care
must be taken to include the information they embody in
the list of predicates included in the initial state.
Furthermore, if functions are used, their initial values
provided by the user in the Problem Editor will be part of
the declaration of the initial state of the problem, in the
corresponding construct.

The visual tool also offers the feature of importing
planning domains and problems expressed in PDDL,
visualizing them, and thus enabling the user to
manipulate them. However, importing PDDL is subject to
some restrictions. The most important is that the domains
and problems must declare the :typing requirement. If no
typing is used, syntax is not enough, and semantic

information is necessary in order to discriminate types of
objects from common unary predicates.

4.7. Interface with Planning Systems

As the tool is intended to be an integrated system not
only for designing but for solving planning problems as
well, an interface with planning systems is necessary.
This is achieved by providing the ability to discover and
communicate with web services which offer
implementations of various planning algorithms.
Therefore, a dynamic web service client has been
developed as a subsystem. The requirement for flexibility
in selecting and invoking a web service justifies the
decision to implement a dynamic client instead of a static
one. Therefore, the system can exploit alternative
planning web services according to the problem at hand,
as well as cope with changes in the definitions of these
web services.

The communication with the web services is
performed by means of exchanging SOAP messages, as
the web service paradigm dictates. However, in a higher
level, the communication is facilitated by the use of the
PDDL language, which constitutes the common ground
between the visual tool and the planners. An additional
advantage of using PDDL is that the visual tool is
released by the obligation to determine the PDDL
features that a planner can handle, thus leaving each
planning system to decide for itself.

The employment of web services technology for
implementing the interface results in the independency of
the visual tool from the planning or problem solving
module. Such a decoupling is essential since new
planning systems which outperform the current ones are
being developed. Each of them can be exposed as a web
service and then invoked for solving a planning problem
without any further changes to the visual tool or the
domains and problems already designed and exported as
PDDL files.

5. Conclusions and Future Work

In this paper a visual tool for defining planning domains
and problems was proposed. The tool offers an efficient
user interface, as well as interoperability with PDDL, the
standard language for planning domain definition. The
elements represented in the tool cover a wide range of the
language, while the user is significantly facilitated by the
validity checks performed during the design process. The
use of the tool is not confined to designing planning
problems, but the ability to solve them by invoking
planners implemented as web services is offered as well.
Therefore, the tool is considered an integrated system for
designing and solving planning problems.

66

Our future goals include the extension of the tool in
order to represent even more complex PDDL language
elements, as well as other planning approaches, such as
HTN (Hierarchical Task Network) planning. Such an
extension is believed to broaden the range of real world
problems that can be represented and solved by the tool.
Visual representation of the produced plans, along with
plan metrics are also among our imminent goals.

Acknowledgements

This work was partially supported by a PENED program
(EPAN M.8.3.1, No. 03EA73), jointly funded by the
European Union and the Greek government (General
Secretariat of Research and Technology).

References

[1] T. L. McCluskey, D. Liu, Ron M. Simpson, “GIPO II: HTN
Planning in a Tool-supported Knowledge Engineering
Environment”, International Conference on Automated
Planning and Scheduling (ICAPS), 2003

[2] Wilkins, D. E., Lee, T. J. and Berry, P., Interactive
Execution Monitoring of Agent Teams, Journal of Artificial
Intelligence Research, 18 (2003), pp. 217-261.

[3] D. Vrakas, 1. Vlahavas, “A Visualization Environment for
Planning”, International Journal on Artificial Intelligence
Tools”, Vol. 14 (6), 2005, pp. 975-998, World Scientific.

[4] Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram,
A., Veloso, M., Weld, D. and Wilkins, D., "PDDL -- the
planning domain definition language". Technical report, Yale
University, New Haven, CT (1998).

[5] Fox, M. and Long, D., "PDDL2.1: An extension to PDDL
for expressing temporal planning domains". Journal of Artificial
Intelligence Research, 20 (2003), 61-124.

[6] Gerevini, A. and Long, D., "Plan Constraints and
Preferences in PDDL3", Technical Report R.T. 2005-08-47,
Department of FElectronics for Automation, University of
Brescia, Italy.

[7] Fikes, R. and Nilsson, N. J., STRIPS: A new approach to the
application of theorem proving to problem solving, Artificial
Intelligence, Vol 2 (1971), 189-208.

[8] Liu, D., and McCluskey, T. L. 2000. The OCL Language
Manual, Version 1.2. Technical report, Department

of Computing and Mathematical Sciences, University of
Huddersfield

Constraint Programming Search Procedure for Earliness/Tardiness Job Shop
Scheduling Problem

Jan Kelbel and Zdenék Hanzalek
Centre for Applied Cybernetics, Department of Control Engineering
Czech Technical University in Prague, Czech Republic
{kelbelj, hanzalek}@fel.cvut.cz

Abstract

This paper describes a constraint programming ap-
proach to solving a scheduling problem with earliness
and tardiness cost using a problem specific search pro-
cedure. The presented algorithm is tested on a set of
randomly generated instances of the job shop schedul-
ing problem with earliness and tardiness costs. The ex-
periments are executed also for three other algorithms,
and the results are then compared.

Introduction

Scheduling problems with storage costs for early finished
jobs and delay penalties for late jobs are common in indus-
try. This paper describes a constraint programming (CP) ap-
proach (Bartdk 1999) to solve a scheduling problem with
earliness and tardiness costs, which is for distinct due dates
NP-complete already on one resource (Baker & Scudder
1990).

This paper focuses on the job shop scheduling prob-
lem with earliness and tardiness costs. This problem—
introduced in (Beck & Refalo 2001; 2003)—is solved there
using hybrid approach based on probe backtrack search
(El Sakkout & Wallace 2000) with integration of constraint
programming and linear programing. This hybrid approach
performed significantly better than the generic (naive) CP
and MIP algorithms. With another hybrid approach, com-
bining local search and linear programming (Beck & Refalo
2002), results slightly worse than in (Beck & Refalo 2001)
were obtained. The large neighborhood search (Danna &
Perron 2003) applied to the same earliness tardiness job shop
problem outperformed both hybrid approaches of Beck &
Refalo.

This paper describes a search procedure for scheduling
problems with earliness and tardiness costs which initially
tries to assign to variables those values that lead to a solu-
tion with minimal cost. It is developed by improving of the
search procedure used in (Kelbel & Hanzilek 2006) where
constraint programming is applied to an industrial case study
on a lacquer production scheduling. While in (Kelbel &
Hanzalek 2006) tardy jobs were not allowed, the procedure
described in this paper allows both early and tardy jobs, i.e.
optimal solutions are not discarded.

The proposed search procedure is tested on a set of ran-
domly generated instances of the job shop scheduling prob-

67

lem with earliness and tardiness costs. It significantly out-
performs simple (default) models introduced in (Beck & Re-
falo 2003), and in average it gives results better than the
Unstructured Large Neighborhood Search (Danna & Perron
2003).

Earliness Tardiness Job Shop Scheduling
Problem

The definition of the earliness tardiness job shop scheduling
problem (ETJSSP) is based on (Beck & Refalo 2003). We
assume a set of jobs J = {Ji,...,J,} where job J; con-
sists of a set of tasks 7; = {T} 1,..., T}, }. Each task has
given processing time p; ;, and required dedicated unary re-
source from a set R = {R1,...,R,,}. Starting time S, ;
of a task, and completion time defined as C; ; = S} ; + ;s
determine the result of the scheduling problem. For each job
Jj there are precedence relations between tasks 7; and ;¢
suchthat Cj; < Sj 41 foralli =1,...,n; —1,ie. 7;, the
set of tasks, is ordered.

Concerning earliness and tardiness costs, each job has as-
signed a due date d;, i.e. the time when the last task of the
job should be finished. In general, the due dates are distinct.
The cost function of the job J; is defined as «j(d; — Cj ;)
for early job and 3;(C},,,; — d;) for tardy job, where ; and
B; are earliness and tardiness costs of the job per time unit.
Taking into account both alternatives, the cost function of
the job can be expressed as

fi =max(a;(dj — Cjn,); B (Cjn, —dj))- (1)

An optimal solution of the ETJSSP is the one with minimal
possible sum of costs over all jobs

min Z fi-

J;ed

In this article, a specific ETJISSP will be considered in
order to be consistent with the original problem instances
(Beck & Refalo 2003). All jobs have the sets of tasks with
the same cardinality, which is equal to the number of re-
sources, i.e. n; = m for all j. Each of the n; tasks of the job
is processed on a different resource. Next, the problem has
a work flow structure: the set of resources R is partitioned
into two disjunctive sets R; and Ro of about the same cardi-
nality, and the tasks of each job must use all resources from

the first set before any resource from the second set, i.e. task

T;,; forall ¢ = 1,...,|R4| requires resource from set R,
and task 7 ; forall i = |R| + 1,...,n; requires resource
from set Ro.

The Model With Search Procedure for
ETJSSP

When solving constraint satisfaction problems (Bartdk
1999), constraint programming systems employ two
techniques—constraint propagation and search. The search
consists of a search tree construction by a search proce-
dure (called also a labeling procedure) and applying a search
strategy (e.g. depth-first search) to explore the tree. The
search procedure typically makes decisions about variable
selection (i.e. which variable to choose) and about value
assignment (i.e. which value from domain to assign to the
selected variable).

Our approach to solving ETJSSP is based on usual con-
straint programming model with a problem specific search
procedure. The scheduling problem is modeled directly by
using a formulation from the previous section, yet by using
higher abstraction objects for scheduling (e.g. tasks and re-
sources) available in ILOG OPL Studio (ILO 2002). The
model uses scheduling-specific edge-finding propagation al-
gorithm for disjunctive resource constraints (Carlier & Pin-
son 1990). In the used CP system we obtained better perfor-
mance of the computations when the cost function (1) was
expressed as f; > aj(d; — Cj) N fj > B(Cjn; — dy).

Most of the constraint programming systems have a de-
fault search procedure that builds the search tree by assign-
ing the values from domains to variables in increasing order.
The idea of our search procedure is based on the fact that
only Cj ., the completion time of the last task of the job,
influences the value of the cost function, and that the val-
ues of C} ;. inducing the lowest values of cost functions f;
should be examined first.

The search procedure, inspired by time-directed labeling
(Van Hentenryck, Perron, & Puget 2000), is directed by the
cost, only once at the beginning of the search (as an initial-
ization of the search tree), however. It is denoted as cost-
directed initialization (CDI) and performs as described in
Algorithm 1: variables representing completion time C'j ,,,
are selected in increasing order of the size of their domains,
then the value selection is made according to the lowest
value possible of the cost function. In the second branch
of the search tree, this value is disabled. This is done only
once for each task T ,,,, then the search continues with the
default search procedure.

Slice Based Search available in (ILO 2002), based on
(Beck & Perron 2000), and similar to Limited Discrepancy
Search (Harvey & Ginsberg 1995) is used as a search strat-
egy to explore the search tree constructed by the CDI pro-
cedure. This is necessary for obtaining good performance,
since using depth first search instead, the algorithm was not
able to find any solution for about 50% of larger size in-
stances of the ETJSSP.

68

Algorithm 1 - CDI search procedure

1. sort the last tasks of all jobs, T} ,,; for all j, according to
the nondecreasing domain size of Cj ;,

2. for each task from the sorted list from domain of C} .,
select a value v; leading to minimal f; and create two alter-
natives in the search tree:

* Cjn; =0

L4 Jsmj vj

3. Continue with the default search procedure for all vari-
ables

Experimental Results

The proposed algorithm CDI was tested against two sim-
ple generic models introduced in (Beck & Refalo 2003),
a mixed integer programming model with disjunctive for-
mulation of the problem (MIP), and a constraint program-
ming model with SetTimes heuristic as a search proce-
dure and depth-first search as a search strategy (ST). The
third model used for performance comparison is the Un-
structured Large Neighborhood Search (uLNS) (Danna &
Perron 2003) by enabling Relaxation Induced Neighbor-
hood Search (RINS) via T1oCplex: :MIPEmphasis=4
switch in Cplex 9.1 (Danna, Rothberg, & Le Pape 2005;
ILO 2005), while using the same MIP model as in (Beck
& Refalo 2003). The hybrid algorithm from (Beck & Refalo
2003) was not used due to its implementation complicacy.

Benchmarks are randomly generated instances of the
ETJSSP according to Section 6.1 in (Beck & Refalo
2003). The problem instances have a work flow struc-
ture. Processing times of tasks are uniformly drawn from
the interval [1,99]. Considering the lower bound tlb
of the makespan of the job shop according to (Taillard
1993), and a parameter called looseness factor [f, the due
date of the job was uniformly drawn from the interval
[0.75 - tlb - 1f,1.25 - tlb - I f]. The job shops were generated
for three n X m sizes, 10 x 10, 15 x 10, and 20 x 10, and for
lf € {1.0,1.3,1.5}. Twenty instances were generated for
each [f—size combination.

The tests were executed using ILOG OPL Studio 3.6 with
ILOG Solver and Scheduler for the CP models, and ILOG
Cplex 9.1 for the MIP models, all running on a PC with CPU
AMD Opteron 248 at 2.2 GHz with 4 GB of RAM. The time
limit for each test was 600s, after which the execution of
the test computation was stopped, and the best solution so
far was returned.

Table 1 shows the average ratio of the costs of the best
solutions obtained by the MIP, uLNS, and ST to the best
solutions obtained by CDI, for all types of instances.

In Tables 2 and 3 the ST algorithm will not be included
due to its poor performance. Table 2 shows the number of
instances solved to optimality within 600 s time limit, and
also the number of instances, for which the algorithm proved
the optimality of the solution. The CDI usually needed less
time than the MIP or uLNS to find a solution with optimal
cost, but in many cases it was not proven as an optimum in
given time or memory limit. In Table 2 a solution found by
the CDI model was considered as the optimal solution when

size 10 x 10 15 % 10 20 x 10

lf | MIP/CDI | uLNS/CDI | ST/CDI | MIP/CDI | uLNS/CDI | ST/CDI | MIP/CDI | uLNS/CDI | ST/CDI
1.0 1.8 1.2 2.6 4.7 3.1 6.2 53 4.9 6.7
1.3 4.8 1.8 9.2 18.4 53 28.3 14.0 14.3 25.8
1.5 3.8 2.1 8.1 7.9 1.9 37.9 5.5 5.7 50.6

Table 1: Average ratio for the best values of cost functions of solutions found within 600 s

the value of the objective function was equal to the one of
the proven optimal solution found by the MIP models or to
a lower bound found by the MIP.

Table 3 is inspired by (Beck & Refalo 2002). For each
problem instance, the lowest cost obtained by any of the
used algorithms is selected. Then, Table 3 contains the num-
ber of instances for which the algorithm found the solution
with the best cost, i.e. equal to the lowest cost, and the num-
ber of solutions with uniquely best cost, i.e. if no other al-
gorithm has found solution with the same or lower cost.

Conclusion and Future Work

We have shown an algorithm called cost-directed initializa-
tion (CDI) designed to solve the earliness-tardiness schedul-
ing problem. The algorithm was compared to other algo-
rithms MIP, uLNS, and ST, on randomly generated earli-
ness tardiness job shop benchmarks. The CDI was able to
find within 600 s a solution that is usually better than the
one found by any of the MIP, uLNS, or ST. With respect to
the best obtained value of the cost function, the CDI algo-
rithm performed better than the other algorithms. However,
the weak point of the CDI is that the optimum, even if it is
found, is usually not proved.

Since the CDI search procedure does not exploit the struc-
ture of the job shop problem, it is possible to apply it on
other earliness/tardiness problems but the results may vary.
Revisiting the lacquer production scheduling problem (Kel-
bel & Hanzilek 2006) with the CDI, the solution of the
case study was further improved from the cost 886,535 to
777,249 due to the allowance of tardy jobs.

The earliness tardiness job shop scheduling problem, as
considered in this paper, does not fully correspond to real
production, since only the last tasks of jobs have direct im-
pact on the cost of the schedule. If there is enough time,
i.e. the looseness factor is big, there can be quite a big delay
between the tasks of the same job, and so a storage would
be needed also during the production, but at no cost (since
no such cost is defined). So the payed storage of the final
product can be replaced by the free storage during the pro-
duction.

There are some approaches to making formulation of this
problem closer to real life. Either by assignment of the due
date, earliness cost, and tardiness cost to all task (Baptiste,
Flamini, & Sourd To appear in 2008), or by introduction of
buffers with limited capacity that are used during the pro-
duction (Brucker et al. 2006).

69

The approach with limited buffers is also used in the for-
mulation of the lacquer production scheduling (Kelbel &
Hanzélek 2006) where each job needs a limited buffer (mix-
ing vessel) during the whole time of its execution.

In future, we would like to focus on the formulation and
solution of the job shop problems with earliness and tardi-
ness costs and with generic limited buffers.

Acknowledgement

The work described in this paper was supported by the
Czech Ministry of Education under Project IM0567. Also,
we would like to thank the anonymous reviewers for useful
comments.

References

Baker, K. R., and Scudder, G. D. 1990. Sequencing with
earliness and tardiness penalties: A review. Operations
Research 38(1):22-36.

Baptiste, P.; Flamini, M.; and Sourd, F. To appear in 2008.
Lagrangian bounds for just-in-time job-shop scheduling.
Computers & Operations Research 35(3):906-915.
Bartdk, R. 1999. Constraint programming — what is be-
hind? In Proc. of CPDC99 Workshop.

Beck, J. C., and Perron, L. 2000. Discrepancy-bounded
depth first search. In Second International Workshop on
Integration of AI and OR Technologies for Combinatorial
Optimization Problems (CP-AI-OR’00).

Beck, J. C., and Refalo, P. 2001. A hybrid approach to
scheduling with earliness and tardiness costs. In Third In-
ternational Workshop on Integration of AI and OR Tech-
niques (CP-AI-OR’01).

Beck, J. C., and Refalo, P. 2002. Combining local
search and linear programming to solve earliness/tardiness

scheduling problems. In Fourth International Workshop on
Integration of AI and OR Techniques (CP-AI-OR’02).

Beck, J. C., and Refalo, P. 2003. A hybrid approach to
scheduling with earliness and tardiness costs. Annals of
Operations Research 118(1-4):49-71.

Brucker, P.; Heitmann, S.; Hurink, J.; and Nieberg, T.
2006. Job-shop scheduling with limited capacity buffers.
OR Spectrum 28(2):151-176.

Carlier, J., and Pinson, E. 1990. A practical use of jack-
son’s pre-emptive schedule for solving the job-shop prob-
lem. Annals of Operations Research 26:269-287.

Danna, E., and Perron, L. 2003. Structured vs. unstruc-
tured large neighborhood search: A case study on job-shop

size 10 x 10 15 x 10 20 x 10
lf MIP | uLNS CDI MIP | uLNS CDI MIP | uLNS | CDI
F|P|F|P|F|P|F|P/ F|P F|P F|P|F|P|F|P
10]0|0]0]|O o(ojofoj{0|O0O]O|OlO]O|O]O]O
13/]0(0{0|O0O]JO|O|1|1|2]|2]5]|]0|0|0O]O0O|O0O]O]O
1.5(7(71919]10|4|5[5/9]9|12|3|3|3[4|4|5]3
Table 2: Number of optimal solutions (F)ound and (P)roven within 600 s
size 10 x 10 15 x 10 20 x 10
Lf MIP uLLNS CDI MIP uLLNS CDI MIP | ulLNS CDI
B|U|B|U|B|U|B|/U|B|U|B|U|B|U U|B | U
10/0|0| 5 |5|15|15{0,0|0|0|20(20/0[0|0|01]20]20
13/0]0(2 |2 |18|18]1|0]2]0(2018| 1|1 |1 |1]18]18
15|80]12/01(20| 8 | 5|0 |14|3|16| 6 |3 |0|7]|4]|16] 12

Table 3: Number of (B)est and (U)niquely best solutions found within 600 s

scheduling problems with earliness and tardiness costs. In
Ninth International Conference on Principles and Practice
of Constraint Programming, 817-821.

Danna, E.; Rothberg, E.; and Le Pape, C. 2005. Explor-
ing relaxation induced neighborhoods to improve MIP so-
lution. Mathematical Programming 102(1):71-90.

El Sakkout, H., and Wallace, M. 2000. Probe backtrack
search for minimal perturbation in dynamic scheduling.
Constraints 5(4):359-388.

Harvey, W. D., and Ginsberg, M. L. 1995. Limited dis-
crepancy search. In Proceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
95), 607-615.

ILOG S.A. 2002. ILOG OPL Studio 3.6 Language Manual.
ILOG S.A. 2005. ILOG Cplex 9.1 User’s Manual.

Kelbel, J., and Hanzdilek, Z. 2006. A case study on ear-
liness/tardiness scheduling by constraint programming. In
Proceedings of the CP 2006 Doctoral Programme, 108—
113.

Taillard, E. 1993. Benchmarks for basic scheduling prob-
lems. European Journal of Operational Research 64:278—
285.

Van Hentenryck, P.; Perron, L.; and Puget, J.-FE. 2000.
Search and strategies in OPL. ACM Transactions on Com-
putational Logic 1(2):285-320.

70

Single-machine Scheduling with Tool Changes: A Constraint-based
Approach

Andras Kovacs
Computer and Automation Research Institute
Hungarian Academy of Sciences
akovacs@sztaki.hu

Abstract

The paper addresses the scheduling of a single machine
with tool changes in order to minimize total comple-
tion time. A constraint-based model is proposed that
makes use of global constraints and also incorporates
various dominance rules. With these techniques, our
constraint-based approach outperforms previous exact
solution methods.

Introduction

This paper addresses the problem of scheduling a sin-
gle machine with tool changes, in order to minimize the
total completion time of the activities. The regular re-
placement of the tool is necessary due to wear, which
results in a limited, deterministic tool life. We note that
this problem is mathematically equivalent to schedul-
ing with periodic preventive maintenance, where there
is an upper bound on the continuous running time of
the machine. After that, a fixed-duration maintenance
activity has to be performed.

Our main intention is to demonstrate the applica-
bility of constraint programming (CP) to an optimiza-
tion problem that requires complex reasoning with con-
straints on sum-type expressions, a field were CP is
generally thought to be in handicap. We show that in-
deed, when appropriate global constraints are available
to deal with such expressions, CP outperforms other
exact optimization techniques. In particular, we would
like to illustrate the efficiency of the global COMPLE-
TION constraint (Kovacs & Beck 2007), which has been
proposed recently for propagating the total weighted
completion time of activities on a single unary resource.

For this purpose, we define a constraint model of the
scheduling problem. The model makes use of global
constraints, and also incorporates various dominance
properties described as constraints. A simple branch
and bound search is used for solving the problem. We
show in computational experiments that the proposed
approach can outperform all previous exact optimiza-
tion methods known for this problem.

The paper is organized as follows. After reviewing
the related literature, we give a formal definition of
the problem and outline some of its basic character-
istics. Then, we propose a constraint-based model of

71

J. Christopher Beck
Dept. of Mechanical & Industrial Engineering
University of Toronto
jcb@mie.utoronto.ca

the problem. The algorithms used for propagating the
global constraints that are crucial for the performance
of our solver are presented. Afterwards, the branch and
bound search procedure used is introduced. Finally,
experimental results are presented and conclusions are
drawn.

Related Work

The problem studied in this paper has been introduced
independently in the periodic maintenance context by
Qi, Chen, & Tu (1999) and in the tool changes con-
text by Akturk, Ghosh, & Gunes (2003). Its practical
relevance is underlined in (Gray, Seidmann, & Stecke
1993), where it is pointed out that in many industries
tool change induced by wear is ten times more frequent
than change due to the different requirements of subse-
quent activities. Also, in some industries, e.g. in metal
working, tool change times can dominate actual pro-
cessing times (Tang & Denardo 1988).

Akturk, Ghosh, & Gunes (2003) proposed a mixed-
integer programming (MIP) approach and compared
the performance of various heuristics on this problem.
The basic properties of the scheduling problem have
been analyzed and the performance of the Shortest Pro-
cessing Time (SPT) schedules evaluated in (Akturk,
Ghosh, & Gunes 2004). Three different heuristics have
been analyzed and a branch and bound algorithm pro-
posed by Qi, Chen, & Tu (1999). The performance of
four different MIP models have been compared in (Chen
2006a).

The same problem has been considered with differ-
ent objective criteria, including makespan (Chen 2007b;
Ji, He, & Cheng 2007), maximum tardiness (Liao &
Chen 2003), and total tardiness (Chen 2007a). In (Ak-
turk, Ghosh, & Kayan 2007), the model is extended to
controllable activity durations, where there are several
execution modes available for each activity to balance
between manufacturing speed and tool wear. The ba-
sic model with several tool types has been investigated
by Karakayali & Azizoglu (2006). A slightly different
problem, in which maintenance periods are strict, i.e.
the machine has to wait idle if activities complete ear-
lier than the end of the period, has been investigated
in (Chen 2006b).

A brief introduction to constraint-based scheduling is
given in (Bartdk 2003), while an in-depth presentation
of the modeling and solution techniques can be found
in (Baptiste, Le Pape, & Nuijten 2001).

Problem Definition and Notation

There are n non-preemptive activities A; to be sched-
uled on a single machine. Activities are characterized
by their durations p;, and are available from time 0.
Processing the activities requires a type of tool that is
available in an unlimited number, but has a limited tool
life, TL. Worn tools can be replaced with a new one,
but only without interrupting activities. This change
requires T'C' time. It is assumed that Vi p; < TL, be-
cause otherwise the problem would have no solution.
The objective is to determine the start times S5; of the
activities and start times ¢; of tool changes such that
the total completion time of the activities is minimal.

Constraint programming uses inference during search
on the current domains of the variables. The minimum
and maximum values in the current domain of a variable
X will be denoted by X and X, respectively. Hence, 5;
will stand for the earliest start time of activity A;, and
C; for its latest finish time.

The above parameters and the additional notation
used in the paper is summarized in Fig. 1. We assume
that all data are integral. A sample schedule is pre-
sented in Fig. 2.

n - Number of activities

pi - Duration of activity A;

Pmaz- Maximum duration of activities A;
TL - Tool life

TC - Tool change time

S; - Start time of activity A;

C; - End (completion) time of activity A;
t; - (Start) time of the jth tool change

a; - Number of activities processed after the
jth tool change
b; - Number of activities processed before the

jth tool change
- Minimum value in the domain of variable X
- Maximum value in the domain of variable X

Figure 1: Notation

Basic Properties

The single-machine scheduling problem with tool
changes, denoted as 1|tool — changes|), C;, has been
proven to be NP-hard in the strong sense in (Akturk,
Ghosh, & Gunes 2004). The same paper and (Qi, Chen,
& Tu 1999) investigated properties of optimal solutions.
Below we outline these properties, in conjunction with
a symmetry breaking rule that can also be exploited to
increase the efficiency of solution algorithms.

72

Property 1 (No-wait schedule) Activities must be
scheduled without any waiting time between them,
apart from the tool change times.

Property 2 (SPT within tool) Activities executed
with the same tool must be sequenced in the SPT order.

Property 3 (Tool utilization) The total duration of
activities processed with the jth tool is at least T'L —

;-"i"af " 41, where p;-m"af " is the minimal duration
of activities processed with tools 7' > 7.

Consequence Every tool, except for the last one, is
utilized during at least Ui = TL — pmar + 1 time,
where p,,qz is the largest activity duration. Hence, the
number of tools required is at most [Y .| pi/Upmin |-

Property 4 (Activities per tool) The number of ac-
tivities processed using the jth tool is a non-increasing
function of j.

Property 5 (Symmetry breaking) There exists an op-
timal schedule in which for any two activities A; and
A;j such that p; = p; and i < j, A; precedes A;.

Modeling the Problem

In our constraint model we apply a so-called machine
time representation, which considers only the active pe-
riods of the machine. It exploits that the optimal so-
lution is a no-wait schedule (see Property 1), and con-
tracts each tool change into a single point in time, as
shown in Fig. 3. Then, a solution corresponds to a se-
quencing of the activities, with the last activity ending
at >, p;, and instantaneous tool changes between them.

The objective value of a schedule in the machine time
representation takes the form

i=1 j=1

Technically it will be easier to work with b; than with
a;, hence, we rewrite the objective function to the
equivalent form

Y Ci+TCY (n—b;).
i=1 j=1

We decompose this function to Ky = .., C; and
Ky =TC Z;"Zl(n — b;). Note that K; corresponds to
the total completion time without tool changes, while
K5 represents the effect of introducing tool changes.
The variables in the model are the start times S;
of the activities, the times ¢; of the tool changes, and
the number of activities processed before the jth tool
change, b;. The two cost components K; and K, are
also handled as model variables. For the sake of brevity,

(c1) Time window constraints, stating Vi :

TL TL
————— ———
TC TC

Figure 2: A sample schedule. Wall clock time representation.

TL

A3 As

TC

Figure 3: Machine time representation of the sample schedule.

we also use C; = S; + p; to denote the end time of
activity A;.

Then, the problem consists of minimizing Ky + Ko
subject to

Si > 0 and
Ci <3 . pis

(c2) Resource capacity constraint: at most one activity

can be processed at any point in time;

(c3) Activities are not interrupted by tool changes: Vi, j :

C; <tj V Si>ty;
Limited tool life: Vj : t;11 —t; <TL;
Property 3 holds: Vj: t;41 —t; > TL — ppae + 1;

)
)

6) PI‘OpeI‘ty 4 holds: V] : bj — bj_l Z bj+1 — bj;
)

Property 5 holds: Vi;,io such that iy < io and p;; =
pi2: Ci1 < Sia;

(c8) The total completion time of activities A4; is Kq;

(c9) The number of activities that end before t; is b;;

(010) K2 =TC Z;"Zl(n - bj)

Note that while constraints cl-c4 and c¢8-c10 are
fundamental elements of our model, ¢5-¢7 incorporate
dominance rules to facilitate stronger pruning of the
search space. All the ten constraint can be expressed
by languages of common constraint solvers. However,
significant improvement in performance can be achieved
by applying dedicated global constraints for propagat-
ing ¢8 and c9. We discuss those global constraints in
detail in the next section.

Propagation Algorithms for Global
Constraints

Below, both for ¢8 and ¢9, we first present how the con-
straint can be expressed in typical constraint languages.
Then, we introduce a dedicated global constraint and a
corresponding propagation algorithm for either of them,
in order to strengthen pruning.

73

Total Completion Time

The typical way of expressing the total completion time
of a set of activities in constraint-based scheduling is
posting a sum constraint on their end times: K = 3" C;.
However, the sum constraint, ignoring the fact that the
activities require the same unary resource, assumes that
all of them can start at their earliest start times. This
leads to very loose initial lower bounds on K in the
present application K =, p;.!

In order to achieve tight lower bounds on K and
strong back propagation to the start time variables
S;, the COMPLETION constraint has been introduced
in (Kovacs & Beck 2007) for the total weighted com-
pletion time of activities on a unary capacity resource.
Formally, it is defined as

COMPLETION([S1, ..., Sul, [P1, -y Pu], (W1, vy Wi], K)

and enforces K =), w;(S; +p;). Checking generalized
bounds consistency on the constraint requires solving
1lrs, d;i| - w;C;, a single machine scheduling problem
with release times and deadlines and upper bound on
the total weighted completion time. This problem is
NP-hard, hence, cannot be solved efficiently each time
the COMPLETION constraint has to be propagated.
Instead, our propagation algorithm filters domains with
respect to the following relazation of the above problem.

The preemptive mean busy time relaxation (Goemans
et al. 2002), denoted by 1|r;, pmitn| > w;M;, involves
scheduling preemptive activities on a single machine
with release times respected, but deadlines disregarded.
It minimizes the total weighted mean busy times M; of
the activities, where M; is the average point in time at
which the machine is busy processing A;. This is eas-
ily calculated by finding the mean of each time point
at which activity A; is executed. This relaxed problem
can be solved to optimality in O(nlogn) time.

'The lower bound is a little tighter if symmetry breaking
constraints (c7) are present to increase the earliest start
times of some activities.

The COMPLETION constraint filters the domains of
the start time variables by computing the cost of the
optimal preemptive mean-busy time relaxation for each
actiwity A; and each possible start time t of activity A;,
with the added constraint that activity A; must start
at time t. If the cost of the relaxed solution is greater
than the current upper bound, then ¢ is removed from
the domain of S;. The naive computation of all these
relaxed schedules is likely to be too expensive, compu-
tationally. The main contribution of (Kovdcs & Beck
2007) is showing that for each activity it is sufficient
to compute relaxed solutions for a limited number of
different values of ¢, and that subsequent relaxed so-
lutions can be computed iteratively by a permutation
of the activity fragments in previous solutions. For a
detailed presentation of this algorithm and the COM-
PLETION constraint, in general, readers are referred
to the above paper.

Number of Activities before a Tool Change

Constraint ¢8 describes a complex global property of
the schedule. Standard CP languages make it possible
to express this property with the help of binary logical
variables indicating whether a given activity ends before
a point in time, i.e.

{ 1 ifC; <ty

Yii =1 0 otherwise.

Then, b; can be computed as b; = >, y; ;. This repre-
sentation would be rather inefficient, but implementing
a global constraint for this purpose is rather straight-
forward.

The NBEFORE global constraint states that given
activities A; that have to be executed on the same unary
resource, the number of activities that can be completed
before time ¢; is exactly b;:

NBEFORE([S4, ..., Snl. 5, b;)

The propagation algorithm for this global constraint
is presented in Fig. 4. It first determines the set of
activities M that must be executed before ¢;, and the
set of activities P that are possibly executed before ¢;.
Computing the minimal (maximal) number of activi-
ties scheduled before ¢; is performed by sorting P by
non-decreasing duration, and then selecting the activi-
ties that have the highest (lowest) durations. The algo-
rithm completes by updating b;, b;, and #;. The time
complexity of the propagator is O(nlogn), which is the
time needed for sorting P.

We note that it is straightforward to extend this al-
gorithm with propagation from m; and ¢; to S;, and
also to fj. This extension has been implemented, but
did not achieve additional pruning, and therefore it has
been later omitted.

A Branch and Bound Search

We apply a branch and bound search that exploits the
dominance properties identified for the problem. It con-

74

structs a schedule chronologically, by fixing the start
times of activities and the times of tool changes. In
each node it selects, according to the SPT rule, the
minimal duration unscheduled activity A* that can be
scheduled next. The algorithm first checks if one of the
following dominance rules can be applied at this phase
of the search.

e If the remaining activities can all be scheduled with-
out any tool changes, then A* must be scheduled
immediately, because all the unscheduled activities
must be scheduled according to the SPT rule. See
Property 2 and lines 4-5 of the algorithm.

o If A* cannot be performed before the next tool
change, then no unscheduled activities can be per-
formed before the next tool change, since none of
them have shorter durations than A*. Therefore the
next tool change must be performed immediately.
See Property 1 and lines 6-7 of the algorithm.

If one of the dominance rules can be applied, then
the algorithm adds the inferred constraint, which may
trigger further propagation, and then reselects A*
w.r.t. the new variable domains. Otherwise, it cre-
ates two children of the current search node, according
to whether

e A* is scheduled immediately and the next tool change
is performed after (but not necessarily immediately
after) A*; or

e A* is scheduled after the next tool change.

In the latter case, it also adds the constraint that
another activity must be scheduled before the next tool
change. Hence, the next tool change must be performed
after Cyin, which is the lowest among the end times
of unscheduled activities (see line 9). Note that Cynin
exists because if there is an unscheduled activity (A4*),
then there are at least two unscheduled activities.

Also observe that the initial solution found by this
branch and bound algorithm is the SPT schedule.

Experimental Result

We ran computational experiments to evaluate the per-
formance of the proposed CP approach from several
aspects. We addressed understanding how the COM-
PLETION and NBEFORE global constraints improve
the performance of our model compared to models using
only tools of standard CP solvers. We also measured
how problem characteristics influence the performance
of our approach, and finally, we compared it to previous
exact solution methods.

All models and algorithms have been implemented in
Tlog Solver and Scheduler version 6.1. The experiments
were run on a 2.53 GHz Pentium IV computer with 760
MB of RAM.

Two different problem sets were used for the experi-
ments. The first set was generated as instances in (Qi,
Chen, & Tu 1999), the second as in (Akturk, Ghosh,
& Gunes 2003). Qi, Chen, & Tu (1999) took activity
durations randomly from the interval [1,30] and fixed

PROCEDURE Propagate ()
M:{Al ‘ Si<t}}
P={4; | C;<t;}\ M
Sort P by non-decreasing duration

= min number of activities in P with total duration > fj — ZA,ieMpi

kmaz = max number of activities in P with total duration <t; — ZAieMpi

Bj:‘M|+kmin
j:‘M|+kmaw

« S

1
2
3
4
4 kmin
5
6
7
8

~

i = ZAieMpi + total duration of the ki, shortest activities in |P|

Figure 4: Algorithm for propagating the NBEFORE constraint.

1 WHILE there are unscheduled activities

2 A" = Unscheduled activity with min S4-, min pa-
3 T = Earliest tool change time with T > S

4 IF there is no such T

5 ADD S4- = S4- (Property 2)

6 ELSE IF 17 < Cx-

7 ADD T = 54+ (Property 1)

8 ELSE

9 Cpnin = min C; of unscheduled activities A; # A*
10 BRANCH: - S1=84 and C, <T

11 -S4 >T and T > Crin

Figure 5: Pseudo-code of the search algorithm.

the value of TC' to 10. The number of activities n
has been varied between 15 and 40 in increments of
5, while values of the tool life T'L have been taken from
{50,60,70,80}. We generated ten instances with each
combination of n and T'L, which resulted in 240 prob-
lem instances. The time limit for these problems was
set to one hour.

In (Akturk, Ghosh, & Gunes 2003), in order to obtain
instances with different characteristics, four parameters
of the generator were varied, each having a low (L) and
a high (H) value. These parameters were the mean
and the range of the durations (M D and RD), the tool
life (T'L), and the tool change time (T'C'). Generating
ten 20-activity instances with each combination of the
parameters resulted in 2% - 10 = 160 instances. Since
this set contains harder instances, we set the time limit
to two hours.

We did not perform comparisons with the MIP mod-
els proposed in (Chen 2006a), because that paper
presents experimental results only on very easy in-
stances containing few (in most cases only one) tool
changes over the scheduling horizon.

Results on Qi’s Instances and Comparison
to Naive Models

We compared the performance of four different CP
models of the problem that represent the two cost com-
ponents K; and K in different ways. K; was expressed

75

either by a sum constraint (Sum)or by the COMPLE-
TION constraint (COMPL), while K5 was described us-
ing binary variables (Bin) or the NBEFORE constraint
(NBEF). Note that the COMPL/NBEF is the model
proposed in this paper.

The achieved results are displayed in Table 1. Each
row contains cumulative results for ten instances with
a given value of n and T'L. For each of the models,
column Opt shows the number of instances for which
the optimal solution has been found and optimality has
been proven, column Nodes contains the average num-
ber of search nodes, and Time the average search time
in seconds. Nodes and Time also contain the effort
needed for proving optimality.

The results show that the proposed approach,
COMPL/NBEF solves instances with up to 30-35 activ-
ities to optimality. It outperforms the alternative CP
representations that do not benefit from the pruning
strength of the COMPLETION and NBEFORE con-
straints. Instances with a short tool life and hence,
many tool changes are more challenging. This is due to
the poorer performance of the SPT heuristic, and higher
importance of the bin packing aspect of the problem.
In contrast, Qi, Chen, & Tu (1999) report that the av-
erage solution time of 20-activity instances with their
branch and bound approach was in the range of [55.94,
3.57] seconds, depending on the value of T'L, and their
algorithm could not cope with larger problems.

n TL Sum/Bin COMPL/Bin Sum/NBEF COMPL/NBEF
Opt Nodes Time | Opt Nodes Time | Opt Nodes Time | Opt Nodes Time
15 50 10 36278 10.8 10 877 0.0 10 31134 5.4 10 49 0.0
60 10 55477 13.6 10 1018 0.2 10 49975 7.7 10 76 0.0
70 10 18275 3.1 10 358 0.0 10 14357 1.5 10 17 0.0
80 10 19748 2.9 10 303 0.0 10 15502 1.4 10 19 0.0
20 50 6 5365305 2605.5 10 42853 35.1 8 6579567 1685.3 10 7183 3.7
60 7 5365603 1778.5 10 19092 16.2 7 7511826 1436.0 10 133 0.0
70 9 2544734 735.1 10 8051 7.1 9 3119249 558.0 10 84 0.0
80 10 910496 241.8 10 1957 1.4 10 762404 127.8 10 46 0.0
25 50 0 6282502 3600.0 10 639147 727.3 0 11727713 3600.0 10 99239 78.0
60 0 9132083 3600.0 10 91385 126.4 0 15404729 3600.0 10 1126 0.4
70 1 10815570 3587.7 10 83095 104.2 2 16222223 3327.3 10 979 0.2
80 1 11484097 3358.2 10 91029 122.1 1 16808958 3287.7 10 1082 0.6
30 50 - - - 3 2581475 3229.5 - - - 9 230088 452.5
60 - - - 4 2093233 2804.0 - - - 10 55374 46.9
70 - - - 8 961460 1640.2 - - - 10 7877 6.6
80 - - - 10 318435 560.9 - - - 10 1721 1.1
35 50 - - - 0 3108739 3600.0 - - - 7 1724651 2002.6
60 - - - 0 3193284 3600.0 - - - 9 355709 449.5
70 - - - 0 2858550 3600.0 - - - 10 160239 166.9
80 - - - 2 2000949 3162.0 - - - 10 8121 8.9
40 50 - - - - - - - - - 1 2371440 3297.7
60 - - - - - - - - - 6 1088871 1597.6
70 - - - - - - - - - 10 279844 393.5
80 - - - - - - - - - 10 85854 143.3

Table 1: Experimental results on instances from (Qi, Chen, & Tu 1999): number of instances where optimality
has been proven (Opt), average number of search nodes (Nodes), and average solution time in seconds (Time), for
four different CP models. The models use binary variables (Bin) or the NBEFORE constraint, and a Sum or a
COMPLETION constraint to express the objective function. Dash ’-’ means that none of the instances with the

given n could be solved to optimality.

Results on Akturk’s Instances and Effect of
Problem Characteristics

Experimental results on the instances from (Akturk,
Ghosh, & Gunes 2003) are presented in Table 2. The re-
sults on the 1.h.s. have been achieved by a naive model
with sum back propagation instead of the COMPLE-
TION constraint, the results on the r.h.s. by the com-
plete CP model.

Each row displays data belonging to a given choice
of parameters M D, RD, TL, and TC, as shown in the
leftmost columns. While the COMPLETION model
managed to solve all instances to optimality and also
proved optimality, the sum model missed finding the
optimum for 2 instances and proving optimality in 5
cases. The COMPLETION model was 10 times faster
on average than the sum model.

These results confirm that short tool life implies
many tool changes and renders problems more compli-
cated for our model. Low mean duration makes things
easier, which is probably due to the higher number of
symmetric activities, since these activities can be or-
dered a priori. Although a low range of durations has a
similar effect, it also has a negative impact on the per-
formance of the SPT heuristic, among which the latter
seems to be the stronger.

Compared to the MIP approach presented in (Ak-

76

turk, Ghosh, & Gunes 2003) our CP model solves more
instances, and does this more quickly: the MIP model
achieved an average solution time of 1904 seconds, it
was not able to solve all instances, and for the 15% of
the instances it found worse solutions than one of the
heuristics.

Conclusion

A constraint-based approach has been presented to sin-
gle machine scheduling with tool changes. The pro-
posed model outperforms previous exact optimization
methods known for this problem. This result is signif-
icant especially because the problem requires complex
reasoning with sum-type formulas, which does not be-
long to the traditional strengths of constraint program-
ming. This was made possible by two algorithmic tech-
niques: global constraints and dominance rules. Specif-
ically, we applied the recently introduced COMPLE-
TION constraint to propagate total completion time,
and defined a new global constraint, NBEFORE, to
compute the number of activities that complete before
a given point in time. Furthermore, we could formulate
the known dominance properties as constraints in the
model.

The introduced model can be easily extended with
constraints on the number of tools and with weighted
activities. The machine-time representation is appli-

MD RD TL TC NBEF/Sum NBEF/COMPL

Opt MRE Nodes Time | Opt MRE Nodes Time
L L L L 10 0 1891018 529.9 10 0 38128 23.3
L L L H 10 0 968087 205.9 10 0 102237 52.1
L L H L 10 0 79344 11.9 10 0 237 0.1
L L H H 10 0 12269 1.6 10 0 73 0.0
L H L L 10 0 667659 171.8 10 0 3692 2.3
L H L H 10 0 127866 23.7 10 0 78955 25.7
L H H L 10 0 78775 13.2 10 0 27 0.0
L H H H 10 0 6664 0.7 10 0 29 0.0
H L L L 7 1.71 16430139 3548.8 10 0 1614494 596.4
H L L H 10 0 5606737 1018.0 10 0 47902 25.1
H L H L 10 0 2170750 357.9 10 0 895 0.3
H L H H 10 0 222435 40.6 10 0 9023 3.6
H H L L 8 0 6020041 2102.8 10 0 81249 43.9
H H L H 10 0 186735 35.7 10 0 23214 11.3
H H H L 10 0 86856 12.5 10 0 20 0.0
H H H H 10 0 154639 19.2 10 0 1648 0.8

Table 2: Experimental results on instances from (Akturk, Ghosh, & Gunes 2003), for models using sum and COM-
PLETION back propagation: number of instances where optimality has been proven (Opt), mean relative error in
percents (MRE), average number of search nodes (Nodes), and average solution time in seconds (Time).

cable to solving the same problem with other regular
optimization criteria, such as minimizing makespan, or
maximum or total tardiness. However, it seems to be
impractical to apply this model to multiple-machine
problems, because the time scales would differ machine
by machine.

Acknowledgments The authors are grateful to the
anonymous reviewers for their helpful comments. A.
Kovéacs was supported by the Jédnos Bolyai Research
Scholarship of the Hungarian Academy of Sciences and
by the NKFP grant 2/010,/2004.

References

Akturk, M. S.; Ghosh, J. B.; and Gunes, E. D. 2003.
Scheduling with tool changes to minimize total com-
pletion time: A study of heuristics and their perfor-
mance. Naval Research Logistics 50:15-30.

Akturk, M. S.; Ghosh, J. B.; and Gunes, E. D. 2004.
Scheduling with tool changes to minimize total com-
pletion time: Basic results and SPT performance. Eu-
ropean Journal of Operational Research 157:784-790.

Akturk, M. S.; Ghosh, J. B.; and Kayan, R. K. 2007.
Scheduling with tool changes to minimize total com-
pletion time under controllable machining conditions.
Computers and Operations Research 34:2130-2146.

Baptiste, P.; Le Pape, C.; and Nuijten, W. 2001.
Constraint-based Scheduling. Kluwer Academic Pub-
lishers.

Bartdk, R. 2003. Constraint-based scheduling: An

introduction for newcomers. In Intelligent Manufac-
turing Systems 2003, 69-74.

77

Chen, J.-S. 2006a. Single-machine scheduling with
flexible and periodic maintenance. Journal of the Op-
erational Research Society 57:703-710.

Chen, W. J. 2006b. Minimizing total flow time in
the single-machine scheduling problem with periodic
maintenance. Journal of the Operational Research So-
ciety 57:410-415.

Chen, J.-S. 2007a. Optimization models for the tool
change scheduling problem. Omega (to appear).

Chen, J.-S. 2007b. Scheduling of nonresumable jobs
and flexible maintenance activities on a single machine
to minimize makespan. Furopean Journal of Opera-
tional Research (to appear).

Goemans, M. X.; Queyranne, M.; Schulz, A. S;
Skutella, M.; and Wang., Y. 2002. Single machine
scheduling with release dates. SIAM Journal on Dis-
crete Mathematics 15(2):165-192.

Gray, E.; Seidmann, A.; and Stecke, K. E. 1993. A syn-
thesis of decision models for tool management in au-
tomated manufacturing. Management Science 39:549—
567.

Ji, M.; He, Y.; and Cheng, T. C. E. 2007. Single-
machine scheduling with periodic maintenance to min-
imize makespan. Computers € Operations Research
34:1764-1770.

Karakayal, 1., and Azizoglu, M. 2006. Minimizing to-
tal flow time on a single flexible machine. International
Journal of Flexible Manufacturing Systems 18:55-73.

Kovécs, A., and Beck, J. C. 2007. A global constraint
for total weighted completion time. In Proceedings of
CPAIOR’07, 4th Int. Conf. on Integration of AI and

OR Techniques in Constraint Programming for Com-

binatorial Optimization Problems (LNCS 4510), 112—
126.

Liao, C. J., and Chen, W. J. 2003. Single-machine
scheduling with periodic maintenance and nonresum-
able jobs. Computers & Operations Research 30:1335—
1347.

Qi, X.; Chen, T.; and Tu, F. 1999. Scheduling the
maintenance on a single machine. Journal of the Op-
erational Research Society 50:1071-1078.

Tang, C. S., and Denardo, E. V. 1988. Models arising
from a flexible manufacturing machine, Part I: Mini-

mization of the number of tool switches. Operations
Research 36:767-777.

78

Comprehensive approach to University Timetabling Problem

Wojciech Legierski, L.ukasz Domagala

Silesian University of Technology, Institute of Automatic Control, 16 Akademicka str., 44-100 Gliwice, Poland
Wojciech.L egierski@polsl.pl, Lukasz.Domagala@student.polsl.pl

Abstract

The paper proposes a comprehensive approach to University
Timetabling Problem, presents a constraint-based approach to
automating solving and describes a system that allows
concurrent access by multiple users. The timetabling needs to
take into account a variety of complex constraints and uses
special-purpose search strategies. Local search incorporated into
the constraint programming is used to further optimize the
timetable after the satisfactory solution has been found. Paper
based on experience gained during implementation of the system
at the Silesian University of Technology, assuming coordinating
the work of above 100 people constructing the timetable and
above 1000 teachers who can have influence on timetabling
process. One of the original issues used in real system, presented
in the paper, is multi-user access to the timetabling database
giving possibility of offline work, solver extended by week
definitions and dynamic resource assignment.

Introduction

Timetabling is regarded as a hard scheduling problem,
where the most complicated issue is the changing of
requirements along with the institution for which the
timetable is produced. Automated timetabling can be
traced back to the 1960s [Wer86]. Some trials of
comprehensively approaching the timetabling problem are
presented in the timetabling research center lead by prof.
Burke [PB04] and in several PhD thesis
[MO5],[Rud01],[Mar02]. There are works connected with
general data formulation , metaheuristic approaches, and
user interfaces for timetabling. The paper presents a
proposition of a comprehensive approach to the real-
world problem at Silesian University of Technology. This
paper presents the methods used for automated
timetabling, data description and user interaction
underlining connection of different idea to built whole
timetabling system.

Problems description

A number of timetabling problems have been discussed in
the literature [Sch95]. Based on the detailed classification
proposed by Reise and Oliver [RLO1], the presented
problem consists of a mixture of following categories:

79

Class-Teacher Timetabling (CTT) - the problem
amounts to allocating a timeslot to each course provided
for a class of students that has a common programme,
Room Assignment (RA) - each course has to be placed in
a suitable room (or rooms), with a sufficient number of
seats and equipment needed by this course.

Course Timetabling (CT) - the problem assumes that
students can choose courses and need not belong to some
classes.

Staff Allocation (SA) - the problem consists of assigning
teachers to different courses, taking into account their
preferences. The problem assumes that one course can be
conducted by several teachers.

Till now Examination Timetabling (ET) was not required,
but is planned to be added in future.

Comprehensive approach to University Timetabling
Problem (UTP), besides taking into account different
timetabling problems, also assumes following tasks:

- formulating timetable data requires a lot of
flexibility,

- automated methods should be available for sub-
problems and should be able to take into account
many soft and hard constraints,

- timetabling can be conducted by many users,
simultaneously, which requires assistance in
manual timetabling and quick availability to
different resources’ plans.

Constraints

Timetable of UTP has to fulfill the following constraints,
which can be expressed as hard or soft:

- resources assigned to a course (classes, teachers,
rooms, students) have time of unavailability and
undesirability,

- courses with the same resource cannot overlap,

- some courses must be run simultaneously or in
defined order,

- some resources can be constrained not to have
courses in all days and more than some number
during a day,

- no gaps constraint between courses for the same
resource or gaps between some specific courses
can be strictly defined,

- the number of courses per day should be roughly
equal for defined resource - p,
- courses should start from early morning hours.

Data representation

Although UTP data is gathered in relational database for
multi user access, data for the solver is saved as a XML
file, which also expresses sub-problems for the solver.
The main advantage of using XML file is the ability of
defining relations between courses, resources and
constraints in a very flexible way. The flexibility of UTP
features:

- defining arbitrarily resources (classes, teachers,
rooms, students)

- allowing assignment of some different resources
to one course,

- assigning resources can be treated as disjunction
of some resources, where also a number of
chosen resources can be defined,

- constraints can be imposed on every resource
and every course,

Additionally in UTP we are supposed to produce a plan
which is coherent during a certain time-span (it would be
for example one semester), with courses taking place
cyclically with some period (most often one-week
period). But frequently we face a situation where some
courses do not fit into the period mentioned above, for
example some of them should appear only in odd weeks
or only in even weeks and thus have a two week period.
Seeking solution to this problem we introduced the idea of
“week definition”. Different week definitions can be
defined in the timetable, together with the information,
which of them have common weeks and the courses
assigned to them.

Multi user access

The UTP requires taking into account that there are many
timetable designers, who are engaged in timetabling
process. The teachers and students are asked to submit
information about their choices as well as time
preferences. The appropriate management of the user
interaction is solved by introducing 3 levels of the rights
assigned to each user and connected with set of resources
like groups, teachers, students and rooms:

- user can be administrator of the resource,

- user can be planner of the resource,

- user can only use resource for courses.
Additionally each resource and courses have user which is
call “owner”. Owners and administrators can block
resources to restrict changing them.

Manual timetabling assistance

80

Timetable designers often do not want to introduce all the
constraints and trust the computer in putting courses in
the best places. Manual timetabling assistance with
constraint explanation seems to be a very important step
in making timetable system useful. The assistance
requires very quick access to a lot of data and relations
between them to provide a satisfactory interface.
Therefore after dragging the course, colors of unavailable
timeslots change to color defining what sort of constraints
will be violated. For example overlapping of rooms
courses has gray color and undesirable hours of a teacher
leaded the course has yellow color.

Structure of the system

The proposed solution for comprehensive approach to
UTP requires a usage of different languages and
technologies for different features. Therefore the proposed
system consists of 4 parts as presented in Figure.1. The
system was firstly presented by the author in [LWO3].
Presented system was extended mainly by multi-user
access.

Web application
(PHP and JavaScript)

Dynamic web pages

v

Database

N SQL statements

v

Timetable Manager
(VC++)

Dedicated file format, STTL
XML file with problem description

Solver
(ECLiPSe)

XMLfile with solution

Figure 1, Diagram of four parts of the system, their
dependencies and their output data format.

Web application

HTML seems to be an obvious solution for presenting
results of the timetabling process in the Internet, but it
provides only static pages which are not sufficient for

SAT. JavaScript improves the user interface and provides
the capability to create dynamic pages.

As client-side extensions it allows an application to place
elements on a HTML form and respond to user events
such as mouse clicks, form input, and page navigation.
Server-side web-scripting languages provide developers
with the capability to quickly and efficiently build Web
applications with database communication. They became
in the last decade a standard for dynamic pages. PHP
being one of the most popular scripting languages was
chosen for developing the system. Its main advantages are
facilities for database communication. People are used to
Web services which provide structured information,
search engines, email application etc. The proposed
system had to be similar to those services in its
functionality and generality. Most timetable applications
give a possibility to save schedules for particular classes,
teachers and rooms as HTML code, but they do not allow
interaction with its users. Creating a timetable is a process
which involves often a lot of people working on it. There
are not only timetable designers, but also teachers, who
should be able to send their requirements and preferences
to the database. This is to a high extent facilitated by a
web application, which allows interaction between
teachers, students and timetable designers. An example
screen of the web timetabling application is presented in
Figure 2.

Figure 2. Thg &érﬁble screeh of the Web applicaiion

Timetable Manager

It is hard to develop a fully functional user interface using
only Internet technologies. Therefore VC++ was used to
build the Timetable Manager, a program for timetable
designers. The idea of the program was to simplify
manual timetabling and to provide as much information as
possible during this process. Operating on the data locally
significantly increases performance during data
manipulation, data manipulation is based on SQL queries
on database. Well-known features — drag and drop can be
implemented, layout is based on tree navigation. One of
the most important feature of the timetamble manager is
assistance during manual timetabling. Small timetables,

81

which automatically show schedules for resources of a
selected course can be freely placed by the user. During
manual scheduling available timeslots are shown and
constraint violations are explained by proper colors. Data
can be saved in two ways:

- data is saved locally in dedicated file format,

- data is synchronized with remote database.
The system takes into account privileges of users and does
not allow unauthorized change of data. An example
screen of the Timetable Manager is presented in Figure 3.

e

T T

T3 oMb

Lisirisis

o[efo/xla/eloleo

AR |
i

.

Figure 3. The example screen of manual assistance in
Timetable Manager

Multi user support

Allowing user to work locally forces to develop of a data
synchronization mechanism between locally changed data
and remote database. The proposed mechanism is based
on idea of versioning systems like CVS or SVN. But
taking into account timetable data is much harder than
text files, because of complicated relations between data.
The main advantages of this mechanism are following:

- simultaneously changes are allowed and in case
of conflict possibilities discard changes or
introduce them are given to the user,

- user have very quick access to all timetable
without blocking them for other users,

- changes can be applied for a lot of data (e.g.
through locally solver) ,

- if data are not changed by one user or user has no
rights to change data, there updated without
inform the user,

- default values for changes are chosen in such a
way, that newest changes are taken or changes
with higher level of rights.

Two actions are proposed to take care of integrity of the
data:

Import/update (it is required if data are changed

remotely and user want make export)

1. Assume unique index for each course and resource
and date of the last change. Indexes of deleted
resources are remembered in separate table.
maxIndex — the greater value of all indexes.

2. Remember locally current state (local_UT) and a
whole state of the last imported timetable (last_
remote_UT).

3. Select changes from database, which are newer than
last_remote _UT.

4. Introduce changes to the last_remote_UT and build
remote_UT.

5. Indexes of local resource, which are greater than
last remote_UT.maxIndex are increased by
remote _UT.maxIndex - last_ remote _UT.maxIndex.

6. Compare all data of the 2 timetables (remote_UT and
local_UT), and check what kid of data was changed
locally or remotely. Give user possibilities to accept
or reject changes for data which change both locally
and remote.

7. By default assume acceptance of the changes.

8. Replaced last_remote_UT with remote_UT.

Export/commit

1. Make Import to check changes and build remote_UT.
Export is available if the last_remote_UT does not
differ from remote_UT. Otherwise import is forced.

2. Compare local_UT with remote_UT based on the
last change date to show user what changes will be
exported

3. Assume default introduced changes to send them to
database.

4. If some resources or courses are removed, store
indexes with data in a special table.

Multi user support was the most desire feature of the
whole timetable system. It can be solved by online
working on database with multi-user access, transactions
and locking tables. But this solution was rejected, because
of low performance in case of simultaneous work of many
users.

Automated timetabling based on Constraint
Programming paradigm

The presented solver is written in ECLiPSe [ECL] using
the Constraint Programming paradigm and replaced
solver written in Mozart/Oz language. Main idea of the
methodologies are similar to those widely presented in
author’s PhD thesis [Leg06], [Leg03]. The main idea of
the solver were:

82

- effective search methods are customized for taking
soft constraints into account during the search, based
on the idea of value assessment [AMOO]

- custom-tailored distribution strategies are developed,
idea of constraining while distributing, which
allowed to effectively handle constraints and search
for “good’ timetables straight away,

- custom-tailored search methods were developed to
enhance search effectiveness of timetabling
solutions,

- integration of Local Search techniques into the
Constraint Programming paradigm search enhanced
optimization of timetabling solutions .

Additionally flexibility of the timetable definition was

widened by the week definitions and dynamic resource

assignment.

Week definitions

The idea of incorporating week definitions into the
problem definition comes from the fact that scheduling an
“odd” course will cause unused time in the “even” weeks
and vice versa. This might cause long gaps between
courses and could also render the problem unsolvable. To
deal with this disadvantage we could prolong the
scheduling period from one to two weeks to take account
of courses with a longer cycle. This unfortunately has a
drawback of doubling the domains of the courses' start
variables and a necessity to add special constraints (to
enforce the weekly scheduled courses happening in the
same time during both weeks). The aforementioned
solution would however not apply in some situations, for
example in the case when some courses are required to
happen only a few times in the semester or only in the
second half of the semester. It would also increase the size
of variable domains causing a great computational
overhead. We can eliminate these drawbacks thanks to the
introduction of week definitions. Week definitions are
logical structures that group a certain number of time
periods from the whole time-span. Referring to the
previous examples a week definition of odd weeks would
consist of weeks numbered <1, 3, 5 ...15>, week
definition of all weeks<1,2,3,...16> and so on , more
examples below:

week_def{id:"A",

weeks:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
¥} (all weeks)
week_def{id:’0", weeks:[1,3,5,7,9,11,13,15]}

(odd weeks)
week_def{id:"E”,
even weeks)
week_def{id:”SHO”, weeks:[9 ,11,13,15]}
half of the semester odd weeks)
week_def{id:”F4W”, weeks:[1,2,3,4]}
weeks)

weeks:[2,4,6,8,10,12,14,16]} (
(second

(first four

For certain pairs of week definitions we state whether
they are in conflict, which corresponds to the fact that
their sets of weeks have common elements. Basing on the
example above we would say that conflicts are:

week_def_conflict{id1l:"A”,
week_def_conflict{idl:"A”,
week_def_conflict{idl:"A”,
week_def_conflict{idl:"A”,
week_def_conflict{id1:70",
week_def_conflict{id1:70",
week_def_conflict{idl1:"E”,

id2:70"}

id2:7E"}

id2:7SHO"}
id2:7Faw}
id2:7SHO"}
id2:7Faw}
id2:7Faw}

Having defined week definitions we take from the input
data assignment at least one of them to each course:

course {id:”actl”,start_time:SAl duration:5, .. ,
week_defs:[“0"] , .. }

(“actl” taking place in odd weeks)
course {id:”act2”,start_time:SA2
week_defs:[“F4W”, “SHO™] , .. },
(““act2” taking place in first four weeks of the
semester and in odd weeks of the second half of
the semester)

duration:7

These information is used at the constraint setup phase.
Pairs of courses which do not contain any conflicting
definitions are excluded from the constraint setup,
because they occur in different weeks and therefore there
is no risk that they would require the same resources
during the same time.

Pairs of courses that contain at least one pair of
conflicting week definitions, are potentially competitors
for the same resources during the same time and need to
be taken under consideration during constraint setup.

The idea of week definitions is a universalized and
convenient approach of handling courses which are
exceptional and do not occur regularly within each time
period.

Dynamic resource assignment

We have taken the approach that resources do not have to
be instantiated at the phase of problem definition, which
on one hand enforces a more complex programmatic
approach but on the other better reflects the nature of real
timetabling problems and also allows greater flexibility at
search phase (possibility of balancing resource usage,
moving courses between resources might lead to further
optimization of the cost function).

Normally we would assume that a course requires a fixed
set of resources to take place. That would be for example,
a group of teachers, a group of classrooms and a group of
students, all known and stated at the time of problem
definition. We extend this model by enabling the user to
state how many elements from a group of resources are
required , without an explicit specification which ones
should be used. This flexibility is achieved thanks to the

83

definition and management of resource groups
implemented in our XML interface and processed by the
solver. The data structure is such that for every course we
define resources. Resources are defined by a (theoretically
unlimited) number of resource groups. Each group
contains indexes, that correspond to certain resources and,
as a property, a number of required resources.

The number of required resources can range from one to
the cardinality of the group. When the number of required
resources is maximal, all the resources within the group
need to be used, but for any number below the maximum
we are left with a choice of resources.

<Course>

<Resources>
<Group required=2 >
<Resource>teacher_32</Resource>
<Resource>teacher_78</Resource>
<Resource>teacher_93</Resource>
</Group>
<Group required=1 >
<Resource>classroom_122</Resource>
<Resource>classroom_123</Resource>
<Resource>classroom_144</Resource>
<Resource>classroom_215</Resource>
</Group>
<Group required=1 >
<Resource>students_group_23</Resource>
</Group>
<.. optionally more groups>
</Resources>
</ Course >

This structure is translated into resource variables list in
each course.

Course .. , resource_ variables_list:[Teacherl,
Teacher2, Classrooml, StudentGroupl] , .}

And domains of those variables present in the list

domain(Teacherl)=domain(Teacher2) =
teacher_78, teacher_93]
domain(Classrooml)=[classroom_122 ,
classroom_123 , classroom_144 , classroom_215]

[teacher_32,

For every group of resources we create as many resource
variables as number of required resources, and give each
of them a domain of all resources in a group , then
constrain them to be all-different (since we cannot use any
resource twice in one course). For those groups where all
resources are required, variables should get instantiated
right away which corresponds to the model with fixed
resources:

StudentGroupl = students_group_23

What we need to ensure now is that any two courses do
not use the same resource at the same time. This is
achieved for instantiated resources by imposing a
constraint that prevents courses from overlapping in time,
for every pair of courses that use the same instantiated
resource and are in conflict according to week definitions.
It is sometimes possible to set up global constraints
involving more than two courses that require the same
resource but only if each pair in the group is in conflict
according to their week definitions, which is not always
the case.

What still needs to be handled are the uninstantiated
resource variables with domains. To do this we impose a
suspended test on every pair of courses that have at least
one common resource in their resource variables domains
and are in conflict according to their week definitions.
The tests wait for instantiation of both resources that
could potentially be the same, and checks if they are. If
the test succeeds, the constraint that prevents the pair of
courses from overlapping is imposed on the courses. The
invocation of tests and consequently imposing of
constraints happens at the search phase when resources
get instantiated by the search algorithm.

To enhance the constraint propagation it is useful to
impose a second set of tests on the courses to ensure that
the same resources are not chosen for courses that overlap
in time. To achieve this , for each pair of courses that are
in conflict according to their week definitions we impose
a test checking whether the courses overlap (different
conditions guarding for domain updates are acceptable
here, domain bound changes as well as variable
instantiation). If the test succeeds the all-different
constraint is imposed on resource lists of the two courses
stating that none of the variables in one list takes the same
value as any variable in the other (since they can not use
the same resources whilst overlapping in time and
belonging to conflicting week definitions).

This second set of tests (considering courses’ start times)
is redundant. We natice that its declarative meaning is the
same as for the first set of tests (considering resource
variables) , but in the case when we proceed through the
search tree both by instantiating start times for courses
and resource variable, we get a better constraint
propagation and avoid exploring some parts of search tree
which do not contain a solution.

There is a need to use these suspended tests that set up
constraints during search phase, because at the constraint
setup phase we do not have the knowledge which
activities will overlap in time or which will use the same
resources therefore we need to wait for further

84

instantiation of variables. This slight complication is the
consequence of using dynamic resource assignment.

Results

The final results cannot be presented, because of the
implementation stage of the whole system. Some results
are taken from previous solver written in Mozart/Oz
language for two small real problem — one from high-
school and departure at the Silesian University of
Technology. Results presented in Figure 4 shows that
using a too complicated propagator can twice increase
time and memory consumption.

Timetable

Parameters Propagators
for serialize disjoint
high-school time [g] 73 36
(253 courses) memory [MB] 723 337
university time [s] 32 12.5
(223 courses) memory [MB] 269 156

Figure 4. Comparison of two types of no overlap
constraints.

Schedule.serialize is a strong propagator to implement
capacity constraints. It employs edge-finding, an
algorithm which takes into consideration all tasks using
any resource. This propagator is very effective for job-
shop problems. However, for the analyzed cases this
propagator is not suitable, because most tasks have
frequently small durations and the computational effort is
too heavy as compared with the rather disappointing
results. FD.disjoint which although may cut holes into
domains, must be applied for each two courses that cannot
overlap. Those constraints enable also the handling of
some special situations connecting with week definitions
described in previous section.

Popular first-fail (FF) strategy was compared with
custom-tailored distributed strategy (CTDS) based on
constraining while distributing and choosing those values
for variables, which have smallest assessment (assessment
for value was increased when soft constraints were
violated). Optimization was checked for popular branch-
and-bound and idea of incorporation local search into
constraint programming. This idea based on following
steps after finding feasible solution:

1. Finds a course which introduced highest cost (e.g.
makes gaps between courses)

2. Finds a second course to swap with the first one.

3. Creates a new search for the original problem from
memorized initial space.

4. Instantiates all courses (besides these two previously
chosen) to the values from solution. It can be made in
one step because they surely do not violate constraints.

5. Schedules first course in the place of the second one.

6. Finds the best start time for the second course.

7. Computes the cost function. If it has improved, the

solution is memorized, else another swap is
performed.
Results of comparisons are presented in Figure 5.
University High-school
time [s| mem. [MB] cost time [s] mem. [MB] cost

FF 19 258 T185.5 7.5 119 29909

FF+BAB no improvement 28 150 20005
CTDS 29.5 340 120.0 10.5 177 18657
CTDS+BAB no improvement no improvement
CTDS+LS 36 340 180.5 17 177 17158

Figure 5. Comparison of two types of distribution strategy
and optimisation methods.

Conclusion and future work

Presented system describing comprehensive approach to
real-world University Timetabling problem is still during
implementation at the Silesian University of Technology.
Most of the parts system has been already implemented,
but it is still not used in full range. Multi-user paradigm
has been already implemented and tested. It is one of the
most important feature appreciated by the user, which use
nowadays only manual assistance of the presented system.
Authors plan test different methodologies based on
Constraint Programming and Local Search after gathering
data from whole university. The different search methods
will be tested similar to Iterative Forward Search
presented in [MO05].

References

[AMOO0] S. Abdennadher and M. Marte. University course
timetablingusing constraint handling rules. Journal of
Applied Artificial Intelligence, 14(4):311-326, 2000.

[ECL] The ECLIiPSe Constraint Programming System,
http://eclipse.crosscoreop.com/

[Leg03] W. Legierski. Search strategy for constraint-
based class-teacher timetabling. In Practice and
Theory of Automated Timetabling 1V, volume 2740 of
Lecture Notes in Computer Science, pages 247-261.
Springer-Verlag, 2003.

[LWO3] W. Legierski and R. Widawski. System of
automated timetabling. In Proceedings of the 25th
International Conference Information Technology
Interfaces 1Tl 2003, Lecture Notes in Computer
Science, pages 495-500, 2003.

[Leg06] W. Legierski. Automated timetabling via
Constraint Programming, PhD Thesis, Silesian
University of Technology, Gliwice, 2006.

[Mar02] M. Marte. Models and Algorithms for School
Timetabling A Constraint-Programming Approach.
PhD thesis, Ludwig-Maximilians-Universitat
Munchen, 2002.

[MO5] T. Muller. Constraint-based Timetabling. PhD
thesis, Charles University in Prague, Faculty of
Mathematics and Physics, 2005.

85

[PB04] S. Petrovic and E.K. Burke, Edmund K,
Handbook of Scheduling: Algorithms, Models, and
Performance Analysis, Chapter 45: University
Timetabling,CRC Press,Edt: J. Leung, 2004

[RLO1] Oliveira E. Reise L.P. A language for specifying
complete timetabling problem. In Practice and Theory
of Automated Timetabling Ill, volume 2079 of
Lecture Notes in Computer Science, pages 322-341.
Springer-Verlag, 2001.

[Rud01l] H. Rudova. Constraint Satisfaction with
Preferences. PhD thesis, Masaryk University Brno,
2001.

[Sch95] A. Schaerf. A survey of automated timetabling.

In Wiskunde en Informatica, TR CS-R9567. CWICent,
1995.

[Wer86] J. Werner. Timetabling in Germany: A survey.

Interfaces, 16(4):66 74, 1986.

Opmaker2: Efficient Action Schema Acquisition

T.L.McCluskey, S.N.Cresswell, N. E. Richardson and M.M.West
School of Computing and Engineering
The University of Huddersfield, Huddersfield HD1 3DH, UK

Abstract

The problem of formulating knowledge bases contain-
ing specifications of dynamic knowledge is a barrier to
the widespread uptake of AI planning. Machine learn-
ing has been used with some success in the past, but the
inputs required are either too detailed, or the learning
process has required many examples. Further, learn-
ing has been confined to propositional actions or parts
of actions such as preconditions. The field of ontolog-
ical engineering has had an impact on the wider com-
munity in that application ontologies (which contain
“static” structural knowledge of applications) are be-
coming widespread. Here we introduce a methodology
that is based on the existence of a strong structural
model of an application. Using a small number of user
training sequences, we illustrate how the method can
induce action schema and compound methods. To do
this we extend GIPO’s Opmaker system so that it can
induce actions from training sequences without inter-
mediate state information and without requiring large
numbers of examples. This method shows the poten-
tial for considerably reducing the burden of knowledge
engineering, in that it would be possible to embed the
method into an autonomous program (agent) which re-
quired to do planning. We illustrate the algorithm as
part of an overall method to induce structured domain
model, and comment on initial results that show the
efficacy of the induced model empirically.

Introduction

The problem of formulating knowledge bases containing
specifications of dynamic knowledge is a barrier to the
widespread uptake of AI planning. Current high pro-
file applications such as the use of planning technology
within NASA’s Mars Rover require persistent resources
comprising of teams of highly skilled knowledge engi-
neers, In particular, a problem facing Al is to overcome
the need to hard code and manually maintain action
schema within agents (a problem which limits their au-
tonomy). It is possible to use learning techniques to
help overcome the problem, eg using tools which induce
actions or methods from examples. One method is to
embed agents with the ability to induce the detailed

86

specification of action schema from example planning
traces, possibly supplied by a trainer. Planning traces
are an ordered set of action instances, where each ac-
tion instance is identified by name plus the object in-
stances that are affected or are necessarily present but
not affected, by action execution. This is the kind of in-
formation normally expected as a solution to planning
problems.

In this paper we describe the results of an investiga-
tion into (re)constructing action schema and planning
heuristics from training sessions which compose of a
handful of action traces. The main result is that it
is possible for an agent to induce detailed specifica-
tions of action schema from single action traces auto-
matically, without requiring intermediate state infor-
mation for each training example. The trade-off is that
the agent’s domain description should contains invari-
ants describing object relations and object states. The
induced actions are detailed enough for use in plan-
ning engines. We present an algorithm for generating
such domain models, and show how the primitive action
schema can be built up into domain models.

In our previous work we have shown how ‘flat’ do-
main actions can be induced from examples. Actions
can be induced using Opmaker (McCluskey, Richard-
son, & Simpson 2002) which has been embedded in-
teractively in GIPO (Simpson et al. 2001), (Simpson
2005). GIPO aids domain construction, offering edi-
tors, validation tools, a graphical life-history editor and
planning tools. Output from GIPO is the completed
and validated domain being modelled in a variant of
GIPO’s internal language OCL (Liu & McCluskey 2000)
or PDDL. Here we extend GIPQO’s Opmaker system
so that it can induce actions from training sequences
and its static object model alone, without intermediate
state information and without requiring large numbers
of examples. This considerably reduces the burden of
knowledge engineering, so that a program (agent) can
perform knowledge acquisition rather than it occurring
through a human-driven process supported by a tool
such as GIPO.

The rationale for setting up this problem is as follows.
The acquisition / refinement of factual or static knowl-
edge by agents is relatively straightforward. In the con-
text of the internet and open systems, it is not un-
reasonable that an agent can acquire and refine such
knowledge with some degree of autonomy. The rapid
expansion of globally accessible ontologies within stan-
dard formats such as OWL, support the notion that
intelligent agents will have access to factual knowledge.
In contrast, the amount of effort needed to encode bug
free, accurate action specifications and planning heuris-
tics, and to maintain them, is significant. A necessary
precondition of the use of current automated planning
technology is that there exists a detailed action specifi-
cation, and in many cases, heuristic knowledge. Hence
we can ask the question: for every agent that can per-
form planning, must we hand code and hand maintain
its action descriptions? No, if agents are to achieve
this kind of autonomy, then they should be capable of
learning and refining action knowledge and heuristics.

The Learning Problem

The general situation is one where an agent needs to
perform reasoning about actions to achieve a desired
goal, and in particular perform plan generation within
an environment that it has knowledge of. Actions are
real world operations that change the state of object(s)
in the world in some way. The agent has knowledge
of objects, and collections of similar objects making up
distinct classes. It knows the possible states of a typical
object of each class. It has knowledge of existing plans
that other agents, or a trainer, has used. These plans
are written in terms of verbs and affected objects (pick
up block A with gripper B, lift up wheel A with jack
B). Additionally, the agent is assumed to have axioms
describing a naive physics of the world. However, the
agent has not an explicit specification of actions in such
a way that it can reason about their synthesis (or the
agent does have such a specification but needs to refine,
maintain or evolve it).

Given this situation, the learning problem is to induce a
full parameterised specification of actions which can be
used to do planning; and to induce heuristics which can
be used to make the reasoning involved in the planning
computationally tractable. Further, the agent should
be able to refine any existing parameterised specifica-
tion of actions, and heuristics, that it currently holds.
The action specifications should be detailed enough so
that they can be input to mainstream planning tech-
nology as epitomised by competitors in the IPC (the
bi-annual international planning competition).

A Formulation of the Problem

We formulate the learning problem as follows:

87

INPUT: Assume the input to the learning problem is
a ‘model’ of the world, and a set of training sequences,
given as follows:

1.1 - there are a number of classes each containing a set
of objects, each object belongs to one set (called a sort)
1.2 - each object of each class may be related to objects
of other classes, and have property - value relationships
with set of basic values (boolean or scalar). The rela-
tions and properties are defined in the usual way using
predicates.

1.3 - each object of each class at a moment in time
has a fixed ‘state’. This state is defined by its relation-
ship with other objects and/or the value of properties.
There are a small, finite number of states for each ob-
ject class.

1.4 - there is a set I of invariants relating the predicates
given above. Informally, a set is adequate if any ‘com-
mon sense’ inference can be made from them, such as
normal inferences about spatial relations.

1.5 a set of training plans of the form

(initial state, final state)
namey p1, 01
names p2, 02

nameg Pq, Oq

name;..name, are the names of the ¢ actions in the
training plan, and they are assumed to transform the
initial state into the final state. Here p, p2, ..p, are each
lists of object names (they could be null) of unchanging
or ‘prevail’ objects required by an action, and o1, 02, ..04
are each lists of object names affected by the execution
of the action. FEach of the list of prevail objects must be
present in some state, but that state does not change
during action execution.

- a (possibly empty) set of existing action schema.
Within this formulation, action schema are parame-
terised object transformations.

OUTPUT a set of action schema that - is consistent
with the static domain model components (1.1 -1.4); -
can be instantiated into the training plans (1.5) sup-
plied, and will transform the initial state into the final
state heuristics derived from the training plans that can
be used to guide a planner

Method

The learning method is specified by the algorithm de-
scription in Figure 1. In outline, the method is:

(i) use a set of heuristics and inferences to track the
changing states of each object referred to within a train-
ing example, taking advantage of the static, object-
state information and invariants within the domain
model. Infer full details of object transitions for each

program Opmaker2
In partial domain model

In training sequence SEQ with N actions, and each e € SEQ has components:

e.Name, e.prevail, e.changing = name, unchanging objects, changing objects,
Out parameterised action descriptions and HTN methods

1. Definitions:

O.c = current state of an object O
0.s = sort of object O

O.f = final state of an object O

2.for each e in SEQ do

7. end

S$9 = state class of any ground state S
0? = a distinct parameter which ranges through the sort of object O
X, = set of all sorts of parameters and objects in expression X

3. Form P = list of 07 for all O in e.prevail U e.changing;
4. for each O in list e.preval do

5. store component of the prevail (O.s, 07, 0.c¢?)

6. end for

7. for each O in list e.changing do

8. if O is not affected by actions in the rest of SEQ

9. then let X = O.f¢

10. else choose X from the state classes of O.c such that
11. X # 0.c¢? and P, contains X,

12. store transition T'= (0.s, 09, 0.¢? = X)

13. match free vars in T with those in P

14. end for

15. form actions from cross-product of all stored transitions
16. such that the actions are consistent with invariants

17. end for

18. produce a method from the sequences of actions as in Opmaker.
procedure match free vars in T with those in P

1. repeat

2. for each parameter z in transition T, z # O,
3. choose a parameter y in P to match with
4. z such that y # O, sort(z) = sort(y),

5 end for

6. until parameter match set is consistent

Figure 1: Outline Design of the Opmaker2 Algorithm

dynamic object.

(ii) use the techniques of the original Opmaker algo-
rithm (McCluskey, Richardson, & Simpson 2002) to
generalise object references and create parameterised
operator schema, from the specific object transitions ex-
tracted in (i) from the training examples.

To illustrate the main innovations of the method, we
will use an example walk-though taken from our empir-
ical evaluation involving an extended tyre-change do-
main. Assume a training sequence SEQ is input into
Opmaker2 and this has components as follows:

name: do_up; prevail: wrench0,jackO, trim1; changing:
hub1,nutsl

name: jack_down; changing: hubl,jackO

name: tighten; prevail: wrenchQ,hubl,trim1; changing:
nutsl

88

name: apply_trim; prevail: hubl; changing:

trim1,wheelb

This illustrates a short procedure for making a car
wheel ready for operation once it has been hung on to
an appropriate wheel hub. Informally, do_up is the op-
eration of putting the nuts on the hub of a wheel when
it is jacked up. The names such as wrenchQ, hubl are
references to actual objects. The prevail objects have to
be necessarily present in a particular state but remain
unaffected (‘wrench(’ is available, ‘jack0’ is jacking up
the wheel, ‘trim1’ is hub1’s wheel trim and has to have
been removed). These objects need to be in particular
states for the action to execute, and those states ‘pre-
vail’ or stay the same during execution of the action.
The ‘changing’ objects change state (hubl becomes fas-
tened up, the nutsl are fastened up).

To illustrate some of the definitions in Line 1 of the
algorithm in Figure 1, we have components of an object
as follows:

hubl.c = [unfastened(hubl),
jacked_up(hubl,jack0)]

hubl.f = [on_ground(hubl), fastened(hubl)]

hubl.s = hub

Examples of other operations are (h and j are parame-
ters):

hubl.c9 = [unfastened(h), jacked _up(h,j)]
hubl.c,; = [hub,jack]

Line 2 iterates through all the training examples. For
the first training example, the problem is to determine
what the new states are of hubl and nutsl.

In Line 3, let P = [w, j, t, n, h]. In Lines 4-6, the prevail
components are got from the current state classes of
wrench0, jackO and triml, as in the original Opmaker
algorithm. The loop starting on line 7 is intended to
determine the destination of each object that is changed
by the action being learned. hubl is the first changing
object. From the given partial definition of the domain,
it has four state classes which we name S1-4:

S1 = [on_ground(h),fastened(h)],

S2 = [jacked_up(h,j),fastened(h)],

S3 = [free(h),jacked _up(h,j),unfastened (h)],
S4 = [unfastened(h),jacked _up(h,j)]

hub1l’s current state is not necessarily its final one, as
in the training sequence it is referred to again (in the
second of the sequence, jack_down) as a changing ob-
ject. Hence line 10 is executed. X cannot be S4 (since
this is currently the generalisation of the object’s cur-
rent state, and the object has to change state class).
In Line 11 Py (= [wrench, jack, trim, nuts, hub]) con-
tains all the sorts in each of state classes S1,52 and S3,
and so this does not narrow down the choices. Hence 3
transitions are stored:

(hub, h, [unfastened(h),jacked_up(h,j)] —
[on_ground(h),fastened(h)])

(hub, h, [unfastened(h),jacked_up(h,j)] —
[free(h),jacked _up(h.,j),unfastened(h)])

(hub, h, [unfastened(h),jacked _up(h,j)] —
[jacked_up(h,j),fastened(h)])

Tteration of line 7 with object nuts1 occurs next. It has
three states:

T1 = [tight(N,h)]
T2 = [loose(N,h)]
T3 = [have_nuts(N)]

This leads to 2 possible transitions:

89

(nuts, N, [have_nuts(N)] — [tight(N,h)])
(nuts, N, [have_nuts(N)] — [loose(N,h)])

and hence 6 possible induced action schema (line 15).
These six options are then checked for consistency with
the domain invariants which are shown in Figure 2. The
conjunction of state constraints in both the LHS and
RHS of transitions of the newly formed action schema
must be consistent with these invariants. In cases where
they are not, the action schema is discarded.

This reduces the number of options to a single action
schema. Processing of the other 3 actions in the train-
ing sequence leads to a single interpretation of state
changes, as the changing objects involved are all in
their final states, and hence 3 more generalised action
schemas are generated. Finally, a hierarchical method is
generated (line 18) by combining the 4 action schema in
a similar fashion to the original Opmaker system (Mc-
Cluskey, Richardson, & Simpson 2002).

Experiments and Results

The method has been implemented and merged with
the original Opmaker system. We are using the same
experimental approach as we used to test the original
system:

e We hand-craft training sequences from a range of do-
mains selecting actions that will build sensible meth-
ods for that domain.

e We use Opmaker2 to induce actions and hierarchical
(HTN-type) methods from the training sequences.

e Using standard planners, we compare performance
using old hand-crafted action schema to the use of
induced schema.

Success will be judged using the following criteria:

e If a valid set of unique new actions is defined as ac-
tions that can solve the same problems the original
training sequences were aimed at, can Opmaker2 in-
duce these without having to encode a great deal of
invariants into the domain models?

e Is it more efficient in terms of effort time to construct
a domain using Opmaker2?

e Is it at least as efficient, in terms of planning time,
to reach goals using Opmaker2 defined actions and
methods?

Up to now we have experimented with 2 domain models:
the extended tyre world, and the hiking domain (see
http://planform.hud.ac.uk/gipo/ for details of these).

Since induction sequences deliver several actions and a
single method, initial sequences were tailored to pro-

. Equivalence between hub fastened and nuts tight/loose on hub.

V H:hub . [fastened(H) <= 3 N:nuts . (tight(N, H) V loose(N, H))]

. Equivalence between jack_in_use and jacked_up.
YV H:hub .V J:jack . [jack_in_use(J, H) <= jacked_up(H, J)]

. Equivalence between hub not free and wheel_on hub.

V H:hub . [-free(H) <= 3 W:wheel . wheel_on(W, H)]

. Equivalence between trim_on_wheel and trim_on.
V T:wheel_trim .Y W :wheel . [trim_on_wheel (T, W) <= trim_on(W, T)]

. Only a single set of nuts can be on a hub.

(tight(N1, H) V loose(N1, H))
YV H:hub .V Ni:nuts .V Na:nuts . A = (N1 = No)
(tight(N2, H) V loose(N2, H))
. Only a single wheel can be on a hub.
wheel_on(W1, H)
Y H:hub .V Wi:wheel .Y Wa:wheel . A = (W1 = Wa)
wheel_on(Wa, H)

. Domain constraint: If nuts are tight on a hub then the hub must be on the ground.

V H:hub . [(3 N:nuts . tight(N, H)) = on_ground(H)]

. Domain constraint: if a trim is on a wheel, then the wheel is on a hub and the nuts are tight.

YV W:wheel . 3 T:wheel_trim . [

trim_on_wheel (T, W) =
(FH:hub . wheel_on(W, H)) A (3 N:nuts . tight(N, H))

Figure 2: Invariants encoded in the Extended Tyre World

duce a meaningful method, and sufficient initial se-
quences were composed to cover all the major sub-tasks
that could be required by the domain. In each case the
agent began by knowing domain knowledge but had
sketchy or non-existent facts about its potential actions.
For the Extended Tyre World we devised 7 sequences
of between 2 and 5 actions in length. After adding 8 in-
variants to the domain we induced a set of actions and
methods and using these we produced a domain with
22 actions and 7 methods. The new version was tested
over 8 tasks in two ways - firstly using just actions in
the planning and secondly using either just methods,
or a combination of methods and actions. To illustrate
the results, two of the actions that were induced from
the running example were as follows:

operator (jack_down(Hubl, Jack0) ,
0,
[sc (hub,Hubl, [jacked_up (Hubl, Jack0),
fastened (Hub1)] =>
[on_ground (Hubl) ,fastened (Hub1)]),
sc(jack,Jack0, [jack_in_use(JackO,Hub1)] =>
[have_jack(Jack0)1)1, [1).

90

operator (tighten(WrenchO,Hubl,Nuts1, Triml),
[se(wrench,WrenchO, [have_wrench(Wrench0)]),
se (hub,Hub1, [on_ground (Hubl) ,fastened (Hub1)]),
se(wheel_trim,Triml, [trim_off(Trim1)]1)],
[sc(nuts,Nutsl, [Lloose(Nutsl,Hub1)] =>

[tight (Nuts1,Hub1)1)1, [1).

Where just actions were used in planning, plan times
for short plans of up to 10 to 12 actions were about
the same as for the hand-crafted version of the domain.
For plans longer than 12 actions both versions took in-
creasingly long times to solve. However where methods
or combinations of actions and methods were used plan
times were significantly shorter. The full planning prob-
lem for this extended domain is defined to be: “A car
is found to have two flat tyres, one is found to be flat
and can be fixed by use of the pump, whilst the other is
punctured and requires the full tyre change described in
the previous version of the domain”. Using just actions
no solution was found to this problem after 36 hours but
using methods and just a few actions a correct solution

was found after 11 seconds.

Experimentation with the hiking domain is at an ear-
lier stage. As yet no invariants have been added to
the domain. Without these we do not get unique sets
of example material for induction but already we have
seen actions generated. We identified 5 potential meth-
ods for this domain and for four of these we obtained
example sets of no larger than 6. However the fifth
generated 28 example sets so either a set of invariants
will be added to the agent’s knowledge, or we will use
theory refinement to reduce the example sets further.

From the results obtained so far we can conclude that
an agent, given a ‘working stock’ of potential action
sequences, and having domain knowledge and a ‘belief’
about the states of objects it ‘knows’ about will be able
to generate its own examples and use them to supply
itself with parameterised actions to suit every possible
object combination. Since methods can be formed from
the action sequences the agent should be able to plan
efficiently and autonomously.

Related Work

The authors of (Garland, Ryall, & Rich 2001) have de-
veloped a system (Collagen) which learns task models
from examples. Their work is similar to ours in that
they show orderings of the task to achieve the task and
these contain both primitives and non-primitives. In
(Wu, Yang, & Jiang 2005) the authors describe ARMS,
a system in which operators are learned without the
need for user intervention. However ARMS requires
many training examples containing valid solution se-
quences, and presently is capable of inducing only ‘flat’
domains.

Our work is also aimed at learning domains containing
both action schema and hierarchical schema (methods)
encapsulating several schema. Practical planning do-
mains are based on ‘hierarchical task network’ (HTN)
decomposition. The chief difference between the HTN
paradigm and classical domains is that in the former
‘compound’ tasks can be decomposed into the simpler
‘tasks’ particular to classical domains. However HTNs
can be difficult to construct manually and authors have
worked in producing these using methods from machine
learning. In (Erol, Hendler, & Nau 1996) the au-
thors argue that HTN operators are more expressive
than those of classical domains as well as being more
efficient. Theoretical underpinning for ‘High Level Ac-
tions’ (HLAs) is presented in (Marthi, Wolfe, & Russell
2007). Each HLA admits one or more refinements into
sequences of actions, where an action might be high
level or primitive. The paper introduces a provably
sound and complete algorithm which is implemented
using a STRIPS-like language. The algorithm takes
advantage of ‘sound and complete’ descriptions and, if

91

successful, returns a primitive refinement of some high-
level plans that achieves the goal set from the initial
state.

In (Nejati, Langley, & Konik 2006) the authors describe
how they induce teleoreactive logic programs from ex-
pert traces. The teleoreactive programs index methods
by the goals they achieve. They use methods derived
from explanation based learning to chain backwards
from the end result of the sample trace. The expla-
nation structure thus obtained is retained to produce
new hierarchical structures. The method is applied to
‘Depots’ which involves crates that can be loaded into
trucks and stacked. However the domain so constructed
resulted in the successful solution of very few problems.

Further theoretical work on HTN planning is presented
in (Ilghami et al. 2005). This paper introduces a for-
malism whereby situations are modelled where general
information is available of tasks and sub-tasks, together
with some plan traces but there are no details. In the
early work all information about methods was required
except for the preconditions. This limitation is over-
come in later work by the same group (Ilghami, Nau, &
Munoz-Avila 2006) a new algorithm ‘HDL’ (HTN Do-
main Learner) is presented which learns HTN domain
descriptions from plan traces. Between 70 and 200 plan
traces are required to induce the descriptions.

HTN-MAKER is presented in (Hogg & Munoz-Avila
2007). This receives as input a STRIPS domain model,
a collection of STRIPS plans and task definitions and
produces an HTN domain model. The experimental
hypothesis is that after a few problems have been anal-
ysed an HTN domain model will be ultimately obtained
able to solve most solvable problems. A version of the
logistics-transportation domain is chosen for the exper-
iment and good results are obtained. However these
good results are not replicated for the blocks-world do-
main. One problem is the large number of methods
which have to be learned, where one method might sub-
sume another. They suggest choosing the most general
method where this is the case. Another problem is for
the planner to use methods in an infinitely recursive
manner.

Conclusions

Our work and the results reported here depend on a
structured view of domain knowledge about objects be-
ing available. Whereas in propositional, classical plan-
ning states are fairly arbitrary sets of propositions, we
assume that the space of states is restricted in that ob-
jects are pre-conceived to have a fixed set of plausible
states. Within this framework, we have described a
method for inducing action schema that advances the
state of the art in that it requires no intermediate state
information, or large numbers of training examples, to

induce a valid action schema set. Further, our prelimi-
nary results show that the hierarchical methods induced
with the action schema can lead to more efficient do-
main models.

Opmaker2 is an improvement on Opmaker in that the
latter requires intermediate state information during
learning. Opmaker2 automatically infers this interme-
diate state information and then proceeds in the same
fashion as Opmaker and induces the same operator
schema. Opmaker2 can logically be seen as a super-
set of Opmaker, where the extra functionality in Op-
maker2 removes the need to ask the trainer for more
information.

Our experiments with the “Hiking Domain” show that
further development needs to be made to the Op-
maker2 algorithm so that it can cope with domains with
“static” knowledge.

References

Erol, K.; Hendler, J.; and Nau, D. S. 1996. Complexity
Results for HTN Planning. Annals of Mathematics
and Artificial Intelligence 69-83.

Garland; Ryall; and Rich. 2001. Learning hierarchi-
cal task models by defining and refining examples. In
Proceedings of the First International Conference on
Knowledge Capture.

Hogg, C., and Munoz-Avila, H. 2007. Learning Hierar-
chical Task Networks from Plan Traces. In Proceedings
of the ICAPS’07 Workshop on Artificial Intelligence
Planning and Learning.

Ilghami, O.; Nau, D. S.; Muoz-Avila, H.; and Aha,
D. W. 2005. Learning preconditions for planning
from plan traces and HTN structure. Computational
Intelligence 21(4):388-143.

Iighami, O.; Nau, D. S.; and Munoz-Avila, H. 2006.
Learning to do htn planning. In Proceedings of the Six-
teenth International Conference on Automated Plan-
ning and Scheduling, 390 — 393.

Liu, D., and McCluskey, T. L. 2000. The OCL Lan-
guage Manual, Version 1.2. Technical report, Depart-
ment of Computing and Mathematical Sciences, Uni-
versity of Huddersfield .

Marthi, B.; Wolfe, J.; and Russell, S. 2007. Seman-
tics for High-level Actions. In Proceedings of the In-

ternational Conference on Automated Planning and
Scheduling, ICAPS 2007.

McCluskey, T. L.; Richardson, N. E.; and Simpson,
R. M. 2002. An Interactive Method for Inducing Op-
erator Descriptions. In The Sixth International Con-
ference on Artificial Intelligence Planning Systems.

Nejati, N.; Langley, P.; and Konik, T. 2006. Learning
hierarchical task networks by observation. In ICML
’06: Proceedings of the 23rd international conference

92

on Machine learning, 665—672. New York, NY, USA:
ACM Press.

Simpson, R. M.; McCluskey, T. L.; Zhao, W.; Aylett,
R. S.; and Doniat, C. 2001. GIPO: An Integrated
Graphical Tool to support Knowledge Engineering in
AT Planning. In Proceedings of the 6th European Con-
ference on Planning.

Simpson, R. M. 2005. Gipo graphical interface for
planning with objects. In Proceedings of the Interna-
tional Conference for Knowledge Engineering in Plan-
ning and Scheduling.

Wu, K.; Yang, Q.; and Jiang, Y. 2005. Arms:
Action-relation modelling system for learning acquisi-
tion models. In Proceedings of the First International
Competition on Knowledge Engineering for AI Plan-
ning.

Feasibility Criteria for Investigating Potential Application Areas of Al
Planning

T. L. McCluskey
School of Computing and Engineering
The University of Huddersfield, Huddersfield HD1 3DH, UK
lee@hud.ac.uk

Abstract

In this paper we address the problem of deciding
whether it is feasible to apply AI planning technology
(involving currently available planning engines) to an
application area. We develop some criteria based on
motivation, technological infrastructure and knowledge
engineering aspects of an application, and we go on to
apply these criteria to two application areas. The cri-
teria both help to evaluate the overall feasibility, and
in cases where development continues, help us to focus
on the parts of the application which are likely to be
most troublesome.

Introduction

In recent AI conferences (ICAPS, ECAI) there have
been a number of workshops devoted to Al planning ap-
plications, and ICAPS itself gives an award to ’best ap-
plication’ paper. While many applications tend to be in
AT-rich environments such as Space Technology, there is
a growing body of applications from a wider range of ar-
eas. A notable example is the SIADEX (Fdez-Olivares
et al. 2006) project, developing tools for helping peo-
ple to manage forest fire fighting resources. Several
other notable applications were described in the recent
ICAPS 'Moving Planning and Scheduling to the Real
World’ workshop (Myers et al. 2007). However, we still
appear to be very far away from the point where au-
tomated planning technology can be franchised to the
software engineering community.

Our work is motivated by investigations into the use
of AI planning in large-scale control applications. Au-
tomated assessment and prediction via monitoring and
modelling is quite well developed in these kinds of ap-
plications, but there is a need to develop software sup-
port that enables active decision support or even au-
tonomous control eg in water /flood control (Rob 2007),
or road transport network control (Various 1999). How-
ever, how feasible is the use of AI planning tools within
such an application area? How could we evaluate an
application in terms of whether it can benefit from AT

93

planning technology, and how can we determine what
areas of the application would cause the most prob-
lems? In this paper we explore the characteristics of an
application area that make the application of Al plan-
ning feasible. To motivate the discussion, we use two
particular applications from the Transport and Water
Management service industries respectively. These are
wide ranging, complex, involve many stake holders and
organisations, and have allied research and development
areas.

This endeavour has much in common with the general
area of business process change through the introduc-
tion of new technology, and in particular the introduc-
tion of knowledged-based AI technology. The potential
problem areas in the application of automated plan-
ning are in some cases similar to challenges already
well known when implementing KBS systems. These
include the ’knowledge bottleneck’ - the difficulty of
knowledge elicitation and formulation, the availability
of experts and expertise, and the verification, valida-
tion, and maintenance of knowledge bases. The sub-
ject of this paper can be taken in the context of the
well known reasons for failure of early KBS, to do with
their brittleness and stand-alone nature. However, ap-
plications of automated planning can also take advan-
tage of the more recent developments that alleviate the
’knowledge bottleneck’: the development of shared on-
tologies and globally accessible knowledge, and the de-
velopment of standard, tool support environments for
the engineering of knowledge. For a discussion of the
similarities and distinguishing features between knowl-
edge engineering for Al planning and KBS, the reader
is referred to section 7 of PLANET’s Roadmap (Biundo
et al. 2003).

In this paper we address the problem of evaluating the
feasibility of applying AI planning technology, by de-
vising a set of evaluation criteria based on motivation,
technological infrastructure and knowledge engineering
aspects of an application. To both illustrate and eval-
uate the usefulness of these criteria we use them to in-
vestigate the feasibility of applying automated planning
technology to the applications. For each feature we rank

it as low, medium or high, indicating its contribution
towards an overall feasibility factor. We conclude with
a short discussion of the use of the criteria.

Feasibility Evaluation Criteria

We assume that an ’application area’ has been iden-
tified, and there is a prima facia case for the use of
automated planning within it. In the case of the two
applications considered below: (i) road network man-
agement: planning can be used for drawing up plans
to ease congestion or alleviate the effects of incidents
(ii) flood prevention and management: planning may
be applied to form plans for evacuations. Given this
context, we postulate a number of key questions that
need to be considered in evaluating the feasibility and
effectiveness of utilising automated planning. We group
them into 3 areas:

1.Motivation Factors

Motivation factors include the fundermental and under-
lying reasons for the introduction of planning technol-
ogy. If a current system delivers an optimum solution,
or a subset of stakeholders are satisfied with the oper-
ation of the system using current technology, then the
motivation may be too weak. An example of low mo-
tivation is where there may be pressure to introduce
advanced technology for its own sake, rather to satisfy
a perceived need.

Overall the questions that should be asked include: are
there compelling reasons for the introduction of tech-
nology: is it likely to deliver a step change is quality
of service being offered eg increased reliability of plans,
correctness of plans, real-time speed-up in the genera-
tion, and execution or distribution of plans? Will Al
planning enable a significantly more cost-effective solu-
tion to some perceived problem?

2.Technological Context and Human Factors

Feasibility with respect to the application’s context in-
creases if there is already a high level of technological
development within the service or industry. In human
controlled systems there are several well defined phases
in control: understanding what is happening in the sys-
tem, evaluating that understanding (is there a prob-
lem?) and generating an effective plan to help alleviate
the problem. The introduction of planning technology
is more likely to be feasibility if IT is already heavily
used in the collecting, processing and interpretation of
data, and in providing support for the current decision
processes. If the data collected has an uncertain inter-
pretation, or is incomplete, then the feasibility factor is
lessened.

Given the nature of the technological change, it is help-

94

ful if there already exists experimental platforms to sup-
port the introduction of new technology. Typically this
would comprise of historical data and a simulation sys-
tem which can be used to investigate the effectiveness
of techniques off-line.

Feasibility also depends on human factors: if key stake-
holders are unwilling to accept the kind of autonomy
delivered by automated planning then it will not be fea-
sible. An example is where the current problem owners
contract out the planning task to a third party. The
third party is not necessarily going to he a willing part-
ner in the venture if the new technology threatens that
contract; the third party, however, may hold knowledge
that is necessary for success. In summary, the key ques-
tions are:

Ezisting technological infrastructure:

Within the computer systems that are currently being
used in the potential application area, are sophisticated
systems used extensively for management information,
and/or for decision support? What is the level of tech-
nological take-up in the area? Are the current systems
stand-alone or fully interoperable?

Data availability and quality:

Is there a ready supply of data to supply state informa-
tion on the observed system? Is the data in high level
(information extracted) form, or is it in a very low level
(eg numerical) form? Is the data trustworthy or does it
contain a significant amount of uncertainty? Can data
be extracted from a standard data interface? Is there
historical data and/or a simulation environment that
can be used to test new technology off line?

Human Factors:

Are the problem owners (the current providers of so-
lutions) and other stakeholders open and supportive of
innovation to help improve their methods and systems?

3.Knowledge Engineering Factors

There is a well known characterisation of AI planning
technology that it requires the pre-engineering of a spe-
cific database of actions, heuristics etc. The task of
engineering knowledge into such a particular form is
itself made feasible by the presence of a number of fac-
tors, such as: existing high level formalisations of the
domain, existing high level formalisations of plans, or
the existence of similar planning domain models. These
factors are very relevant in knowledge engineering for
KBS in general, as it is well known that if all the exper-
tise lies solely in the brains of experts, then the amount
of effort involved in knowledge elicitation and knowl-
edge formulation can be very high indeed. Applications
where there are existing encodings of actions and plans
are thus very attractive. Hence, if knowledge of the cur-

rent planning process in the application area is not in
written form, or there are no examples of precisely en-
coded plans, then the feasibility is low, or at least the
amount of resource needed to create a domain model
and planning heuristics may be prohibitive. The key
questions to consider are:

Closeness to previous applications:

Is the application area close or analogous to a previ-
ous defined planning benchmark, or a current fielded
system? Can parts of domain models or previously en-
gineered constraints be re-used?

Procedure formalisation in the problem area:

Are there existing encoded, formalised or written-down
procedures or plans? Is the current system managed by
experts using their own experience, or do they have re-
course to manuals and training aids? Are there readily
available examples of the kinds of plans that are needed
to be generatored?

Appropriateness for Al planning solution:

How far does the construction of a plan fall into the
classic definition of generating orderings of instantiated
action schema to achieve goals or decompose tasks?
Does plan generation involve a great deal of uncer-
tainty, mixed discrete and continuous variables, or large
amounts of human skill?

Application Area: Road Network
Management

Description

Road network management (RNM) relies on complex,
integrated systems to meet increasing requirements
upon the road network specified within policy docu-
ments from central and local government. The respon-
sibility for managing the road infrastructure in the UK
rests with the Highways Agency (HA) for the motorway
and trunk road network and the Local Authority (LA)
for the urban network. Short term traffic events, such
as road works, accident, adverse weather conditions, oc-
curring on either the motorway or urban network can
have devastating affects on one another. Currently hu-
man operators respond to this kind of problem using
their expert knowledge, but their effectiveness is lim-
ited as they have to interpret complex information fed
to them, decide on which of an array of actions to take,
and deal with the interface between urban and motor-
way traffic control. Within the UK there is a duty on
LAs to manage their traffic networks efficiently and re-
duce traffic pollution. Clearly there is a need to develop
systems that will support the road network operators
objectives when they try to tackle congestion or other

95

problems, such as excessive fuel emissions, in an increas-
ingly complex environment.

Evaluation using Criteria

Motivation Factors: high

Within RNM, there is a well defined split between un-
derstanding what is happening in the system, and gen-
erating an effective plan to help alleviate the problem.
In the former case, there are many real time data feeds
from which knowledge about the system can be ex-
tracted, including loop detectors, ANPR (automatic
number plate recognition), and CCTV. In the latter
case, the traffic manager can manage a situation by
initiating a range of actions; this includes the setting
of traffic light timings, variable message signs (VMS),
variable speed limits (VSL), ramp metering and radio
broadcasting. In real time traffic control of large road
networks it has been demonstrated that necessary pro-
cessing and decision making is beyond the capabilities
of human operators alone, and as the demand for road
usage increases, this difficulty in managing traffic effec-
tively becomes more acute. Additionally, the cost of
congestion is increasing over time and in the UK alone
is expected to rise to £30 billion by 2010. Improvement
to the efficiency of traffic control and management also
can be linked to the reduction of emissions of air pollu-
tants produced by road traffic.

An application for AI planning could be to generate
traffic and transport system plans and courses of ac-
tions in real-time to enable more effective control of
incidents and events. A similar application might be
to help with crisis management across the LA and HA
controlled networks by generating plans which take ac-
count of LA and HA priorities and interactions. Hence
there is a clear aim and motivation for the introduction
of this kind of technology: to increase the quality of
plans (which involve lights, VSLs, VSMs, etc), taking
into account an increasing amount of information flow,
which will benefit the quality of life through reduced
congestion and polutant emissions.

Technological Context and Human Factors
Ezisting technological infrastructure: high

There has been a good record of adoption of computer
systems in road network traffic management, and cur-
rently there are emerging common service platforms
which will be beneficial to products and services de-
livered by technology providers. High level data plat-
forms such as the HA’s Travel Information Highway
allow sophisticated software packages to both moni-
tor and disseminate traffic information both to other
services and to the general public (eg in the uk we
have www.trafficengland.co.uk). The development of

self-adapting computer systems such as SCOOT! has
been one of the most important single developments.
SCOQT systems are used worldwide to control the tim-
ings and offsets of groups of traffic lights connected by
a local road network. They adapt to different traffic
levels, automatically adjusting light timings at related
junctions in reaction to sudden or gradual changes in
traffic flows.

Data availability and quality: medium to high

In the UK, the UTMC? is a relational database conven-
tion for data collected and distributed in the course of
traffic management. UTMC provides a high level, stan-
dard platform for traffic applications to use and inter-
operate. Local Authorities use systems such as SCOOT
and UTMC to make effective and efficient use of tech-
nology in managing the local road network. However,
there are some shortfalls with current systems, and ris-
ing traffic levels will only exacerbate the situation. The
most serious problem is that, although motorways and
city centres have traffic flow monitored, traffic flow out-
side of these areas is largely unknown, and there is still
a high degree of uncertainty of the status of some net-
works.

Regarding evaluation platforms for testing new technol-
ogy off-line, there is a long standing history of trans-
port research using such methods, with large amounts
of data available for testing and simulation.

Human Factors: high

Expertise in management and operation of the network
appears to be thin, and there is a realisation within the
service that this, and the growing complexity of the
problem, will require more technological investment.
There are a range of high-tech service providers in the
sector who are experienced in technological innovation.
All stakeholders appear ready to embrace further tech-
nological innovation (especially given the past success
of SCOOT).

Knowledge Engineering Factors
Closeness to previous applications: medium

Within the area, there have been attempts to incorpo-
rate some kinds of specific automated reasoning systems
into the control of motorway incidents eg in the MOLA
system (Still, P.B and Harbord, B.J. 1998). No such at-
tempt has been made in local authority-controlled roads
in the UK.

Regarding similar domains, the Pipesworld domain
from IPC-4 shares some characteristics with road trans-
port: the basic domain consists of an arcs and nodes

"http://www.scoot-utc.com/
*http://www.utmc.gov.uk/

96

network, with some arcs (roads) bi and some uni-
directional. Also, the ’transporter’ (pipe or road) does
not move - objects move along them. Despite there be-
ing ways to abstract the complexity of road networks
(eg by bundling traffic into distinct quanta) the com-
plexity of the road network may well cause a problem
of scale to current planning engines.

Procedure formalisation in the problem area: medium

Plans do exist on paper, but are not plentiful. Decisions
and plans are made by experts on the basis of collated
information of the road network. Current procedure
formulation is at the level of SQL constructs.

Appropriateness for Al planning solution: medium

Parameterised actions can be formed to model the ac-
tions mentioned above, although the effects of such ac-
tions may be difficult to encode in propositional form.
Propositional descriptions of road network status and
goal criteria are not generally used in current systems.

Application Area: Flood prevention and
management

Flood prevention and management (FPM) involves, as
in RNM, local and national authorities, service indus-
tries, and research institutes. This is due to its per-
ceived importance: throughout many parts of the world
the prevention, early warning, crisis and post-crisis
management of water innundation is an important fac-
tor in human well-being. We have identified two ar-
eas which incorporate two potential applications of Al
planning: for long term planning of infrastructure to
prevent or lessen the risk of flooding, and for real-time
planning to support flood event management. The for-
mer area considers such criteria as climatic change and
population change, and may involve flood defence de-
sign or even river design. The latter area falls under
the heading of crisis management, and may incorpo-
rate evacuation mangement. Here (as in RNM) there is
the need to understand what the status of the event is
- this is essential to support the active management of
any identified problems.

Below we concentrate on evaluating the feasibility of
AT planning to support flood event management, and
use the information from deliverables of the current EU
project "FLOODsite’ to support it 3 FLOODsite aims
to develop tools to help in evacuation management, par-
ticularly meta-tools and frameworks for the building of
specific decision support systems (DSS).

3http://www.floodsite.net/

Evaluation using Criteria

Motivation Factors: high

The need for plan generation support in the real-time
scenario is directly supported by FLOODsite research:
’Given the large variety of possible scenarios generating
flash floods, the pre-flood generation of all the corre-
sponding emergency plans is out of reach’ (FLOODsite
workplan, page 23). This implies that the motivation
is similar to incident management in the RNM appli-
cation - to be able to produce sound plans in real time
in response to a crisis in which there are a number and
mix of information streams.

Context and Human Factors
Ezisting technological infrastructure: medium - high

There are many decision support systems that have
been created to help in flood event management in the
UK, France and Netherlands alone (Rob 2007). These
DSS are typically GIS-based simulation systems with
user-friendly interfaces. They can inform on flood dis-
tributions, identify population, transport and proper-
ties at risk; evaluate the likely effectiveness of flood
defences etc. Communication between ’actors’ is very
important in flood event management (as in other inci-
dent/crisis management) and hence systems are aimed
at information dissemination among emergency services
and connected organisations.

The number of decision support systems suggests a high
level of technological infrastructure. However, real-time
use of technology within the sector appears to be tar-
geted at disseminating information about the unfolding
crisis to the range of emergency services that are called
upon to assist. No systems seem to exist that perform
support for flood event management in general, or evac-
uation planning for flood events in particular, by gener-
ating plans in response to a specific disaster. Indeed, in
the area of flood event management, we could find no
evidence that there exists systems that can validate or
simulate pre-existing evacuation plans; that is systems
that input water distribution models, and simulate the
execution of disaster plans in real time, and evaluate
them.

Data availability and quality: medium - high

Data from meteorological predictions, data concerning
population densities, population characteristics, physi-
cal assets (safe building etc) and evacuation routes is
readily available. On the other hand, while obtaining
data for simulation is possible, it is currently not pos-
sible (according to FLOODsite) to generate up to date
models of water levels, velocities etc in real time, due
to the amount of computational time required. Hence
any simulation systems would need to use precomputed

97

models.
Human Factors: medium - high

Research and innovation in this area is accepted as an
essential ongoing activities by stakeholders in the field,
hence there would be no threats to feasibility. Many of
the potential users, however, would not be IT literate
and hence any Al software would need to be embedded
within user-friendly interfaces.

Knowledge Engineering Factors
Closeness to previous applications: medium

This area is clearly related to the more general area
of crisis prevention and management. There has been
a great deal of work on decision support for crisis or
disaster management, ranging back more than 20 - 30
years, although only a fraction of this work has at-
tempted to automate generation of plans. An exception
is the ongoing work aimed at disaster management for
eruptions of the Popocatepetl volcano in Mexico, where
the techniques used are based on answer-set program-
ming (Cortes, Solnon, & Martnez 2004). This work
is aimed at integrating a planning function with exist-
ing GIS systems. The language used for representation
incorporates some measures of uncertainty, and the sys-
tem has the potential for generating simple emergency
evacuation plans. However, the application appears as
yet not implemented.

Evacuation planning is an activity that has already
been used with the Planning community - it is used as
an example within the recent textbook (Ghallab, Nau,
& Traverso 2004). STADEX (Fdez-Olivares et al. 2006)
is a system that is currently undergoing tests in real
fire fighting situations. It produces plans, monitors ex-
ecution, and interacts with human experts to support
management in forest fire fighting. The insights result-
ing from the STADEX implementation would certainly
contribute to the success of a flood event management
application.

Procedure formalisation in the problem area: low -
medium

In general, plans and procedures in the area are not for-
malised and if they exist are stated in natural language.
However, there are some DSS that expect emergency
response plans as an input, and evaluate them by cal-
culating the effect. This implies the existence of some
plan formulations.

Appropriateness for AT planning solution: medium

Many of the inputs required in a planning domain
model have been formalised in past decision support
systems: actions and methods representing resources to
be used for evacuation, and objects such as carriers and

routes (eg road networks). The planning state would
likely consist of flood levels, safe evacuation zones, spa-
tial distribution of inhabitants, types of inhabitants (eg
able-bodied or not). While this appears appropriate
for AT planning technology (and the closeness of this
domain to general disaster management is evident) the
continuous nature of the domain, in particular flood
distribution, may be difficult to represent with current
domain model languages.

Discussion

For the RNM application, strengths lie in the techno-
logical infrastructure, the motivation for the work, and
(in the UK at least) the availability of interoperable
services due in part to the standard technology plat-
form (UTMC). The existence of software in the indus-
try with AI characterists (SCOOT and MOLA) is an
important factor. The main problems seem to be the
lack of high level information about road network sta-
tus (which equates to the *world state’ in planning), and
the lack of precisely defined plan databases. For FPM,
again, motivation and technological infrastructure and
innovation is generally high. The main areas of concern
are within the knowledge engineering aspects, particu-
larly plan reasoning and representation aspects. In both
areas then, it would seem that the applications are feasi-
ble, but more work is required to quantify the resources
required to complete the knowledge engineering task.

Another application area we have investigated resulted
in a remarkably different result in the feasibility crite-
ria, leading to us not pursuing the application of AI
planning. This is an historical example (in that it may
not still hold today give the changes in technology) from
the area of Air Traffic Control. It is based on our early
work in formalisation of ATC separation criteria (Mc-
Cluskey et al. 1995). The application area is to produce
a planning aid for helping conflict resolution of aircraft
during en-route control over North Atlantic airspace.
Thus the planner would need to take existing route
plans, adjust them to clear any airspace conflict that
had been detected by a conflict probe, and output the
new plans to an air traffic control officer. In this do-
main the level of current technology was high, data on
aircraft positions and plans was very good, and offline
evaluation was possible. Additionally, the knowledge
engineering aspects were good: there were rule books,
formalised plans, propositional state descriptions, and
much of the context knowledge had been formalised
through our previous work on aircraft separation cri-
teria. The criteria that scored low were motivation and
human factors: investigation showed that although au-
tomated aids were desired by some state holders, the en
route air traffic control officers were quite happy with
their current method, which was capable of delivering
the plans without the need for extra technology.

98

Conclusions

In this paper we introduced a set of criteria for evalu-
ating the feasibility of introducing planning technology
into an application area. We applied these criteria to
two application areas which (as yet) have not seen Al
planning applications. Although with the applications
considered the introduction of AI planning was thought
to be feasible (with some reservations), the exercise ap-
pears to illustrate to us the difficulty in finding suitable
application areas: an application must score well on all
three aspects: motivation, technological infrastructure
and knowledge engineering aspects.

Some aspects of the criteria were based on those that
would be used when assessing an application for the in-
troduction of a KBS, as the same problems of knowledge
elicitation and availability of expertise may be evident.
In control applications, however, a further important
factor seems to be the level of technological progression
within the industry. In order to integrate planning tech-
nology into a currently human controlled system, there
should already exist high levels of technological use and
expertise in the industry, such as examples of past suc-
cess with AT technology. A parallel can be drawn with
the field of Autonomic Computing (Kephart & Chess
2003), which is to do with the manufacture of omputer
systems which take care of themselves in that they can
self-configure, self maintain, self-heal etc. The protago-
nists of AC portray the deployment of autonomic qual-
ities as the culmination of a technological progression
along which the progress of an application area can be
tracked. Hence, for an application area to adopt a new
system incorporating autonomic features, the current
technology must already be far advanced (eg the current
system may have software components with intelligent
characteristics). This seems the case with AI planning
technology also: the application area in general must be
technologically sophisticated enough to support knowl-
edge engineering of the required dynamic and heuristic
knowledge to make plan generation feasible.

Acknowledgements

I would like to thank personnel from the following or-
ganisations for their input: telent, AVLC Ltd, AeGis,
TSEU, TRL, NASA, Wallingford Software, and Kent
and Hampshire County Councils.

References

Biundo, S.; Aylett, R.; Beetz, M.; Borrajo, D.;
Cesta, A.; Grant, T.; McCluskey, T.; Milani,
A.; and Verfaillie, G. 2003. PLANET tech-
nological roadmap on AI planning and schedul-
ing. Electronically avaliable at http://www.planet-
noe.org/service/Resources/Roadmap/Roadmap2.pdf.

Cortes, C. Z.; Solnon, C.; and Martnez, D. S. 2004.
Planning operation: An extension of a geographical
information system. Proceedings of the 1st Intl. LA-
NMRO04 Workshop, Antiguo Colegio de San Tldefonso,
Mexico City, D.F , Mexico.

Fdez-Olivares, J.; Castillo, L.; Garcia-Perez, O.; and
Reins, F. P. 2006. Bringing users and planning tech-
nology together: experiences in SIADEX. In Proceed-
ings of the Sixzteenth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2006), 11 —
20.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Auto-
mated Planning: Theory and Practice. Morgan Kauf-
mann ISBN 1-55860-856-7.

Kephart, J. O., and Chess, D. M. 2003. The vision of
autonomic computing. Computer 36(1):41-50.

McCluskey, T. L.; Porteous, J. M.; Naik, Y.; Taylor,
C. N,; and Jones, S. 1995. A Requirements Capture
Method and its use in an Air Traffic Control Applica-
tion. Software—Practice and Experience 25:47-41.

Myers, K.; Frank, J.; McCluskey, L.; and Yorke-Smith,
N. 2007. Workshop on Moving Planning and Schedul-
ing Systems into the Real World. http://icaps07.icaps-
conference.org/.

Rob, M. 2007. Review of flood event management de-
cision support systems. Technical Report FLOODsite
deliverable T19-07-01, Delft Hydraulics.

Still, P.B and Harbord, B.J. 1998. Strategic manage-
ment of traffic in Kent using MOLA. In 9th Interna-
tional Conference on Road Transport Information and
Control.

Various. 1999. UMTC 04: Research Review and
Requirements Report. Birmingham City Council
and Leicester City Council and University of Leeds,
http://www.utmc.gov.uk/research/.

99

Planning in Supply Chain Optimization Problem

N.H. Mohamed Radzi, Maria Fox and Derek Long

Department of Computer and Information Sciences
University of Strathclyde, UK

Abstract

The SCO planning problem is a tightly coupled plan-
ning and scheduling problem. We have identified some
important features underlying this problem including
the coordination between actions, maintaining tem-
poral and numerical constraints and the optimization
metric. These features have been modeled separately
and experimented with the state-of-the-art planners,
Crikey, Lpg-td and SgPlans. However, none of these
planners are able to handle all features successfully.
This indicates a new planning technology is required to
solve the SCO planning problem. We intend to adopt
Crikey as a basis of the new technology due to the
capability of solving the tightly coupled planning and
scheduling problem.

Introduction

The Supply Chain Optimization (SCO) covers decision
making at every level and stage of a system that pro-
duces products for a customer. The foremost impor-
tant issues include the decisions about the quantities of
products to be produced, scheduling the production and
delivery whilst minimizing utilization of resources by
the system within a certain planning period. All these
decisions require reasoning and planning: understand-
ing the factors that are relevant to the decisions and
evaluation of the combinatorial of the problem. This
means the planning process in SCO is not only decid-
ing which action should be chosen to reach the goal
state based on the logical constraints but also what is
the consequence of selecting the action to the given op-
timization function. Due to these features the planning
problems in SCO are different from the standard plan-
ning problem. The SCO planning domains are richer
in temporal structure than most temporal domains in
standard planning.

Temporal domains were introduced in the third In-
ternational Planning Competition (IPC3) along with
the temporal planning language PDDL2.1 (Long & Fox
2003)(Fox & Long 2003). The durative action is in-
troduced as a new feature in the language. This fea-
ture allows actions in domains to be allocated a unit
of time specifying time taken to complete said action.
(Weld 1994). Furthermore, the quality of the plan is

100

also measured by the overall length or duration of the
plan generated. The temporal features in the language
were later extended by the introduction of timed ini-
tial literals in PDDL2.2 (Edelkamp & Hoffman 2003).
This is the language used in IPC4. Timed initial liter-
als provide a syntactically simple way of expressing the
exogenous events that are both deterministic and un-
conditional (Cresswell & Coddington 2003). Another
way to express exogenous events was then introduced in
PDDL3.0 by using hard and soft constraints (Gerevini
& Long 2006). Hard and soft constraints express that
certain facts must be, or are preferred to be, true at a
certain time point as benchmarked in TPC5 (Dimopou-
los et al. 2006).

Temporal domains in IPC3 require certain facts to be
true at the end of the planning period. Although do-
mains with deadlines or exogenous events are modeled
in IPC4 and 5, none of these domains require actions
overlap in time. In contrast, SCO domains require some
collections of facts to be true not only at a particular
final state but also throughout the trajectory. For ex-
ample, some quantities of a product may be required to
be in production throughout the planning period. Add
to that, the SCO problems also require that actions to
be executed concurrently during the planning process.
For instance, there are exogenous events such as order
deadlines that have to be met. We have to maintain
these deadlines and concurrently execute other produc-
tion activities. Moreover, there might be some thresh-
old values that have to be maintained over the planning
period.

As well as temporal structure, SCO domains are also
rich with numerical structure. The domains with nu-
merical structure were also introduced in IPC3. But
most of the competition domains in the IPCs mainly
deal with the consumption of resources and cost. In
the SCO problems, numerical facts and constraints are
used to model beyond the consumption of resources and
cost. The numerical facts and constraints are also used
to model the multiple actions: actions that have equiv-
alent chances of being selected but the difference be-
tween them lies in the cost associated with perform-
ing them. In sum, SCO problems are very complex
planning problems where temporal and numerical con-

straints enforced over time must be met as well as the
logical constraints.

From another point of view, SCO planning problem
is different from standard planning problems in terms
of the way plans are constructed. The standard or clas-
sical planning problems concentrates on a process to
find what actions should be carried out in a constructed
plan by reasoning about the consequence of acting in or-
der to choose among a set of possible courses of action
(Dean & Kambhampati 1997). The number of actions
required in a plan is usually unknown. The temporal
planning problem is basically a combination of classical
planning and scheduling. In the pure scheduling pro-
cess, the actions are usually known and the choice of
actions is limited compared to planning (Smith, Frank,
& Jonsson 2000). The scheduling process concentrates
on figuring out when and with what resources to carry
out so as satisfy various types of constraint on the or-
der in which the actions need to be performed (Dean
& Kambhampati 1997). Therefore in temporal plan-
ning, the process of constructing a plan combines the
decisions on what actions should be applied, with when
it should be applied and with what resources (Halsey
2004).

The SCO problem however, is an example of a com-
binatorial problem that has string planning, schedul-
ing and constraint reasoning components. Besides what
and when choices it also contain choices about how to
act. One way to introduce a how choice is to differen-
tiate actions for achieving the same effect by numerical
values such as duration or resource consumption. The
what choices concern what resources are required for an
action to be applied and the when choices concern how
the action should be scheduled in to the rest of the plan.
A very good example of the problem is the following:
a manufacturer receives several orders from customers
that consist of producing various quantities of several
different items. These orders should be delivered within
specified deadlines. The manufacturer has to schedule
the production of each item. Due to the capacity limi-
tations of the producer, the manufacturer has to decide
which items should be produced using his own facili-
ties and which items should be produced using other
production options that are available. No matter how,
the deadlines have to be met and the overall production
cost should be minimized. In this case, the solution is
not as simple as performing a sequence of actions but
could involve executing many actions concurrently.

We have discovered that, although there are a num-
ber of planners in the literature that are capable of han-
dling the individual features of PDDL2.1 and PDDLS3,
there are no planners currently available that can reli-
ably solve non-trivial problems.

The reminder of this paper is structured as follows.
First we present a description of a simple domain within
the class of problems. We have encoded the domain and
applied several state-of-the-art planners to it. The out-
comes of the experiment are discussed in the following
section but, in brief, the best performing planners in

101

IPC4 and IPC5 are unable to solve the problems we
set. Clearly, SCO problems encompass a huge variety
and would in general be beyond the reach of any auto-
mated planner. Therefore, this discussion is followed by
the definition of a subclass of problems that we intend
to focus on in our work. We will develop a planner (by
enhancing an existing planning system) that is capable
of solving this subclass of problems. Later, we briefly
describe our future work including the planner that we
intend to enhance.

Domain Definition

A simple example of production planning problem in
the supply chain is illustrated in Figure 1. The process
starts with receiving the customers orders. Each order
has a different combination of products and also dif-
ferent delivery deadlines. The process is then followed
by selecting the production types of each product. In
our example, each production type has a different pro-
cessing time and cost: normal-time, over-time and out-
source. The outsource action furthermore can be per-
formed by several suppliers where each supplier is asso-
ciated with a different lead time and cost. The domain
demonstrates the properties discussed in the above sec-
tion. The choices of production action represent the
multiple choice of actions for achieving the same task.
These actions can be executed simultaneously as well
in parallel with other activities. The probability of the
action being selected is dependent on the objective func-
tion. Any plan produced by the planner should mini-
mize the overall cost and time taken to produce all items
as well as meeting the specified deadlines. For example,
item; can be produced either by the normal-time action
or the outsource action but, choosing the normal-time
action might cause a delay in the product delivery so
that it is better to choose the outsource action. In an
efficient plan we might be producing items while we are
also producing item;. This domain has been encoded
and presented to some of state-of-the-art planners.

normal
time

finished
product

receives I
order

Figure 1: A Simple production process

State-of-the-Art Planners

We chose three different types of temporal planners for
our experiments. All of these planners are claimed to be
able to handle the temporal features of PDDL2.1 and
also features to express deadline such as time windows
and hard constraint. The planners are as follows:

SGPlans is a temporal planner that received a prize
for overall best performance in ITPC5. The planner
works with PDDL3.0, which features timed initial lit-
erals, hard constraints and preferences. It generates
a plan by partitioning the planning problem into sub-
problems and finds a feasible plan for each sub-goal.
The multi-value domain formulation (MDF) is used as
a heuristic technique in the planner for resolving goal
preferences and trajectory and temporal constraints
(Chih-Wei et al. 2006).

The LPG-td planner is an extension of LPG
(Gerevini & Serina 2002) that can handle features in
PDDL2.1 and most features in PDDL2.2, including
timed initial literals and derived predicates. The timed
initial literals represent facts that become true or false
at certain time points, independently of the actions in
the plan. This feature can be used to model a range
of temporal constraints including deadlines. LPG-td is
an incremental planner that generates a plan in the do-
main involving maximization or minimization of com-
plex plan metrics. An incremental process improves
the plan by using the first generated plan to initialize
a new search for a second plan of better quality and so
on. It can be stopped at any time to give the best plan
computed so far (Gerevini, Saetti, & Serina 2004).

CRIKEY is a temporal planner that solves a tightly
coupled type of planning and scheduling problem. This
planner supports PDDL2.1. It has implemented the
envelope and content concept in order to handle the
communication between the planning and scheduling.
Content actions are executed within envelope actions.
Therefore the minimum length of time for the content
actions must be less than or equal to the maximum total
length of time for the envelope actions (Halsey, Long,
& Fox 2004). The envelope and content concepts were
introduced to allow Crikey to solve problems in which
actions must be executed in parallel in order to meet
temporal and resource constraints.

Experimental Results

The aim of the experiments is to investigate the capabil-
ity of each planner to cope with the following features:

(1) temporal constraints that require facts to be
maintained over time; (2) optimization metrics includ-
ing temporal and numerical optimization; (3) coordina-
tion and concurrent actions.

The domain described in the previous section
was encoded using PDDL. There were six actions
modelled in the domain including STACK_ORDER,
CHOOSE_BRAND, OVERTIME, NORMAL_TIME,
OUTSOURCE and SHIP_.ON_TIME. Since different
planners can work with different versions of PDDL,
we have exploited PDDL2.1 features to represent do-
mains presented to Crikey, PDDL2.2 for domains pre-
sented to Lpg-td and PDDL3.0 for domains presented
to SgPlans. We have had to use different syntax to
express the deadlines: timed initial literals for Lpg-td
and hard constraints for SgPlans. No specific syntax
is given in PDDL2.1 for expressing deadlines, but it

102

is possible to encode them using envelope actions and
clips (Fox, Long, & Halsey 2004; Cresswell & Codding-
ton 2003). In the first experiment we have encoded only
a single deadline. The encoded problem has been pre-
sented three times to each planner, each time with a
different set-up. The problem instances are described
in Table 1. For example in the first instance, the dura-
tion for actions NORMAL_TIME and OVERTIME are
7 and 8 unit time respectively. The OUTSOURCE ac-
tion can be performed through either by supplier; or
suppliers with the duration are 5 and 6 unit time re-
spectively. The planners are expected to perform one
of these actions in order to accommodate the deadlines.
The duration of other actions defined in the domain is
1 unit time. Table 2 describes the deadlines and the
plan duration given by each planner (if any) together
with the action selected in the plan.

prob | normal-time | overtime | supplier; | suppliery
1 7 8) 6
2 7 5 7 6
3 5 8 7 9

Table 1: problem instances set-up

prob d Crikey SgPlan Lpg-td
1 8.05 7.05 8.004 8.000
suppliery suppliery suppliery
2 8.05 8.05 no 8.00
suppliers solution overtime
3 8.05 7.05 no 8.00
normal-time | solution | normal-time

d: deadline

Table 2: maintaining time constraints by each planners

As we can see in Table 2, Crikey and Lpg-td plan-
ners perform very well in maintaining the temporal con-
straint. Both planners managed to obtain a plan with
the most appropriate actions so that the completion
time is within the deadline. But, SgPlans only gener-
ates a plan for the first instance. There are no solutions
for the second and third instances.

Later, the second experiments were carried out to see
whether these planners can reason about the optimiza-
tion metric, for example, minimize the makespan. For
this purpose, the deadlines were excluded from the do-
mains and then replaced with the minimization metric
of total-time. The same encoded problems were ap-
plied to all planners. The description of the problem
instances were remained the same as in the Table 1.
Table 3 exhibits the completion time of the plan gen-
erated by each planner. We can see from this Table,
Lpg-td was capable of minimizing the makespan com-
pared to both SgPlans; and Crikey. SgPlans as de-
scribed in the Table 3 always choose the same action no
matter the changes made in the duration of the actions

in the domain. Therefore in experiment 1, SgPlans un-
able to produce any plan for instances and instances
since the set up time for the particular action has vi-
olated the deadlines. Crikey also performs similar to
SgPlans in this experiment. As depicted in Table 3,
NORMAL_TIME action is chosen regardless the dura-
tion set up for the action in each instance. The result
from experiment 1 also indicates that Crikey will only
maintain the temporal constraint by finding a feasible
solution but not an optimal solution. Refer to Table 2
for instances. Although plan duration given by Crikey
meeting the deadlines, but the duration is slightly big-
ger than plan duration generated by Lpg-td.

prob Crikey SgPlan Lpg-td
1 9.004 8.004 8.000
normal-time | supplier; suppliery
2 9.004 10.004 8.000
normal-time | suppliery overtime
3 7.004 10.004 8.000
normal-time | supplier; | normal-time

Table 3: optimization metric: minimizing makespan

Besides minimizing the makespan, some experiments
to investigate whether these planners can reason about
numerical values by giving a plan that minimizes the
total cost incurred due to action selection were carried
out. The problems used in experiment 2 were applied
in this experiment. But, the optimization metric was
changed to minimize total-cost and the same durations
were set to each action. The number of instances were
also increased to ten, each instance has been set up
with a different cost. The metric value of the plan is
given in the generated plan for the plan produced by
SgPlans or Lpg-td. But for Crikey the metric value can
be identified through the action selected in the plan.
Table 4 shows the metric values or total cost obtained
from the plan generated by each planner. Lpg-td pro-
duced plans that minimized the total cost for every in-
stances. In some instances, either SgPlans or Crikey
also able to produce the optimized plans. The opti-
mized plans were obtained due to the cost of the ac-
tions that are considered to be selected have the small-
est cost compared to other actions in the problem. This
is definitely not because of the capability of the plan-
ner to reason on the numerical values. The domains and
problems involved in the experiment can be accessed at
http://www.cis.strath.ac.uk/~nor.

As mentioned in the previous section, the SCO con-
tains choices about how to act. The choices of how to
act affect the quality of solution as well as satisfiabil-
ity of the schedule. We cannot simply perform the ac-
tion selection first and later schedule the actions accord-
ing to their temporal and numerical information. This
means the planning and scheduling tasks are tightly
coupled and cannot be performed separately. This sit-
uation requires coordination between actions and exe-

103

problem | Crikey | SgPlan | Lpg-td
9.00 11.00 3.20
7.00 4.00 3.20
9.00 11.00 4.20
12.00 11.00 7.20
12.00 5.00 5.20
4.00 5.00 4.20
7.00 12.00 7.20
20.00 15.00 13.20
20.00 9.00 9.20
4.00 9.00 4.20

S| | 00| | o | k| wof ho| =

Table 4: optimization metric: minimizing total-cost

cution of the concurrent actions. Coordination is where
the actions can happen together and interact with an-
other. Meanwhile concurrency means more than one
action happen simultaneously but they are not to in-
terfere with each other (Halsey 2004). For example see
Figure 2. There are three deadlines, denoted by x1,
xo and x3. The x5 and x3 happen at the same time
point. These deadlines x1, X2 and x3 require actions
(a1,a2,a3), (a1,a4,a5) and (aj,as,ag) respectively. Ei-
ther some parts or all parts of the actions’ durations
are overlapped in time or executed in parallel. The ac-
tions as and a3 must interact with action a;. These
actions must execute during the life time of action a;.
But there is no interaction between a, and az. The
actions are required to execute simultaneously in order
to achieve the deadline. The actions a4, a5 and ag are
also examples of coordination where action as and ag
are executed in some portion of the life time of as. Fur-
thermore, the a5 and ag actions demonstrate the choice
of how to act. In achieving deadlines xo and x3, ei-
ther a5 or ag has to be executed following as. Another
clear example of a domain in which some actions must
happen in parallel, which has been investigated in the
previous literature, is the Match Domain (Halsey, Long,
& Fox 2004). However, the choices on how to act is not
demonstrated in this domain.

e Planning duration

HI
E
HI

Figure 2: concurrent actions

Due to the importance of the above features in the
SCO domain, we also investigate the capability of these
planners to support these requirements. The coordina-

tion and concurrent features were indirectly performed
in the temporal constraint problem to which Crikey was
applied in experiment 1. In Crikey, actions are either
wrappers or contents with wrappers containing contents
and contents being completely contained within wrap-
pers. Some content actions are also wrappers for other
actions. In experiment 1, we have encoded deadlines
as the wrapper actions. The other six actions decribed
in the beginning of this section were the content ac-
tions. These content actions have to start after the
wrapper start and end before the wrapper end. In
other words, the wrapper and the content actions are
performed in parallel. The wrapper and the content ac-
tions can be illustrated as actions (a1,az2,a3) in Figure
2. Lpg-td and SgPlans were then applied to the same
domain, since both planners are capable of handing all
PDDL2.1 features. Unfortunately, neither planner can
solve the problem. As in Table 5, besides SCO domain,
two other domains including the match domain were
also tried. The driverlog-shift domain (Halsey 2004) is
an extension of the driverlog domain used in IPC3. In
this extended domain, the driver can only work for a
certain amount of time or in a shift. The shift action
is modelled as an envelope action. Therefore, driving
and walking actions must be fitted into the shift ac-
tion. SgPlans produced a plan for this domain. But,
in the plan, the walking and driving actions are per-
formed after the shift action finished. In other words,
they are performed in a sequence. SgPlans and Lpg-td
are able to perform concurrent actions, provided that
the actions do not interfere with each other. This is as
a result of both planners generating the temporal plan-
ning problem by finding out the sequential solution first
and rescheduling them using temporal information.

domain Crikey SgPlan | Lpg-td
SCO plan no no
obtained | solution | solution
match plan no no
obtained | solution | solution
driverlog-shift plan plan no
obtained | obtained | solution

Table 5: domain with concurrent actions

Moreover, domains that are encoded with coordina-
tion or concurrent actions will have plans that shorten
the makespan. Refer to Table 2. Although Crikey and
Lpg-td choose the same action, the plan duration gen-
erated by each of the planner is different. The plan
produced by Crikey has a shorter duration than the
plan generated by Lpg-td.

The overall performance based on the criteria out-
lined or properties underlying in the SCO problems in
the experiment are summarized in Table 6. Crikey is
very good at maintaining constraints and coordination
of tasks but very poor at metric optimization. Nev-
ertheless for this problem, Crikey is still able to pro-
duce a feasible plan. Lpg-td, although it has a very

104

good performance both in maintaining constraints and
optimization, cannot perform coordination of actions.
When this is required no plan can be produced at all.
Although, SgPlans can handle temporal constraints as
benchmarked in IPC5, the domains involved do not in-
clude choices about how to act. An example arises in
the truck domain. This domain only encodes what ac-
tion should be carried out in order to meet the tempo-
ral constraints. SgPlan; seems unable to reason with
choices about how to act. Therefore for some instances
in experiment conducted, SgPlans did not produce any
plan. Unlike Lpg-td, SgPlans is sometimes able to pro-
duce a plan for a concurrent domain but the execution
of actions in the plan are performed in a sequenced
manner.

planner time optimization coor-
constraint metric dination
Crikey very poor very
good good
Lpg-td | very good very good cannot
performed
SgPlan poor poor cannot
performed

Table 6: overall performance of planners

Subclass of SCO problem

As discussed in the beginning of the paper, SCO is a
hard combinatorial problem that requires not only rea-
soning about the logical relations between actions but
also has to examine the temporal and numeric rela-
tions between actions. Since it is very hard to solve
the overall problem features, only the subclass of this
problem will be focused on in this research. The prop-
erties of the subclass problem are identified as follows.
The very important properties are maintaining tempo-
ral and numerical constraints. The second feature is
the optimization metric in term of numerical values.
All these properties require coordination between ac-
tions as well as actions to be performed concurrently
in the generated plan. Since planning problems have a
strong scheduling element, we will have a selection of
alternative actions (planning) within the large selection
of actions described in the domain. This situation ex-
hibits the how choices action in the domain. Within
the alternative actions, there is also a selection of pos-
sible resources, giving rise to a scheduling problem. All
these actions are weighted by numerical values repre-
senting their costs. At this stage we are not interested
in optimization in term of temporal metrics.

Conclusion

This paper discusses the features of SCO planning prob-
lems and investigates the performance of state-of-the-
art planners on domains with these features. We have

run the experiments on the individual features sepa-
rately. The planners are expected to handle some of
the features, such as minimization of total-cost or total-
time metric as well as satisfying the hard constraints.
However, as we can see, none of the state of the art
planners we tried were able to successfully handle all
the features. Therefore, experiments conducted to date
have identified several improvements in the planning
technology that are required in order to solve the SCO
type of domain.

Future Work

In the near future we will develop a subclass of the SCO
problem that combines all the features together. The
more complex optimization metric will be included in
the problem since the numerical features considered in
the experiment so far are very simple. As numerical
constraints are identified as one of the properties of the
SCO subclass, the numerical constraints will also be
included in the domain. The domain will be used to test
a variety of planners. We plan to adopt Crikey as the
basis of the new technology that we intend to develop.
Crikey is chosen due to its ability to cleanly manage
the tightly coupled interaction between planning and
scheduling as well as other features such as duration
inequalities and interesting metric optimisation.

References

Chih-Wei; Wah, B.; Ruoyun; and Chen, Y. 2006.
Handling soft constraints and goal preferences in SG-
PLAN. In ICAPS Workshop on Preferences and Soft
Constraints in Planning. ICAP.

Cresswell, S., and Coddington, A. 2003. Planning
with timed literals and deadlines. In Porteous, J., ed.,
Proceedings of the 22nd Workshop of the UK Planning

and Scheduling Special Interest Group, 22—-35. Univer-
sity of Strathclyde. ISSN 1368-5708.

Dean, T., and Kambhampati, S. 1997. Planning and
scheduling. In The Computer Science and Engineering
Handbook 1997. CRC Press. 614-636.

Dimopoulos, Y.; Gerevini, A.; Haslum, P.; and Saetti,
A. 2006. The benchmark domains of the determin-
istic part of IPC-5. In Booklet of the 2006 Planning
Competition, ICAPS’06.

Edelkamp, S., and Hoffman, J. 2003. PDDL2.2: The
language for the classical part of the 4th international
planning competition.

Fox, M., and Long, D. 2003. An extension of PDDL

for expressing temporal planning domains. Journal of
Artificial Intelligence Research 20:61-124.

Fox, M.; Long, D.; and Halsey, K. 2004. An inves-
tigation into the expressive power of PDDL2.1. In
Proceedings of ECAI’0.

Gerevini, A., and Long, D. 2006. Plan constraints
and preferences in PDDL3. In ICAPS Workshop on
Preferences and Soft Constraints in Planning. ICAPS.

105

Gerevini, A., and Serina, I. 2002. LPG: A planner
based on local search for planning graphs. In Proceed-
ings of the Sixth International Conference on Artificial
Intelligence Planning and Scheduling.

Gerevini, A.; Saetti, A.; and Serina, I. 2004. Planning
with numerical expressions in LPG. In Proceedings
of the 16th European Conference on Artificial Intelli-
gence (ECAI-04). 10S-Press, Valencia, Spain.

Halsey, K.; Long, D.; and Fox, M. 2004. CRIKEY -
a planner looking at the integration of scheduling and
planning. In Proceedings of the Workshop on Integra-
tion Scheduling Into Planning at 13th International

Conference on Automated Planning and Scheduling
(ICAPS’03), 46-52.

Halsey, K. 2004. CRIKEY! Its Co-ordination in
Temporal Planning: Minimising Fssential Planner—
Scheduler Communication in Temporal Planning.
Ph.D. Dissertation, Ph. D. Dissertation, University of
Durham.

Long, D., and Fox, M. 2003. The 3rd international
planning competition: Results and analysis. Journal
of Artificial Intelligence Research 20:1-59.

Smith, D. E.; Frank, J.; and Jonsson, A. 2000. Bridg-
ing the gap between planning and scheduling. The
Knowledge Engineering Review 15:47-83.

Weld, D. S. 1994. An introduction to least commit-
ment planning. Al Magazine 4.

Velocity Tuning in Currents Using Constraint Logic Programming

Michaél Soulignac-**

* THALES Aerospace
2 Avenue Gay Lussac
78852 Elancourt, FRANCE
{firstnane.|lastnane} @r .t hal esgroup. com

Abstract

Because of its NP-hardness, motion planning among
moving obstacles is commonly divided into two tasks:
path planning and velocity tuning. The corresponding
algorithms are very efficient but ignore weather condi-
tions, in particular the presence of currents. However,
when vehicles are small or slow, the impact of currents
becomes significant and cannot be neglected. Path plan-
ning technigues have been adapted to handle currents,
but it is not the case of velocity tuning. That is why
we propose here a new approach, based on Constraint
Logic Programming (CLP). We show that the use of
CLP is both computationally efficient and flexible. It
allows to easily integrate additional constraints, espe-
cially time-varying currents.

Introduction

Mobile robots are more and more used to collect data in
hostile or hardly accessible areas. For physical or strate-

Patrick Taillibert *

Michel Rueher*

** Nice Sophia Antipolis University
I3S/CNRS, BP 145

06903 Sophia Antipolis, FRANCE
rueher @ssi.fr

ignoring currents can lead to incorrect or incomplete plan-
ners. Such planners may return a physically infeasible, path
or no path at all, even if a valid path exists.

Some extensions have been developed in the field of path
planning, but currents remain neglected during velocity tu
ing.

That is why we propose here a new velocity tuning ap-
proach, based on Constraint Logic Programming (CLP). Our
experimental results show that this approach is compuiatio
ally efficient. Moreover, it offers a flexible framework, al-
lowing to easily integrate other constraints, such as time-
varying currents or temporal constraints.

This paper is organized as follows. Section | recalls the
existing planning methods. Section Il formalizes the prob-
lem of velocity tuning in presence of currents. Section IlI
introduces our modeling of this problem in terms of a Con-
straint Satisfaction Problem (CSP) on finite domains. Sec-
tion IV proposes examples of additional constraints. Fynal
section V provides some experimental results, obtained on
real wind charts.

gic reasons, these robots may not be able to receive directly
orders from a headquarter in real-time. Thus, they have to
embed their own motion planner. Because the environment
is often changing or unknown, this planner has to be very

[. Motion planning in currents

reactive.

Motion planning is yet a complex task, answering to two

The decomposition of motion planning into path planning
and velocity tuning tasks was first introduced in (Kant &
Zucker 1986). This decomposition is widely used in robotics

questions simultaneously: where should the robot be, and because both tasks can be done in a polynomial time.

when? It is known to be a NP-hard problem (Canny 1988).
That is to say, the computation time grows exponentially
with the number of obstacles.

However, it has to be noticed that it is source of incom-
pleteness: the path planning phase may generate a path
which is unsolvable in the velocity tuning phase.

To guarantee a reasonable response time, motion planning1. Path planning

is commonly divided into two simpler tasks: (1path plan-
ningtask, dealing with the questiavhere and (2) avelocity
tuningtask, dealing witlwhen

Path planning methods consist in finding a curve between
a start point4 and a goal point3, avoiding static obsta-
clesO’ (generally polygonal-shaped). They can be divided

Algorithms associated to these two tasks are generally into four categories: (1) decomposition methods, (2) poten
based on simple assumptions. For instance, obstacles aretjal fields methods, (3) probabilistic methods, and (4) meta
often modeled as polygonal-shaped entities, moving at con- heuristics.

stant velocity. Data about weather, in particular aboutdqgi
water) currents, are usually ignored.

However, in the case of Unmanned Air Vehicles (UAVS)
or Autonomous Underwater Vehicles (AUVs), which may
be small or slow, the impact of currents is significant. So,

106

Graph decomposition methods (fig. 1a) are based on a
discretization of the environment into elementary ergitie
(generally cells or line segments). These entities (plus
and B) are then modeled as nodes of a graphThe initial
-i.e. concrete- path planning problem is thus reformulated

into an abstract one: find the shortest path from ndde
nodeB in G. To do this, classical search techniques are ap-
plied, such as the well-knowA* algorithm (Nilsson 1969)

or one of its numerous variants.

Potential field methods (fig. 1b) (Khatib 1986) consider
the robot as a particle under the influence of a potential field
U, obtained by adding two types of elementary fields: (a) an
attractive fieldU,,,, associated t@ and (b) repulsive fields
U¢.,, associated to obstaclé¥. The pointB corresponds
to the global minimum of the functioti. The path between
A andB can thus be computed by applying gradient descent
techniques irU values, starting fronA.

Probabilistic methods (fig. 1c) (LaValle 1998) are based
on a random sampling of the environment. These meth-
ods are a particular case of decomposition methods: random
samples are used as elementary entities, linked to theie clo
neighbors, and modeled by a graph. Probabilistic RoadMap
(PRM) and Rapid Random Trees (RRT) are the most famous
methods in this category.

Metaheuristics refer to a class of algorithms which sim-
ulate natural processes (fig. 1d) (Zhao & Yan 2005). The
three main metaheuristics applied to path planning are: (a)
genetic algorithms, inspired by the theory of evolution-pro
posed by Darwin; (b) particle swarm optimization, inspired
by social relationships of bird flocking or fish schooling); (c
ant colony optimization, inspired by the behavior of ants in
finding paths from the colony to food.

(©

Figure 1. Paths (in light grey) obtained by the following
methods: (a)A* algorithm on regular cells; (b) potential
fields; (c) RRT; (d) particle swarm optimization.

All these methods have two common characteristics: (1)
the costr (M, N) between two pointd/ and N represents
the Euclidean distana& M, N) and (2) the computed path
is made up of successive line segments. This last property is
the base of our modeling, described in section Il.

However, in presence of currents, the fastest path is not
necessary the shortest. To illustrate, let us consider i swi
the fastest way to linkd and B is more circle-shaped than
linear.

107

In this context, new cost functions have been proposed,
to make a compromise between following the currents and
minimizing the traveled distance (Garau, Alvarez, & Oliver
2005)(Petregt al. 2007).

2. Velocity tuning

The existing velocity tuning approaches generally work in
a 2-D space-time. The first dimensiore [0, L] (whereL
is the length of the path) represents the curvilinear abacis
on the path. The second onec [0,7] (whereT is the
maximal arrival time), the elapsed time since departure. In
this space-time:

e Each point of the path is represented by a column. In
particular, start and goal points are represented by the ex-
treme left and right columns.

e Each moving obstacl®’ generates a set tdrbidden sur-
facesS’ (often only one). These surfaces contains all cou-
ples(l,t) leading to a collision between the robot anitl
For instance, in figure 2b, the abscigsa 10 is forbidden
betweent = 10 andt = 15.

Figure 2: (a) path of fig. 1d, adding two moving obstacles;
(b) the corresponding 2-D space-time.

Once the space-time is built, the initial velocity tuning
problem can be reformulated into a path planning problem in
this space-time. However, this space-time has specific con-
straints, notably due to time monotony or velocity bounds.
Therefore, specific methods have been applied, like: (1)
adapted decomposition methods, (2) B-spline optimization
and (3) the broken lines algorithm.

As explained before, decomposition methods (figure 3a)
divide the space-time into elementary entities and apply
graph search techniques. Since a lot of paths are temporally
equivalent (they arrive at the same time), an appropriage co
is necessary. For instance, (Ju, Liu, & Hwang 2002) used
a composite cost function balancing the arrival time and the
velocity variations.

B-spline optimization techniques (figure 3b) consist in
representing the optimal trajectory in the space-time by a B
spline function (Borrow 1988), parameterized by some con-
trol points K*. Graphically, the pointd<? locally attracts
the curve of the B-spline. Their position is computed in or-
der to minimize the mean travel time, using interior point
techniques.

The broken lines algorithm (figure 3c) (Soulignac & Tail-
libert 2006) tries to linkA and B using a unique velocity,
i.e. a unique line segment in the space-time. At each inter-
section of the line with a surfac§’, a velocity variation is
introduced, by "breaking" this line into two parts. To sum
up, this algorithm tries first to arrive as earlier as possibl

and then to minimize velocity variations.

i

©

t

L

@

Figure 3: Paths (in light grey) obtained in the space-time of
fig. 2 by the following methods: (a) visibility graph; (b) B-
spline optimization with 4 control points; (c) broken lines
algorithm.

All these methods neglect the influence of currents. This
is acceptable in presence of weak currents, since trajector
tracking techniques such as (Park, Deyst, & How 2004) re-
main applicable to dynamically adjust the robot’s velacity

However, when currents become strong, the robot is nei-
ther guaranteed to stay on its path, nor to respect the time
line computed by the velocity tuning algorithm. That is why
we propose a new approach, based on CLP techniques.

Il. Problem Statement
1. Informal description

A punctual robot is moving on a pre-computed p&tfrom

a start sited to a goal siteB, in a planar environment con-
taining moving obstacles and currents, with a bounded ve-
locity.

It has to minimize its arrival time aB, with respect to the
following constraints: (1) obstacle avoidance and (2) cur-
rents handling. Data about obstacles and currents are known
in advance.

y

ol

Figure 4: A velocity tuning problem with currents.

Each moving obstacl@’ is a disk of radius-. This disk
corresponds to a punctual mobile surrounded by a circular
safety zone. The position of the mobile -i.e. the center of
the disk- is given at every timgby p’. Note that contrary to
most approaches, there is no restriction on the fungtion

Finally, the current can be seen as a 2-D vector field
known either by measurement or forecasting. Thus, the
data aboufc are, by nature, discontinuous, i.e. defined on
the nodes of a mesh (not necessary regular), calleent
nodes The mean distance between current nodes may cor-
respond to the resolution of measures or the precision of the
forecast model.

The robot’s velocity vector relative to the framg
(ground speed) is denoteéd, and its velocity vector rela-
tive to the currenic’ (current speed) is denotad.

It is important to understand that only depends on the
engine command, whereasis impacted by the curren .
Indeed applylng the velocity composition law, the quaesit

, ¢ andw are linked by the following relation:

T=w+7c Q)
Our problem consists in finding a timing functien
c:MeP—tel0,T)] @3]

minimizing the arrival timetg = o(B), with respect to
the following constraints:

1. maximal velocity: the modulus of the robot’s velocity-rel

ative to the current, denoted, is smaller thanw,,,..
Note that the boundv,,., only depends on the robot’'s
engine capabilities;

o 2. obstacles avoidance: the robot has to avoid a set of
2. Form_allzatlon_ | moving obstacles:
The environment is modeled by a 2-D Euclidean spice 3 cyrrents handling: the robot has to take into account dis-

with a frame of referencé& = (0,z,y). In R, the coor-
dinates of a vectot/ are denotedu,, u,) and its modulus
U.

The pathP is defined by a lisV of n viapoints, denoted
Vi, Each viapoin?/’ is situated orP at curvilinear abscissa
I*. Two successive viapointd’¢ andV:*1) are linked by a
line segment. In other term®,is made up of successive line
segments, which is the result of all path planning methods
presented before.

Note thatP is obtained by using adapted cost functions,
incorporating the influence of currents (otherwise the eelo
ity tuning would be meaningless).

108

turbances due to the field

The quantityT is calledtime horizon It materializes the
maximal arrival date td3. This upper bound may be due to
the embedded energy or visibility conditions.

l1l. Velocity tuning using CLP

Velocity tuning using CLP consists in two steps: (1) defin-
ing the constraints describing the velocity tuning problem
and (2) solving the corresponding CSP, with the adequate
search strategies.

1. Data representation

The constraints above are defined on finite domains.
Therefore, the initial data about the environment are refor
mulated using an appropriate representation.

Time representation

The interval[0, T is discretized using a constant step
The values depends on the context. In our applications,
[0,T] contains less than 1000 time steps. For instance,
T = 2 hours and: = 10 seconds leads to 720 time steps.

Currents representation

As we explained before, the current is known in a finite
number of points, called current nodes, obtained by mea-
surement or forecasting. Since current nodes alreadydaclu
an error, we think that it is meaningless to finely interplat
the value of the current between these nodes.

Therefore, we propose the concepEtémentary Current
Area (ECA). An ECA is an polygonal region of the envi-
ronment, in which the current is homogeneous. Each ECA
contains a unique current node. The value of this node is
extended to the whole area.

ECAs are computed by building the Voronoi diagram
(Fortune 1986) around the current nodes. This diagram is

made up of line segments which are equidistant to the nodes.

Itis illustrated in figure 5, for uniform and non-uniform eis
tributions.

L,

@ (b)
Figure 5: lllustration of ECAs for two distributions of cur-
rent nodes (grey arrows): (a) uniform and (b) non-uniform.

Artificial viapoints

Artificial viapointsare additional viapoints guaranteeing
that the current is constant between two successive via-
points. They are obtained by intersecting the pRtland
the borders of ECAs. Since bofhand borders are made up
of line segments, these intersections can be computed.easil

The initial list V' of viapoints is thus enlarged intg’,
containingn’ > n elements. The current between two suc-
—

cessive viapoint¥* andV ! is denotedc! .
2. Constraints definition

In this part, we show how the velocity tuning problem
can be described thanks to two types of constraints: (a) con-
straints related to currents and (b) constraints relatetbio
ing obstacles avoidance.

109

P

,>
|
\

Figure 6: Atrtificial viapoints (white dots) obtained for the
Voronoi diagram of fig. 5a. These viapoints are added to the
initial viapoints (black dots).

Note that the currents are constant in time here (time-
varying currents are considered in section V).

a. Constraints related to currents

—
Let us consider the straight line mov&, between the
viapointsV* = (2%, y%) andVi*t! = (2¢+1 4i*1). For this
move, we define:

— .
e ¢’ the velocity of the current
-
e o' the robot’s velocity relative to the franie

e w' the robot’s velocity relative te'

As explalned in equation w andw are linked byv
Moreover since we want to impose the m@&?eto
the robot,v and dl are collinear.

w+c

Thus if we denote&’ the result of translating by vec-
tor c , we can build the vectovl by intersecting:

. —
e The lineL?, of direction vectord®

e The circleC?, of centerC'* and radiuso?

If I{ and I} are the intersections obtairfeghossibly con-
— . — — —
founded),v* can be either the vectar; = V'I} or v}
-
V*I5. This is illustrated in figure 7.

— .
Figure 7: Different possibilities for”, for w* < wy,qz-

INote that we are sure that at least one intersection exists, be-

cause the pat® is supposed to be entirely feasible.

The radiusw’ = w,,q, allows to compute the minimal
— .
and maximal modulus fos*, denoted?

min

andv? -

max*®
= min (v}, vh)
= max(v}, v})

,Umax (3)

— - . o .
If vj andd® are not in the same direction, the robot is not

moving toward the next viapoirit’*!, but at the opposite
(backward move). In this case, to force a forward move, the
modulusv; is replaced by 0 in equation 3.

These results allow us to describe the robot’s cinematic in
presence of currents:

Vie [l,n']: t€0,T] (Dyi)
vi € [’Ufnirw Uinaw] (D’UZ)
th =t 4 dt /ot (Ctiwi)

andv? are known and

max

Note that the quantitie#, v’ ;.
constant:

e The distancel’ is deduced from position of viapoints’
andVitt,

e The velocity bounds?

_ rin @ando?
equation 3.

max

are computed using

~Therefore, the only variables in the above equations are
t* andv® (both scalar).

b. Constraints related to moving obstacles avoidance

As explained in section 1.2, moving obstacles can be rep-
resented in a 2-D space-tinié ¢), which [represents the
curvilinear abscissa on the path andt the elapsed time
since departure.

In this space-time, each moving obsta€lé generates a
set offorbidden surfacess’, containing all forbidden cou-
ples(l,t), leading to a collision between the robot anéd

Mi+1
~L
T 9 “
0f--------- ‘
a ~ _
Vi Vj MIT le~
4l . Vi+l
3f---
t 2""12’
0 li Ij L 0 li li+1 L

Figure 8: (a) forbidden times for two viapoints andV7:
F' =[0,3] andF7 = [2,4] U [10, 14]; (b) impossible move
between two successive viapoidts’ and M1 M* ¢ F*
and M+ ¢ Fitl put[M?, M*+!] intersects the forbidden
surfaceS?.

110

Therefore, for each viapoiit?, we can define the interval
of forbidden timesdenoted:™. This interval has the follow-
ing meaning: ift! € F?, then the robot collides a moving
obstacle at viapoint’®. F is computed by intersecting all
surfacesS’ with the linel = [*.

As shown in figure 8aF" is an union of subintervals
F{ U F; U ..U F,, wheres' denotes the number of
intersected surfaces.

A first idea to model obstacle avoidance would consist in
using the simple constraint:

Vi:t' ¢ F' (4)
However, this constraint is too weak to avoid collisions in
all cases.

To illustrate this point, let us consider two successive
viapoints V¥ and Vi*!, In the space-time, the visit of
these viapoints is symbolized by two poinfg’ and
M1, Even if both points respect equation 4, it is not
necessary the case for all intermediate points lying on
the line segmenfM*, M**1]. Indeed, this line segment
can intersect some forbidden surfaces, as shown in figure 8b.

This problem appears when a forbidden surface is by-
passed by one side at poilt’ and by the other side at point
M1, In the example of figure 8k\/* is above the surface
So, whereas\/*+! is below, which leads to an intersection.

A simple way to avoid this situation is to force all the
points of the space-time to be on the same side of each
forbidden surfaces. This is modeled by the following con-
straints:

Vie[l,n]: F'=[t;, 6] U...Ultg, b

Vj e [1,Si] : bj ELO, 1} (Dbj)
t/b_ >t; =T (1 - bj) (Ctli,bj>
t<t;+T-b, b

The binary variables; allow to represent how the forbid-
den surfaces; is by-passed. Indeetl; = 1 if the point M*
is aboveS}, elseb; = 0.

Since these variablds are shared by all points/*, they
are forced to by-pass forbidden surfaces in the same way.
Combining the variables; andT allows to avoid the use of
reification techniques: if one constraint is true, the otker
naturally disabled (sincéi : ' < T).

2. CSP solving
a. CSP formulation

A CSP is commonly described as a tripleX, D, C),
where:

e X = U{a'}is a set of variables,

e D =1I D"is a set of domains associatedXo(D’ repre-
sents the domain af*),

e C = U{C"} is a set of constraints on elementsXf

Using these notations, our velocity tuning problem can be
modeled by the following CSP:
o X = U{v',t'b;}, i € [1,n'], j € [1,s'] wheren' is
the number of viapoints (including artificial ones) asid

the number of intersected forbidden surfaces by the line
[= I" in the space-time,

o D = Dy X Dy; X Dy,

o C=0Cl iU Ctli,bj U Ct2i7bj'

This CSP has the following properties:

e Itcontains2n’ +max;{s’} variables and’ + 2 max; { s’}
constraints. In our applications;, < 50 andmax;{s’} <
10.

¢ All constraints are linedr

e Variables are defined on finite domains, with the follow-
ing sizes:
— |Dy;| ~ 1000 (number of time steps)
— | Dyi| = 100 (number of different velocities)
— |Dy;| = 2 (binary variables)

b. Enumeration strategy

Since many solutions are temporally equivalent, we chose
the following enumeration strategy:

e Variables orderingb;, thent’, thenv® (in the decreasing
order of7).

e Values ordering:

— increasing values fab; (to by-pass the forbidden sur-
face by the bottom first)

— increasing values faf (to determine the first valid time
steps)

— decreasing values fof (because’ ~ O(1/t%))

With this strategy, we try to visit the viapoints as earlier
as possible, from the last viapoint to the first viapoint.

The variables; allow to roughly identify a first solution,
by determining by which side the forbidden surfaces are by-
passed. Then, the variablé'sand v’ refine this solution.
Note that the enumeration mainly concern the variablgs
because a value of imposes a value far’.

IV. Extension to other constraints

Modeling the velocity tuning problem as a CSP allows
to easily integrate other constraints. This section gives t
examples: (1) time-varying currents and (2) temporal con-
straints.

1. Time-varying currents

In a forecast context, values of currents are valid during
a time intervalAT, depending on the application. For in-
stance, in maritime applicationd,7" represents a few hours.

As for ECAs, we find that it is useless to interpolate these
data between two intervals. We thus consider that a time-
varying current is defined by successive levels, as shown in
figure 9.

111

@

CX

1510

t5

(b)

L,

Figure 9: A time-varying current. (a) graph ef andc,
functions, defined by levels; (b) the corresponding vejocit
vector.

-
Let us consider a current’, between viapointd’¢ and
Vil changingk times in the intervalo, 7). This interval is
thus splitintok+1 subintervalsio, ¢1], [t1, t2], ..., [tk—1, tx],
[tx, T]. In each subintervat;, t;,], the value of the current
—

is constant, denoteq'.)

The influence of this time-varying current can be mod-
eled in our CSP by using some binary variables. Indeed, the
equation(D,;) is replaced by the following constraints:

Vjiel[l,k—=1]: b; €{0,1}
>t b ®)
tr < (1 —bj) 'T+tj+1

Yiiibi=1)
v > bj 'vﬁnmﬁj (7

j=1
v S bj : 'U:nar,j (8)

j=1

The binary variables; allow to identify the subinterval
[t;,t;+1] in which lies the variable’. In other termsb; = 1
if and only if ¢ € [¢;,¢;11]. This is modeled by equations 5
and 6.

Then, equations 7 and 8 allows to impose velocity bounds
onv’ according to this subinterval. Thatisgife [t;,¢;41],

thenv’ € [v! v . The values of;,;,, ; andv},,,. ;

min,j?
—

are computed as explained in part Ill.1a, substitutihdpy
-

;nax]
5J

c;-.
This model is simple but rough. More precisely, itignores
current changes between two successive viapoints. There-
fore, an error is potentially made on velocity bounds. This

error remain negligible if the distanck& between viapoints
is small.

2pfter the change of variable’ = 1/v".

robot loiterin

y f wind
obstacle
X

Qa30000000 - - - -EF - - - - X

wind

\ wind

Q@O

\ wind

QY - - - - X T----X

\ wind

(a) t=[0:00,2:40] (b) t=[2:40,6:00]

(c) t=[6:00,9:00]

(d) t=[9:00,12:00] (e) t=[12:00,20:00]

Figure 10: Complete example: (a)(b) moving obstacle avaida(c) effect of a current changetat 6min, (d) loitering during
D = 3min (in black square) and (e) effect of a time window, impgdine arrival at = 20min.

If it is not the cased’ can be reduced by artificially sub-
dividing ECAs. By this way, the size of ECAs is decreased
and the number of artificial viapoints increased. Therefore
viapoints will be globally closer from each other.

2. Temporal constraints

In this section, we explain how to temporally constrain a
viapoint V. Especially, we study two temporal constraints
particularly mentioned in literature: (a) time windows and
(b) loitering.

a. Time windows

A time window W' is a couple(w’, w?), specifying the
minimum datew® and the maximum date’ for the robot to
visit the viapointl/*.

In a military context, by example, time windows may cor-
respond to strategic data, such as: "the target will bg‘at
betweenw’ andw?".

Modeling of W is quite natural in our CSP, leading to the
single constraint:

t € [w', wi]
b. Loitering

The concept of loitering consists in forcing the robot to
wait at viapointV? for a given durationD?. From a practi-
cal point of view,D? may correspond to the minimum time
required to perform a task &t’.

Here, our goal does not consist in choosing the best value

of D?, but choosing the best beginning tiidfor the loiter-
ing task.

time window —>,
wind change
loitering
obstacle
avpidance
t
S1
thi)

0

Figure 11: The space-time corresponding to fig. 10

1. lllustrative example

We illustrate here all the constraints presented before
through a complete example containing: a moving obsta-
cle, a current change, a loitering task and a time window on
arrival.

In this example, simple instances of the constraints have
been chosen: (1) the current is uniform on the map and (2)
the moving obstacle performs a straight-line move at con-
stant velocity.

The result obtained by our approach is depicted in figures
10 and 11. Figure 10 shows the different phases of velocity
tuning in the initial environment, and figure 11 in the space-
time.

2. Performance evaluation

In this part, we evaluate experimentally the impact of cur-

This choice seems to be hard, because it depends both onrent changes and moving obstacles on the computation time,
the moving obstacles and the current changes. However, it in the following conditions:

can be simply modeled in our CSP, replacing the constraint

(Ciwi) by :

th =t 4 d'Jv' + D' (9)

V. Experimental results

This section has two objectives: (1) illustrating our ap-
proach and (2) evaluating its performance.

112

e Hardware: Our approach has been run on.@Ghz PC
with 512M o of RAM, using thecl pf d library (Carlsson,
Ottosson, & Carlson 1997), provided by Sicstus.

e Current data: All data are issued from real wind charts,
collected daily during three months on Meteo France
websité (leading to about 90 different charts). The wind
changes are simulated as follows: to simulatevind

Shttp://ww.meteofrance.com/FR/mer/carteVents.jsp

changes, the intervdD, T is divided intok + 1 equal
subintervals. A different wind chart is used for each
subinterval.

e Moving obstacles As in figure 10, each moving obstacle
goes across the environment by performing a straight-line
move P, — P, at constant velocity. This move is com-
puted in the following way:

1. Two pointsP; and P, are randomly chosen on two bor-
ders of the environment, until an intersectibbetween
the path? and the line segmeiP;, P,] is detected.

2. The velocity of the obstacle is chosen such that the ob-
stacle and the robot are at the same time at point

The resulting computation times are provided in table 1.
Each cell is the mean time obtained on 100 different envi-
ronments.

Table 1: Average computation time (in ms), far moving
obstacles and current changes .
m

k 0 1 2 3 4 5 6
0 5 9 11 | 14 | 17 | 21 | 26
1 7 12 | 13 | 16 | 20 | 24 | 27
2 10| 14 | 15 | 18 | 23 | 28 | 29
3 16 | 21 | 23 | 25 | 34 | 35 | 38
4 51| 55 | 56 | 68 | 66 | 67 | 71
5 80| 97 | 104 | 106 | 111 | 112 | 114
6 98 | 127 | 147 | 152 | 159 | 162 | 166

From a strictly qualitative point of view, we can observe
that the global computation time remains reasonable (a few
milliseconds) even in complex environments. Therefore, we
think that our approach is potentially usable in on-boards
planners.

A theoretical study of the time complexity could confirm
these results. In particular, it could be interesting todify
ferent enumeration strategies and evaluate their impact on
computational performances.

Conclusion

In this paper, we proposed a velocity tuning approach,
based on Constraint Logic Programming (CLP). At our
knowledge, this approach is the first able to handle cur-
rents. Moreover, this approach is computationally efficien
and flexible.

Indeed, we explained that modeling the velocity tuning
problem into a Constraint Satisfaction Problem (CSP) al-
lows to easily incorporate more complex constraints, in par
ticular time-varying currents. Moreover, our experiments
showed the velocity tuning task could be performed in a
polynomial time. It means that our approach is potentially
usable in on-board planners.

Further works will investigate the coordination of multi-
ple robots sharing the same environment. In particular, we
will study how additional constraints could allow the coor-
dination of fleets of UAVs (Unmanned Air Vehicles).

113

Acknowledgments

The authors would like to thank Paul-Edouard Marson,
Maxime Chivet, Nicolas Vidal and Katia Potiron for their
careful reading of this paper.

References

Borrow, J. E. 1988. Optimal robot path planning using the
minimume-time criterion.Journal of Robotics and Automa-
tion 4:443-450.

Canny, J. 1988The Complexity of Robot Motion Planning
MIT Press.

Carlsson, M.; Ottosson, G.; and Carlson, B. 1997. An
open-ended finite domain constraint solverPhoceedings

of Programming Languages: Implementations, Logics, and
Programs

Fortune, S. 1986. A sweepline algorithm for voronoi dia-
grams. InProceedings of the second annual symposium on
Computational geometyg13—-322.

Garau, B.; Alvarez, A.; and Oliver, G. 2005. Path plan-
ning of autonomous underwater vehicles in current fields
with complex spatial variability: an* approach. IrPro-
ceedings of the International Conference on Robotics and
Automation 194-198.

Ju, M.-Y.; Liu, J.-H.; and Hwang, K.-S. 2002. Real-
time velocity alteration strategy for collision-free &ajory
planning of two articulated robotsJournal of Intelligent
and Robotic Systen33:167-186.

Kant, K., and Zucker, S. W. 1986. Toward efficient trajec-
tory planning: the path-velocity decompositiorhe Inter-
national Journal of Robotics Researbtv2-89.

Khatib, O. 1986. Real-time obstacle avoidance for manip-
ulators and mobile robots. IRroceedings of the Interna-
tional Conference on Robotics and Automatieolume 2,
500-5005.

LaValle, S. M. 1998. Rapidly-exploring random trees: A
new tool for path planningTR 98-11, Computer Science
Dept., lowa State Univ

Nilsson, N. J. 1969. A mobile automation: An applica-
tion of artificial intelligence techniquesProceedings of
the International Joint Conference on Artifical Intelligen
509-520.

Park, S.; Deyst, J.; and How, J. 2004. A new nonlinear
guidance logic for trajectory tracking?roceedings of the
AIAA Guidance, Navigation and Control Conference

Petres, C.; Pailhas, Y.; Patron, P.; Petillot, Y.; Evansrid
Lane, D. 2007. Path planning for autonomous underwater
vehicles.Transactions on Roboti23:331-341.

Soulignac, M., and Taillibert, P. 2006. Fast trajectorynpla
ning for multiple site surveillance through moving obsta-
cles and wind. IrProceedings of the Workshop of the UK
Planning and Scheduling Special Interest Grpap—33.

Zhao, Q., and Yan, S. 2005. Collision-free path planning
for mobile robots using chaotic particle swarm optimiza-
tion. In Proceedings of the International Conference on
Advances in Natural Computatip632—635.

114

SHORT PAPERS

Planning as a software component: A Report from the trenches$

Olivier Bartheye and Eric Jacopin
MACCLIA
Crec Saint-Cyr
Ecoles de Coétquidan
F-56381 GQER Cedex
{olivier.bartheye,eric.jacopin}@st-cyr.terre.defengouv.fr

An awarded claim While the Pengi paper (BRE &
CHAPMAN 1987) received a Classic Paper award at
AAAI'2006 (News 2006), to our knowledge we have yet
to see whether its main claim on classical planning is
true (AGRE & CHAPMAN 1987, page 269): thata“tra-
ditional problem solver for the Pengo domain [could not
cope] with the hundreds or thousands of such represen-
tations as (AT BLOCKS-213 427 991), (IS-A BLOCK-213
BLOCK), and (NEXT-TO BLOCK-213 BEE-23)". Or, stated
differently (AGRE & CHAPMAN 1987, page 272): [The
Pengo domain] is one in which events move so quickly that
little or no planning is possible, and yet in which human ex-
perts can do very well."

The Pengo domain is that of a video-game of the eighties
where a player navigates a penguin around a two dimen-
sional maze of pushable ice blocks. The player must collect
diamonds distributed across the maze while avoiding to get
killed by bees; but the player can push an ice block which
kills a bee if it slides into it.

The Pengi system described in the Pengi paperRBA&
CHAPMAN 1987) is a video-game playing system which just

The awarded claim eventually is about space and time
complexity in the Pengo domain and of classical planning
algorithms around 1987. But since 1987, processors are sev-
eral hundred times faster and fastest classical planners ar
able to produce plans with hundreds of actions in a matter
of seconds for certain problems. Consequently, we thought
it would be interesting and, most surely, fun, to see how the
current technology could cope with an 1980s video-game.

We here report on our very first steps towards the evalua-
tion of the claim about classical planning.

Classical planning, really? As a testbed, we chose Ice-
blox (BARTLETT, SIMKIN, & STRANC 1996, pages 264—
268), a slightly different version of the Pengo game for
which there exists an open and widely available java imple-
mentation (MRNELL 1996). For instance (cosmetic differ-
ences): flames, and not bees, are chasing the penguin-player
who must now collect coins, and not diamonds. Moreover
(different actions), coins must be extracted from ice b¥ck
Extraction means kicking seven time at an ice block to de-

happens to fight bees in the Pengo game. Pengi first searchestroy the ice and thus making the coin ready for collection.

for the penguin on the screen to register its initial positio

Such an ice block with a coin inside slides as well as any

Then searches for the most dangerous bee, an appropriateother ice block. So the player must kick in a direction where

weapon to kill that bee (that is, an ice block) and then navi-
gate the penguin towards that weapon to kick it. Both written

in Lisp, the Pengo game and the Pengi system are in fact the

the ice block cannot slide (e.g. against the edge of the game)
in order to extract an iced coin.
Instead of designing a new planning system, we decided

same Lisp program: the search for the penguin and the most to pick up an existing one, and eventually several, in ordler t

dangerous bee can be made directly by looking at the Lisp
data structures. According to the on-going conditions ef th

game, various pieces of code are activated (for instanee, yo
may wish to push an ice block several times before it be-

compare their relative performance if they had any ability a
playing Iceblox. We consequently decided to re-implement
Iceblox in Flash (Adobe 2007). Not only would we provide
a new implementation of the game, but also could we use the

comes a weapon). We refer the reader to the Pengi paper for p|ug-in architecture of the Flash runtime: a call and return

further information on the Pengi system. FinalljPengi]
plays Pengo badly, in near real time. It can maneuver be-
hind blocks to use as projectiles and kick them at bees and
can run from bees which are chasing it” (A GRE & CHAP-
MAN 1987, page 272).

mechanism can run (and pass in and out parameters to) any
external piece of executable code when put in the appropri-
ate directory.

This deviates from the original Pengi system which was
the same Lisp program as the Pengo game (and also deviates

Interpreted as a finite state machine, the Pengi system cang.q (DROGOUL, FERBER & JACOPIN 1991) where every-

easily be re-implemented and not only fight bees not badly
but also collect diamonds even in non trivial mazeR®
GOUL, FERBER, & JACOPIN 1991).

*Special thanks to Maria &%, Jorg HOFFMANN, Jana
KoeHLERand Derek IONG about the gripper domain.

117

thing was implemented in the same SmallTalk program), but
would eventually ease the comparison as classical planners
are not necessarily written in Flash.

However, this dramatically changes the setting of the
problem.

On one side, a classical planner becomes an external com-
ponent which happens to provide a planning functionality:
fine, that's how we want it to work.

On the other side, the world view of the Pengi pa-
per (AGRE 1993) is that of the dynamics of everyday
life (AGRE 1988) (plans do exist, but are better commu-
nicated to people than built from scratch) and thus is op-
posed to the heavily intentional BTMAN 1987; MILLER,
GALANTER, & PRIBRAM 1986) world view of planning.

In other words: the Pengi system is always in charge
of the actions (moving the penguin, kicking ice blocks)
whereas an external component is in charge only when ac-
tivated and is harmless otherwise: a player must be able to
play Iceblox when the planning component is not activated
or no component is plugged-in. This generates supplemen-
tary questions: when is classical planning activated and fo
how long? One more constraint. To respect the dynamics
of the domain of video-games, Iceblox must never stop and
must run while the classical planning component is plan-
ning: flames keep on chasing the penguin and sliding ice
blocks keep on sliding.

Consequently, the classical planning component is acti-
vated when the player presses ttp8 key. This activation

© v gripper

current statement : move roomd roomb

Figure 1. An anonymous classical planning system has built
(actually, it's FF, plugged-in our Flash application as de-
scribed earlier; but let's say we didn’t tell you) a plan fbet
following the gripper video game problem: 4 balls must be

is ended as soon as the player presses the keyboard againmoved from roonB to roomD. The on-going action (from

the arrow keys to move the penguin up, right, down and left;
and the space key to kick an ice block.

Hopefully, an anonymous classical planner shall build a
plan and return it to Iceblox. What shall Iceblox do with
this plan? Please, note that this question does not immedi-
ately entail further questions of interleaving classicialnp
ning and execution (MBROS-INGERSON& STEEL 1988).

To begin with, there is a matter of level of detail: actions
in Iceblox corresponds to keys pressed by the player. Is the
classical planning component really expected to build plan
with such actions?

Hints from a gripper video game On one hand, the clas-
sical planning component is expected to build plans with
keys pressed. First because it seems part of the claim: if the
classical planning component (that is, thiatlitional prob-
lemsolver” of the claim) has to cope “with hundreds or thou-
sands” of detailed representations describing the irtnal

final situations, then we can expect action representations
to be as detailed as the initial and final situations. However
the Pengi literature (BARE& CHAPMAN 1987; AGRE 1988;
1993; 1997; GAPMAN 1990) says nothing about this.

On the other hand, classical planners are used to cope
with high-level action description. For instance, herehis t
classical planning Move operator from the well-known grip-
per (Fox & L oNG 1999) domain:

Preconditions
Additions
Deletions

{at-robby(X)}
{at-robby(Y)}

Move(X,Y) =
vel.n) { {at-robby(X)}

10fficial player's guides are good sources of plans communi-
cated to video-game players that would otherwise take some t
to build.

118

the plan) is printed in the green area at the bottom of the
window: robby is moving from roonD to roomB; details

of the navigation (and of the picking up and down of balls)
are left to the Flash application.

In the gripper domaimnobby-the-robot uses its arms to
move balls from one room, along a corridor, to another. Nei-
ther bees nor flames prevanbby-the-robot from succeed-
ing in transporting balls from one room to another. It is nev-
ertheless easy to come up with a simplistic two dimensional
gripper video-game: your task is to move as fast as possible
a set of balls from their initial location to their final lodan
(see Figure 1).

As stupid as this may sound, this gripper video-game isn’t
too far from, say, the popular Sokoban video-game (in a
maze, blocks must be slided from one place to another, with
no time limit) (CHARRIER 2007). In such a puzzle, the
details of the block pushing activity are important: e.g. a
wrong push at a corner can make the problem unsolvable.
But more important is the block you push next, which se-
quences the player’s next Move. Similar Iceblox situations
where the player only needs to navigate towards iced coins
and then extract them do exist (See Figure 2).

Here are two operators which can combine into a plan and
solve the simple situation of Figure 2: filgbveToCoin(6,4),
thenExtract(6,4).

o Wt W

e
o Aar

Figure 2: A simplistic level in the Iceblox domain: move to
the ice block containing a coin and then extract it. Details
of the navigation, as far as possible from the flames, and of
the extraction of the coin (seven kicks to the ice block) are
again left to the Flash application.

MoveToCoin(X,Y)

Additions : {at-coin(X,Y)}

Preconditions : {at(X,2)}
{ Deletions : {at(X,2)}

Preconditions : {at-coin(X,Y),
iced-coin(X,Y)}
Additions : {at(X,Y),
extracted(X,Y)}
Deletions : {at-coin(X,Y),
iced-coin(X,Y)}

Since we have neither implemented flame-fighting nor
fleeing operators, flames must be un-aggressive so that the
coin of Figure 2 can be extracted. And because of the sim-
ple path from the Penguin to the coin, the initial and final
situations are simply describefht(1,1), iced-coin(6,4)} and
{extracted(6,4)}, respectively.

We won't discuss this extremely low number of formulas
needed to describe what could be calleaiiaimal Iceblox
problem: up to now, the biggest part of our work has been
devoted to stay as close as possible to the spirit of classi-
cal planning and video-games, while designing a satisfying
testbed. In the future, we hope to concentrate more on de-
signing classical planning predicates and operators ierord
to cope with more complex Iceblox situations.

Extract(X,Y)

References

Adobe. 2007. Flashattp://www.adobe.com/

News, A. 2006. Classic paper awardl Magazine 27(3)
4.

AGRE, P., and GIAPMAN, D. 1987. Pengi: An implemen-
tation of a theory of activity. IfProceedings of 6t* AAAI,
268-272.

AGRE, P. 1988. The Dynamics of Everyday life. Ph.D.
Dissertation, MIT Al Lab Tech Report 1085.

119

AGRE, P. 1993. The symbolic worldview: Reply to vera
and simon.Cognitive Science 17(1) 61-69.

AGRE, P. 1997. Computation and Human Experience.
Cambridge University Press.

AMBROS-INGERSON J., and $EEL, S. 1988. Integrating
planning, execution and monitoring. Rroceedings of 7¢"
AAAI, 83-88.

BARTLETT, N.; SIMKIN, S.; and SRANC, C. 1996.Java
Game Programming. Coriolis Group Books.

BRATMAN, M. 1987.Intentions, Plans and Practical Rea-
son. Harvard University Press.

CHAPMAN, D. 1990.Msion, Instruction and Action. Ph.D.
Dissertation, MIT Al Lab Tech Report 1204.

CHARRIER, D. 2007. Super sokoban 2.attp://d.-
ch.free.fr/

DrRoGgoul, A.; FERBER J.; and AcoPIN, E. 1991.
Viewing cognitive modelling as eco-problem solving: The
PENGI experience. IrProceedings of the 1991 European
Conference on Modelling and Simulation Multiconference,
337-342.

Fox, M., and LONG, D. 1999. The detection and exploita-
tion of symmetry in planning problems. RProceedings of
16t" 1JCAI, 956-961.

HORNELL, K. 1996. Icebloxhttp://www.tdb.uu.-

se/"karl

MILLER, G.; GALANTER, E.; and RIBRAM, K. 1986.

Plans and the Structure of Behavior. Adams-Bannister-
Cox.

Nurse Scheduling Web Application

Zdenék Biiumelt'2, Pfemysl Siicha', Zdenék Hanzalek' 2

!Department of Control Engineering, Faculty of Electrical Engineering
Czech Technical University in Prague, Czech Republic, {baumez1, suchap, hanzalek}@fel.cvut.cz

2Merica s. . 0., Czech Republic, {imedica, hanzalek}@merica.cz

Abstract

The focus of this paper is on the development of a web
application for solving Nurse Scheduling Problem. This
problem belongs to scheduling problems domain, ex-
actly timetabling problems domain. It is necessary to
consider large amount of constraints and interactions
among nurses, that can be simplified through web ac-
cess.

Introduction

Preparation of multishift schedule is rather difficult process
which incorporates couple of constraints (e.g. minimum
number of nurses for each type of shift, nurses’ workload,
balanced shift assignment) and interaction of several users
(nurses’ requests consideration). Even though single-user
nurse scheduling applications avoid rather painful manual
process, they do not allow easy access of all nurses to inter-
act with each other. This problem can be efficiently solved
using modern web technologies, while carefully considering
all specific features of such application; e.g. large amount of
human interactions, dramatic impact on satisfaction of indi-
vidual nurse as well as good mood in nurse team.

Definition of Nurse Scheduling Problem

Nurse Scheduling Problem (NSP) is NP-hard problem, that
belongs to timetabling or personnel scheduling domain. The
solution of this problem should satisfy all constraints, that
are set on the input. With larger instances (growing with
number of nurses, number of days in schedule, set of con-
straints) NSP comes to the combinatorial explosion and it is
harder to find an optimal solution.

Related Works

There are several views for solving NSP. In background pa-
per (Hung 1995) there is a history of NSP research from the
60’s to 1994. Other bibliographic survey with one described
approach is in (Cheang et al. 2002). More actual survey is
presented in (Burke e al. 2004).

On one hand, there is the branch of optimal solution ap-
proaches. It includes linear programming (LP) and inte-
ger linear programming (ILP) (Eiselt & Sandblom 2000).
On the other hand, there are some heuristic approaches.

120

One way to find some solution is to use artificial intelli-
gence methods (e.g. declarative and constraint program-
ming (Okada 1992) or expert systems (Chen & Yeung
1993)). The second way is to use some metaheuristics (sim-
ulated annealing, tabu search (Berghe 2002) or evolutionary
algorithms (Aickelin 1999)).

Contributions

This paper uses Tabu Search approach and the main contri-
bution of this work lies in application structure designed for
access via web.

Application Structure

The structure of Nurse Scheduling Web Application
(NSWA) is shown in Figure 1. Users can work with the ap-

i SERVER

COMMUNICATION : WEB
INTERFACE ! APPLICATION

(C#) | (ASP.NET, C#)

WEB SERVICE
(C#)

| DATABASE
1 (MS SQL)

SCHEDULING
ALGORITHM

Figure 1: NSWA structure - block design.

plication via common web browsers. All application blocks
are on the server side, which brings many other advan-
tages (operating system independence, no installation and
upgrades on client side). The scheduling algorithm runs in-
dependently as a web service and exchanges data with ap-
plication and database through communication interface.

Scheduling Algorithm

We decided to use a scheduling algorithm that is based
on multicriterial programming implemented as Tabu Search
metaheuristic.

Mathematical Model

Our mathematical model is designed as three-shift model —
early (E), late (L) and night shift (N) (in Figure 2 early (R),

] prohlizeni rozvrhn J 2007 -]
P2 3 4 s s FREN s 10011 12 13 (RSN 16 17 18 19 20. [SNEEN 23 24. 25 26. 27. [2E|88) 30. 31
Iva Holubova - 0 R N - O K E *» *» *» *» *R N - O R - R O O - N - O R R N - - E
Jana Krejtffova R - R R - N - O R R - O - R O o 0 R R ¥ - - ¥ - R R E - -
Eva Mala O R N O R - - - N - O O - R R - 0 O N R R *» *» *D *D *D R O R
Hana Iova R R OR - O - N - O R R R - - ¥ - 0 R R - 0 - N - O OR -
Taroslava Noveotna - 0O R - O R R R O - - N N O R R R - - - 0 O R R - O N
Martina Pafizkova - * * *D R R O O - - N -0 KR R - R R - NN O R RZER - - - NOO
Lenka Pospiilova R *D *D *D O - N O R R R - O N - N - O R R - O - - 0 0O R E R
Karolina Fehakova N *D *D *D R R R E N - - O 0O R R E *o *» * o} E R * *0 - R N -
Adéla Vematlkova N - © N - © R R R R *™ *» - - 0O 0O R R R - R - N E E R - - O
Iveta Zahradoikova ¢ R O R *D * * *» *D O 0 R R R N - - N - OR R - O - N - ORZE
Figure 2: Screenshot from our Nurse Scheduling Web Application (july 2007).

late (O), night shift (N), holiday (D) — shifts with star are
requested shifts by nurses). Coverage is per shift, under and
over coverage is not allowed. We decided for one month
scheduling period, because of data export to salary admin-
istration. There are no qualification groups (all nurses have
the same qualification) and we considered full-time work-
load in this version of mathematical model.
We optimize objective function Z

min(Z(z))

ey

where x is one schedule from X state space of sched-
ules. There are two types of constraints in our mathematical
model.

e hard constraints have to be fulfilled always

e soft constraints with penalization f;(z) that are the sub-
ject of objective function Z (), which is defined as

Z(x) =w-fx) = Y7_; w; f(x),

w; > 0,d = dim(f(z))

@

where w is a vector of weights given by user, f(x) is a vector
function of constraints penalization and d is a number of soft
constraints. In our algorithm we considered the following
constraints:

Hard Constraints

e required number of nurses for each shift type
(#RE, #RL, #RN)

e to consider days from previous month (#H)

e nurses’ requests consideration (#R)

e one shift assignment per day (hcla)

e 1o early shift after night shift assignment (hc1b)
e no more than five consecutive working days (hc2)
e forbidden shift combinations (FC)

Soft Constraints

e nurses’ work-load balance (scl)

e nurses’ day/night shift balance (sc2)

e nurses’ weekend work-load balance (sc3)

e avoiding isolated working days (sc4)

e avoiding isolated days-off (sc5)

121

Head nurses can choose which of hard constraints will
be used in our algorithm. Soft constraints are weighted by
the head nurses as well. Some hard constraints (hc2, FC)
have been converted to the soft constraints with very large
weights compared to weights of soft constraints scl, sc2,
sc3, sc4, sc5.

The outline of full Nurse Scheduling Algorithm is de-
scribed in Algorithm 1 below.

Algorithm 1 — Nurse Scheduling Algorithm

1. read the scheduling parameters and the nurses requests;
2. find a feasible solution x;n;+ satisfying hard constraints;
3. optimization (Algorithm 2);

4. user choice

e schedule is acceptable, goto 7;
e schedule is acceptable with manual corrections, goto 6;

e schedule is not acceptable, user can reconfigure scheduling
parameters, goto 5;

5. reconfiguration of scheduling parameters, goto 1, 3 or 6;
6. manual corrections, goto 3, 5 or 7;

7. end of optimization, save the schedule.

Tabu Search Algorithm

Tabu Search algorithm shown in detail in Algorithm 2 is
used to reduce the state space of schedules.

In our implemenentation, T'abu List represents the list of
forbidden shift exchanges and has three attributes. The in-
dexes i; and ¢9 represent origin and target row (nurse) of
shift exchange. The third index j is day index. Length of
Tabulist, so called T'abuList tenure, was set to 8.

days
L E|E
, | B L|L|E
g %7LENNN)
-
g N|E
VNN L|L

Figure 3: The candidate search, non-permissible shift ex-
changes.

Table 1: NSWA experiments.

[n [m [#RE] #RL [#RN [#H [#R [hel [he2 [FC [wisel) [wise2) [wised) [wised) | wises) | tols] |
28 [12] 4 3 2 JoJoJ1 1 0 0 0 0 0 0 1336
28 [12] 4 3 2 [5]o |1 1 0 0 0 0 0 0 2.396
28 [12] 4 3 2 5 1 1 0 0 0 0 0 0 1.038
2% | 12] 4 3 2 5 o1 1 0 100 100 0 0 0 2.860
2% | 12] 4 3 2 5 o] 1 0 100 100 100 100 100 | 4342
28 [12] 4 3 2 5 o] 1 ['NNLL | 100 100 100 100 100 | 6460
"NNLL'
2| 12| 4 3 2 500 1 1 100 100 100 100 100 | 7.327
"LNLE'
"NNLL
28 |20 | 7 5 3 5001 U | 100 100 100 100 100 | 88.588
LNLE
"NNLL'
2|20 3 2 2 500 1 1 100 100 100 100 100 | 35.607
"LNLE’
Let the candidate be a possible shift exchange in one 2@ =guilil
day that satisfies hard constraints (see Figure3 — two can- /. O O O\J Oyuhe)
didates are forbidden due to hard constraints hc1b, hc2). Let s soft constraint j

Tcana b the schedule x within updated candidate shift ex-
change and Z(z.qnq) be the value of objective function of
this schedule.

Algorithm 2 — Tabu Search Algorithm

1. compute Z(Zinit);

2. T = Tinats Tnewt = Tinit}

Z(xz) = Z(Tinit); Z(Tnewt) : = Z(Tinst);

3. while (Z(z) > 0) & (3 not forbidden f;(x))) (Figure 4)
choose max(w; f;(z)), j € not forbidden constraints;
for Ycandidate

if (candidate ¢ TabuList)

compute Z(Teand);
if (Z(-Tcand) < Z(xnezt))

Tnext = Tcands
Z(l‘nezt) = Z(xcand);
endif
endif
endfor
if (Z(xneat) < Z(2))
T 1= Tnext;

Z(x) := Z(Tnest);

add opposite exchange to the top of T'abuList;

clear all forbidden constraints (Figure 4, step 2);
else

add an empty record to the top of T'abuList;

forbid the chosen constraint (Figure 4, steps 1, 3, 4, 5, 6);
endif

endwhile
4. return z, Z(x).

Let next be the best candidate (with respect to the ob-
jective function) at each optimization step. When we have
gone through all possible candidates, we compare values
of Z(x) and Z(xpeqrt) and choose the better one for the
next step of optimization. The idea of soft constraint choice
and algorithm termination is demonstrated in Figure4 for
the case of four soft constraints.

122

> optimization
X @ O O
> optimization w7

Dnr\x T, J(I)———————1
® O O O |
> optimization
X OO @
> optimization

D without change
X O @K
> optimization

D without change
X @R
> optimization

D without change ;
XK KX |
> algorithm termination I y

) without change

. max (w; f;(x))

chosen soft constraint j

forbidden w; f;(x)
forbidden soft constraint j

) without change

final z, Z(x)

Figure 4: Choice of soft constraints for the next step of op-
timization and algorithm termination.

Experiments

We used our NSWA called iMEDICA! for the instances,
that are presented Table 1. Columns from n to w(scS) are
input parameters (n stand for the number of nurses and m
for number of days in schedule, other columns are hard and
soft constraints). Column FC shows considered forbidden
shift combinations (e.g. 'LNLE’ - late, night, late and early
shift). Output parameter ¢, is scheduling time in seconds
including steps 1-4 from Algorithm 1 and web communica-
tion. The instances were computed on server Intel Pentium
3.4 GHz@4 GB DDR.

In order to evaluate our NSWA, we implemented optimal
solution via ILP for simplified two-shift type (day and night)
mathematical model (Azaiez & Sharif 2005). We used free
solver GLPK?. Scheduling times for instances with n ~ 10
nurses and m = 28 days were hundreds of seconds (more
results are in (Baumelt 2007)).

iMEDICA, http://imedica.merica.cz/, the product
of Merica s. 1. 0.

’GPLK, http://www.gnu.org/software/glpk/

Conclusions

In this paper we briefly presented our Nurse Scheduling Web
Application. We have got the feedback from several hospi-
tals in the Czech Republic. In cooperation with these hospi-
tals we are working on the improvement of the mathematical
model and application interface.

Acknowledgements

This work was supported by the Ministry of Education of
the Czech Republic under Project 2C06017.

References

Aickelin, U. 1999. Genetic Algorithms for Multiple-Choice
Optimisation Algorithms. Ph.d. diss., European Business
Management School University of Swansea.

Azaiez, M. N., and Sharif, S. S. 2005. A 0-1 goal program-
ming nodel for nurse scheduling. Computers & Operations
Research 32.

Baumelt, Z. 2007. Hospital Nurse Scheduling. Master the-
sis, Department of Control Engineering, Faculty of Electri-
cal Engineering, Czech Technical University in Prague.

Berghe, G. V. 2002. An Advanced Model and Novel
Meta-Heuristic Solution Methods to Personnel Scheduling
in Healthcare. Ph.d. diss., University of Gent.

Burke, E. K.; de Causmaecker, P.; Berghe, G. V.; and van
Landeghem, H. 2004. The state of the art of nurse roster-
ing. Journal of Scheduling 7:441-499.

Cheang, B.; Li, B.; Lim, A.; and Rodrigues, B. 2002.
Nurse rostering problems — a bibliographic survey. Euro-
pean Journal of Operations Research.

Chen, J., and Yeung, T. 1993. Hybrid expert system ap-
proach to nurse scheduling. Computers in Nursing.

Eiselt, H. A., and Sandblom, C. L. 2000. Integer Program-
ming and Netwotk Models. Springer-Verlag Berlin and Hei-
delberg, 1st edition.

Hung, R. 1995. Hospital nurse scheduling. Journal of
Nursing Administration 25.

Okada, M. 1992. An approach to the generalised nurse
scheduling problem — generation of a declarative program
to represent institution-speciffic knowledge. Computers
and Biomedical Research 25.

123

PSPSolver: An Open Source Library for the RCPSP

Javier Roca, Filip Bossuyt
Intelligent Software Company
Chaussée de Nivelles 121/2, 7181 Arquennes, Belgium

Gaetan Libert
Computer Science Department - Faculté Polytechnique de Mons
Rue de Houdain 9, 7000 Mons, Belgium

{javier.roca, filip.bossuyt} @planningforce.com, gaetan.libert@fpms.ac.be

Abstract

The Resource-Constrained Project Scheduling Problem
(RCPSP) is a classical problem in project scheduling. The
most common and successful approaches to solve the
RCPSP are those applying heuristics, metaheuristics and
sampling schemas, given their practicability and
effectiveness. In most of the cases these approaches apply a
Schedule Generation Schema (SGS) combined with a
suitable solution representation and priority rules. Although
there is a considerable research in these RCPSP solving
methods and its theory there is a lack of software for
supporting the research of new solving methods. In many
cases, the RCPSP research requires the implementation of
algorithms in order to validate or evaluate a solving method.
We introduce PSPSolver (Project Scheduling Problem
Solver), an extensible and practical heuristic-based library
for supporting the research on solvers for the RCPSP.

1.The RCPSP Model

Informally, the single mode RCPSP model, simply referred
as RCPSP, is a well known project scheduling problem
(PSP) that seeks the answer to the following question:
“Given the limited availability of resources, what is the
best way to schedule the activities in order to complete the
project in the shortest possible time?”. The RCPSP is of
special interest in fields like construction and production
scheduling. Conceptually, the RCPSP is a PSP with single
mode activities, renewable constrained resources, finish-to-
start precedence relationships with zero time lags, no pre-
emption, and has the makespan minimization as the
performance measure. According to Bucker et al. [1], this
problem is denoted as PS | prec | Cmax (machine
scheduling domain). Herroelen et al. [2] denotes this model
as m, I | cpm | Cmax.

Due to the fact that the RCPSP forms the core problem
among the class of resource-constrained project scheduling
problems [1], every improvement in its resolution can
produce new advances in the resolution of the other
models. The RCPSP instances are usually represented as
A-O-N digraphs (Figure 1), while the RCPSP solutions
(schedules) are represented as Gantt charts (Figure 2).

124

= MW B

Figure 2: An optimal schedule for the instance in Figure 1.

2. Solving the RCPSP

The main approaches to solve the RCPSP are the optimal
(exact) methods, heuristics, and the metaheuristics-based
solution procedures. It has been shown by Blazewicz et al.
[3] that the RCPSP, as a generalization of the classical job
shop scheduling problem, belongs to the class of NP-hard
optimization problems. Therefore, heuristic solution
procedures are indispensable when solving large problem
instances as they usually appear in practical cases [4].

2.1. Schedule Generation Schemes

Schedule generation schemes are the core of most of the
heuristic/metaheuristic solution procedures for the RCPSP
[4]. A SGS is a constructive technique that builds a
feasible schedule by stepwise extension of a partial
schedule (i.e. a schedule where only a subset of the
activities have been scheduled). There are two different

types of SGS: serial SGS (S-SGS) and parallel SGS (P-
SGS). The S-SGS is an activity oriented SGS that performs
activity incrementation while building the schedule. The P-
SGS, is a time oriented SGS that performs time
incrementation in the schedule build. For a formal and
detailed definition of the SGS the reader is referred to [4].

3. The PSPSolver Library

The main motivation for the development of our
PSPSolver is the lack of freely available software for the
RCPSP. The main goal is to build an extensible
environment for abstracting RCPSP instances and solutions
with the implementation of SGS-based solving methods by
using modern programming concepts. PSPSolver provides
an extensible object-oriented application programming
interface (API) for the visualization, representation, and
solving of RCPSP instances. The library is currently
implemented in C# and can be freely downloaded from
http://www.planningforce.com/wiki/. The code distribution
includes detailed documentation and ready-to-use code
snippets. The reader is referred to this documentation for a
detailed description of PSPSolver’s features (e.g. easy of
use, extensibility, performance, limitations, comparison
with other software, etc.).

3.1. Problem and Solution Representation

The library provides classes to represent single mode
RCPSP instances and schedules, nevertheless, other PSP
models could be easily extended as well (i.e. multi-mode
RCPSP). PSPSolver provides mechanisms for handling
RCPSP logical instances by supporting common file
formats (i.e. the formats proposed by PSPLIBJ[5]), and also
defines a new normalized XML-based representation, best
suitable for data exchange between applications. The
library can model and be extended with user defined
priority rules as well.

3.2. Visualization

PSPSolver is able to render RCPSP instances as A-O-N
digraphs and also instance solutions as Gant Charts. In
order to implement a clear visual representation of the
instance, the network rendering relies on features of the
GraphViz graph rendering engine [6]. This feature is of
great utility especially when we want to visualize a
complex topology on large RCPSP instances. The
diagrams illustrated in Figure 1 and Figure 2 were rendered
by using the PSPSolver visualization API.

3.3. Solving

PSPSolver provides an API for solving RCPSP instances
by implementing the S-SGS and the P-SGS applying user
defined heuristics (priority rules). Additionally, one of the
most important features in the Solving API is the
possibility to easily integrate or be integrated in custom

125

scheduling metaheuristics (e.g. ACO, TS, PSO, SA, etc.).
In brief, PSPSolver is able to solve a PSP using user-
defined heuristics (priority rules and/or metaheuristics) by
implementing the SGS approach. The library code
distribution includes a self-contained example (the
PSPViewer application) that illustrates the main features of
the PSPSolver API by implementing an instance renderer,
a solution benchmarker, a solver, an illustrated custom
priority rule, and a solution renderer. As a reference,
PSPViewer was able to solve the 480 instances from the
J30-SM set (PSPLIB) in less than 2s. (an average of 4ms.
per instance), using a S-SGS and the SPT (Shortest
Processing Time) heuristic in a Pentium 2.0 GHz with
IMB of RAM using Visual C# Express 2005 and .Net
Framework 2.0.

4. Conclusions

We consider that PSPSolver is a basic but powerful free
library for solving the RCPSP model, and we consider it a
valuable and practical tool for the PSP research
community. The library can be easily adapted to the
researcher’s needs, in order to implement new SGS-based
heuristics. We plan to improve the library with the
implementation of a lower-bound calculation, double
justification (schedule optimization)[7] and extending it to
the multi-mode RCPSP. We are currently working in
porting the library to the JAVA programming language as
well.

References

[1] Brucker, P., Drexl, A., Mohring, R., Neumann, K., and
Pesh, E., 1999. Resource-constrained project scheduling:
Notation, classification, models, and methods, European
Journal of Operational Research 112
[2] Herroelen, W., De Reyck, B., and Demeulemeester, E.,
1998. Resource-constrained project scheduling: a survey
of recent developments, Computers Ops Res. Vol. 25
[3] Blazewicz, J., Cellary W., Slowinski R., and Weglarz
J., 1986. Scheduling under Resource Constraints:
Deterministic Models, in: Annals of operations research,
vol. 7., J.C. Baltzer
[4] Kolisch, R. and Hartmann, S. eds. 1999. Heuristic
Algorithms for Solving the Resource-Constrained Project
Scheduling Problem: Classification and Computational
Analysis, in: Project scheduling: Recent models,
algorithms and applications, Kluwer
[5] Kolisch, R., and Sprecher, A. 1997. PSPLIB A Project
Scheduling Problem Library, European Journal of
Operational Research 96
[6] Gansner, E., and E., North, 2000. 4An open graph
visualization system and its applications to software
engineering, Software Practice and Experience Vol.30, 11
[7] Valls, V., Ballestin, F., Quintanilla, S., 2006.
Justification Technique Generalizations, in: Perspectives
in Modern Project Scheduling, Kluwer

CHARLES UNIVERSITY PRAGUE

faculty of mathematics and physies
[SISE ST,

ISSN 1368-5708

