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Abstract

Service level agreements (SLAs) are powerful instru-
ments for describing all obligations and expectations
in a business relationship. It is of focal importance
for deploying Grid technology to commercial applica-
tions. The EC-funded project HPC4U (Highly Pre-
dictable Clusters for Internet Grids) aimed at introduc-
ing SLA-awareness in local resource management sys-
tems, while the EC-funded project AssessGrid intro-
duced the notion of risk, which is associated with ev-
ery business contract. This paper highlights the concept
of planning based resource management and describes
the SLA-aware scheduler developed and used in these
projects.

Introduction
In the academic domain Grid computing is well known, if
not even established. Researchers are using Grid middle-
ware systems like Unicore or the Globus Toolkit to create
virtual organizations, dynamically sharing the transparent
access to distributed resources. Grid computing started un-
der the solely technical question of how to provide access to
distributed high performance compute resources. Thanks to
numberless projects and initiatives, funded by national and
international bodies worldwide, Grid systems have signifi-
cantly evolved meanwhile, making Grid technology adopt-
able in a large variety of usage scenarios.

Companies like IBM, Hewlett Packard, and Microsoft
have recognized the potential of Grid Computing already in
the early days of the Grid development, providing noticeable
efforts on research and the support of research communities.
However, the Grid did not really enter the commercial do-
main until the present day. Already in 2003 the European
Commission (EC) convened a group of experts to clarify the

∗This work has been partially supported by the EU within the
6th Framework Programme under contract IST-031772 ”Advanced
Risk Assessment and Management for Trustable Grids” (Assess-
Grid) and IST-511531 ”Highly Predictable Cluster for Internet-
Grids” (HPC4U)

demands of future Grid systems and which properties and
capabilities are missing in current existing Grid infrastruc-
tures. Their work resulted in the idea of the Next Generation
Grid (NGG) (Priol & Snelling 2003; Jeffery (edt.) 2004;
De Roure (edt.) 2006). This work clearly identified that
guaranteed provision of reliability, transparency, and Qual-
ity of Service (QoS) is an important demand for successfully
commercialize future Grid systems. In particular, commer-
cial users will not use a Grid system for computing business
critical jobs, if it is operating on the best-effort approach
only.

In this context, a Service Level Agreement (SLA) is a
powerful instrument for describing all expectations and obli-
gations in the business relationship between service con-
sumer and service provider (Sahai et al. 2002). Such an
SLA specifies the QoS requirement profile of a job. At the
Grid middleware layer many research activities already fo-
cus on integrating SLA functionality.

The EC-funded project BeInGrid (Business Experiments
in Grid (BeInGrid), EU-funded Project ) aims at fostering
the commercial uptake of the Grid. BeInGrid encompasses
numerous business experiments, where Grid technology is
to be introduced to specific business domains. Successful
experiments reached the goal of proving the benefit of ap-
plying Grid technology for commercial customers. Accord-
ing to the NGG, a major objective in these BeInGrid ex-
periments is the provision of reliability as contractually ex-
pressed in negotiated SLAs.

Current resource management systems (RMS) are work-
ing on the best-effort approach, not giving any guarantees
on job completion to the user. Since these RMS are offering
their resources to Grid systems, Grid middleware has only
limited means in fulfilling all terms of negotiated SLAs.

For closing this gap between the requirements of SLA-
enabled Grid middleware and the capabilities of RMS,
HPC4U (Highly Predictable Cluster for Internet-Grids
(HPC4U) ) started working on an SLA-aware RMS, uti-
lizing the mechanisms of process-, storage- and network-
subsystems for realizing application-transparent fault toler-
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ance. As central component of the HPC4U project the RMS
OpenCCS has been selected, since its planning based na-
ture seemed to be well-suited for realizing SLA-awareness.
Within the project all features required for SLA-awareness
and SLA-compliance have been developed, e. g. an SLA-
aware scheduler, mechanisms for transparent checkpointing
of parallel applications, or the negotiation of new SLAs.

The HPC4U project will end 2007. The outcome of the
project allows the Grid to negotiate on SLAs with the RMS.
The RMS is only allowed to accept a new SLA, if it can en-
sure its fulfillment. For this, the RMS provides mechanisms
like process and storage checkpointing to realize fault toler-
ance and to assure the adherence with given SLAs even in
the case of resource failures. The HPC4U system is even
able to act as an active Grid component, migrating check-
pointed jobs to arbitrary Grid resources, if that allows the
completion of the job according to its SLA.

In this paper we first highlight the concept of plan-
ning based resource management, a fundament for realizing
SLA-aware RMS. The main part of the paper focuses on the
specific demands of different job types on the scheduling as
well as the scheduling impact of a Grid integration. The pa-
per ends with an overview about related work and a short
conclusion.

Planning Based Resource Management
Compute clusters have a long tradition beginning in the early
1970s with the UNIX operating system (Pfister 1997). Since
then many resource management systems evolved, bringing
functionality targeted to their specific usage domain, e. g.
capabilities on load balancing. Classic systems are mostly
used in capacity computing environments, computing large
amounts of data in time uncritical context.

Most of the resource management systems available to-
day can be classified as queuing based systems. The sched-
uler of these RMS is operating one or more queues, each
of them with different priorities, properties, or constraints
(e. g. high priority queue, weekend queue) (Windisch et al.
1996). Each incoming job request is assigned to one of these
queues. The scheduling component of the RMS then orders
each queue according to the strategy of the currently ac-
tive scheduling policy. A very basic strategy is FCFS (First
Come, First Served), assigning resources to jobs according
to the job’s entry time into the system. Modern RMS are
also using priority queues, reflecting the status of the par-
ticular jobs. However, resources are assigned to jobs from
the queue head, if the system has enough free resources. If
this results in idle resources, backfilling strategies can be ap-
plied for selecting matching jobs from one of the queues for
immediate out-of-order execution.

Many different strategies on backfilling have evolved,
each optimizing according to a specific objective or usage
environment. Commonly known strategies are conservative
and EASY backfilling. Both strategies only differ in their
way of selecting jobs for backfilling. While conservative
backfilling demands that the backfilled job may not delay
other waiting requests (Mu’alem & Feitelson 2001), EASY
backfilling only demands the queue head’s jobs not to be de-
layed (Lifka 1995). For deciding about the impact of a back-

filling decision on the delay of jobs in the queues, the sys-
tem has to have runtime information of these jobs. Hence,
specific backfilling strategies (like EASY and conservative
backfilling) can only be applied to environments where these
statements are available.

By switching the focus from classic high throughput com-
puting to computation of deadline bound and business criti-
cal jobs, also the demand on the RMS and its scheduler com-
ponent changes. If negotiating on service level agreements,
the system has to know about future utilization, i. e. whether
it is possible to agree on finishing the new job as requested.

Planning is an alternative approach on system schedul-
ing (Hovestadt et al. 2003). In contrast to queuing, planning
does not only regard currently free resources and assigns
them to waiting jobs. Instead, planning based systems also
plan for the future, assigning a start time to all waiting re-
quests. This way a schedule is generated, encompassing all
jobs in the schedule. Having such a schedule available, the
system scheduler is able to determine which jobs are sched-
uled to be executed at what time. Table 1 depicts the most
significant differences between queuing and planning based
systems.

A prerequisite for planning based resource management
system is the availability of run time estimates for all jobs.
Without this information the scheduler has no means to de-
cide how long a specific resource will be used by a job.
Hence, the scheduler could not assign a start time to jobs
following in the schedule. In case the user underestimated
the runtime, the system can try to extend the runtime of this
job. If this is not possible because other jobs are scheduled
on the resource, having a high priority so that they cannot be
pushed away, the job has to be terminated or suspended in
order to have the resources available for other jobs. This
may be considered as a drawback of planning based re-
source management. A further drawback regards the cost
of scheduling. The scheduling process itself is significantly
more complex than in queuing based systems.

The novel approach on scheduling in planning based re-
source management systems allows the development of new
scheduling policies and paradigms. Beside the classic poli-
cies like FCFS, SJF (Shortest Job First), or LJF (Longest Job
First), novel policies could help to realize new objectives or
new functionalities. We are convinced that planning based
resource management is a good starting point for realizing
SLA-awareness.

Scheduling for Typical Scenarios

In this section typical scenarios will be described. Starting
with the submission of a regular local job, the degree of ser-
vice quality will increase with each scenario. For realizing
SLA-awareness in the EC-funded projects HPC4U and As-
sessGrid, the resource management system OpenCCS has
been used. OpenCCS is a planning based resource man-
agement system developed at the University of Paderborn.
Details on OpenCCS can be found in (Keller & Reinefeld
2001).
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queuing system planning system
planned time frame present present and future
reception of new request insert in queues replanning
start time known no all requests
runtime estimates not necessary1 mandatory
reservations difficult yes, trivial
backfilling optional yes, implicit
examples PBS, NQE/NQS, LL CCS, Maui Scheduler2
1 exception: backfilling
2 Maui may be configured to operate like a planning system (Jackson, Snell, & Clement 2001)

Table 1: Differences of queuing and planning systems (Hovestadt et al. 2003)

Local Job Submission
The local job submission is the classic case of job submis-
sion, where a user connects locally to the resource manage-
ment system and submits a new job. Since OpenCCS is plan-
ning based, it requires all users to specify the expected dura-
tion of their requests. The OpenCCS planner distinguishes
between Fix-Time and Var-Time resource requests. A Fix-
Time request reserves resources for a given time interval. It
cannot be shifted on the time axis. In contrast, Var-Time re-
quests can move on the time axis to an earlier or later time
slot (depending on the used policy). Such a shift on the time
axis might occur when other requests terminate before the
specified estimated duration.

The Planning Manager (PM) is a central component of
the OpenCCS architecture, responsible for computing a
valid, machine-independent schedule. Likewise, the Ma-
chine Manager (MM) is responsible for machine-dependent
scheduling. The separation between the hardware indepen-
dent PM and the system specific MM allows to encapsu-
late system specific mapping heuristics in separate modules.
With this approach, system specific requests (e. g. for I/O-
nodes, specific partition topologies, or memory constraints)
may be considered. One task of the MM is to verify if
a schedule received from the PM can be realized with the
available hardware. The MM checks this by mapping the
user given specification with the static (e. g. topology) and
dynamic (e. g. PE availability) information on the system re-
sources. Since OpenCCS is a planning-based RMS, the PM
generates a schedule for both current and future resource us-
age. Therewith it supports classic scheduling strategies like
FCFS, SJF, and LJF, considering aspects like project limits
or system wide node limits. The system administrator can
change the strategy during runtime.

The PM manages two lists while computing a schedule,
which are sorted according to the active policy.

• The New list(N-list): Each incoming request is placed in
this list and waits there until the next planning phase be-
gins.

• The Planning list(P-list): These jobs have already been
accepted by the system. The PM takes jobs from this list
to generate the system schedule.

The PM first checks if the N-list has to be sorted accord-
ing to the active policy (e. g. SJF or LJF). It then plans all

elements of N-list. Depending on the request type (Fix-Time
or Var-Time) the PM calls an associated planning function.
For example, if planning a Var-Time request, the PM tries to
place the request as soon as possible. The PM starts in the
present and moves to the future until it finds a suitable place
in the schedule.

Figure 1 depicts a typical schedule situation in a planning-
based RMS. If a user submits a new job request, the sys-
tem is able to match the request properties with the current
schedule, i. e. the PM and MM components of OpenCCS are
checking whether it is possible to generate a new valid sys-
tem schedule. In this case, the user’s job request is accepted,
directly returning the time when the job will be allocated at
the latest. If the request cannot be realized (e. g. because the
user requested for a time slot with insufficient available re-
sources), the job is rejected. In this situation, the user can
query the system for the earliest possible time to start the
job request.

Deadline bound Jobs
Deadline bound jobs have to be completed until a specific
time at the latest. A classic example for such a deadline
bound job is a weather service which has to complete the
computation of a weather forecast until 5am, since the fore-
cast is to be broadcasted on TV at 6am. However, deadlines
are also of particular importance for executing workflows,
where the workflow is executed in multiple branches in par-
allel and where the result needs to be joined until a given
time, so that also the overall workflow result can be deliv-
ered in time.

From the resource management system’s point of view,
a deadline bound job is a Var-Time resource requests. The
user has to provide three key parameters:

• the number of required resources

• the duration of job execution

• the deadline for job completion

The deadline bound job is a specific case of a Var-Time re-
source request, since it may not shift arbitrarily on the time
axis, but only within the boundaries given by the earliest
possible start time and by the deadline. This constraint has
to be regarded during the scheduling process, assigning re-
sources early enough to allow the job to complete in time.
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Figure 1: Schedule in a planning based RMS

At this, the latest time for resource allocation conforms to
the specified deadline minus the user’s specified runtime.

In the case of deadline bound jobs, the correctness of the
estimated runtime of the job is crucial for the fulfillment of
the deadline. It is in the responsibility of the user to give
a correct estimate. If the provider assigns a resource at the
latest possible start time, it is the user’s responsibility if the
job did not complete in time, because he underestimated the
job’s runtime. However, users tend to overestimate the run-
time of their jobs to prevent such a situation. Hence in the
typical situation the job ends long before the estimated (and
scheduled) end of time. Generally assuming the specified
runtime to be overestimated allows to postpone the point of
latest ressource allocation by the assumed amount of over-
estimation. However, this strategy is risky since jobs with
correctly estimated runtimes will not be able to finish until
their deadline.

Due to the nature of deadline bound jobs, the sched-
uler has to place them after placing all Fix-Time resource
requests, but before placing regular Var-Time resource re-
quests. At this, it follows the main scheduling policy, e. g.

FCFS. The scheduler executes the following steps on an ini-
tially empty schedule, trying to place Var-Time resource re-
quests at the earliest possible place in the new schedule:

1. sort all requests according to the current policy
2. place all Fix-Time resource requests ( from first P-list,

then from N-list)
3. place all deadline bound Var-Time resource requests (first

from P-list, then from N-list)
4. place all remaining Var-Time resource requests (first from

P-list, then from N-list)

Placing deadline bound Var-Time jobs according to poli-
cies like FCFS does not always result in a good schedule
quality. Placing jobs in front of the schedule just because
they arrived at the system at an early point of time (i. e.
blocking valuable resources with this job) prevents execut-
ing other jobs with perhaps even nearer deadlines. Hence,
other strategies could be applied when placing these dead-
line bound requests.

As an alternative approach, Deadline Monotonic Schedul-
ing (DMS) (Audsley 1993) could be applied here, where the
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Figure 2: Impact of Checkpoint Frequency on Runtime

priority increases the nearer it gets to its deadline, i.e. the
latest possible start time here. By applying Earliest Dead-
line First (EDF) (Buttazzo & Stankovic 1993), the scheduler
would sort all deadline bound jobs by increasing remaining
time until their latest possible point of start. This ensures
that valuable resources are first used for urgent jobs.

Resource Failures and Fault Tolerance
A cluster system consists of multiple nodes. Partitions of
these nodes are assigned to running applications, so that
multiple applications are executed in parallel. If one of the
nodes of a partition fails (e. g. due to a power outage), the
execution of the application running on this node typically
is aborted. In case of parallel applications, not only the pro-
cesses of the application running on the affected node are
aborted, but the entire parallel application is affected.

Cluster systems are used for speeding up the execution
time of complex problems, but with an increasing grade of
parallelism and an increasing runtime of the job (due to the
complexity of the problem), also the possibility of a job
crash increases, because only one of the nodes has to fail
during the execution. This is a real problem for jobs run-
ning on dozens or hundreds of nodes over multiple days or
weeks.

In the EC-funded project HPC4U mechanisms have been
developed for transparently checkpointing parallel applica-
tions, i. e. all mechanisms can be applied without any mod-
ification of the job or relinking of the binary, even without
having the job owner to take any notice of the mechanisms
at all. This mechanism requires a patch to be applied to the
Linux kernel, so that the process itself then runs inside a vir-
tual bubble. At checkpoint time, the entire bubble is saved.
For parallel applications, also the MPI implementation has

to be enhanced, so that a consistent image of all parallel in-
stances can be generated. For this purpose, the cooperative
checkpoint protocol (CCP) has been developed.

Beside this stack of tools the project also evaluated other
existing checkpointing solutions. At this, fairly good expe-
riences also have been made with the tools Berkeley Check-
pointing and Restart (BLCR) and LAM-MPI. Even if par-
allel checkpointing is possible, these tools have significant
functionality drawbacks compared to the HPC4U stack.

By periodically checkpointing an application, the job can
be restarted from the latest checkpointed state. Hence, only
the computation steps after the latest checkpoint has to be
repeated, instead of restarting the job from scratch. Even if
the mechanisms have negligible impact on the job execution
performance and the checkpointing of large jobs can be exe-
cuted in a few seconds or minutes, this has to be considered
at scheduling time.

Firstly, the effort for performing checkpoints enters the
computation for the latest possible point of start. Since the
time increases with the number of nodes and the amount
of used memory, the system can predict quite exactly the
time required for each checkpoint operation. The number of
checkpoints determines the maximum time that can be lost
due to a resource outage. It is a trade-off between reducing
the worst-case loss of computational results and reducing the
overhead of checkpointing.

The impact of the chosen checkpoint frequency on the
runtime of a job is depicted in Figure 2. It assumes a job
having a total runtime of one hour and a duration of each
checkpoint of two minutes. The three curves represent the
number of assumed resource outages. The curve depicting
the case of no resource outages occurring has its minimum in
n = 0, having no checkpoints generated. Since each check-
point generation delays the completion of the job, each gen-
erated checkpoint is unnecessary overhead in the case of no
resource outages. If no resource outages are expected or if
a job restart is acceptable (like for best effort jobs), the best
option is to execute without checkpoints.

In the case of resource outages occurring, things look dif-
ferent. An increasing number of checkpoints decreases the
amount of lost compute steps lost through a resource outage,
since the system is able to resume from the latest check-
pointed state. The curves have their minima at the point of
optimal trade-off between lost computation power and addi-
tional effort for executing the checkpoint operation. More-
over this number increases on increasing the number of ex-
pected outages. Where it is optimal to generate approxi-
mately four checkpoints in the case of one expected outage,
it is approximately 7 in the case of two outages.

Secondly, the scheduling policy has to be adopted for han-
dling the case of failures. If a job is affected by a resource
outage, the entire job (not only the part of the failed node) is
removed from the schedule. It leaves the P-list and is added
to the Defect list(D-list), encompassing all jobs affected by
failures.

Then the scheduler starts the computation of a new sys-
tem schedule, following the policies described above, plac-
ing jobs from D-list after jobs from P-list, but before placing
jobs from N-list. This impacts new jobs (which may be re-
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jected now), but does not impact other already planned jobs.
However, if applying policies like DMS, the time until the
job’s latest point of start has to be recomputed, not taking
the originally user specified job runtime into account, but
the remaining runtime at the time of the last checkpoint.

The impact of resource failures on the system schedule
can be reduced by introducing a failure horizon. A resource
management system uses its internal monitoring mecha-
nisms to detect problems within the cluster as soon as possi-
ble. If such a problem can not be solved by internal recovery
mechanisms of the RMS itself, the cluster administrators are
informed. The failure horizon represents the typical time re-
quired by administrators to solve such reported errors (e. g.
12 hours). The RMS only moves those jobs to the D-list
which are planned on the defect resources within the fail-
ure horizon, assuming that the resource is available again at
allocation time of all other jobs.

SLA Negotiation
The process of SLA-negotiation differs significantly from
the regular job submission interface of a resource manage-
ment system. There, a user submits his job description, di-
rectly getting an information about rejection or acceptance
in return. In the latter case, the job has already entered the
system schedule.

In case of service level agreements, a multi-phase nego-
tiation is conducted before the job finally enters the system.
The GRAAP working group (MacLaren 2003) of the Open
Grid Forum (OGF) (Open Grid Forum ) described such a
negotiation process in the WS-Agreement Negotiation spec-
ification (Andrieux et al. 2004). Here the provider answers
a job request with an SLA offer. The user has to commit to
this offer before the SLA is actually enforced.

For the scheduling component of an RMS this negotiation
process has significant implications: once the RMS has is-
sued an SLA offer, it has to adhere to this offer until it has
been committed or canceled by the user. Timeout mecha-
nisms ensure that SLA offers automatically expire after a
given time period (e. g. some seconds). However, at least
during this timeout period the system has to reserve system
capacity for the job in negotiation.

For this purpose, a novel list is introduced into the system:
the SLA-offer list(O-list). Jobs from this list are scheduled
within the regular scheduling process in the order P-list be-
fore D-list before O-list before N-list. It is preferable to priv-
ilege jobs from D-list than O-list, since jobs in O-list are not
yet affirmative, so that the system would not actually break
an SLA-contract but only an SLA-offer. Again, the general
policy of handling failures is to not affect other jobs, to keep
the implication of a failure as local as possible. This also
implies, that given SLA-offers should be kept if possible.

Data Staging of Grid Jobs
A second significant difference between locally submitted
jobs and jobs coming from the Grid is the aspect of data
staging. In case of local jobs it can be assumed that all
necessary job data (e. g. the application binary and all in-
put data) are available on a local computer system, so that
fast local network connections can be used for transferring

the data to the compute cluster. The time necessary for this
can be neglected in general. In case of Grid jobs, this so
called stage-in process has to be executed using slow WAN
connections.

For this reason, the Grid user does not only have to spec-
ify parameters like estimated runtime, number of nodes, or
deadline in the negotiation process, but also the earliest time
for starting. The deadline can only be met if both the com-
putation and the stage-in can be completed until this time.
Since providers are usually connected over high bandwidth
connections to the Internet, the bottleneck usually is the In-
ternet network connection of the customer. Knowing the
total amount of data that needs to be staged-in, he has to
estimate the time required for transferring it over the Inter-
net. The earliest point for starting the job is the time where
the SLA has been committed (i. e. when the stage-in process
could start) plus the total transfer time.

As long as the schedule has sufficient free space, the job
may directly start after the estimated duration of the stage-in
process. Overestimating the time for stage-in is uncritical,
because this would only result in having the data available
at RMS side earlier than expected. In contrast, if the user
underestimated the stage-in time, the RMS is unable to start
the job at the planned time. This directly threatens the ful-
fillment of the deadline, if the runtime is estimated correctly
and there is no buffer between the planned end of the job
and the deadline. The RMS has two options to handle such
a situation, differing significantly in their demands on sys-
tem management:

1. keeping the partition available for the job, waiting the start
until stage-in is completed

2. assigning other waiting jobs to the pending job’s re-
sources, executing the pending job as soon as stage-in is
completed
The first option does not require any specific RMS mech-

anisms, since the nodes of the pending job’s partition simply
remain idle. As soon as the stage-in process has been com-
pleted, the RMS starts the job. Even if this option is sim-
ple and easily manageable, it has two major disadvantages.
First, the job is in danger of not finishing until the planned
end, since the allocation time (i. e. the estimated runtime)
is running while nodes are idle. Secondly, the overall clus-
ter utilization is impacted, because nodes run idle instead of
computing jobs.

The second option solves both of these problems, since
nodes are used for computing other jobs and allocation time
only starts when stage-in is completed. However, this option
demands the system to support preemption of jobs. For this,
we again use the checkpointing mechanisms developed in
the HPC4U project. Since this solution provides transparent
checkpointing for parallel applications, we are able to real-
ize preemption for parallel jobs. For preempting a job, the
job is first checkpointed and then stopped.

If other jobs are started in the partition of the pending job,
these jobs have to be preempted. The scheduler is now able
to rebuild the schedule after:
• subtracting the already executed runtime of the preempted

jobs from their estimated runtime.
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• setting the end of node allocation to the minimum of spec-
ified deadline and current time plus estimated job runtime.

This way, the job would have its entire estimated runtime
available, as long as the delay in stage-in is not larger than
the original buffer between end of computation and dead-
line. It has to be noted, that the deadline compliance of the
preempted jobs is not endangered, because they already ex-
ecuted the time that they now get started later.

Accepting or Rejecting New Job Requests
In the previous sections it has been outlined how the de-
mands on scheduling and system management increase with
demands coming from deadline support or Grid interface.
However, the general procedure of accepting or rejecting
new job requests remains the same.

If a resource request is submitted to the RMS, the sched-
uler tries to build a new valid schedule that contains this new
request. In case the scheduler succeeds, e. g. if the deadline
of the new job can be realized without violating any other
Fix-Time resource request or deadline bound Var-Time re-
quest, the new request is accepted by the system.

Related Work
The worldwide research in Grid computing resulted in nu-
merous different Grid packages. Beside many commodity
Grid systems, general purpose toolkits exist such as Uni-
core (UNICORE Forum e.V. ) or Globus (Globus Alliance:
Globus Toolkit ). Although Globus represents the de-facto
standard for Grid toolkits, all these systems have proprietary
designs and interfaces. To ensure future interoperability of
Grid systems as well as the opportunity to customize instal-
lations, the OGSA (Open Grid Services Architecture) work-
ing group within the OGF aims to develop the architecture
for an open Grid infrastructure (GGF Open Grid Services
Architecture Working Group (OGSA WG) 2003).

In (Jeffery (edt.) 2004), important requirements for the
Next Generation Grid (NGG) were described. Among those
needs, one of the major goals is to support resource-sharing
in virtual organizations all over the world. Thus attract-
ing commercial users to use the Grid, to develop Grid en-
abled applications, and to offer their resources in the Grid.
Mandatory prerequisites are flexibility, transparency, relia-
bility, and the application of SLAs to guarantee a negotiated
QoS level.

An architecture that supports the co-allocation of multi-
ple resource types, such as processors and network band-
width, was presented in (Foster et al. 1999). The Globus
Architecture for Reservation and Allocation (GARA) pro-
vides ”wrapper” functions to enhance a local RMS not ca-
pable of supporting advance reservations with this function-
ality. This is an important step towards an integrated QoS
aware resource management. In our paper, this approach is
enhanced by SLA and monitoring facilities. These enhance-
ments are needed in order to guarantee the compliance with
all accepted SLAs. This means, it has to be ensured that the
system works as expected at any time, not only at the time a
reservation is made. The GARA component of Globus cur-
rently does neither support the definition of SLAs or mal-

leable reservations, nor does it support resilience mecha-
nisms to handle resource outages or failures.

The requirements and procedures of a protocol for nego-
tiating SLAs were described in SNAP (Czajkowski et al.
2002). However, the important issue of how to map, im-
plement, and assure those SLAs during the whole lifetime
of a request on the RMS layer remains to be solved. This
issue is also addressed by the architecture presented in this
paper.

The Grid community has identified the need for a stan-
dard for SLA description and negotiation. This led to the
development of WS-Agreement/-Negotiation (Andrieux et
al. 2004).

Conclusion and Future Work
Introducing SLA-awareness is a mandatory prerequisite for
the commercial update of the Grid. Consequently SLA-
awareness also has to be introduced to local resource man-
agement systems which are currently operating on a best-
effort approach. The EC-funded project HCP4U aims at pro-
viding an application-transparent and software-only solution
of such an SLA-aware RMS, demanding for reliability and
fault tolerance. The HPC4U system already allows the Grid
user to negotiate on new SLAs, which will be realized by
means like process-, network,- and storage-checkpointing.

In this paper we have described the requirements of vari-
ous job types and their demands on an SLA-aware schedul-
ing. In particular we addressed the implications of a Grid in-
tegration on the scheduling policies. The described schedul-
ing rules have been implemented within the OpenCCS re-
source management system, which is used in the HPC4U
project. Benefiting from the mechanisms of checkpointing
and restart, the scheduler has proved to be well suited for ex-
ecuting jobs to their negotiated SLAs. Presuming that spare
resources are not allocated by other SLA bound jobs, the
system is able to cope with resource outages, fulfilling the
SLAs of all jobs. Thanks to the transparent checkpointing
capabilities, these mechanisms also apply for the execution
of commercial applications, where no source code is avail-
able and recompiling or relinking is not possible. The user
even does not have to modify the way of executing the job
in the Grid. Hence, HPC4U reached its goal of providing
transparent fault tolerance.

However, the availability of spare resources proved to be
the limiting factor at restart time. If all resources of the clus-
ter system are allocated by SLA bound jobs, the system has
no means of restarting the failure affected job, thus violating
the terms of its SLA.

Improving this situation is subject of currently ongoing
work. Firstly, the notion of buffer nodes is introduced to the
SLA-aware scheduler. These buffer nodes may only be used
for executing best-effort jobs, so that outages either affect
these buffer nodes or running best-effort jobs can be dis-
placed by SLA-bound jobs that are affected by the resource
outage. Secondly, the checkpoint and restart mechanisms
will be used for suspending the execution of running jobs
with respect to their SLA, thus freeing allocated resources
for restarting outage affected jobs. Thirdly, the scheduler
will actively select jobs for migration over the Grid, so that
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they can be finished on remote resources according to their
SLA.

The scheduler is also the fundament for work done in
the EC-funded project AssessGrid. Here, the notion of risk
awareness and risk management is introduced into all layers
of the Grid. This implies that the scheduler of the RMS has
to consider risks of SLA violations in all scheduling deci-
sions.
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Abstract 
We introduce an enhanced weighted graph model whose 
vertices and edges have several attributes that make it 
adaptable to a variety of examination and course time-
tabling scenarios. In addition, some new vertex- and col-
our-selection heuristics arise naturally from this model, 
and our implementation allows for the use and manipula-
tion of various combinations of them along with or sepa-
rate from the classical heuristics that have been used for 
decades. We include a brief description of some prelimi-
nary results for our current implementation and discuss 
the further development and testing of the ideas intro-
duced here. 

Introduction 

Background  
Using graph colouring to model timetabling problems 
has a long history (e.g., Broder 1964, Welsh and Powell 
1967, Wood 1968, Neufeld and Tartar 1974, Brelaz 
1979, Mehta 1981, and Krarup and de Werra 1982). Sev-
eral survey papers have been written on this topic (e.g., 
Schmidt and Strohlein 1980, de Werra 1985, Carter 
1986, Schaerf 1999, Burke, Kingston, and deWerra 
2004, and Qu et al. 2006). 
 
In a standard graph representation for a timetabling prob-
lem, the events to be scheduled are represented by verti-
ces. A constraint (conflict) between two events indicat-
ing that they should be assigned different time slots is 
represented by an edge between the two corresponding 
vertices. In our case, the events are exams (or courses) 
and the constraints might be that some students are en-
rolled in both exams or the same professor is giving both 
courses. Ideally, then, such exams (courses) would be 
assigned different time slots. If we associate each possi-
ble time slot with a different colour, then creating a con-
flict-free timetable is equivalent to constructing a feasi-
ble (or proper or valid) colouring of the vertices of the 
graph, that is, a vertex colouring such that adjacent ver-
tices (two vertices joined by an edge) are assigned dif-
ferent colours. 
 

Given that vertex colouring is NP-Hard (Papadimitriou 
and Steiglitz 1982), the development of heuristics and 
corresponding approximate algorithms, which forfeit the 
guarantee of optimality, has been a central part of the 
research effort. 
 
Two events with a constraint between them are generally 
prohibited from being assigned the same time slot, i.e., 
the edge represents a hard constraint. In some university 
timetabling scenarios, another objective is to minimize 
the number of students that have to take exams close 
together (or courses far apart). This proximity restriction 
is generally regarded as a soft constraint.  
 
The weighted graph model introduced in 1992 (Kiaer 
and Yellen 1992a) was designed to handle timetabling 
instances for which the number of available time slots 
(colours) is smaller than the minimum needed to con-
struct a feasible colouring. (This minimum number is 
called the chromatic number of the graph.) For instance, 
in course timetabling, there is likely to be a limited num-
ber of time slots that can be used during the week, and a 
conflict-free timetable may not exist. If conflicts are un-
avoidable, then a choice must be made on which ones to 
accept.  

Distinguishing among conflicts  
Clearly, certain conflicts are worse than others. If two 
exams (or courses) require the same professor to be pre-
sent or use the same equipment that cannot be shared, 
then those two exams must not be scheduled at the same 
time. On the other hand, if two exams happen to have 
one student in common, then scheduling those two ex-
ams in the same time slot may need to be considered 
acceptable. In fact, there may be situations where the 
distinction between hard and soft constraints becomes 
less clear. For instance, a timetable having a single stu-
dent scheduled to take two exams in the same time slot 
(forcing some special accommodation) may actually be 
preferred to one that has 50 students taking back-to-back 
exams. 
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Scope of Paper 
This paper introduces an extension of the weighted graph 
model of Kiaer and Yellen (1992a). This enhanced 
model holds and keeps track of more of the information 
relevant to the two sometimes opposing objectives – 
minimizing total conflict penalty (or keeping it zero) and 
minimizing total proximity penalty. A natural byproduct 
of this approach is the emergence of some new heuristics 
that appear to hold promise for their use, separately or in 
combination, in fast, one-pass, approximate algorithms.  
 
Such algorithms can prove useful in a number of ways. 
Because solutions are produced quickly, they can be 
used within a flexible, interactive decision-support sys-
tem that can be adapted to a variety of timetabling sce-
narios.  
 
These solutions can also be used as initial solutions in 
local search and improvement based techniques, (e.g., 
Tabu Search, Simulated Annealing, Large Neighborhood 
Search, Case-Based Reasoning), or as upper bounds for a 
branch-and-bound algorithm (Kiaer and Yellen 1992b). 
Recent research has demonstrated that these algorithms, 
when hybridized effectively or integrated with other 
techniques such as meta-heuristics, are highly effective 
on solving timetabling problems (Qu et al. 2006). 
 
Also, because the model lends itself to using various 
combinations of heuristics for vertex and colour selec-
tion, it may prove useful in the context of hyper-
heuristics (Burke et al. 2003) and/or in an evolutionary 
computation approach that might involve automatic gen-
eration of combinations and switching from one combi-
nation to another as the colouring progresses (see Burke 
et al. 2007). 
 
For an up-to-date survey that includes a broad overview 
and extensive bibliography of the research in this area in 
the last ten years (see Qu et al. 2006). 

Description of the Model 

Although we restrict our attention for this paper to ex-
amination timetabling, our model is also applicable to 
course timetabling. Moreover, it incorporates more of the 
problem information at input and keeps track of more 
information pertaining to the partial colouring during the 
colouring process than do existing timetabling models. 
These features led us to the design of some new vertex- 
and colour-selection heuristics, which we introduce in 
this paper. 
  
Each vertex in the graph corresponds to an exam to be 
scheduled and each colour corresponds to a different 
time slot. Accordingly, assigning colour c to vertex v is 
taken to mean that the exam corresponding to v is sched-
uled in the time slot corresponding to c.  
 
We represent various components of a typical instance of 
an Examination Timetabling problem using a weighted 
graph model. Each vertex and each edge are weighted 
with several attributes, some that hold information from 

the problem instance and others that hold and update 
information that helps guide the colouring process. 
 
Associated with each vertex is the set of students who 
must take that exam. Two vertices are joined by an edge, 
and are said to be adjacent or neighbors, if it is undesir-
able to schedule the corresponding exams in the same 
time slot. Each edge carries information that tells us how 
undesirable it would be for the corresponding exams to 
be scheduled in the same time slot or in time slots near 
each other. In particular, each edge has two attributes: 
the set of students taking both exams (intersection sub-
set); and a positive integer indicating the conflict severity 
if the exams are scheduled in the same time slot. This 
second attribute is currently tied to the size of the inter-
section subset. However, it can also reflect factors not 
tied to this intersection. For instance, if the same profes-
sor is assigned to both exams, then the severity is likely 
to be set at a high level. 
 
To illustrate our model, suppose there are four available 
time slots, 0, 1, 2, and 3 for five exams, E1, E2, E3, E4, 
and E5. The set of students taking each of the exams is 
as follows: 
 
E1: {a, b, …, j} 
E2: {k, l, …, z} 
E3: {a, e, k} 
E4: {b, c, d, x, y, z} 
E5: {a, c, e, g, i, j} 
 
Each edge in the graph shown in Figure 1 has the subset 
of students enrolled in both exams corresponding to the 
endpoints of that edge. 
 
In general it may be undesirable to assign the same time 
slot (colour) to a given pair of exams for a variety of 
reasons. For this example, however, we consider two 
vertices to be adjacent only if there is at least one student 
taking both exams. 

 
Figure 1: Student intersections for pairs of exams. 
 
For our example, we set the conflict severity equal to 1, 
5, or 25, according to the size of the intersection. In par-
ticular, we set the conflict severity to 1 if the intersection 
size is 1 or 2, to 5 if the intersection size is 3 or 4, and to 
25 if the intersection size is 5 or greater (see Figure 2). 
We emphasize that these thresholds for conflict severity 
are arbitrarily chosen here. If a conflict-free timetable is 
a requirement, as it is in the University of Toronto prob-
lem instances (Carter, Laporte, and Lee 1996), then all 

{a,c,e,g,i,j}{a,e}

{b,c,d}

{x,y,z}

{e}{k}

E2

E5

E4

E1

E3
{a,e}
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conflict severities can simply be set to one since all con-
flicts are regarded as equally bad. 
 
Of course, as mentioned, there will be many situations in 
which the conflict severity depends on other factors. In 
these situations, an edge might exist even when it corre-
sponds to an empty intersection of students. 
 

Figure 2: Additional edge attributes. 
 
The proximity penalty of assigning colours ci  and c j  to 
the endpoints of an edge is a function of how close ci  
and c j  are and the size of the intersection. For the To-
ronto problem instances, where the time slots are simply 
ci = i , i = 0,1,…, the intersection size is multiplied by a 
proximity weight that equals 25-|i-j| when 5  || ≤− ji  and 
0, otherwise. Our implementation uses this same evalua-
tion for comparison purposes with the Toronto bench-
mark results. However, if the time slots are specified by 
a day, a start time, and a duration, then our colour attrib-
utes can easily be modified to allow for the appropriate 
change in the proximity evaluation function. 
 
Our overall objective is to produce colourings (timeta-
bles) with minimum total conflict (zero may be required) 
and minimum total proximity penalty.  
 
Knowing the conflict severity and size of the intersection 
for each edge makes it straightforward to keep track of 
the two kinds of penalties as the colouring progresses. 
When a vertex gets coloured c, that colour becomes less 
desirable (or forbidden) to its neighbors, as do colours in 
proximity with colour c.  
 
Our model keeps track of these two kinds of colour un-
desirability as follows. Each vertex v has a colour-
penalties vector that indicates the undesirability of as-
signing each colour to that vertex with respect to conflict 
penalty and proximity penalty. That is, the component of 
the colour penalties vector corresponding to colour c has 
two values, one is the conflict penalty incurred if v is 
coloured c, and the other is the resulting proximity pen-
alty. 
 
Using our example and a simplified proximity function, 
we illustrate how the colour-penalties vectors change as 
the graph is coloured. Suppose that any two colours i and 
j of the colours 0, 1, 2, and 3 are within proximity if they 
differ by 1, then the proximity penalty incurred when the 
colours of the endpoints of an edge differ by 1 equals the 
intersection size. Suppose further that the colour-

penalties vectors for all of the vertices are initialized 
with [0, 0] for all of their colour components. Figure 3 
shows the result of colouring vertex E1 with colour 1.  
 
 

Figure 3: Colour-penalties vectors after E1 is coloured 1. 
 
There may be other factors that make certain time slots 
undesirable for an individual exam. For instance, if pro-
fessor X is assigned to exam A and cannot be on campus 
before noon. So any colour corresponding to a morning 
time slot for exam A would be given a prohibitively 
large conflict penalty value before the colouring begins.  
 
As each vertex is coloured, its adjacent vertices’ colour- 
penalties vectors are updated. The ease with which we 
are able to keep track of both hard and soft constraints as 
the colouring progresses creates new opportunities for 
the use of more sophisticated heuristics tied to this read-
ily accessible information.  

The Basic Approximate Algorithm  
Our basic algorithm consists of two steps, select a vertex 
and then colour that vertex. We repeat these two steps 
until all vertices are coloured. Notice that while our 
model will easily accommodate more computation-
intensive algorithms involving backtracking, local im-
provement, etc., we chose for this first phase of our re-
search to concentrate on producing fast, essentially one-
pass colourings.  

Summary of the Model Features and Parameters 
In preparation for the next section’s discussion of heuris-
tics, we list the key features and parameters on which the 
heuristics are based. The two edge attributes, conflict 
severity and intersection size, give rise to two different 
versions of the traditional concept of weighted degree of 
a vertex. 
 
•  Conflict severity (of an edge) – a measure of how 

undesirable it is to assign the same colour to both 
endpoints of the edge. In general, this would depend 
on several factors, and it could be set interactively by 
the end-user. 

•  Intersection size (of an edge) – the size of the inter-
section of the two sets corresponding to the endpoints 
of the edge. In exam timetabling, this is simply the 
number of students taking both exams. 

•  Conflict degree (of a vertex) – the sum of the conflict 
severities of the edges incident on the vertex.  

E2

E5

E4

E1

E3
[1, 2]

[1, 2]

[1, 1]

[25, 6]

[5, 3]

[5, 3]

[1, 1]

[conflictSeverity, intersectionSize]

E2

E5

E4

E1

E3 [1, 2]

[1, 2]

[1, 1]

[25, 6]

[5, 3]

[5, 3]

[1, 1]

( [0,0], [0,0], [0,0], [0,0] )

( [0,2], [1,0], [0,2], [0,0] )

1

( [0,6], [25,0], [0,6], [0,0] )

( [0,3], [5,0], [0,3], [0,0] )
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•  Intersect degree (of a vertex) – the sum of the inter-
section sizes of the edges incident on the vertex. 

•  Bad-conflict edge – an edge whose conflict severity 
exceeds a specified threshold value. If a conflict-free 
timetable (i.e., a feasible colouring) is required, then 
this threshold is set to zero, as we do for the Toronto 
problem instances. 

•  Bad-intersect edge – an edge whose intersection size 
exceeds a specified threshold. In our current imple-
mentation, this threshold is a function of the average 
of the intersection sizes of all edges; specifically, we 
use the average intersection size times some constant 
multiplier. 

•  Conflict penalty (for the colour assignment of a ver-
tex) – a measure of how undesirable it is to assign 
that colour to the vertex. This will depend on the col-
our assignments of the vertex’s neighbors and the 
conflict severities of the relevant edges, but it could 
also depend on other factors (e.g., professor, room, or 
equipment constraints). 

•  Proximity (of two colours) – a measure of how close 
together (in the case of exam timetabling) or spread 
apart (for course timetabling) the two colours are. 
This is often a secondary objective to optimize in 
school timetabling and is typically referred to as a 
soft constraint. 

•  Proximity penalty (for the colour assignment of a 
vertex) – the sum of the proximity penalties resulting 
from that colour assignment and the colour assign-
ments of all neighbors of that vertex (determined by 
the function described immediately following Figure 
2). 

•  Colour-penalties vector (of a vertex) – indicates for 
each colour the conflict penalty and proximity pen-
alty of assigning that colour to the vertex. When a 
vertex is coloured, the colour-penalties vector of each 
of that vertex’s neighbors must be updated accord-
ingly. 

•  Bad-conflict colour (for a vertex) – a colour whose 
conflict penalty for that vertex exceeds some speci-
fied threshold (also set to zero for the Toronto in-
stances since feasible colourings are required).  

•  Bad-proximity colour (for a vertex) – a colour whose 
proximity penalty for that vertex exceeds some speci-
fied threshold. Similar to the bad-intersect-edge 
threshold, we use average intersection size times a 
(possibly different) constant multiplier. 

 
The thresholds for badness are easily adaptable to the 
requirements of the problem, and, in a decision support 
system, they could be specified by the end-user interac-
tively. Part of this ongoing research is to study the effect 
that the values of the thresholds have on the quality of 
the solution and to identify features of a problem in-
stance that determine that effect.  

Heuristics 

Vertex selection and color selection are the two key 
components of our simple, constructive algorithm, and 
our strategies for both are flexible in the varied ways 
they use new heuristics and variations of the traditional 

ones.  Our current implementation uses 10 ‘primitive’ 
heuristics for selecting the next vertex to be coloured and 
four to select a colour for that vertex. 

Ten Primitive Vertex-Selection Heuristics 
Our colouring strategies are based on the classical and 
intuitive idea that the most troublesome vertices should 
be coloured first. Some of the commonly used heuristics 
based on this idea have been largest saturated degree, 
largest degree, and largest weighted degree. 
 
We use variations of these, and we introduce some new 
ones that focus more on the number of bad edges and the 
number of bad colours. Some of these new heuristics rely 
on the information kept in each vertex’s colour-penalties 
vector, while others use information tied to the edges 
incident on each vertex. The primitive heuristics on 
which our vertex selectors are based are: 
 
0. Maximum number of bad-conflict edges to uncol-

oured neighbors – vertices having the most bad-
conflict edges among their incident edges to uncol-
oured neighbors. 

1. Maximum number of bad-conflict colours – vertices 
having the most bad-conflict colours. For the Toronto 
data set, this heuristic reduces to largest saturation 
degree. 

2. Maximum number of bad-proximity colours – verti-
ces having the most bad-proximity colours. 

3. Maximum conflict sum – vertices with the largest sum 
of their conflict colour penalties. 

4. Maximum proximity sum – vertices with the largest 
sum of their proximity colour penalties. 

5. Maximum conflict degree to uncoloured neighbors – 
vertices whose incident edges to uncoloured 
neighbors have the largest sum of the conflict sever-
ities. 

6. Maximum number of bad-conflict edges – vertices 
having the most bad-conflict edges among their inci-
dent edges. For the Toronto data set, this reduces to 
largest degree (since every edge is considered a bad-
conflict edge). 

7. Maximum number of bad-intersect edges to uncol-
oured neighbors – vertices having the most bad-
intersect edges among their incident edges to uncol-
oured neighbors.  

8. Maximum intersect degree to uncoloured neighbors – 
vertices whose incident edges to uncoloured 
neighbors have the largest sum of the intersection 
sizes. 

9. Maximum number of bad colours – a consolidation of 
heuristics 1 and 2; a bad colour is one whose conflict 
penalty or whose proximity penalty exceeds its re-
spective threshold. 

 
Observe that heuristic 7 may be better at evaluating the 
difficulty of a vertex than its sum counterpart, heuristic 
8. To illustrate, suppose that the edge weights in Figure 4 
represent intersection size and that all neighbors of verti-
ces v1 and v2 are uncoloured. Then heuristic 8 would 
select v1, whereas, for any bad-intersect-edge threshold 
greater than one, heuristic 7 would select v2, which ap-
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pears to be more difficult. A similar observation can be 
made for heuristic 2 versus heuristic 4.  
 

 
Figure 4: Heuristic 8 would select v1 before v2.  

Four Primitive Colour-Selection Heuristics 
Given a vertex v that has been selected, the primitive 
heuristics that we use to choose a colour for v are: 
 
0. Minimum conflict penalty – a colour that has mini-

mum conflict penalty for vertex v. 
1. Minimum proximity penalty – a colour that has mini-

mum proximity penalty for vertex v. 
2. Least bad for neighbors with respect to conflict pen-

alty – a colour which when assigned to v causes the 
fewest good-to-bad conflict penalty switches for the 
uncoloured neighbors of v. 

3. Least bad for neighbors with respect to proximity 
penalty – same as heuristic 2 but with respect to 
proximity penalty. 

Combining Heuristics 
One of the innovations of our model and implementation 
is the ability to combine any number of the primitive 
heuristics to form compound vertex selectors and com-
pound colour selectors. A compound vertex selector 
starts with one of the 10 primitive vertex-selection heu-
ristics listed above. Typically there will be several verti-
ces identified as the most difficult with respect to that 
heuristic. This subset of vertices is then narrowed down 
by applying a second primitive heuristic, and so on. 
Thus, a compound vertex selector consists of a sequence 
of primitive heuristics, where all but the first one in the 
sequence, is regarded as a tiebreaker for the ones before 
it. Once the subset of vertices is pared down by the com-
bination of heuristics, some vertex is chosen from the 
subset (typically the first one in the list). Compound col-
our selectors are similarly constructed from the four 
primitive colour-selection heuristics listed above.  

Switching Selectors in the Middle of a Coloring  
Another feature of our model is the ability to switch from 
one combination of heuristics to another at various stages 
of the colouring. Including this feature was motivated by 
the general observation that the effectiveness of a heuris-
tic is likely to change as the colouring progresses. The 
primitive vertex-selection heuristic 1 is perhaps the sim-
plest illustration of this behavior. As we mentioned ear-
lier, this heuristic is essentially the traditional saturation 
degree, which has proven to be among the most preferred 
heuristics for classical graph colouring. However, apply-
ing heuristic 1 in the very early stages of a colouring will 
produce a huge number of ties. Moreover, early in a col-

ouring, the only vertices with any bad-conflict col-
ours will tend to be those few that have neighbors that 
have already been coloured. Thus, until several vertices 
are coloured, the order in which they are selected will 
tend toward a simple breadth-first order and not be an 
effective predictor of the difficult-to-colour vertices.  
 
Accordingly, the compound vertex selectors used early 
in the colouring process begin with a primitive heuristic 
based on the weights of incident edges (e.g., heuristic 0). 
Then, after a designated number of vertices have been 
selected and colored, we switch to a compound selector 
that begins with heuristic 1 when it is more likely to be a 
stronger predictor of the difficulty of a vertex. 

Vertex Partitioning 

A final innovation involves a preprocessing step that 
partitions the vertex set and allows us to reduce the 
amount of computation without incurring additional con-
flict penalties. The preprocessing is based on the follow-
ing simple observation. If v is a vertex with degree less 
than k, and v initially has k colours available, then v can 
safely be left until last to colour, since it will always 
have at least one non-conflict colour available, inde-
pendent of how its neighbors are coloured and how 
heavy the edge-weights are between v and its neighbors.  
 
The preprocessing uses an iterative partitioning algo-
rithm that places all vertices whose colouring can be 
done last into the easiest-to-colour subset, say S1. Next, 
for each vertex in S1, we calculate a reduced (quasi-) 
degree of each of its neighbors and put all vertices whose 
reduced degree is less than the number of colours avail-
able into the next-easiest-to-colour subset, S2 . Again, as 
long as a vertex in S2  is coloured before any of its 
neighbors in S1, it can safely be left uncoloured until its 
other neighbors are coloured. The process continues until 
no additional vertices can be removed from 
the ‘hardest’ subset and the vertices in that last subset of 
the partition must be coloured first using the specified 
selection criteria.  
 
As long as the subsets are done in order (last to first), 
vertices in all subsets except for the hardest one can be 
selected arbitrarily with no possibility of incurring a con-
flict penalty. One simply chooses an available colour, 
whose existence is guaranteed by the construction. Thus, 
in a fairly sparse graph, computation can be considerably 
reduced. Notice that because any penalties that result 
from the colouring occur in the process of colouring the 
hardest cell, any local improvement algorithms could be 
applied only to that set of vertices before moving on to 
colour the rest of the graph, again without incurring addi-
tional penalties at a later stage.  
 
Another potential advantage to this partitioning strategy 
is that the vertex-selection process after the hardest sub-
set has been coloured can be based solely on proximity 
considerations. 
 

v2

40
40

40

40

40

v1

200

1

1
1

1
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Some Preliminary Results 

We present the preliminary results of applying our ap-
proach on the Toronto benchmarks, which is available at 
ftp://ftp.mie.utoronto.ca/pub/carter/testprob/. This dataset 
was first introduced in (Carter, Laporte, and Lee 1996), 
and since then has been extensively studied using a wide 
range of algorithms in the literature. We set the number 
of colors equal to the number of time slots in the Toronto 
dataset. Due to the fact that two versions of the datasets 
have been circulated under the same name in the last ten 
years, we have renamed the problems in (Qu et al. 1996). 
We used version I of the data in our experiments. 
 
Testing is ongoing and much more needs to be done. 
However, we can make some initial observations. 
 
Table 1 presents the best results we have obtained so far.  
 
Although we haven't fully tested it yet, partitioning ap-
pears to improve solution quality most of the time. Ex-
cept for the “sta83 I” problem instance, all results in col-
umn 2 of the table were produced using the partitioning 
pre-processing. 
 
We obtained them using the following two groups of 
three compound vertex selectors: 
 
 vs1: 0 7 8 1 2 4 | 1 0 2 4 7 8 | 2 4 7 8 
 vs2: 0 7 8 9 4 | 9 0 7 8 2 4 | 2 4 7 8 
 
The numbers refer to the primitive vertex-selection heu-
ristics introduced earlier, and the vertical lines separate 
the three compound selectors that form each group. The 
first compound selector in a group is applied to the hard-
est subset until a designated fraction (the switch fraction) 
of the vertices have been selected and coloured. Then the 
second compound selector is applied to the rest of the 
hardest subset. Finally, the third selector, which consists 
of the four proximity-related primitive heuristics, is ap-
plied to the remaining (non-hard) vertices.  
 
We used the following two groups of two compound 
color selectors: 
 
 cs0: 0 1 2 3 | 0 1 3 
 cs1: 0 2 3 1 | 0 3 1 
 
The first compound selector in each group was applied to 
the entire subset of hardest-to-color vertices, and the 
second one was applied to the rest of the vertices.  
 
As we described earlier, the thresholds for a bad-
proximity color and a bad-intersect edge were set equal 
to the average intersection size times two different con-
stant multipliers. In the table, PC is the multiplier for the 
bad-proximity color, and IE is the one for the bad-
intersect edge.  
 
The Settings column gives the values of the switch frac-
tion and the multipliers, PC and IE, and indicates the 
vertex and color selectors used to produce the given re-
sult. 

 

Problem 
Best 

results 
Settings 

 switch | PC | IE | vs | cs 
Best 

reported 
car91 I 5.22 1/23 | 90 | 1 | vs2 | cs0 4.97 
car92 I 4.40 1/13 | 126 | 2 | vs2 | cs0 4.32 
ear83 I 39.28 1/5.2 | 115.5 | 1,2 | vs2 | cs0 36.16 
hec92 I 12.35 1/5 | 16 | 1,2 | vs1 | cs0 10.8 
kfu93 I 19.04 1/14 | 134 | 1,2 | vs2 | cs0 14.0 
lse91 12.05 1/32 | 192 | 1,2 | vs2 | cs0 10.5 
rye92 10.21 1/28 | 133.5 | 2 | vs2 | cs0 7.3 
sta83 I 163.05 1/26.5 | 81 | 1 | vs2 | cs1 158.19 
tre92 8.62 1/39 | 207 | 20 | vs2 | cs0 8.38 
ute92 3.62 1/16 | 50 | 1,2 | vs1 | cs0 3.36 

uta92 I 30.60 1/5 | 369 | 1,2 | vs2 | cs1 25.8 
yor83 I 42.05 1/17 | 340 | 2 | vs2 | cs0 39.8 

 
Table 1. Best results with the corresponding settings for To-
ronto benchmarks. 
 
Results from Table 1 demonstrate that for vertex selec-
tion, vs2 outperforms vs1; 10 of the 12 best results were 
achieved using vs2. Changing threshold values for bad-
ness and changing the switch point between the first and 
second compound vertex selector clearly affect the per-
formance of our algorithm.  
 
In Table 1, we also gave the best results reported in the 
literature which used different constructive methods. 
Although our totals for proximity penalty are, on the 
average, 13% worse than the best ones reported, we be-
lieve our approach still holds promise, particularly in 
view of the fact that it is, at the moment, a one-pass algo-
rithm without any backtracking or local improvement. 
The best results reported in the last column were by dif-
ferent approaches cited in the literature. No single algo-
rithm outperformed others on all problems tested here. 
 
In general, these preliminary results indicate that the 
performance of the algorithm is sensitive to the settings 
of the switch points and thresholds. Although we have 
some initial observations on which settings perform bet-
ter on which Toronto problems, the setting of these pa-
rameters in relation to particular problems is not clear. 
More research effort needs to be spent to develop more 
intelligent mechanisms to adaptively choose these set-
tings for different problems. 
 
One of our future directions is to use heuristics to choose 
how to construct the combinations of heuristics. This 
hyper-heuristic approach (see Burke et al. 2003) has 
been applied successfully in a range of scheduling and 
optimization problems, including timetabling. It is well 
known in meta-heuristics research that different heuris-
tics perform better on different problems, or even differ-
ent instances of the same problem. One of the research 
challenges is concerned with the automatic design of 
heuristics in solving a wider range of problems. Devel-
oping an automatic algorithm that can intelligently oper-
ate on a search space of vertex and colour selectors, 
switch point selectors and threshold settings will become 
one of our primary research efforts in the future. 
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Features of the Model Not Being Used Yet 

There are some features of our model not used in our 
current implementation that add to its robustness. 
 
Our model can handle pre-colored vertices, that is, ex-
ams that must be assigned to certain time slots. Further-
more, if certain time slots are forbidden for a particular 
exam (for example, the professor is only available on 
certain days and times), then this can easily be handled 
by setting an initial nonzero penalty for the relevant 
color. 
 
As we noted earlier, each color, which represents a time 
slot, can have attributes associated with fairly general 
information, like start time, duration and/or finish time. 
For this paper we used only a single attribute, an integer 
value between zero and the maximum number of time 
slots in use, since we were testing our implementation on 
the Toronto benchmark problems. 

Ongoing and Future Work 

The robust model presented in this paper can be easily 
extended or integrated with other techniques to develop 
more advanced and powerful algorithms. We give below 
some possible (and ongoing) research directions. 
 
•  Study the effects of varying the switch points, the 

badness threshold values, and the use of different 
heuristic combinations. In the context of hyper-
heuristics, there are a number of different search 
spaces to consider: 
o The set of all the combinations of one or more of 

the primitive vertex selectors and of the color-
selectors. 

o For a given group of compound vertex selectors, 
the set of all switch points. 

o For a given group of compound vertex selectors, 
the set of threshold values for badness. 

•  In the context of case-based reasoning, test heuristic 
combinations, thresholds, and switch points with ran-
domly generated problem instances that are in the 
Toronto format to see if certain performance patterns 
emerge. Previous work on using case-based reason-
ing (see Burke, Petrovic and Qu, 2006) to intelli-
gently select graph colouring heuristics demonstrated 
that there are significant, wide-ranging possibilities 
for research in knowledge-based heuristic design. 

•  Adding a backtracking component to the algorithm is 
likely to lower the total proximity penalty. For in-
stance, when every colour assignment for a selected 
vertex incurs a proximity penalty above some thresh-
old, the algorithm un-colours or re-colours some 
other vertex in order to reduce the selected vertex’s 
proximity penalty. 

•  Write an improvement method that takes a given col-
ouring produced by our algorithm and looks for ver-
tices whose colours can be changed to decrease the 
total proximity penalty while maintaining feasibility. 

•  With the current implementation, we have not yet 
made full use of the varying conflict severity of 

edges, nor have we allowed any trade-off between 
conflict penalty and proximity penalty. In timetabling 
situations where conflicts must be tolerated, the end-
user might specify that a certain amount of conflict 
penalty is equivalent to a certain amount of proximity 
penalty, e.g., a proximity violation involving 50 stu-
dents equals a conflict involving one student. This 
might lead naturally to a single objective function to 
be minimized. 

•  As we mentioned at the start, the model can be 
adapted to a variety of scenarios, in which a number 
of parameters would be specified interactively by the 
end user through an appropriate interface. Follow-up 
work will include building such an interface. 
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Abstract

This paper presents our recent work on OMPS, a new
timeline-based software architecture for planning and
scheduling whose features support software development for
space mission planning applications. The architecture is
based on the notions of domain components and is deeply
grounded on constraint-based reasoning. Components are en-
tities whose properties may vary in time and which model one
or more physical subsystems which are relevant to a given
planning context. Decisions can be taken on components, and
constraints among decisions modify the components’ behav-
iors in time.

Introduction
This paper describes OMPS, the Open Multi-component
Planning and Scheduling architecture. OMPS implements
a timeline-driven solving strategy. The choice of using
timelines lies in their suitability for real-world problem
specifications, particularly those of the space mission plan-
ning context. Furthermore, timelines are very close to the
operational approach adopted by human planners in cur-
rent space mission planning. Previous timeline-based ap-
proaches have been described in (Muscettola et al. 1992;
Muscettola 1994; Cesta & Oddi 1996; Jonsson et al. 2000;
Frank & Jónsson 2003; Smith, Frank, & Jonsson 2000). We
are evolving from our previous work on a planner called
OMP (Fratini & Cesta 2005) in which we have proposed a
uniform view of state variables and resources timelines to in-
tegrate Planning & Scheduling (P&S). While the OMP ex-
perience lead to a proof of concept solver for small scale
demonstration, the current development of OMPS is taking
place within the Advanced Planning and Scheduling Initia-
tive (APSI) of the European Space Agency (ESA). This has
lead to a a substantial effort both in re-engineering and in
extending our previous work.

The general goal in OMPS is to provide a development
environment for enabling the design and implementation
of mission planning decision support systems to be used
by ESA staff. OMPS also inherits our previous experi-
ence in developing planning and scheduling support tools
for ESA, namely with the MEXAR, MEXAR2 and RAXEM
systems (Cesta et al. 2007), currently in active duty at ESA’s
control center. Our aim within APSI is to generalize the ap-
proach to mission planning decision support by creating a

software framework that facilitates product development.
The OMPS architecture is not only influenced by

constraint-based reasoning work, but introduces also the no-
tion of domain components as a primitive entity for knowl-
edge modeling. Components are entities whose properties
may vary in time and which model one or more physical sub-
systems which are relevant to a given planning context. De-
cisions can be taken on components, and constraints among
decisions modify the components’ behaviors in time. Com-
ponents provide the means to achieve modular decision sup-
port tool development. A component can be designed to
incorporate into a constraint-based reasoning framework en-
tire decisional modules which have been developed indepen-
dently. The underlying philosophy of OMPS is to provide a
development environment within which different, indepen-
dently developed reasoning modules can be integrated seam-
lessly. It is useful to see a component as an entity having
both static and dynamic aspects. Static descriptions are used
to describe “what a component is”, e.g., the static property
of a light bulb is that it can be “on” or “off”. Dynamic prop-
erties are instead those features which define how the static
properties of the component may vary over time, e.g., a light
bulb can go from “on” to “off” and vice-versa.

It is tempting to associate components to the concept
of state variable a la HSTS (Muscettola et al. 1992;
Muscettola 1994). The reason for not doing so is that a state
variable models an entity with static properties. The way this
entity can change over time is typically specified through
constraints on the possible transitions and durations of the
states (e.g., through a timed automaton). A component as we
define it here represents a more general concept: its behavior
over time can be determined by non-trivial reasoning which
is internal to the component itself. This distinction is impor-
tant, as it provides a way to seamlessly incorporate into the
OMPS reasoning framework objects which are themselves
capable of modifying their behavior according to non-trivial
processes, such as sophisticated reasoning algorithms.

This paper is organized as follows. First, we define the
basic building block, namely the component, providing ex-
amples which show how such an entity can be instantiated
to represent a “classical” state variable, a resource, or even
a more complex object whose temporal behavior can be de-
scribed according to its own “internal dynamics”. Second,
we describe the notion of decision on a component. Again,
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we provide examples to show how this concept is instan-
tiated on different common types of components. Third,
we introduce the concepts of timeline and domain theory,
the former providing the driving feature of the solving ap-
proach, the latter describing how components interact, and
how decisions taken on components affects other compo-
nents. Finally, we briefly illustrate the solving strategy im-
plemented in the current OMPS framework and provide an
example. It is worth saying that this paper describes the gen-
eral approach underlying the OMPS architecture. We do not
dwell on the theoretical aspects underlying the architecture,
for which the interested reader is referred to (Fratini 2006).

Components and Behaviors
An intrinsic property of components is that they evolve over
time, and that decisions can be taken on components which
alter their evolution. In OMPS, a component is an entity
that has a set of possible temporal evolutions over an inter-
val of time H. The component’s evolutions over time are
named behaviors. Behaviors are modeled as temporal func-
tions over H, and can be defined over continuous time or as
stepwise constant functions of time.

In general, a component can have many different behav-
iors. Each behavior describes a different way in which the
component’s properties vary in time during the temporal in-
terval of interest. It is in general possible to provide differ-
ent representations for these behaviors, depending on (1) the
chosen temporal model (continuous vs. discrete, or time
point based vs. interval based), (2) the nature of the func-
tion’s range D (finite vs. infinite, continuous vs. discrete,
symbolic vs. numeric) and (3) the type of function which
describes a behavior (general, piecewise linear, piecewise
constant, impulsive and so on).

Not every function over a given temporal interval can be
taken as a valid behavior for a component. The evolution
of components in time is subject to “physical” constraints
(or approximations thereof). We call consistent behaviors
the ones that actually correspond to a possible evolution in
time according to the real-world characteristics of the entity
we are modeling. A component’s consistent behaviors are
defined by means of consistency features. In essence, a con-
sistency feature is a function fC which determines which
behaviors adhere to physical attributes of the real-world en-
tity modeled by the component.

It is in general possible to have many different representa-
tions of a component’s consistency features: either explicit
(e.g., tables or allowed bounds) or implicit (e.g., constraints,
assertions, and so on). For instance, let us model a light bulb
component. A light bulb’s behaviors can take three values:
“on”, “off” and “burned”. Supposing the light bulb cannot
be fixed, a rule could state that any behavior that takes the
value “burned” at a time t is consistent if and only if such a
value is taken also for any time t′ > t. This is a declarative
approach to describing the consistency feature fC . Different
actual representations for this function can be used, depend-
ing also on the representation of the behavior.

A few more concrete examples of components and their
associated consistency features are the following.

State variable. Behaviors: piecewise constant functions
over a finite, discrete set of symbols which represent the
values that can be taken by the state variable. Each be-
havior represents a different sequence of values taken by
the component. Consistency Features: a set of sequence
constraints, i.e., a set of rules that specify which transi-
tions between allowed values are legal, and a set of lower
and upper bounds on the duration of each allowed value.
The model can be for instance represented as a timed au-
tomaton (Alur & Dill 1994) (e.g., the three state variables
in Figure 2).

Note that a distinguishing feature of a state variable is that
not all the transitions between its values are allowed.

Resource (renewable). Behaviors: integer or real func-
tions of time, piecewise, linear, exponential or even more
complex, depending on the model you want to set up.
Each behavior represents a different profile of resource
consumption. Consistency Feature: minimum and max-
imum availability. Each behavior is consistent if it lies
between the minimum and maximum availability during
the entire planning interval.

Note that a distinguishing feature of a resource is that there
are bounds of availability.

In general, the component-based approach allows to ac-
commodate a pre-existing solving component into a larger
planning problem. For instance, it is possible to incorporate
the MEXAR2 application (Cesta et al. 2007) as a compo-
nent, the consistency property of which is not computed di-
rectly on the values taken by the behaviors, but as a function
of those behaviors1.

Component Decisions
Now that we have defined the concept of component as the
fundamental building block of the OMPS architecture, the
next step is to define how component behaviors can be al-
tered (within the physical constraints imposed by consis-
tency features).

We define a component decision as a pair 〈τ, ν〉, where τ
is a given temporal element, and ν is a value. Specifically, τ
can be:

• A time instant (TI) t representing a moment in time.

• A time interval (TIN), a pair of TIs defining an interval
[ts, te) such that te > ts.

The specific form of the value ν depends on the type of com-
ponent on which the decision is defined. For instance, this
can be an amount of resource usage for a resource compo-
nent, or a disjunction of allowed values for a state variable.

Regardless of the type of component, the value of any
component decision can contain parameters. In OMPS, pa-
rameters can be numeric or enumerations, and can be used
to express complex values, such as “transmit(?bitrate)” for a

1Basically, it is computed as the difference between external
uploads and the downloaded amount stated by the values taken by
the behaviors. See (Cesta et al. 2007) for details on the MEXAR2
application.
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state variable which models a communications system. Fur-
ther details on value parameters will be given in the follow-
ing section.

Figure 1: The update function computes the results of a decision
on a component’s set of behaviors. The figure exemplifies this ef-
fect given the two decisions: δ′ imposes a value d′ for the behaviors
of the component in the time instant t1; δ′′ imposes that the values
of all behaviors converge to d′′ after time instant t2.

Overall, a component decision is something that happens
somewhere in time and modifies a component’s behaviors
as described by the value ν. In OMPS, the consequences of
these decisions are computed by the components by means
an update function fU . This is a function which determines
how the component’s behaviors change as a consequence of
a given decision. In other words, a decision changes a com-
ponent’s set of behaviors, and fU describes how. A decision
could state for instance “keep all the behaviors that are equal
to d′ in t1” and another decision could state “all the behav-
iors must be equal to d′′ after t2”. Given a decision on a
component with a given set of behaviors, the update func-
tion computes the resulting set (see Figure 1).

In the following, we instantiate the concept of decision for
the two types of components we have introduced so far.

State variable. Temporal element: a TIN. Value: a subset
of values that can be taken by the state variable (the range
of its behaviors) in the given time frame. Update Func-
tion: this kind of decision for a state variable implies the
choice of values in a given time interval. In this case the
subset of values are meant as a disjunction of allowed val-
ues in the given time interval. Applying a decision on a
set of behaviors entails that all behaviors that do not take
any of the chosen values in the given interval are excluded
from the set.

Resource (renewable). Temporal element: a TIN. Value:
quantity of resource allocated in the given interval — a
decision is basically an activity, an amount of allocated
resource in a time interval. Update Function: the resource
profile is modified by taking into account this allocation.
Outside the specified interval the profile is not affected.

Domain Theory
So far, we have defined components in isolation. When com-
ponents are put together to model a real domain they cannot

be considered as reciprocally decoupled, rather we need to
take into account the fact that they influence each other’s
behavior.

In OMPS, it is possible to specify such inter-component
relations in what we call a domain theory. Specifically,
given a set of components, a domain theory is a function
fDT which defines how decisions taken on one component
affect the behaviors of other components. Just as a con-
sistency feature fC describes which behaviors are allowed
with respect to the features of a single component, the do-
main theory specifies which of the behaviors belonging to
all modeled components are concurrently admissible.

In practice, a domain theory is a collection of synchro-
nizations. A synchronization essentially represents a rule
stating that a certain decision on a given component (called
the reference component) can lead to the application of a
new decision on another component (called target compo-
nent). More specifically, a synchronization has the form
〈Ci, V 〉 −→ 〈Cj , V

′, R〉, where: Ci is the reference com-
ponent; V is the value of a component decision on Ci which
makes the synchronization applicable; Cj is the target com-
ponent on which a new decision with value V ′ will be im-
posed; and R is a set of relations which bind the reference
and target decisions.

In order to clarify how such inter-component relationships
are modeled as a domain theory, let us give an example.

Example 1 The planning problem consists in deciding data
transmission commands from a satellite orbiting Mars to
Earth within given visibility windows. The spacecraft’s or-
bits for the entire mission are given, and are not subject to
planning. The fundamental elements which constitute the
system are: the satellite’s Transmission System (TS), which
can be either in “transmit mode” on a given ground sta-
tion or idle; the satellite’s Pointing System (PS); and the
satellite’s battery (BAT). In addition, an external, uncontrol-
lable set of properties is also given, namely Ground Station
Visibility (GSV) and Solar Flux (SF). Station visibility win-
dows are intervals of time in which given ground stations
are available for transmission, while the solar flux repre-
sents the amount of power generated by the solar panels
given the spacecraft’s orbit. since the orbits are given for
the entire mission, the power provided by the solar flux is a
given function of time sf(t). The satellite’s battery accumu-
lates power through the solar flux and is discharged every
time the satellite is slewing or transmitting data. Finally, it
is required that the spacecraft’s battery is never discharged
beyond a given minimum power level (in order to always
maintain a minimum level of charge in case an emergency
manoeuvre needs to be performed).
Instantiation this example into the OMPS framework thus
equates to defining five components:

PS, TS and GSV. The spacecraft’s pointing and transmis-
sion systems, as well as station visibility are modeled with
three state variables. The consistency features of these
state variables (possible states, bounds on their duration,
and allowed transitions) are depicted in Figure 2. The fig-
ure also shows the synchronizations involving the three
components: one states that the value “locked(?st3)” on
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sf(t)
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Figure 2: State variables and domain theory for the running ex-
ample.

component PS requires the value “visible(?st6)” on com-
ponent GSV (where ?st3 = ?st6, i.e., the two values must
refer to the same station); another synchronization asserts
that transmitting on a certain station requires the PS com-
ponent to be locked on that station; lastly, both slewing
and transmission entail the use of a constant amount of
power from the battery.

SF. The solar flux is modeled as a reusable resource. Given
that the flight dynamics of the spacecraft are given (i.e.,
the angle of incidence of the Sun’s radiation with the so-
lar panels is given), the profile of the solar flux resource is
given function time sf(t) which is not subject to changes.
Thus, decisions are never imposed on this component
(i.e., the SF component has only one behavior), rather its
behavior is solely responsible for determining power pro-
duction on the battery (through the synchronization be-
tween the SF and BAT components).

BAT. The spacecraft’s battery component is modeled as fol-
lows. Its consistency features are a maximum and mini-
mum power level (max, min), the former representing the
battery’s maximum capacity, the latter representing the
battery’s minimum depth of discharge. The BAT compo-
nent’s behavior is a temporal function bat(t) representing
the battery’s level of charge. Assuming that power con-
sumption decisions resulting from the TS and PS com-
ponents are described by the function cons(t), the update
function calculates the consequences of power production
(sf(t)) and consumption on bat(t) as follows:

bat(t) =





L0 + α
∫ t

0
(sf(t)− cons(t))dt

if L0 + α
∫ t

0
(sf(t)− cons(t))dt ≤ max;

max
otherwise.

where L0 is the initial charge of the battery at the begin-
ning of the planning horizon and α is a constant parameter
which approximates the charging profile.

In summary, we employ components of three types: state
variables to model the PS, TS and GSV elements, a reusable
resource to maintain the solar flux profile, and an ad-hoc
component to model the spacecraft’s battery. Notice that this
latter component is essentially an extension of a reusable
resource: whereas a reusable resource’s update function is
trivially the sum operator (imposing an activity on a reusable
resource entails that the resource’s availability is decreased
by the value of the activity), the BAT’s update function cal-
culates the consequences of activities as per the above inte-
gration over the planning horizon.

Decision Network
The fundamental tool for defining dependencies among
component decisions are relations, of which OMPS provides
three types; temporal, value and parameter relations.

Given two component decisions, a temporal relation is
a constraint among the temporal elements of the two deci-
sions. A temporal relation among two decisions A and B
can prescribe temporal requirements such as those modeled
by Allen’s interval algebra (Allen 1983), e.g., A EQUALS
B, or A OVERLAPS [l,u] B.

A value relation between two component decisions is a
constraint among the values of the two decisions. A value
relation among two decisions A and B can prescribe require-
ments such as A EQUALS B, or A DIFFERENT B (mean-
ing that the value of decision A must be equal to or different
from the value of decision B). Notice that temporal relations
can involve any two component decisions, e.g., an activity (a
resource decision) should occur BEFORE a value choice (a
state variable decision). Conversely, value relations are de-
fined among decisions pertaining to components of the same
type.

Lastly, a parameter relation among component decisions
is a constraint among the values of the parameters of the
two decisions. Such relations can prescribe linear inequal-
ities between parameter variables. For instance, a param-
eter constraint between two decisions with values “avail-
able(?antenna, ?bandwidth)” and “transmit(?bitrate)” can be
used to express the requirement that transmission should not
use more than half the available bandwidth, i.e., ?bitrate
≤ 0.5·?bandwidth.

Component decisions and relations are maintained in a
decision network: given a set of components C, a decision
network is a graph 〈V, E〉, where each vertex δC ∈ V is a
component decisions defined on a component C ∈ C, and
each edge (δm

Ci , δn
Cj ) is a temporal, value or parameter rela-

tion among component decisions δm
Ci and δn

Cj .
We now define the concepts of initial condition and goal.
An initial condition for our problem consists in a set of

value choices for the GSV state variable. These decisions
reflect the visibility windows given by the Earth’s position
with respect to the (given) orbit of the satellite. Notice that
the allowed values of the GSV component are not references
for a synchronization, thus they cannot lead to the insertion
in the plan of new component decisions.

Conversely, a goal consists in a set of component deci-
sions which are intended to trigger the solving strategy to ex-
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ploit the domain theory’s synchronizations to synthesize de-
cisions. In our example, this set consists in value choices on
the TS component which assert a desired number of “trans-
mit(?st5)” values. Notice that these value choices can be
allocated flexibly on the timeline.

In general, the characterizing feature of decisions which
define an initial condition is that these decisions do not lead
to application of the domain theory. Conversely, goals di-
rectly or indirectly entail the need to apply synchronizations
in order to reach domain theory compliance. This mecha-
nism is the core of the solving process described in the fol-
lowing section.

Reasoning About Timelines in OMPS
OMPS implements a solving strategy which is based on the
notion of timeline. A timeline is defined for a component as
an ordered sequence of its values. A component’s timeline is
defined by the set of decisions imposed on that component.
Timelines represent the consequences of the component de-
cisions over the time axis, i.e., a timeline for a component
is the collection of all its behaviors as obtained by applying
the fU function given the component decisions taken on it.

The overall solving process implemented in OMPS is
composed of three main steps, namely domain theory ap-
plication, timeline management and solution extraction.
More in detail, timeline management consists in extraction,
scheduling and completion. Indeed, a fundamental principle
of the OMPS approach is its timeline-driven solving process.

Domain Theory Application
Component decisions possess an attribute which changes
during the solving process, namely whether or not a deci-
sion is justified. OMPS’s domain application step consists
in iteratively tagging decisions as justified according to the
following rules (iterated over all decisions δ in the decision
network):
1. If δ unifies with another decision in the network, then

mark δ as justified;
2. If δ’s value unifies with the reference value of a synchro-

nization in the domain theory, then mark δ as justified and
add the target decision(s) and relations to the decision net-
work;

3. If δ does not unify with any reference value in the domain
theory, mark δ as justified.

The previous definition of initial condition and goal can be
understood in terms of domain theory application as follows:
an initial condition is a set of component decisions whose
justification follows trivially from the domain, i.e., it is the
direct result of the application of step 3; a goal, on the other
hand, is a set of component decisions whose justification
leads to the application of synchronizations in the domain
theory (i.e., step 2).

Timeline Management
Timeline management is a collection of procedures which
are necessary to go from a set of decision network to a com-
pletely instantiated set of behaviors. These behaviors ulti-

mately represent a solution to the planning problem. Time-
line management may introduce new component decisions
as well as new relations to the decision network. For this
reason, the OMPS solving process iterates domain theory ap-
plication and timeline management steps until the decision
network is fully justified and a consistent set of behaviors
can be extracted from all component timelines. The specific
procedures which compose timeline management are time-
line extraction, timeline scheduling and timeline completion.
Before showing how these procedures are composed to form
the core of our planning approach, we describe the three
steps in detail.

Timeline Extraction. The outcome of the domain theory
application step is a decision network where all decisions are
justified. Nevertheless, since every component decision’s
temporal element (which can be a TI or TIN) is maintained
in an underlying flexible temporal network, these decisions
are not fixed in time, rather they are free to move between
the temporal bounds obtained as a consequence of the tem-
poral relations imposed on the temporal elements. For this
reason, a timeline must be extracted from the decision net-
work, i.e., the flexible placement of temporal elements im-
plies the need of synthesizing a total ordering among floating
decisions. Specifically, this process depends on the com-
ponent for which extraction is performed. For a resource,
for instance, the timeline is computed by ordering the allo-
cated activities and summing the requirements of those that
overlap. For a state variable, the effects of temporally over-
lapping decision are computed by intersecting the required
values, to obtain (if possible) in each time interval a value
which complies with all the decisions that overlap during
the time interval.

A(x), B(y) B(y), C(z)

time

time0 10 30 40 60

Timeline (EST)

Component decisions

A(x), B(y)

C(z) B(y), C(z)
[30,∞)

dur ∈ [30, 77]

[10,∞)

dur ∈ [10, 23] dur ∈ [20, 45]

?⊥

Figure 3: Three value choices on a state variable, and the resulting
earliest start time (EST) timeline.

In the current implementation, we follow for every type
of component an earliest start-time (EST) approach, i.e., we
have a timeline where all component decisions are assumed
to occur at their earliest start time and last the shortest time
possible. Figure 3 shows the timeline extraction mechanism
for a state variable. The example illustrates two properties
of timelines, namely flaws and inconsistencies.

The first of these features depends on the fact that deci-
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sions imposed on the state variable do not result in a com-
plete coverage of the planning horizon with decisions. This
timeline in the figure contains what we call a flaw in the
interval [30, 40]. A flaw is a segment of time in which no
decision has been taken, thus the state variable within this
segment of time is not constrained to take on certain val-
ues, rather it can, in principle, assume any one of its allowed
values. The process of deciding which value(s) are admis-
sible with respect to the state variable’s internal consistency
features (i.e., the component’s fC function) is clearly a non-
trivial process. Indeed, this is precisely the objective of time-
line completion.

In addition to flaws, inconsistencies can arise in the time-
line. The nature of inconsistencies depends on the spe-
cific component we are dealing with. In the case of state
variables, an inconsistency occurs when two or more value
choices whose intersection is empty overlap in time. In the
example above, this occurs in the interval [0, 10]. As op-
posed to flaws, inconsistencies do not require the generation
of additional component decisions, rather they can be re-
solved by posting further temporal constraints. For instance,
the above inconsistency can be resolved by imposing a BE-
FORE constraint which forces (C(z)) to occur after (A(x),
B(y)). In the case of the BAT component mentioned earlier,
an inconsistency occurs when slewing and/or transmission
decisions have lead to a situation in which bat(t) ≤ min
for some t ∈ H. As in the previous example, BAT incon-
sistencies can be resolved by posting temporal constraints
between the over-consuming activities. In general, we call
the process of resolving inconsistencies timeline scheduling.
Timeline Scheduling. The scheduling process deals with
the problem of resolving inconsistencies. Once again, the
process depends on the component. For a resource, activ-
ity overlapping results in an inconsistency if the combined
usage of the overlapping activities requires more than the
resource’s capacity. For a state variable, any overlapping of
decision that requires a conflicting set of decisions must be
avoided. The timeline scheduling process adds constraints to
the decision network to avoid such inconsistencies through
a constraint posting algorithm (Cesta, Oddi, & Smith 2002).
Timeline Completion. This process is required for com-
ponents such as state variables, where it is required that any
interval of time in a solution is covered by a decision (this is
trivially true for reusable resources as we have defined them
in this paper). If it is not possible to force an ordering among
decisions in such a way that entire planning horizon is de-
cided, then a flaw completion routine is triggered. This step
adds new decisions to the plan.

Solution Extraction

Once domain application and timeline management have
successfully converged on a set of timelines with no incon-
sistencies or flaws, the next step is to extract from the time-
lines one or more consistent behaviors. Recall that a behav-
ior is one particular choice of values for each temporal seg-
ment in a component’s timeline. The previous domain the-
ory application and timeline management steps have filtered

out all behaviors that are not, respectively, consistent with
respect to the domain theory and the components’ consis-
tency features. Behavior extraction deals with the problem
of determining a consistent set of fully instantiated behav-
iors for every component. Since every segment of a time-
line potentially represents a disjunction of values, behavior
extraction must choose specific behaviors consistently. Fur-
thermore, not all values in timeline segments are fully in-
stantiated with respect to parameters, thus behavior extrac-
tion must also take into account the consistent instantiation
of values across all components.

Overall Solving Process
In the current OMPS solver the previously illustrated steps
are interleaved as sketched in Figure 4.

Figure 4: The OMPS solving process.

The first step in the planning process is domain theory ap-
plication, whose aim is to support non-justified decisions. If
there is no way to support all the decisions in the plan, the
algorithm fails.

Once every decision has been supported, the solver tries
to extract a timeline for each component. At this point, it can
happen that some timelines are not consistent, meaning that
there exists a time interval over which conflicting decisions
overlap (an inconsistency). In such a situation, a scheduling
step is triggered. If the scheduler cannot solve all conflicts,
the solver backtracks directly to domain theory application,
and searches for a different way of supporting goals.

If the solver manages to extract a conflict-free set of time-
lines, it then triggers a timeline-completion step on any time-
line which is found to have flaws. It may happen that some
timelines cannot be completed. In this case, the solver back-
tracks again to the previous domain theory application step,
and again searches for a way of justifying all decisions. If
the completion step succeeds for all timelines, the solver re-
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turns to domain theory application, as timeline completion
has added decisions which are not justified.

Once all timelines are conflict-free and complete, the
solver is ready to extract behaviors. If behavior extraction
fails, the solver attempts to backtrack to timeline comple-
tion. This is because our currently implemented completion
algorithm attempts to complete all incomplete timelines sep-
arately: thus it may easily happen that a completion over
a timeline compromises behavior extraction on a different
timeline (since values are linked with synchronizations). If
this fails, the solver must return to domain theory application
in order to search for a different plan altogether.

Finally, the whole process ends when the solver succeeds
in extracting at least one behavior for each timeline. This
collection of mutually consistent behaviors represents a fully
instantiated solution to the planning problem.

Figure 5: EST timelines for the TS and GSV state variables.

Going back to our running example, the timelines of the
GSV and TS components resulting from the application of
a set of initial condition and goal decisions are shown in
Figure 5 (no initial decision or goal is specified for the PS
component). Notice that the GSV timeline is fully defined,
reflecting the fact that the GSV component is not control-
lable, rather it represents the evolution in time of station vis-
ibility given the fully defined flight dynamics of the satel-
lite. The TS timeline contains five “transmit” value choices,
through which we represent our goal. These value choices
are allocated within flexible time bounds (the figure shows
an EST timeline for the component, in which these deci-
sions are anchored to their earliest start time and duration).
As opposed to the GSV timeline, the TS timeline contains
flaws, and it is precisely these flaws that will be “filled” by
the solving algorithm. In addition, the application during
the solving process of the synchronization between the GSV
and PS components that will determine the construction of
the PS’s timeline (which is completely void of component
decisions in the initial situation), reflecting the fact that it
is necessary to point the satellite towards the visible target
before initiating transmission.
The behaviors extracted from the TS and PS components’
timelines after applying this solving procedure on our ex-
ample are shown in Figure 6.

Related Work
The synthesis of OMPS is aimed at creating an extensible
problem solving architecture to support development of dif-

Figure 6: EST behaviors for the TS and PS state variables.

ferent applications. It is worth making a comparison with
other systems that, for different reasons, share the same goal
with OMPS.

Similarly to OMPS’s timelines, IxTeT (Ghallab & Laru-
elle 1994) follows a domain representation ontology based
on state attributes which assume values in a given domain.
Unlike OMPS in IxTeT system dynamics are represented
with a STRIPS-like logical formalism. Resource reasoning
is used as a conflict analyzer on top of the plan representa-
tion.

Visopt ShopFloor (Bartak 2002) is grounded on the the
idea of working with dynamic scheduling problems where it
is not possible to describe in advance activity sets that have
to be scheduled. That is the same principle behind the inte-
gration of planning into scheduling done in both OMP and
OMPS: to put a domain theory behind a scheduling problem
to gain flexibility in managing tasks and goal driven prob-
lem solving. Dynamic aspects of the problem are described
using resources with complex behaviors. These resources
are close to our state variable, but they are managed using
global constraints instead of a precedence constraint posting
approach as we are currently doing. Moreover, although we
are working on P&S integration we maintain a clear distinc-
tion between planning and scheduling at the level of model-
ing problem features.

HSTS (Muscettola et al. 1992; Muscettola 1994), has
been the first to propose a modeling language with explicit
representation of timelines, using the concept of state vari-
ables. In fact we are extending an HSTS-like state vari-
ables modeling language with a generic timeline oriented
approach: in OMPS timelines represents not only state vari-
able evolutions, but also multi-capacity and consumable re-
sources, and may arrive to include generic components hav-
ing temporal functions as behaviors. A clear difference w.r.t.
HSTS is that in our approach we see different types of time-
lines as separate modules, while HSTS, and its derivatives
RAX-PS and EUROPA, view resources as specialized state
variables. Their view is certainly appealing but leaves the
problem of integrating in a clean way multi-capacity re-
sources open. In fact, while it is immediate to represent bi-
nary resources as state variables, it is quite difficult to model
and handle cumulative resources. We believe that in these
cases the best way is to exploit state of the art scheduling
technologies hence our direction of seeing resources as an
independent type of components.
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Conclusions
In this article we have given a preliminary overview of
OMPS a P&S system which follows a component-based,
timeline-driven approach to planning and scheduling inte-
gration. The approach draws from and attempts to general-
ize our previous experience in mission planning tool devel-
opment for ESA (Cesta et al. 2007) and to extend our pre-
vious work on the OMP planning system (Fratini & Cesta
2005).

A distinctive feature of the OMPS architecture is that it
provides a framework for reasoning about any entity which
can be modeled as a component, i.e., as a set of proper-
ties that vary in time. This includes “classical” concepts
such as state variables (as defined in HSTS (Muscettola
et al. 1992; Muscettola 1994) and studied also in sub-
sequent work (Cesta & Oddi 1996; Jonsson et al. 2000;
Frank & Jónsson 2003)), and renewable/consumable re-
sources (Laborie 2003; Cesta, Oddi, & Smith 2002).

Another feature of the component-based architecture is
the possibility to modularize the reasoning algorithms that
are specific to each type of component within the component
itself, e.g., profile-based scheduling routines for resource in-
consistency resolution are implemented within the resource
component itself. The more important consequence of this is
the possibility to include previously implemented/deployed
ad-hoc components within the framework. We have given
an example of this in this paper with the battery component,
which essentially extends a reusable resource. The ability
to encapsulate potentially complex modules within OMPS
components provides a strong added value in developing
real-world planning systems. Specifically, this capability
can be leveraged to include entire decisional modules which
are already present in the overall decision process within
which OMPS is deployed. An example is the MEXAR2 sys-
tem (Cesta et al. 2007)2, whose ability to solve the Mars
Express memory dumping problem can be encapsulated into
an ad-hoc component.

The ability to employ previously developed subsystems
like MEXAR2 benefits decision support system development
in a number of ways. From the engineering point of view, it
facilitates the task of fast prototyping, providing a means
to incorporate complex functionality by employing previ-
ously developed decision support aids. Also, this feature
contributes to increasing the reliability of development pro-
totypes, as existing components (especially in the context
of ESA mission planning) have typically undergone inten-
sive testing before being deployed. Second, the component-
based architecture allows to leverage the efficiency of prob-
lem de-composition. Again, MEXAR2 provides a meaning-
ful example, as it is a highly optimized decision support sys-
tem for solving the very specific problem of memory dump-
ing. Lastly, the ability to re-use components brings with it
the advantage of preserving potentially crucial user interface
paradigms, the re-engineering of which may be a strong de-
terrent for adopting innovative problem solving strategies.

2The MEXAR2 system is a specific decision support aid devel-
oped by the Planning and Scheduling Team which is currently in
daily use within ESA’s Mars Express mission.
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Abstract

We present a modification of the Leung-Palem-Pnueli parallel
processors scheduling algorithm and prove its optimality for
scheduling monotone interval orders with release dates and
deadlines on Unit Execution Time (UET) typed task systems
in polynomial time. This problem is motivated by the relax-
ation of Resource-Constrained Project Scheduling Problems
(RCPSP) with precedence delays and UET operations.

Introduction
Scheduling problems ontyped task systems(Jaffe 1980) gen-
eralize the parallel processors scheduling problems by intro-
ducingk types{τr}1≤r≤k and

∑
1≤r≤kmr processors with

mr processors of typeτr. Each operationOi has a type
τi ∈ {τr}1≤r≤k and may only execute on processors of type
τi. We denote typed task systems withΣkP in theα-field of
theα|β|γ scheduling problem denotation (Brucker 2004).

Scheduling typed task systems is motivated by two main
applications: resource-constrained scheduling in high-level
synthesis of digital circuits (Chaudhuri, Walker, & Mitchell
1994), and instruction scheduling in compilers for VLIW
processors (Dupont de Dinechin 2004). In high-level syn-
thesis, execution resources correspond to the synthesized
functional units, which are partitioned by classes such as
adder or multiplier with a particular bit-width. Operations
are typed by these classes and may have non-unit execution
time. In compiler VLIW instruction scheduling, operations
usually have unit execution time (UET), however on most
VLIW processors an operation requires several resources
for execution, like in the Resource-Constrained Project
Scheduling Problems (RCPSP) (Bruckeret al. 1999). In
both cases, the pipelined implementation of functional units
yield scheduling problems with precedence delays, that is,
the time required to produce a value is larger than the mini-
mum delay between two activations of a functional unit.

We are aware of the following work in the area of typed
task systems. Jaffe (Jaffe 1980) introduces them to for-
malize instruction scheduling problems that arise in high-
performance computers and data-flow machines, and stud-
ies the performance bounds of list scheduling. Jansen
(Jansen 1994) gives a polynomial time algorithm for prob-
lem ΣkP |intOrder; pi = 1|Cmax, that is, scheduling

interval-ordered typed UET operations. Verriet (Verriet
1998) solves problemΣkP |intOrder; cji = 1; pi = 1|Cmax
in polynomial time, that is, interval-ordered typed UET op-
erations subject to unit communication delays.

Interval ordersare a class of precedence graphs where
UET scheduling on parallel processors is polynomial-time,
while non-UET scheduling on 2 processors is strongly NP-
hard (Papadimitriou & Yannakakis 1979). In particular,
Papadimitriou and Yannakakis solveP |intOrder; pi =
1|Cmax in polynomial-time. Scheduling interval orders
with communication delays on parallel processors is also
polynomial-time, as the algorithm by Ali and El-Rewini
(Ali & El-Rewini 1992) solvesP |intOrder; cji = 1; pi =
1|Cmax. Verriet (Verriet 1996) further proposes a dead-
line modification algorithm that solvesP |intOrder; cji =
1; ri; pi = 1|Lmax in polynomial-time.

Scheduling interval orders with precedence delays on par-
allel processors was first considered by Palem and Simons
(Palem & Simons 1993), who introduced monotone inter-
val orders and solveP |intOrder(mono lji ); pi = 1|Lmax
in polynomial-time. This result is generalized by Leung-
Palem-Pnueli algorithm (Leung, Palem, & Pnueli 2001).

In the present work, we modify the algorithm of Leung,
Palem and Pnueli (Leung, Palem, & Pnueli 2001) in order
to solveΣkP |intOrder(mono lji ); ri; di; pi = 1|− feasi-
bility problems in polynomial time. The resulting algorithm
thus operates on typed tasks, allows precedence delays, and
handles release dates and deadlines. Thanks to these proper-
ties, it provides useful relaxations of the RCPSP with UET
operations and precedence delays.

The Leung-Palem-Pnueli algorithm (Leung, Palem, &
Pnueli 2001) is a parallel processors scheduling algorithm
based on deadline modification and the use of lower mod-
ified deadline first priority in a Graham list scheduling al-
gorithm. The Leung-Palem-Pnueli algorithm (LPPA) solves
the following feasibility problems in polynomial time:

• 1|prec(lji ∈ {0, 1}); ri; di; pi = 1|−

• P2|prec(lji ∈ {−1, 0}); ri; di; pi = 1|−

• P |intOrder(mono lji ); ri; di; pi = 1|−

• P |inTree(lji = l); di; pi = 1|−
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Here, thelji are precedence delays withpi + lji ≥ 0.

Presentation is as follows. In the first section, we extend
theα|β|γ scheduling problem denotation and we discuss the
Graham list scheduling algorithm (GLSA) for typed task
systems. In the second section, we present our modified
Leung-Palem-Pnueli algorithm (LPPA) and prove its opti-
mality for scheduling monotone interval orders with release
dates and deadlines on UET typed task systems in polyno-
mial time. In the third section, we discuss the application of
this algorithm to VLIW instruction scheduling.

Deterministic Scheduling Background
Machine Scheduling Problem Denotation
In parallel processors scheduling problems, an operation set
{Oi}1≤i≤n is processed onm identical processors. Each op-
erationOi requires the exclusive use of one processor forpi
time units, starting at itsschedule dateσi. Scheduling prob-
lems may involverelease datesri anddue datesdi. This
constrains the schedule dateσi of operationOi asσi ≥ ri
and there is a penalty wheneverCi > di, with Ci thecom-

pletion dateof Oi defined asCi
def= σi + pi. For problems

whereCi ≤ di is mandatory, thedi are calleddeadlines.
A precedenceOi ≺ Oj between two operations con-

strains the schedule withσi+pi ≤ σj . In case ofprecedence
delay lji betweenOi andOj , the scheduling constraint be-
comesσi + pi + lji ≤ σj . Theprecedence graphhas one arc
(Oi, Oj) for each precedenceOi ≺ Oj . Given an operation
Oi, we denotesuccOi the set of direct successors ofOi and
predOi the set of direct predecessors ofOi in the precedence
graph. The setindepOi contains the operations that are not
connected toOi in the undirected precedence graph.

Given a scheduling problem over operation set
{Oi}1≤i≤n with release dates{ri}1≤i≤n and dead-
lines {di}1≤i≤n, the precedence-consistent re-
lease dates {r+

i }1≤i≤n are recursively defined as

r+
i

def= max(ri,maxOj∈predOi(r
+
j + pj + lij)). Likewise, the

precedence-consistent deadlines{d+
i }1≤i≤n are recursively

defined asd+
i

def= min(di,minOj∈succOi(d
+
j − pj − l

j
i )).

Machine scheduling problems are denoted by a triplet
α|β|γ (Brucker 2004), whereα describes the processing en-
vironment,β specifies the operation properties andγ defines
the optimality criterion. Values ofα, β, γ include:

α : 1 for a single processor,P for parallel processors,Pm
for the givenm parallel processors. We denote typed task
systems withk types byΣkP .

β : ri for release dates,di for deadlines (ifγ = −) or due
dates,pi = 1 for Unit Execution Time (UET) operations.

γ : − for the feasibility,Cmax or Lmax for the minimiza-
tion of these objectives.

Themakespanis Cmax
def= maxi Ci and themaximum late-

nessis Lmax
def= maxi Li : Li

def= Ci − di. The meaning of
the additionalβ fields is:

prec(lji ) Precedence delayslji , assuminglji ≥ −pi.
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Figure 1: Set of intervals and the corresponding interval or-
der graph.

prec(lji = l) All the precedence delayslji equall.

inTree The precedence graph is an in-tree.

intOrder(mono lji ) The precedence graph weighted by

w(Oi, Oj)
def= pi + lji is a monotone interval order.

An interval orderis the transitive orientation of the com-
plement of an interval graph (Papadimitriou & Yannakakis
1979) (see Figure 1). The important property of interval
orders is that given any two operationsOi andOj , either
predOi ⊆ predOj or predOj ⊆ predOi (similarly for suc-
cessors). This is easily understood by referring to the un-
derlying intervals that define the interval order. Adding or
removing operations without predecessors and successors to
an interval order is still an interval order. Also, interval or-
ders are transitively closed, that is, any transitive successor
(predecessor) must be a direct successor (predecessor).

A monotone interval ordergraph (Palem & Simons 1993)
is an interval order whose precedence graph(V,E) is
weighted with a non-negative functionw on the arcs such
that, given any(Oi, Oj), (Oi, Ok) ∈ E : predOj ⊆
predOk ⇒ w(Oi, Oj) ≤ w(Oi, Ok). Monotone interval
orders are motivated by the application of interval orders
properties to scheduling problems with precedence delays.

Indeed, in scheduling problems with interval orders, the
precedence arc weight considered between any two opera-
tionsOi andOj is w(Oi, Oj)

def= pi with pi the processing
time of Oi. In case of monotone interval orders, the arc
weights arew(Oi, Oj)

def= pi + lji with lji the precedence
delay betweenOi andOj . An interval order graph where
all arcs leaving any given node have the same weight is
obviously monotone, so interval order precedences without
precedence delays imply monotone interval order graphs.

Graham List Scheduling Algorithm Extension
The Graham list scheduling algorithm (GLSA) is a classic
scheduling algorithm where the time steps are considered in
non-decreasing order. For each time step, if a processor is
idle, the highest priority operation available at this time is
scheduled An operation is available if the current time step
is not earlier than the release date and all direct predecessors
have completed their execution early enough to satisfy the
precedence delays. On typed task systems, the operation
type must match the type of an idle processor.

The GLSA is optimal forP |ri; di; pi = 1|− and
P |ri; pi = 1|Lmax when using the earliest deadlines (or due
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dates)di first as priority (Brucker 2004) (Jackson’s rule).
This property directly extends to typed task systems:

Theorem 1 The GLSA with Jackson’s rule optimally solves
ΣkP |ri; di; pi = 1|− andΣkP |ri; pi = 1|Lmax.

Proof: In typed task systems, operations are partitioned by
processor type. In problemΣkP |ri; di; pi = 1|− (respec-
tively ΣkP |ri; pi = 1|Lmax), there are no precedences be-
tween operations. Therefore, optimal scheduling can be
achieved by considering operations and processors of each
type independently. For each type, the problem reduces to
P |ri; di; pi = 1|− (respectivelyP |ri; pi = 1|Lmax), which
is optimally solved with Jackson’s rule.

In this work, we allow precedences delayslji = −pi ⇒
σi ≤ σj , that is, precedences with zero start-start time lags.
Thus we extend the GLSA as follows: in cases of available
operations with equal priorities, schedule first the earliest
operations in the precedence topological sort order.

The Modified Leung-Palem-Pnueli Algorithm
Algorithm Description
The Leung-Palem-Pnueli algorithm (LPPA) is similar to
classic UET scheduling algorithms on parallel processors
like Garey & Johnson (Garey & Johnson 1976), in that it
uses a lower modified deadlines first priority in a GLSA.
Given a scheduling problem with deadlines{di}1≤i≤n,
modified deadlines{d′i}1≤i≤n are such that∀i ∈ [1, n] :
σi + pi ≤ d′i ≤ di for any schedule{σi}1≤i≤n. The distin-
guishing feature of the LPPA is the computation of its mod-
ified deadlines, which we callfixpoint modified deadlines1.

Precisely, the LPPA defines abackward scheduling prob-
lem denotedB(Oi, Si) for each operationOi. An optimal
backward schedulingprocedure computes the latest possi-
ble schedule dateσ′i of operationOi in eachB(Oi, Si). Op-
timal backward scheduling ofB(Oi, Si) is used to update
the current modified deadline ofOi asd′i ← σ′i + pi. This
process of deadline modification is iterated over all prob-
lemsB(Oi, Si) until a fixpoint of the modified deadlines
{d∗i }1≤i≤n is reached (Leung, Palem, & Pnueli 2001).

We modify the Leung-Palem-Pnueli algorithm (LPPA) to
compute the fixpoint modified deadlines{d∗i }1≤i≤n by exe-
cuting the following procedure:

(i) Compute the precedence-consistent release dates
{r+
i }1≤i≤n, the precedence-consistent deadlines
{d+
i }1≤i≤n and initialize the modified deadlines

{d′i}1≤i≤n with the precedence-consistent deadlines.

(ii) For each operationOi, define the backward scheduling
problemB(Oi, Si) with Si

def= succOi ∪ indepOi.

(1) Let Oi be the current operation in some iteration over
{Oi}1≤i≤n.

(2) Compute the optimal backward schedule dateσ′i of Oi by
optimal backward scheduling ofB(Oi, Si).
1Leung, Palem and Pnueli call them “consistent and stable mod-

ified deadlines”.

(3) Update the modified deadline ofOi asd′i ← σ′i + 1.

(4) Update the modified deadlines of eachOk ∈ predOi with
d′k ← min(d′k, d

′
i − 1− lik).

(5) Go to (1) until a fixpoint of the modified deadlines
{d′i}1≤i≤n is reached.

In our modified LPPA, we define thebackward schedul-
ing problemB(Oi, Si) as the search for a set of dates
{σ′j}Oj∈{Oi}∪Si that satisfy:

(a) ∀Oj ∈ Si : Oi ≺ Oj ⇒ σ′i + 1 + lji ≤ σ′j
(b) ∀t ∈ lN,∀r ∈ [1, k] : |{Oj ∈ {Oi} ∪ Si ∧ τj = r ∧ σ′j =

t}| ≤ mr

(c) ∀Oj ∈ {Oi} ∪ Si : r+
j ≤ σ′j < d′j

Constraints (a) state that only the precedences betweenOi
and its direct successors are kept in the backward scheduling
problemB(Oi, Si). Constraints (b) are the resources limi-
tations of typed task systems with UET operations. Con-
straints (c) ensure that operations are backward scheduled
within the precedence-consistent release dates and the cur-
rent modified deadlines. Anoptimal backward schedulefor
Oi maximizesσ′i in B(Oi, Si).

Let{r+
j }1≤i≤n be the precedence-consistent release dates

and{d′j}1≤i≤n be the current modified deadlines. The sim-
plest way to find the optimum backward schedule date ofOi
in B(Oi, Si) is to search for the latests ∈ [r+

i , d
′
i − 1] such

that the constrained backward scheduling problem(σ′i =
s) ∧ B(Oi, Si) is feasible. Even though each such con-
strained problem can be solved in polynomial time by reduc-
ing to someΣkP |rj ; dj ; pj = 1|− over{Oi} ∪ Si, optimal
backward scheduling ofB(Oi, Si) would require pseudo-
polynomial time, as there are up tod′i−r

+
i constrained back-

ward scheduling problems to solve. Please note that a sim-
ple dichotomy search for the latest feasibles ∈ [r+

i , d
′
i − 1]

does not work, as(σ′i = s) ∧ B(Oi, Si) is infeasible does
not imply that(σ′i = s+ 1) ∧B(Oi, Si) is infeasible.

In order to avoid the pseudo-polynomial time complexity
of optimal backward scheduling, we rely instead on a pro-
cedure with two successive dichotomy searches for feasible
relaxations of constrained backward scheduling problems,
like in the original LPPA. Describing this procedure requires
further definitions. Assumelji = −∞ if Oi 6≺ Oj . Given a
constrained backward scheduling problem(σ′i ∈ [p, q]) ∧
B(Oi, Si), we define a relaxationΣkP |r̂j ; d̂j ; pj = 1|−
over the operation set{Oi} ∪ Si such that:

r̂i
def= p

d̂i
def= q + 1

Oj ∈ Si =⇒ r̂j
def= max(r+

j , q + 1 + lji )
Oj ∈ Si =⇒ d̂j

def= d′j

In other words, the precedences fromOi to each direct
successorOj ∈ Si are converted into release dates assuming
the release date and deadline ofOi respectively equalp and
q + 1. We call type 2 relaxationthe resulting scheduling
problemΣkP |r̂j ; d̂j ; pj = 1|− and type 1 relaxationthis
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Figure 2: Optimal backward scheduling proof.

problem when disregarding the resource constraints ofOi.
Both type 1 and type 2 relaxations are optimally solved by
the GLSA with the earliest̂dj first priority (Theorem 1). If
any relaxation is infeasible, so is the constrained backward
scheduling problem(σ′i ∈ [p, q]) ∧B(Oi, Si).

Observe that the type 1 relaxation is increasingly con-
strained asq increases, independently of the value ofp. And
for any fixedq, the type 2 relaxation is increasingly con-
strained asp increases. Therefore, it is correct to explore
the feasibility of any of these relaxations using dichotomy
search. So the optimal backward scheduling procedure is
based on two dichotomy searches as follows.

The first dichotomy search initializesp = r+
i and q =

d′i − 1. Then it proceeds to find the latestq such that the
type 1 relaxation is feasible. The second dichotomy search
keepsq constant and finds the latestp such that the type 2
relaxation is feasible. Whenever both searches succeed, the
optimum backward schedule date ofOi is taken asσ′i = p so
the new modified deadline isd′i = p + 1. If any dichotomy
search fails,B(Oi, Si) is assumed infeasible.

Algorithm Proofs
Theorem 2 The optimal backward scheduling procedure
computes the latest schedule dateσ′i ofOi among the sched-
ules that satisfy conditions (a), (b), (c) ofB(Oi, Si).

Proof: The two dichotomy searches are equivalent to linear
searches, respectively by increasingq and by increasingp.
If no feasible relaxationΣkP |r̂j ; d̂j ; pj = 1|− exist in any
of these linear searches, the backward scheduling problem
B(Oi, Si) is obviously infeasible.

If a feasible relaxation exists in the second linear search,
this search yields a backward schedule withσ′i = p. Indeed,
let {σ̂j}Oj∈{Oi}∪Si be schedule dates for the type 2 relax-
ation of(σ′i ∈ [p, q]) ∧ B(Oi, Si). We havêσi = p because
the type 2 relaxation of problem(σ′i ∈ [p+1, q])∧B(Oi, Si)
is infeasible and the only difference between these two re-
laxations is the release date ofOi. Moreover, the dates
{σ̂j}Oj∈{Oi}∪Si satisfy (a), (b), (c). Condition (a) is sat-
isfied from the definition of̂rj and becausêσi = p ≤ q.
Conditions (b) and (c) are satisfied by the GLSA.

Let us prove that the backward schedule found by the sec-
ond search is in fact optimal, that is, there is nos ∈ [p+1, q]
such that problem(σ′i ∈ [s, s]) ∧ B(Oi, Si) is feasible.
This is obvious ifp = q, so consider cases wherep < q.
The type 2 relaxation of problem(σ′i ∈ [p, q]) ∧ B(Oi, Si)
is feasible while the type 2 relaxation of problem(σ′i ∈

tu + 1 d∗i
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Figure 3: Modified Leung-Palem-Pnueli algorithm proof.

[p + 1, q]) ∧ B(Oi, Si) is infeasible imply there is a setΣ
of operations that fill all slots of typeτi in range[p + 1, q]
and prevents the GLSA from scheduling ofOi in that range
(Figure 2). SoOj ∈ Σ⇒ d̂j ≤ d̂i = q + 1 ∧ r̂j ≥ p+ 1.

Now assume exists somes ∈ [p+ 1, q] such that problem
(σ′i ∈ [s, s])∧B(Oi, Si) is feasible. This imply that problem
(σ′i ∈ [p + 1, s]) ∧ B(Oi, Si) is also feasible. The type 2
relaxation of(σ′i ∈ [p + 1, s]) ∧ B(Oi, Si) differs from the
type 2 relaxation of(σ′i ∈ [p+1, q])∧B(Oi, Si) only by the
decrease of the release datesr̂j of some operationsOj ∈ Si,
yet r̂j ≥ p + 1 as r̂j

def= max(r+
j , s + 1 + lji ) ≥ p + 1 +

1 + lji . As all the operations ofΣ must still be scheduled
in range[p + 1, q] in the type 2 relaxation of(σ′i ∈ [p +
1, s]) ∧ B(Oi, Si), there is still no scheduling slot forOi in
that range. So problem(σ′i ∈ [p + 1, s]) ∧ B(Oi, Si) and
problem(σ′i ∈ [s, s]) ∧B(Oi, Si) are infeasible.

Theorem 3 The modified algorithm of Leung,
Palem and Pnueli solves any feasible problem
ΣkP |intOrder(mono lji ); ri; di; pi = 1|−.

Proof: The correctness of this modified Leung-Palem-
Pnueli algorithm (LPPA), like the correctness of the origi-
nal LPPA, is based on two arguments. The first argument
is that the fixpoint modified deadlines are indeed deadlines
of the original problem. This is apparent, as each backward
scheduling problemB(Oi, Si) is a relaxation of the orig-
inal scheduling problem and optimal backward scheduling
computes the latest schedule date ofOi withinB(Oi, Si) by
Theorem 2. Let us callcore the GLSA that uses the earli-
est fixpoint modified deadlines first as priorities. The second
correctness argument is a proof that the core GLSA does not
miss any fixpoint modified deadlines.

Precisely, assume that someOi is the earliest operation
that misses its fixpoint modified deadlined∗i in the core
GLSA schedule. In a similar way to (Leung, Palem, &
Pnueli 2001), we will prove that an earlier operationOk nec-
essarily misses its fixpoint modified deadlined∗k in the same
schedule. This contradiction ensures that the core GLSA
schedule does not miss any fixpoint modified deadline. The
details of this proof rely on a few definitions and observa-
tions illustrated in Figure 3.

Let r = τi be the type of operationOi. An operationOj
is saidsaturatedif τj = r andd∗j ≤ d∗i . Definetu < d∗i
as the latest time step that is not filled with saturated opera-
tions on the processors of typer. If tu < 0, the problem is
infeasible, as there are not enough slots to schedule opera-
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tions of typer onmr processors within the deadlines. Else,
some scheduling slots of typer at tu are either empty or
filled with operationsOu : d∗u > d∗i of lower priority than
saturated operations in the core GLSA. Define the operation
setΣ def= {Oj saturated: tu < σj < d∗i } ∪ {Oi}. Define the

operation subsetΣ′ def= {Oj ∈ Σ : r+
j ≤ tu}.

Consider problemP k|intOrder(mono lji ); ri; di; pi =
1|−. In an interval order, given two operationsOi andOj ,
eitherpredOi ⊆ predOj or predOj ⊆ predOi. SelectOj′
amongOj ∈ Σ′ such that|predOj | is minimal. AsOj′ ∈ Σ′
is not scheduled at datetu or earlier by the core GLSA, there
must be a constraining operationOk that is a direct prede-
cessor of operationOj′ with σk + 1 + lj

′

k = σj′ > tu ⇒
σk + 1 > tu − lj

′

k . Note thatOk can have any type. Opera-
tions inpredOj′ are the direct predecessors of all operations
Oj ∈ Σ′ and no predecessor ofOj′ is in Σ′. ThusOk 6∈ Σ′
andOk is a direct predecessor of all operationsOj ∈ Σ′.

We callstable backward scheduleany optimal backward
schedule ofB(Ok, Sk) where the modified deadlines equal

the fixpoint modified deadlines. SinceSk
def= succOk ∪

indepOk, we haveΣ ⊆ Sk. By the fixpoint property, we
may assume that a stable backward schedule ofB(Ok, Sk)
exists. Such stable backward schedule must slot themr(d∗i−
1−tu)+1 operations ofΣ befored∗i onmr processors, so at
least one operationOj ∈ Σ′ is scheduled at datetu or earlier
by any stable backward schedule ofB(Ok, Sk).

Theorem 2 ensures that optimal backward scheduling of
B(Ok, Sk) satisfies the precedence delays betweenOk and
Oj . Thusσ′k + 1 + ljk ≤ tu sod∗k − 1 + 1 + ljk ≤ tu. By
the monotone interval order property,predOj′ ⊆ predOj ⇒
w(Ok, Oj′) ≤ w(Ok, Oj)⇒ 1+lj

′

k ≤ 1+ljk ⇒ lj
′

k ≤ l
j
k for

Oj′ selected above andOj ∈ Σ′, sod∗k ≤ tu− l
j′

k . However

in the core GLSA scheduleσk + 1 > tu − lj
′

k , soOk misses
its fixpoint modified deadlined∗k.

The overall time complexity of this modified LPPA is
the sum of the complexity of initialization steps (i-ii), of
the number of iterations times the complexity of steps (1-5)
and of the complexity of the core GLSA. Leung, Palem and
Pnueli (Leung, Palem, & Pnueli 2001) observe that the num-
ber of iterations to reach a fixpoint is upper bounded byn2,
a fact that still holds for our modified algorithm. As the time
complexity of the GLSA on typed task systems withk types
is within a factork of the time complexity of the GLSA on
parallel processors, our modified LPPA has polynomial time
complexity.

In their work, Leung, Palem and Pnueli (Leung, Palem,
& Pnueli 2001) describe further techniques that enable to
lower the overall complexity of their algorithm. The first
is a proof that applying optimal backward scheduling in re-
verse topological order of the operations directly yields the
fixpoint modified deadlines. The second is a fast implemen-
tation of list scheduling for problemsP |ri; di; pi = 1|−.
These techniques apply to typed task systems as well.

Table 1: ST200 VLIW processor resource availabilities and
operation class resource requirements

Resource Issue Memory Control Align
Availability 4 1 1 2

ALU 1 0 0 0
ALUX 2 0 0 1
MUL 1 0 0 1

MULX 2 0 0 1
MEM 1 1 0 0

MEMX 2 1 0 1
CTL 1 0 1 1

Application to VLIW Instruction Scheduling
ST200 VLIW Instruction Scheduling Problem
We illustrate VLIW instruction scheduling problems on the
ST200 VLIW processor manufactured by STMicroelectron-
ics. The ST200 VLIW processor executes up to 4 oper-
ations per time unit with a maximum of one control op-
eration (goto, jump, call, return), one memory operation
(load, store, prefetch), and two multiply operations per time
unit. All arithmetic operations operate on integer values with
operands belonging either to the General Register file (64×
32-bit) or to the Branch Register file (8× 1-bit). In order
to eliminate some conditional branches, the ST200 VLIW
architecture also provides conditional selection instructions.
The processing time of any operation is a single time unit
(pi = 1), while the precedence delayslji between operations
range from -1 to 2 time units.

The resource availabilities of the ST200 VLIW proces-
sor and the resource requirements of each operation are dis-
played in Table 1. The resources are:Issue for the in-
struction issue width;Memory for the memory access unit;
Control for the control unit. An artificial resourceAlign is
also introduced to satisfy some encoding constraints. Oper-
ations with identical resource requirements are factored into
classes: ALU, MUL, MEM and CTL correspond respec-
tively to the arithmetic, multiply, memory and control op-
erations. The classes ALUX, MULX and MEMX represent
the operations that require an extended immediate operand.
Operations namedLDH, MULL, ADD, CMPNE, BRFbelong
respectively to classes MEM, MUL, ALU, ALU, CTL.

A sample C program and the corresponding ST200 VLIW
processor operations for the inner loop are given in Fig-
ure 4. The operations are numbered in their appearance
order. In Figure 5, we display the precedence graph be-
tween operations of the inner loop of Figure 4 after remov-
ing the redundant transitive arcs. As usual in RCPSP, the
precedence graph is augmented with dummy nodesO0 and
On+1 : n = 7 with null resource requirements. Also, the
precedence arcs are labeled with the corresponding start-
start time-lag, that is, the values ofpi + lij . The critical path
of this graph isO0 → O1 → O2 → O3 → O7 → O8 so the
makespan is lower bounded by 7.

This example illustrates that null start-start time-lags, or
precedence delayslij = −pi, occur frequently in actual
VLIW instruction scheduling problems. Moreover, the start-
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int
prod(int n, short a[], short b) {

int s=0, i;
for (i=0;i<n;i++) {

s += a[i]*b;
}
return s;

}

L?__0_8:
LDH_1 g131 = 0, G127
MULL_2 g132 = G126, g131
ADD_3 G129 = G129, g132
ADD_4 G128 = G128, 1
ADD_5 G127 = G127, 2
CMPNE_6 b135 = G118, G128
BRF_7 b135, L?__0_8

Figure 4: A sample C program and the corresponding ST200 operations
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Figure 5: Precedence graph of the inner loop instruction scheduling problem

start time-lags are non-negative, so classic RCPSP sched-
ule generation schemes (Kolisch & Hartmann 1999) (list
scheduling) are guaranteed to build feasible (sub-optimal)
solutions for these VLIW instruction scheduling problems.
In this setting, the main value of VLIW instruction schedul-
ing problem relaxations such as typed task systems is to
strengthen the bounds on operation schedule dates includ-
ing the makespan. Improving bounds benefits scheduling
techniques such as solving time-indexed integer linear pro-
gramming formulations (Dupont de Dinechin 2007).

ST200 VLIW Compiler Experimental Results
We implemented our modified Leung-Palem-Pnueli algo-
rithm in the instruction scheduler of the production compiler
for the ST200 VLIW processor family. In order to apply this
algorithm, we first relax instances of RCPSP with UET op-
erations and non-negative start-start time-lags to instances of
scheduling problems on typed task systems with precedence
delays, release dates and deadlines:

• Expand each operation that requires several resources to
a chain of sub-operations that use only one resource type
per sub-operation. Set the chain precedence delays to -1
(zero start-start time-lags).

• Assign to each sub-operation the release date and deadline
of its parent operation.

The result is a UET typed task system with release dates and
deadlines, whose precedence graph is arbitrary.

Applying our modified Leung-Palem-Pnueli algorithm to
an arbitrary precedence graph implies that optimal schedul-
ing is no longer guaranteed. However, the fixpoint modified
deadlines are still deadlines of the UET typed task system
considered, as the proof of Theorem 2 does not involve the

precedence graph properties. From the way we defined the
relaxation to typed task systems, it is apparent that these fix-
point modified deadlines are also deadlines of the original
problem (UET RCPSP with non-negative time-lags).

In Table 2, we collect the results of lower bounding the
makespan of ST200 VLIW instruction scheduling problems
with our modified LPPA for typed task systems. These
results are obtained by first computing the fixpoint mod-
ified deadlines on the reverse precedence graph, yielding
strengthened release dates. The modified LPPA is then
applied to the precedence graph with strengthened release
dates, and this computes fixpoint modified deadlines includ-
ing a makespan lower bound. The benchmarks used to ex-
tract these results include an image processing program, and
thec-lex SpecInt program.

The first column of Table 2 identifies the code block that
defined the VLIW instruction scheduling problem. Column
n gives the number of operations to schedule. Columns
Resource, Critical, MLPPA respectively give the makespan
lower bound in time units computed with resource use,
critical path, and the modified LPPA. The last column
ILP gives the optimal makespan as computed by solving a
time-indexed linear programming formulation (Dupont de
Dinechin 2007). According to this experimental data, there
exists cases where using the modified LPPA yields a signifi-
cantly stronger relaxation than critical path computation.

Summary and Conclusions
We present a modification of the algorithm of Leung, Palem
and Pnueli (LPPA) (Leung, Palem, & Pnueli 2001) that
schedules monotone interval orders with release dates and
deadlines on UET typed task systems (Jaffe 1980) in poly-
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Table 2: ST200 VLIW compiler results of the modified
Leung-Palem-Pnueli algorithm

Label n Resource Critical MLPPA ILP
BB26 41 11 15 19 19
BB23 34 10 14 18 18
BB30 10 3 5 5 5
BB29 16 5 10 10 10
1 31 34 9 14 18 18

BB9 Short 16 4 10 10 10
BB22 16 4 10 10 10
LAO021 22 6 6 7 7
LAO011 20 6 18 18 18
BB80 14 6 17 17 17
LAO033 41 11 31 32 32
4 1362 23 9 38 38 38
BB916 34 14 30 31 31
4 1181 15 8 18 19 19
4 1180 7 2 9 10 10
4 998 14 4 10 11 11
4 1211 9 2 9 9 9
4 1209 14 7 18 18 18
4 1388 6 2 8 9 9
4 949 13 5 12 13 13
BB740 11 4 13 14 14
LAO0160 17 7 7 11 11

nomial time. In an extendedα|β|γ denotation, this is prob-
lemΣkP |intOrder(mono lji ); ri; di; pi = 1|−.

Compared to the original LPPA (Leung, Palem, & Pnueli
2001), our main modifications are: use of the Graham list
scheduling algorithm (GLSA) adapted to typed task systems
and to zero start-start time-lags; new definition of the back-
ward scheduling problemB(Oi, Si) that does not involve
the transitive successors of operationOi; core LPPA proof
adapted to typed task systems and simplified thanks to the
properties of monotone interval orders.

Like the original LPPA, our modified algorithm opti-
mally solves a feasibility problem: after scheduling with
the core GLSA, one needs to check if the schedule meets
the deadlines. By embedding this algorithm in a dichotomy
search for the smallestLmax such that the scheduling prob-
lem with deadlinesdi + Lmax is feasible, one also solves
ΣkP |intOrder(mono lji ); ri; pi = 1|Lmax in polyno-
mial time. This is a significant generalization over the
ΣkP |intOrder; pi = 1|Cmax problem solved by Jansen
(Jansen 1994) in polynomial time.

Our motivation for the study of typed task systems with
precedence delays is their use as relaxations of the Resource-
Constrained Scheduling Problems (RCPSP) with Unit Exe-
cution Time (UET) operations and non-negative start-start
time-lags. In this setting, precedence delays are important,
yet no previous polynomial-time scheduling algorithms for
typed task systems consider them. The facts that interval
orders include operations without predecessors and succes-
sors, and that the LPPA enforces releases dates and dead-
lines, are also valuable for these relaxations.
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Abstract

Rintanen recently reported (Rintanen 2007) that
the complexity of temporal planning with dura-
tive actions of fixed durations in propositional do-
mains depends on whether it is possible for multi-
ple instances of the same action to execute concur-
rently. In this paper we explore the circumstances
in which such a situation might arise and show
that the issue is directly connected to previously
established results for compilation of conditional
effects in propositional planning.

1 Introduction
In his paperComplexity of Concurrent Temporal
Planning (Rintanen 2007), Jussi Rintanen shows
that temporal planning in propositional domains,
with durative actions of fixed durations, can be en-
coded directly in a propositional planning frame-
work by using (propositionally encoded) coun-
ters to capture the passage of time. Actions are
split into their end points, in much the same way
as shown in the semantics of PDDL2.1 (Fox &
Long 2003) and as implemented in some plan-
ners (Halsey, Long, & Fox 2004; Long & Fox
2003). This encoding allows him to deduce that
the complexity of this form of temporal planning
is equivalent to that of classical planning when the
number of such counters is polynomial in the size
of the original (grounded) domain. However, if
multiple instances of the same action may exe-
cute concurrently then it is not sufficient to have
a single counter for each action instance, but in-
stead as many counters are required as potential
instances of the same action that may run con-
currently. Rintanen observes that this could be
exponential in the size of the domain encoding,
placing the planning problem into a significantly
worse complexity class than classical planning:
EXPSPACE-hard instead of PSPACE-hard.

In this paper, we explore the situations in which
instances of the same action can run concur-
rently and link the complexity costs the previ-
ously recognised problem of compiling condi-

tional effects into classical propositional encod-
ings (Gazen & Knoblock 1997; Nebel 2000).

2 Preliminaries
We begin by providing some definitions on which
the remainder of the paper is based.

Definition 1 A classical propositional planning
action, a, is a triple, 〈P,A, D〉, where each ofP ,
A andD is a set of atomic propositions. The ac-
tion is applicable in a state,S, also represented
by a set of atomic propositions, ifP ⊆ S. The ef-
fect of execution ofa will be to transform the state
into the new statea(S) = (S −D) ∪A.

Although states are sets of propositions, not all
sets of propositions form valid states for a given
domain. For a given domain, consisting of an ini-
tial state, a collection of actions and a goal con-
dition, the set of states for the domain is the set
of all sets of propositions that can be reached by
legal applications of the actions. In the rest of the
paper, when we quantify over states we intend this
to be over all the valid states for the (implicit) do-
main in question.

Definition 2 A simple durative propositional ac-
tion, D, with fixed duration (Fox & Long 2003), is
the 4-tuple〈As, Ae, I, d〉, whered is the duration
(a fixed rational),As andAe are classical propo-
sitional planning actions that define the pre- and
post-conditions at the start and end points ofD re-
spectively, andI is an invariant condition, which
is a set of atomic propositions that must hold in
every state throughout the execution ofD.

We do not choose to emphasise the conditions
under which two classical actions are considered
mutex, here (see (Fox & Long 2003) for de-
tails), but note that concurrent execution of two
instances of the same durative action in which the
end points coincide will not be possible if the end
points are mutex. This means that they cannot
delete or add the same propositions, so that they
actually have no effects. Hence, there is no role
for these actions in a plan and they can be ignored

32



in planning. Therefore, we assume that all our du-
rative actions must, if two instances of the same
action are to run concurrently, be executed with
some offset between them.

3 Key Properties of Actions
We now proceed to define some essential proper-
ties that help to characterise the ways in which ac-
tions can interact with one another or with aspects
of the states to which they are applied.

Definition 3 A classical propositional action,
a = 〈P,A, D〉 is repeatableif in every stateS
in whicha is applicable,P ⊆ a(S).

A repeatable action can be applied twice in suc-
cession without any intervening action to reset the
state of resources that might be used by the action.
As we shall see, repeatable actions are constrained
in the impact they may have on a state.

Definition 4 A classical propositional action,
a = 〈P,A, D〉 is weakly conditionalif there are
two statesS1 andS2 such thata is applicable in
both states and either there is a propositionp ∈ A
such thatp ∈ S1 andp 6∈ S2 or there is a propo-
sitionp ∈ D such thatp ∈ S1 andp 6∈ S2.

A weakly conditional action is one that can be
executed in situations in which some of its posi-
tive effects are already true, despite not being pre-
conditions of the action, or some of its negative
effects are already false. The reason we call these
actions weakly conditional is that these effects
are semantically equivalent to the simple condi-
tional effects(when (not p) p)and (when p (not
p)) for positive and negative effects respectively.
These expressions are obviously part of a richer
language than the classical propositional actions.
In fact, they make use of both negative precondi-
tions and conditional effects. This combination is
known to be an expensive extension to the classi-
cal propositional framework (Gazen & Knoblock
1997; Nebel 2000). Nevertheless, weakly con-
ditional actions are obviously valid examples of
classical propositional actions. Notice that we re-
quire weakly conditional actions to be applicable
in states that capture both possibilities in the im-
plicit condition. This constraint ensures that situ-
ations in which the preconditions of an action im-
ply that a deleted condition must also hold, with-
out that condition being explicitly listed as a pre-
condition (or the analogous case for an add effect)
are not treated as examples of weakly conditional
behaviour.

We now define some actions with reduced
structural content of one form or another.

Definition 5 A classical propositional actiona =
〈P,A, D〉 is a null action if P , A and D are all
empty.

Definition 6 A classical propositional actiona =
〈P,A, D〉 is a null-effect actionif for every state
S such thatP ⊆ S, S = a(S).

Note that one way in which an action can be
a null-effect action is that the action simply re-
asserts any propositions it deletes and all of its ef-
fects are already true in the state to which it is ap-
plied. Actions that reassert conditions they delete
are not entirely useless, provided they also achieve
some other effects that are not already true. Some
encodings of the blocks world domain can lead to
ground actions that both delete and add the propo-
sition that there is space on the table, simply to
avoid having to write special actions to deal with
the table. Also observe that null actions are a spe-
cial case of null-effect actions.

We can now prove a useful property of repeat-
able actions:

Theorem 1 Any repeatable action is either a
weakly conditional action, a null action or a null-
effect action.

Proof: Suppose a repeatable action,a =
〈P,A, D〉, is not a null-effect action (and, there-
fore, not a null action). Then there must be some
state in whicha can be applied,Sa, such that
a(Sa) 6= Sa. Sincea is repeatable, it must be
thatP ⊆ a(Sa) = (Sa −D) ∪A 6= Sa.

Supposea is not weakly conditional. Then for
everyp ∈ D, p ∈ Sa iff p ∈ a(Ss) and for every
p ∈ A, p ∈ Sa iff p ∈ a(Sa). SinceA ⊆ a(Sa),
the latter implies thatA ⊆ Sa. The fact that
a(Sa) 6= Sa then implies that there is somep ∈ D
such thatp ∈ Sa andp 6∈ a(Sa). This contradicts
our assumption, soa must be weakly conditional.
�

We now consider the ways in which these clas-
sical actions can appear in certain roles in durative
actions.

Definition 7 A simple durative action,D =
〈As, Ae, I, d〉, is a pseudo-durative actionif Ae

is a null action andI is empty.

Definition 8 A simple durative action,D =
〈As, Ae, I, d〉, is a purely state-preserving action
if Ae = 〈P,A, D〉 is a null-effect action and every
state satisfyingI also satisfiesP .

3.1 Deadlocking Actions
One last variety of action is so significant we
choose to devote a separate subsection to it.

Definition 9 A simple durative action,D =
〈As, Ae, I, d〉, is a deadlocking actionif there is
a state,S, such thatI ⊆ S but Ae is not applica-
ble inS.

Thus, a deadlocking action is one that could be-
gin execution and then, either by execution of in-
tervening actions, or possibly simply by leaving
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Figure 1: The intervals created by overlapping ex-
ecution of two instances of the same action.

the state unchanged, it is possible to arrive in a
situation in which the action cannot terminate be-
cause the conditions for its termination are not sat-
isfied.

Deadlocking actions are clearly no natural ac-
tions: there is no real situation in which it is pos-
sible to stop time advancing by entering a state in
which an action must terminate before time pro-
gresses, but cannot because the conditions for its
termination are not satisfied. If we adopt a model
in which a durative action has a fixed duration
then the conditions for its termination must be in-
evitable, but the effects it has might well be condi-
tional on the state at that time. In domains where
deadlock is possible (for example, in the execu-
tion of parallel processes), the effect is not to stop
time, of course, but to stop execution of the pro-
cesses. This means that if one were to consider the
behaviour of the parallel processes to be modelled
by durative actions, the failure to terminate is han-
dled by the actions having unlimited duration.

Therefore, we contend that no natural domains
require to be modelled with deadlocking actions.

4 Self-Overlapping Actions
We now turn our attention to the circumstances
in which two instances of the same simple dura-
tive action can be executed concurrently. Figure 1
shows the intervals that are created by the overlap-
ping execution of such a pair of action instances.
Note that when such an overlap occurs there are
two places where classical propositional actions
might be repeated:As andAe.

Theorem 2 If two instances of a simple dura-
tive action,a = 〈As, Ae, I, d〉 can execute con-
currently, then eithera is either a deadlocking,
pseudo-durative or purely state-preserving action,
or elseAe is weakly conditional.

Proof: Suppose that two instances ofa can exe-
cute concurrently and consider the two instances
of Ae at the ends of the action instances. Either
a is deadlocking, or else it must be possible for
these two instances to be repeatable, since there
is no requirement that an action be inserted in the
period Z. Then, by our earlier result,Ae must

be either a null action, a null-effect action or else
weakly conditional. IfAe is a null action thena
is either pseudo-durative (ifI is empty) or else
it is purely state-preserving. Finally, ifa is not
deadlocking andAe is a null-effect action, then
any preconditions ofAe must be true in any state
satisfyingI (otherwise there would be a state in
which I was satisfied, yeta could not terminate,
implying that a is deadlocking) and thereforea
is either pseudo-durative (I is empty) or else it is
purely state-preserving.�

Now that we have classified the simple durative
actions that may execute concurrently with them-
selves, we briefly analyse the alternatives. We
have already argued that deadlocking actions do
not appear in natural domains. Pseudo-durative
actions can be treated as though they were clas-
sical propositional actions, without duration, pro-
vided that a simple check is carried out on com-
pleted plans to ensure that adequate time is al-
lowed for any instances of these actions to com-
plete. Purely state-preserving actions are more
interesting. An example of such an action is an
action that interacts with a savings account that
then triggers a constraint that the money in the ac-
count must be left untouched for some fixed pe-
riod. Clearly, such an action is not unreasonable,
even if it is uncommon. Fortunately, Rintanen’s
translation of temporal domains into classical do-
mains can be achieved for purely state-preserving
actions without additional counters to monitor the
duration of overlapping instances of these actions.
This is because the only important thing about
these actions is how long the conditions they en-
capsulate must be preserved. Each time a new in-
stance is executed, the clock must be restarted to
ensure that the preservation period continues for
the full length of the action from that point. Since
the end of the action has no effects it is not nec-
essary to apply it except when the counter reaches
zero, at which point the invariant constraint be-
comes inactive.

Thus, the source of the complexity gap that Rin-
tanen identifies can be traced, for all practical pur-
poses, to the use of durative actions terminated by
weakly conditional actions. Weakly conditional
actions can be compiled into non-weakly condi-
tional actions by the usual expedient of creating
multiple versions of the actions. The idea is to
have one version for the case where the condition
is true and one for the case where the condition is
false, each with the appropriate additional precon-
dition to capture the case and the appropriate ver-
sion carrying the conditional effect, but now as an
unconditional effect. The problem with this com-
pilation is that it causes an exponential number of
variants to be created in the size of the collection
of conditional effects.
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In general, the current collection of benchmark
domains do not appear to contain durative actions
with repeatable terminating actions (although in
many cases this is because the states in which the
end actions can be executed are limited by the nec-
essary application of the start effects of the dura-
tive actions to which they belong). This means
that the problem of self-overlapping actions does
not arise in these domains.

In domains in which there are repeatable termi-
nating actions, it is non-trivial to identify which
effects contribute to the weakly conditional be-
haviour. Delete effects are simpler to manage: any
delete effect that is not listed as a precondition can
be assumed to have the potential to be a weakly
conditional effect. Add effects are more problem-
atic: unless an add effect is shown to be mutually
exclusive with the preconditions of the action, it
must be assumed that it is weakly conditional. It
is possible to use mutex inference, such as that
used in Graphplan (Blum & Furst 1995) or that
performed byTIM (Fox & Long 1998), to identify
which add effects must be considered as weakly
conditional. In general, to ensure that the weakly
conditional behaviour has been completely com-
piled out, it is necessary to make a conservative
assumption about any effects that cannot be shown
to be ruled out. Nevertheless, in practical (propo-
sitional) domains the number of effects is tightly
limited (ADL domains with quantified effects are
not quite so amenable) and this makes it possible
to compile out the weakly conditional effects with
a limited expansion in the number of actions.

5 Relevance to Practical Planning

The relevance to practical planner design of the
result we have demonstrated is two-fold. Firstly,
we have shown that treatment of overlapping in-
stances of the same action can only occur under
limited conditions. These conditions can often
be identified automatically using standard domain
analysis techniques (Fox & Long 1998). This
means that it is possible to determine whether ma-
chinery is required to be activated to handle the
special case. Avoiding the use of techniques that
would be redundant is useful in practical planner
design, as a way to achieve improved efficiency.

Secondly, the results demonstrate that the focus
of temporal planning should be, in the first place,
on handling concurrency between distinct action
instances and on the treatment of weakly condi-
tional effects. The latter phenomenon is one that
has not, to the best of our knowledge, been high-
lighted in the past, but is clearly a significant is-
sue, since compilation of such effects into uncon-
ditional actions is both non-trivial and also, poten-
tially, exponentially costly.

6 Conclusions
We have shown what kinds of simple durative ac-
tions can run concurrently with instances of them-
selves. Identifying the conditions that allow this
has led to the discovery of a close link between
the complexity gap identified by Rintanen and the
complexity induced by the extension of proposi-
tional domains to those with conditional effects.
A further important consequence of this analy-
sis is to learn that if actions have bounded ef-
fect lists then the complexity of temporal planning
is PSPACE-complete, even if self-overlapping ac-
tions are allowed.
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Abstract

This paper investigates the application of Evolutionary Com-
putation to the induction of generalised policies. A policyis
here defined as a list of rules that specify which actions to
be performed under which conditions. A policy is domain-
specific and is used in conjunction with an inference mech-
anism (to decide which rule to apply) to formulate plans
for problems within that domain. Evolutionary Computation
is concerned with the design and application of stochastic
population-based iterative methods inspired by natural evolu-
tion. This work illustrates how it may be applied to the in-
duction of policies, compares the results on one domain with
those obtained by a state-of-the-art approximate policy itera-
tion approach, and highlights both the current limitations(such
as a simplistic knowledge representation) and the advantages
(including optimisation of rule order within a policy) of our
system.

Introduction
We present an evolution-inspired system that induces gener-
alised policies from available solutions to planning problems.
The term generalised policy was coined by Martin & Geffner
(2004) for a function that maps pairs of initial and goal states
to actions. The actions outputted should, when performed,
achieve the specified goal state from the specified initial state.

Figure 1 presents a simplified view of a planner based on
generalised policies. A distinction is made here between a
policy – the knowledge used to solve a problem, and the in-
ference mechanism that utilises the policy – the decision pro-
cedure that dictates when and how the knowledge is applied.
A domain model defines a specific domain in terms of rele-
vant objects, actions and their effects.

A policy in this work is a list of domain-specificIF-THEN
rules. If the conditions stated in theIF- part of a rule match
the current state, then the action in theTHEN partmaybe ap-
plied. The currently implemented inference mechanism is a
common and simple one – rules within a policy are ordered
and the action of the first rule that may be applied is per-
formed. If more than one valid combination of variable bind-
ings exists then orderings on the variables and their valuesare
adopted and the first valid combination is effected.
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Figure 1: Planning using generalised policies and inference
mechanisms

It should be noted that these policies contain a particular
type of control knowledge. Control knowledge is domain-
specific knowledge often used by some planners to prune
search during the construction or identification of a plan.
Control knowledge is often expressed asIF-THEN type rules,
but the conditions and actions relate to goal, domain opera-
tor and/or variable binding decisions to be taken during the
search process. Examples of work that induce such knowl-
edge include (Leckie & Zukerman 1998) and (Aler, Borrajo,
& Isasi 2002).

In this work a policy determines domain operator selec-
tion and each rule describes the conditions necessary for a
particular operator to be applied. The inference mechanism
is responsible for deciding all other decisions (which ruleto
apply, and which variable bindings to implement)withoutre-
course to any search, leading to highly efficient planners.

The induction of policies is carried out using Evolution-
ary Computation (EC) in a supervised learning context. EC
is the application of methods inspired by Darwinian princi-
ples of evolution to computationally difficult problems, such
as search and combinatorial optimisation. Its popularity is
due in great part to its parallel development and modification
of multiple solutions in diverse areas of the solution space,
discouraging convergence to a suboptimal solution.

We compare the performance of one evolved policy with
that obtained using a state-of-the-art Approximate PolicyIt-
eration (API) (Bertsekas & Tsitsiklis 1996) approach. We
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focus on the knowledge representation language (KR) and
learning mechanism highlighting both the current limitations
and strengths of our system. The rest of this paper reviews
the literature on generalised policy induction, describesour
implemented system, and discusses experiment results and
future research directions.

Related Work
Early work on inducing generalised policies utilises ge-
netic programming (GP) (Koza 1992), a particular branch of
EC. Evolutionary algorithms in general re-iteratively apply
genetic-inspired operators to a population of solutions, with
fitter individuals of a generation (according to some prede-
fined fitness criteria) more likely to be selected for modifi-
cation and insertion into successive generations than weaker
members. On average, therefore, each new generation tends
to be fitter than the previous one. GP is distinguished by a tree
representation of individuals that makes it a natural candidate
for the representation of functional programs.

Koza (1992) describes a GP algorithm for solving a
blocksworld problem variant – the goal is a program capa-
ble of producing a tower of blocks that spells “UNIVER-
SAL”, starting from a range of different initial tower con-
figurations. The tree-like individuals in a generation are
constructed from sets offunctions(such asmove to stack
and move to table) and terminals that act as argu-
ments to the functions (such astop block of stack and
next needed block).

Each individual in the population is assessed by its perfor-
mance on a set of 166 initial configurations. Generation 10
produces a program that correctly stacks the tower for each
of the given configurations, though it uses unnecessary block
movements and contains unnecessary functions. When el-
ements are included in the fitness assessment that penalise
against these inefficiencies, the algorithm outputs a parsimo-
nious program that produces solutions that are both correct
and optimal (in terms of plan length).

Spector (1994) uses Koza’s algorithm with different func-
tion and terminal sets to induce solutions to the Sussman
Anomaly – the initial state is block C on block A, with blocks
A and B on the table; the goal state is block A on B, which
is on C, which is on the table. In a first experiment the au-
thor uses functions such asnewtower (move X to table if X
is clear) andputon (put X on Y if both are clear), and the
terminals are the names of the blocks A, B and C. The goal is
a program that can attain the goal state from the initial state,
and individuals are assessed on this one problem. The fitness
function includes elements that reward parsimony and effi-
ciency as well as correctness, and the goal is achieved well
before the final generation.

In further experiments the author introduces new functions
and replaces the block-specific terminals with ones that refer
to blocks by their positions in goals. The number of problems
on which individuals are assessed is also increased. One ex-
periment is designed to produce a program that achieves the
Sussman goal state from a range of different initial states.
The resulting program achieves this particular goal state even
from initial configurations that are not used during learning.
However, it is incapable of achieving a different goal state

from that on which it was trained, even a simplified one such
as (ON B A).

Another experiment seeks a program capable of achiev-
ing 4 different goals states (maximum 3 blocks), from differ-
ent initial states. This evolved program is capable of attain-
ing any of the 4 specified goal states from initial states not
observed during the evolutionary process. The author indi-
cates that it is also capable of solving some 4-block problems,
though its generalisation power for this and larger problems
has not been fully analysed.

The work of Khardon (1999) for inducing policies has in-
spired and/or often been cited by later work. It uses a deter-
ministic learning method to induce decision lists ofIF-THEN
rules from examples of solved problems, with the first rule
in the list that matches the observed state being applied. The
learning strategy is one of iterative rule learning where the
following step is iterated until no examples are left in the
training set – a number of rules are generated, the best (ac-
cording to some criterion) is determined, examples that are
covered by this rule are removed from the training data, and
the rule is added to a growing rulebase. The number of rules
generated in each iteration must be finite and tractable and
this is controlled in part by setting limits to the number of
conditions and variables in theIF- part of a rule; all possi-
ble rules for each action are then generated in each iteration.
The training data is formulated by extracting examples from
planning problems and their solutions – each state and action
encountered in a plan constitutes one example.

In addition to the training examples and a standard STRIPS
domain description Khardon provides the learning algorithm
with background knowledge he callssupport predicates–
concepts such asabove andinplace for the blocksworld
domain. The resulting policy is an ordered list of existentially
quantified rules with predicates in the condition part that may
or may not be negated, and may or may not refer to a sub-
goal. For instance,holding(x1) ¬clear(x2) G(on(x1, x2)) →

PUTDOWN(x1), represents a rule that says ifx1 is currently
held,x2 is not clear, and in the goal statex1 should be onx2,
put downx1.

Blocksworld policies are generated using different train-
ing sets containing examples drawn from solutions to 8-block
problems, and are tested on new problems of sizes ranging 7–
20 blocks. Their performance varies from a high of 83% of
7-block problems solved, down to 56% of 20-block problems.
Similar experiments are carried out for the logistics domain
with training of policies on examples obtained from solutions
to problems with 2 packages, 3 cities, 3 trucks, 2 locations
per city, and 2 airplanes. Polices are tested on problems with
similar dimensions to the testing problems, and the number
of packages is varied from 2, solving 80% of problems, to
30, solving 68% of problems.

Martin & Geffner (2004) suggest that the generalisation
power of Khardon’s policies over large problems is weak, and
that obtaining domain-dependent background knowledge is
not always a trivial task. They use the same learning method
as Khardon but propose to overcome both weaknesses by us-
ing description logics (Baaderet al. 2003) as the KR. This
enables the representation of concepts that describeclasses
of objects, such as the concept of a well-placed block.
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A blocksworld policy induced from 5-block problem ex-
amples solves 99% of the 25-block test problems. With the
addition of an incremental refinement procedure a policy is
eventually induced that solves 100% of test problems: a pol-
icy is induced and tested on 5-block problems; optimal so-
lutions are found for the problems it fails on, and examples
are extracted from these and added to the training set; then,a
new policy is induced from the larger dataset. The authors re-
peat this procedure several times until a policy solves all the
25-block test problems presented (test problems are new each
time the policy is tested). It should be noted however that as
well as the KR and the refinement extension to the learning
algorithm, the way training examples are extracted from so-
lutions is different from that in Khardon’s work – Martin &
Geffner use as examplesall actions for each state that lead to
an optimal plan; this may have some impact on the quality of
the induced policies.

Fern, Yoon, & Givan (2006) learn policies for a long ran-
dom walk (LRW) problem distribution using a form of API.
A policy is a list of action-selection rules where the action
of the first rule that matches the current and goal states is
applied. An LRW distribution randomly generates an initial
state for a problem, executes a long sequence of random ac-
tions, and sets the goal as a subset of properties of the final
resulting state. For a given domain API iteratively improves
a policy until no further improvement is observed or some
other stopping criterion is used. The expectation is that if
a learned policyπn performs well on problems drawn from
random walks of lengthn, then it will provide reasonable per-
formance or guidance on problems drawn from random walks
of lengthm, wherem is only moderately larger thann. πn is
therefore used to bootstrap API iterations to findπm, i.e. to
find a policy that handles problems drawn from increasingly
longer random walks.

Within each iteration, trajectories (sequences of alternat-
ing states and actions) for an improved policy are generated
using policy rollout (Tesauro & Galperin 1996), and then an
improved policy is learned using the trajectories as training
data. The policy learning component follows an iterative rule
learning strategy. The difference between this learning strat-
egy and that of Khardon and Martin & Geffner lies in the
rule generation procedure where a greedy heuristic search is
used instead of exhaustively enumerating all rules. The KR
(based on taxonomic syntax) is also different, and is expres-
sive enough so that no support predicates need be supplied to
the learning process.

This work is currently state-of-the-art in this particular
research area, i.e. where policies that are learned are used
with a simple and efficient decision procedure to solve plan-
ning problems. It presents policies for several domains and
tests them rigorously on deterministic and stochastic prob-
lems from an LRW distribution and from the 2000 planning
competition; the results compare favourably with those ob-
tained by theFF planning system (Hoffmann & Nebel 2001).

In this paper we explore the Briefcase domain API-
generated policy and compare its performance with one
evolved by our system, focusing on the limitations of our KR
and the strength of our policy optimisation mechanism.

(1) Create initial population
(2) WHILE termination criterion false
(3) Evaluate current generation
(4) WHILE new generation not full
(5) Perform reproduction
(6) Perform recombination
(7) Perform mutation
(8) Perform local search
(9) ENDWHILE
(10) ENDWHILE
(11) Output fittest individual

Figure 2: Pseudocode outline ofL2Plan

Learning Policies using L2Plan
L2Plan (Learn to Plan) induces policies of rules similar to
Khardon’s, but the learning mechanism used is a population-
based iterative approach inspired by natural evolution.

Input to L2Plan consists of an untyped STRIPS domain
description, additional domain knowledge if available (e.g.
concept of a well-placed block), and domain examples on
which to evaluate the policies being learned. The output is
a domain-specific policy that is used in conjunction with an
inference mechanism to solve problems within that domain.

A policy consists of a list of rules with each rule being a
specialisedIF-THEN rule (also known as a production rule).
The IF- part is composed of two condition statements where
each is a conjunction of ungrounded predicates which may be
negated:
IF condition AND goalCondition THEN action

condition relates to the current state andgoal-
Condition to the goal state. If variable bindings exist such
that predicates incondition match with the current state,
and predicates ingoalCondition match with the goal state,
then the action may be performed. Note though that the ac-
tion’s precondition must also be satisfied in the current state.
The list of rules is ordered and the first applicable rule is used.
Variable and domain orderings are followed if more than one
combination of bindings is possible.

Figure 2 presents an outline of the system. Each itera-
tion starts with a population of policies (line(2)). The per-
formance of these policies is evaluated on training data gen-
erated from planning problems from the domain under con-
sideration (line (3)). The resulting measure of fitness for a
policy is used to determine whether it is replicated in the next
iteration (line (5)), or whether it may be used in combination
with another policy to reproduce ‘offspring’ that may be in-
serted into the next iteration (also called crossover, line(6)).
All policies to be inserted in the next iteration may undergo
some form of random mutation (i.e. small change, line (7)),
and a local search procedure that attempts to increase the fit-
ness of the policy (line (8)).

The system terminates if a predefined maximum number
of generations have been created, or a policy attains maxi-
mum fitness by correctly solving all examples, or, the aver-
age difference in policy fitness in an iteration falls below a
predefined user-set threshold (indicating convergence of all
individuals to similar policies).

Since the results of the evaluation process influence the
creation of the next generation, the average fitness of all poli-
cies is expected to improve from one generation to the next.
The fact that several policies are in each iteration allows the
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(:rule position briefcase to pickup misplaced object
:condition (and (at ?obj ?to))
:goalCondition (and (not(at ?obj ?to)))
:action movebriefcase ?bc ?from ?to)

Figure 3: Example of a briefcase rule with a variable in
condition that is not a parameter of the action

possibility of exploring different regions of the solutionspace
at once. This, coupled with an element of randomness that is
used in the selection of policies crossover and mutation, may
help to prevent all policies from converging to a local opti-
mum solution.

The following paragraphs describe the creation of the ini-
tial population, policy evaluation, and the genetic operators
used to create new policies from old.

Generating the Initial Population
L2Planfirst generates an initial – the first generation – popu-
lation of policies, Fig. 2 line (1). The number of individuals
in a population is predefined by the user (generally 100), and
stays fixed until the system terminates. The number of rules
in a policy at this stage is randomly set between user-defined
minimum and maximum values (4 and 8 respectively).

Thecondition andgoalCondition statements of a rule
are also generated randomly, within certain constraints. The
action, i.e. theTHEN part of theIF-THEN rule, is first selected
randomly from all domain actions.

The size ofgoalCondition in the IF- part of the rule
is determined by drawing a random integer between user-
defined minimum and maximum values (set to 1 and 3 re-
spectively), which determines the number of predicates. A
predicate is first selected, and then the appropriate numberof
variables are randomly selected from all possible variables.
Predicates are randomly negated.

The size ofcondition in the IF- part of the rule is cur-
rently determined by the number of parameters of the selected
action, and a random selection of predicates. A predicate is
selected randomly, and then variables for the predicate are
randomly selected from the action’s parameters. Predicates
are selected, and variables assigned, until all of an action’s pa-
rameters are present in at least one predicate ofcondition.
Each predicate is randomly negated.

However, early experiments highlighted that restricting the
parameters incondition strictly to those in the set of pa-
rameters for an action, severly limits the knowledge that can
be expressed by a rule. For example, the system is unable
to learn the rule in Fig. 3 due to this constraint. This rule
specifies that if an object is misplaced (i.e. its current loca-
tion is not the location specified for it in the goal state), then
a briefcase is moved to the current location of the object. A
temporary quickfix has been implemented that inserts an ex-
tra unary predicate in the domain description. With this pred-
icate added to the precondition of each action/operator, ital-
lows L2Plan the possibility of creating rules such as the one
in Fig. 3.

Note, that a policy need not contain a rule to describe each
action in the domain, and that the initially set number of rules
for a policy, and the number of predicates in the conditions

(define (example blocks1 1)
(:domain blocksworld)
(:objects 5 4 3 2 1)
(:initial ... )
(:goal ... )
(:actions
(move-b-to-b 1 3 4) 1
(move-b-to-b 1 3 5) 1
(move-b-to-b 4 2 1) 1
(move-b-to-b 4 2 5) 1
(move-b-to-t 1 3) 0
(move-b-to-t 4 2) 0
(move-t-to-b 5 1) 2
(move-t-to-b 5 1) 2) )

Figure 4: A training example generated from a blocksworld
problem

of a rule is liable to change with the application of genetic
operators.

Evaluating a Policy
The training data on which a policy is evaluated is composed
of a number of examples that are generated from a number
of planning problems. Each example consists of a state en-
countered on an optimal plan for the problem from which it is
extracted, and a number of actions which may be taken from
that state, each with an associated cost.

Consider a planning problem that includes an initial state
SI and a goal stateSG. Each possible action that may be
taken fromSI is performed, leading to new states. For each
new state a solution that attainsSG is found using an avail-
able planner. The length of each solution is determined, and
the smallest-size solution is deemed the optimal plan. A cost
is now attached to each action performed fromSI : the ac-
tion that leads to the optimal plan is given a cost of zero, and
all other actions are given a cost that is the difference be-
tween the length of the solution that they form a part of, and
the length of the optimal plan. This now forms one training
example on which an evolving policy may be evaluated. Fig-
ure 4 shows the representation used for a training example,
which is consistent, as far as possible, with STRIPS syntax.

For each state on the optimal plan just determineds the
same procedure is followed as forSI , i.e. all possible ac-
tions from the next state on the optimal plan, saySn, are per-
formed, solutions for each of the resulting states are found,
and costs for each possible action taken fromSn are de-
termined from the solutions’ length. Each training problem
therefore yields as many examples as there are states encoun-
tered on the optimal plan. Duplicate training examples are
removed so as not to biasL2Plantowards any particular sce-
nario(s).

The planner used to generate training examples, i.e. when
determining plans toSG from any stateSn, is a simple one
using breadth-first search. This ensures that an optimal plan
is obtained and that actions in examples designated as opti-
mal are in fact actions for states encountered on some plan
of minimal length. For some domains (e.g. blocksworld and
briefcase), in order to speed up the generation of examples
hand-coded control rules to prune branches from the search
are used; these control rules are designed to ensure that an
optimal plan is still determined.

The fitness of a policy is determined by averaging its per-
formance over all examples, where for each example pre-
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sented it is scored based on whether the selected action forms
part of an optimal plan or not. Formula (1) below describes
the fitness function wherem is the number of training exam-
ples andactionCosti is the cost of the action taken by the
policy for training examplei:

fitness =
1

m

m∑

i=1

1

1 + actionCosti
(1)

Creating a New Generation of Policies
CurrentL2Plansettings are such that the individuals compris-
ing the fittest5% of a generation are reproduced, improved by
a local search mechanism, and then inserted into the next gen-
eration. The remainder of the next generation is populated by
individuals selected from the current generation and on which
various genetic operations are performed. The fitter individ-
uals in the current population have a greater chance of being
selected for recombination and mutation, in the expectation
that their offspring and/or mutations result in even fitter indi-
viduals. However, randomness plays a part in their selection
and in the application of genetic operators in an attempt to
search different areas of the solution space and to avoid local
minima.

Selection of two individuals is performed using tourna-
ment selection with a size of 2 (Miller & Goldberg 1995).
Crossover or mutation is then applied with some predefined
probability (0.9 for crossover, 0.1 for mutation). The output
of these operators is a single policy – for crossover the fittest
of parents and offspring, and for mutation the fittest of the
original policy or mutants. Local search is performed on this
policy before it is inserted into the new generation. This pro-
cedure is repeated until the new generation is full.

There are three types of crossover that may be performed
on the 2 selected policies, and 4 types of mutation that may
be performed on the first selected policy:

Single Point Rule Level Crossover A crossover point is
randomly chosen in each of the 2 policies, with valid points
being before any of the rules (points need not be the same
in the 2 policies). Two offspring policies are then created by
merging part of the policy of one parent (as delineated by the
crossover point), with a part of the other parent (the first part
of parent A with the second part of parent B, and the second
part of parent A with the first part of parent B).

Single Rule Swap Crossover A randomly selected rule
from policy A is swapped with a randomly selected rule from
policy B, resulting in two new policies. The replacing rule
is inserted in the same position in the policy as the one it is
replacing.

Similar Action Rule Crossover Two rules with the same
action are randomly selected from the parent policies, one
from each. Two new rules are created from the selected rules,
one by usingcondition from the first selected rule and
goalCondition from the second, and the other new rule is
created by usinggoalCondition from the first selected rule
andcondition from the second. Each of the two newly cre-
ated rules replaces the original rule in each of the two parent
policies, resulting in 4 new policies.

Rule Addition Mutation A new rule is generated and in-
serted at a random position in the policy.

Rule Deletion Mutation A randomly selected rule is re-
moved from the policy (if the policy contains more than one
rule).

Rule Swap Mutation Two randomly selected rules have
their position swapped in the policy (if the policy has more
than one rule).

Rule Condition Mutation A randomly selected rule has
its condition and/orgoalCondition statement mutated,
by replacing the condition statement with a newly generated
one, or by removing a predicate from the statement, or by
adding a new predicate.

The local search procedure currently used is aimed at in-
creasing the fitness of a policy as quickly as possible. It per-
forms rule condition mutations a predefined number of times
(called the local search branching factor). The fittest mutant
replaces the original policy, and again, rule condition muta-
tions are performed on the new policy the same predefined
number of times. This process is repeated until either no
improvement in fitness is exhibited by any mutant over their
originator policy, or for a preset maximum number of times
(called the local search depth factor).

A Comparison of Two Policies
This study focusses on comparing two policies for the brief-
case domain, one generated byL2Planand the other by the
API approach introduced in theRelated Worksection (Fern,
Yoon, & Givan 2006). The comparison serves two purposes:
• it highlights a current limitation ofL2Plan, which is the

limited expressiveness of the KR; and,
• demonstrates the advantage offered by its policy discovery

mechanism, which optimises the rule order in a policy.

The Briefcase domain is chosen partly because it is as yet
one of the few domains for which we have evolvedL2Plan
policies, and partly because the knowledge expressed in the
API induced policy is such that can be expressed asIF-THEN
rules.

The API Policy
Figure 5 presents the briefcase domain policy induced
by the API algorithm. A policy provides a mapping
from states to actions for a specific domain and consists
of a decision list of ‘action-selection rules’ of the form
a(x1, ..., xk) : L1, L2, ...Lm wherea is ak-argument action
type,xi an action argument variable andLi is a literal. An
API policy is utilised in the same way as anL2Planpolicy.
Each rule describes the action to be taken if a variable binding
exists for the rule that matches both the current state and the
goal. The current state must also satisfy the preconditionsof
the action specified by the rule. The rules in a policy are or-
dered and the rule that is applied in a state is the first rule for
which a valid variable binding exists. A lexicographic order-
ing is imposed on objects in a problem to deal with situations
where more than one variable binding for the same rule may
be possible.

Below is a simpler example policy for illustrating the main
features of the KR used. It is a policy for a blocksworld do-
main where the goal in all problems is to make all red blocks
clear is:
1. putdown(x1) : x1 ∈ holding

2. pickup(x1) : x1 ∈ clear, x1 ∈ (on∗(on red))

40



1. PUT-IN:X1 ∈ (GAT−1 (NOT IS − AT )))

2. MOVE: (X2 ∈ (AT (NOT (CAT−1 LOCATION)))) ∧

(X2 ∈ (NOT (AT (GAT−1 CIS − AT ))))

3. MOVE: (X2 ∈ (GAT IN)) ∧ (X1 ∈ (NOT (CAT IN)))

4. TAKE-OUT: (X1 ∈ (CAT−1 IS − AT ))

5. MOVE: (X2 ∈ GIS − AT )

6. MOVE: (X2 ∈ (AT (GAT−1 CIS − AT )))

7. PUT-IN:(X1 ∈ UNIV ERSAL)

Figure 5: API briefcase policy in taxonomic syntax

1. PUT-IN misplaced package in briefcase

2. MOVE briefcase to pickup misplaced package, if briefcase is at
its goal location and package does not have same goal location as
briefcase

3. MOVE to goal location of package in briefcase, if there is no pack-
age in briefcase whose goal location is the same as the current
location of briefcase

4. TAKE -OUT package that has arrived at its goal location

5. MOVE briefcase to its goal location

6. MOVE to pickup misplaced package, if briefcase is at its goal lo-
cation and package has same goal location as briefcase

7. PUT-IN package in briefcase.

Figure 6: API briefcase policy in common language

The primitive classes (unary predicates) in this domain are
red, clear, andholding, while on is a primitive relation (bi-
nary predicate). If a domain contains predicates of greater
arity, these are converted to equivalent multiple binary pred-
icates. A prefix ofg indicates a predicate in the goal state
(e.g.gclear), while a comparison predicatec indicates that
a predicate is true in both the current state and the goal (e.g.
cclear). A primitive class (relation) is a current-state predi-
cate, goal predicate or comparison predicate, and it is inter-
preted as the set of objects for which the class (relation) is
true in a states. Compound expressions are formed by the
‘nesting’ of classes/relations, and/or the application ofaddi-
tional language features such asR∗ indicating a chain of a
relationR. Expressions have a depth associated with them
so that, for intstance, the first expression in rule 2 above has
depth 1 and the second expression has depth 3.

Figure 6 is a translation of the policy in Fig. 5 into common
language. Upon inspection it is clear that there is potential in
this policy to perform unnecessary steps. For instance, rule
2 moves the briefcase away from its current location without
first depositing any packages it contains that have as a goal
location the current briefcase location. Furthermore, twoof
the four MOVE rules have as a necessary condition that the
briefcase must be at its goal location – this can cause prob-
lems and is discussed later on.

This API policy is translated intoL2Plan-style IF-THEN
rules and tested using our implemented inference mechanism
on the same problems as our evolved policy. However, it is
important to note differences in the KR which highlight the
limited expressiveness of our current formulation ofIF-THEN
rules. Consider rule 3 in Fig. 6 – it states that the briefcaseis

1. TAKE -OUT package that has arrived at its goal location

2. PUT-IN misplaced package in briefcase

3. MOVE briefcase to pickup misplaced package

4. MOVE to goal location of package in briefcase

5. MOVE briefcase to its goal location

Figure 7:L2planbriefcase policy in common language

Table 1:L2Planparameter settings
Parameter Setting

Range of initial policy size [4–8]
Population size 100
Maximum number of generations 100
Proportion of policies reproduced 5%
Crossover probability 0.9
Mutation probability 0.1
Local search branching 10
Local search depth 10
Tournament selection size 2

moved to a goal location of a package within it,only if there
are NO other packages in the briefcase whose goal locations
are the same as the current location of the briefcase. If this
is so, then rule 4 is fired instead of rule 3, i.e. packages at
their goal location are taken out of the briefcase before the
briefcase is moved, despite the order and actions suggested
by these two rules.

As yet we cannot write rule 3 inL2Plan-style rules. This
limitation is partly due to the fact that we can only specify
individual packages using this KR and not sets of packages.
However, if we simplify the API policy’s rule 3 and switch
the order of the simplified rule 3 with rule 4, then we obtain
an equivalent policy we can test and compare withL2Plan’s
policy. The new rule 3 states:TAKE-OUT package that is at
its goal location, and the new rule 4 is:MOVE to goal location
of package in briefcase.

The L2Plan Policy
Figure 7 presents theL2Plan evolved policy against which
the API policy is compared. Note that the first four rules
are equivalent to the hand-coded control policy introducedin
(Pednault 1987) and which is used to prune search for this
domain by theTLPlansystem (Bacchus & Kabanza 2000).

To produce this policyL2Planwas run 15 times with iden-
tical parameter settings (Table 1) though each time the train-
ing examples were generated from 30 different randomly
generated problems and their solutions. The training prob-
lem complexity is however the same: 5 cities, 2 objects and
1 briefcase. Using different training data for different experi-
ments gives some indication of the impact of different exam-
ples on the induced policies, though it should be noted that
the element of randomness used in solution construction will
also have some influence.

Three of the 15 policies solve all test problems presented
(i.e. problems different from the ones used for training), and
the policy in Fig. 7 was selected from one of these three.
Note that though additional domain knowledge other than the
standard STRIPS description may used for inducing a policy,
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Figure 8: Number of optimal plans produced by a policy

none was used during the induction of briefcase policies. Fur-
thermore, little system parameter tuning has been done at this
stage, and the settings in Table 1 appear to provide reasonable
policies for evolving both briefcase and blocksworld policies
(to be discussed briefly later).

Results
Both the API andL2Planpolicies are run on the same 400 test
problems with 1 briefcase: 100 problems each with 2 objects
and 5 cities, 2 objects and 10 cities, 4 objects and 5 cities, and
4 objects and 10 cities. These test problems all contain a goal
location for the briefcase.

Each policy solves all 400 problems. Figure 8 however de-
picts the number of problems that a policy manages to solve
optimally, i.e. where the plan produced by the policy is no
longer than a known optimal plan. Figure 9 shows the aver-
age number of extra steps produced per plan by each policy
for the problems that were solved suboptimally (i.e. the to-
tal of extra steps over all 400 solutions is divided by only
the number of suboptimally solved solutins). In both respects
the L2Plan policy considerably outperforms the API policy
– it finds more optimal solutions for problems and generates
shorter plans than the API policy when a suboptimal solution
is found.

These results are a consequence of the rule order in the
respective policies. The API policy moves the briefcase away
from its current location without first checking whether an
object inside it might be deposited in the current location.
L2Planuses several of the crossover and mutation operations
to optimise rule order so that the policy is evolved such that
it does the most it can do in the current briefcase location
– pickups misplaced objects or deposits ones arrived at their
current location – before the briefcase is moved.

The API policy also exhibits an apparent dependency on
the goal location of the briefcase with several rules checking
its location before an action may be taken. To confirm this
dependency both policies are run on a new suite of 400 test
problems, with the same complexity as the previous suite but
without a goal location for the briefcase. Table 2 gives the
results achieved by each policy – it shows the total number of
problems solved for each problem type, with the number of
problems solved optimally (out of the total given) in brackets.
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Figure 9: Average number of extra steps in suboptimal plans

Table 2: Performance of briefcase policies on problems with-
out a goal location for the briefcase. (Number of optimal
plans found in brackets)

Problem size [objects-cities]
[2-5] [2-10] [4-5] [4-10]

L2Plan 100 (93) 100 (94) 100 (72) 100 (74)
API 10 (10) 4 (4) 13 (11) 4 (4)

TheL2Planpolicy again solves all 400 problems with a high
proportion of them solved optimally.

The performance of the API policy on this suite of prob-
lems is however quite different – only a small number of
problems are solved, though most of these are solved op-
timally. This behaviour is a direct consequence of the re-
quirement placed on two of itsMOVE rules that the briefcase
should be at its goal location before it may be moved. If the
briefcase is not at its goal location and no other action can
be taken, then rule 5 in this policy moves the briefcase to its
goal location and other actions then become possible. The
type of problems that this policy has a chance of solving are
those where the briefcasestarts outby being in the same lo-
cation as one or more of the misplaced packages. The policy
dictates that the misplaced packages are put in the briefcase
(rule 1), the briefcase is moved to the goal location of one of
the packages (rule 3), and the package deposited (rule 4). The
policy again dictates that any misplaced packages are picked
up from this new location, and again the briefcase is moved to
the goal location of a package inside it. However, if the brief-
case ends up at some location empty after having delivered a
misplaced package, and there are still misplaced packages in
other locations then no further action will be possible (since
there is no goal location in the problem to which the briefcase
can be taken by rule 5).

The L2Plan policy has evolved such that the briefcase is
moved to its goal location only when all objects have been
deposited at their own goal locations (rule 5), and no other
rule is dependent on the location of the briefcase.

Conclusions and Future Work
This work suggests that EC is a viable approach for learning
generalised policies, and highlights both the limitationsand
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strengths of the current implementation.
IF-THEN rules are a highly comprehensible but also a sim-

plistic KR. As discussed in a previous section currently they
cannot capture knowledge that concerns a group of objects,
though this may be resolved by the addition of existential
and universal quantifiars. Even so, it is doubtful that using
this KR L2Plancould evolve policies that include recursive
concepts. In experiments on the Blocksworld domain, for in-
stance, efficient and effective policies have been evolved but
only by adding similar support predicates to those used by
Khardon (1999) – the concept of a well-placed block is added
to the domain description.

What L2Plancurrently lacks in KR expressiveness, how-
ever, it compensates for by optimising rule order in policies.
An iterative rule learning strategy is highly dependent on the
training data, which is often biased towards a few actions that
occur frequently in plan solving. Since criteria for defining
a ‘best’ rule often concern the number of training examples
covered, it is therefore quite likely that the first rules added
to any policy dictate the most frequent action found in exam-
ples. However, the most frequent actions need not, indeed
should not, always be performed first if the aim is an efficient
solution. Several crossover and mutation operators inL2Plan
essentially optimise this aspect of the policy.

This is early-stage work on utilising EC for generalised
policy induction and our experiments suggest several avenues
for investigation. As indicated the KR is a major theme, and
exploring how far we can push a comprehensible though sim-
plistic language, i.e. which domains and which specific fea-
tures of these domains require a more expressive language,
will be highly informative. Description logics and taxonomic
syntax are certainly more expressive (at some cost to com-
prehensibility), and well-worth investigating. It is interesting
to note though, that Fern, Yoon, & Givan (2006) cite as a
possible reason for their weak policies for the Logistics and
Freecell domains a limitation in their KR.

Not explored in this work isL2Plan’s potential for also op-
timising individual rules within a policy. (Khardon 1999),
(Martin & Geffner 2004) and (Fern, Yoon, & Givan 2006)
all impose limits on the size of rules that may be constructed
(as otherwise the search would be prohibitive), thereby re-
stricting a search in the solution space of rules to prespecified
regions. One crossover and mutation operation onL2Plan
rules enables their size to vary, thereby allowing a search in a
much wider solution space.

A future improvement is expected from the implementa-
tion of typing. The current untyped system means that at least
some rules in some policies will be invalid (since predicates
can be created that contain variables of the wrong type), pre-
senting lost opportunities for acting on training examplesand
learning from the evaluation. Typing is therefore expected
to reduce the number of iterations necessary to evolve good
policies, and/or to present increased opportunities for learn-
ing better ones.

Furthermore, analysis of some experiment results also sug-
gest that the current learning process is too highly selective.
For instance, only the very best individuals are inserted into
the following generation, restricting exploration perhaps too
soon in other regions of the search space. This is suggested

by the early convergence, and therefore termination of the
learning process, to policies that do not perform particularly
well on test problems. If the system were allowed to explore a
larger area for longer, then it may be possible to evolve better
policies.

With regards to improving system efficiency an area of in-
vestigation will be the impact of training examples on the
quality of the induced policies. A significant computational
expense is spent in the production of optimal plans from
which to generate training examples. One approach, natu-
rally, is the use of non-optimal planners to generate solutions
from which to extract examples. The impact of suboptimal
examples on induced policies will therefore also be explored,
as empirical studies suggest that a noisy training environment
is not necessarily detrimental to the learning process (Ram-
sey, Schultz, & Grefenstette 1990).
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Abstract 
Mainstream research in planning assumes that input 
information is complete and correct. There are branches 
of research into plan generation with incomplete planning 
problems and with incomplete domain models. 
Approaches include gaining knowledge aimed at making 
the input information complete or building robust 
planners that can generate plans despite the 
incompleteness of the input. This paper addresses 
planning with complete and correct input information, but 
where the domain models are distributed over multiple 
agents. The emphasis is on domain model acquisition, i.e. 
the first approach. The research reported here adopts the 
view that the agents must share knowledge if planning is 
to succeed. This implies that a recipient must be able to 
assimilate the shared knowledge with its own. An 
algorithm for inducing domain models from example 
domain states is presented. The paper shows how the 
algorithm can be applied to knowledge assimilation and 
discusses the choice of representation for knowledge 
sharing. The algorithm has been implemented and applied 
successfully to eight domains. For knowledge 
assimilation it has been applied to date just to the blocks 
world. 

Introduction   
The plan generation process takes as its input a planning 
problem consisting of initial and goal states and a 
domain model typically consisting of planning operators. 
Its output is a sequence of actions – a plan - that will, on 
execution, transform the initial state to the goal state. 
To locate the research reported here, we place the 
planning process into its wider context. In Figure 1 the 
Planning process is central. Its output – a plan – is 
ingested by the Controlling process. In executing the 
plan, the Controlling process issues commands to the 
Process Under Control (PUC), and receives sensory 
information back. 
The Planning process itself has inputs: the domain model 
and the initial and goal states. The usual assumption is 
that these inputs come directly from the Controlling 
process. However, we take the view that each input is 
developed by an intervening process: initial states result 
from State Estimation1, goal states from Goal Setting, 
and domain models from Modelling. It is these three 
                                                 
Copyright © 2007, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 
1 The term is borrowed from the process control literature. 

processes that receive feedback from the Controlling 
process in the form of the observed sensory information. 
State Estimation uses the feedback to identify the PUC’s 
current state. Goal Setting determines whether the 
current goal state has been achieved, can be maintained, 
or must be replaced by another goal state. Modelling 
assesses whether the domain model remains a complete 
and correct description. If not, it uses the feedback to 
modify or extend the domain model. This paper centres 
on the Modelling process. 
 

plan
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Figure 1.   Planning in context. 

Mainstream research in planning assumes that the input 
information is complete and correct2. In practical 
applications, however, information about the domain 
model, the planning problem, or both may be incomplete 
and/or incorrect. In the literature there are two 
approaches to planning with incomplete and/or incorrect 
input information (Garland & Lesh, 2002): 
• Gain better information, either during plan generation 

or during plan execution. This may be done by using 
sensors embedded in the PUC to acquire information, 
by consulting an oracle (e.g. an expert), or by trial-
and-error learning from performing experiments in the 
domain. The acquired information may be used in 
state estimation, in goal setting, and/or in modelling. 

• Build robust planners that can generate plans that 
succeed regardless of the incompleteness and/or 

                                                 
2 By convention, the goal state is usually a formula describing a set of 
(goal) states. 
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incorrectness of the input information. Conformant 
planning  (Goldman & Boddy, 1996) is planning with 
incomplete knowledge about the initial state and/or the 
effects of actions. Model-lite planning  (Kambhampati, 
2007) is planning with an incomplete or evolving 
domain model. Erroneous planning (Grant, 2001) has 
the more limited aim of characterizing the types of 
erroneous plans generated if the planner is not robust 
(the error phenotypes), based on concepts drawn from 
the literature on human error, and trying to understand 
the causes for the observed errors (the error 
genotypes). Knowledge of the error phenotypes and 
genotypes could then be used for plan repair (Krogt, 
2005). 

By contrast, this paper is concerned about planning with 
complete and correct input information, but where that 
information is distributed across multiple agents. In 
particular, it is concerned with distributed domain 
models. While the domain model is complete for some 
set of agents, each individual agent’s domain model is 
(initially) incomplete. 
This paper adopts the view that, where knowledge about 
the planning domain is distributed over multiple agents, 
the agents must share that knowledge if planning is to 
succeed. To do so, they must be interoperable. The 
source of the knowledge and its recipient must adopt a 
common knowledge representation, as well as 
coordinating their knowledge-sharing actions. Moreover, 
the recipient must be capable of assimilating the 
knowledge gained (Lefkowitz & Lesser, 1988) into other 
knowledge it may already have. Assimilation of another 
agent’s domain model is an extension of the Modelling 
process. This paper focuses on the knowledge 
assimilation capability and choosing a suitable 
representation for knowledge sharing. 
The subject matter in this paper touches on several 
theoretical areas. Firstly, it is based on the application of 
machine learning to planning, because knowledge 
assimilation is a learning process. More specifically, it is  
concerned with applying machine learning techniques to 
the acquisition of planning operators. Secondly, because 
the recipient’s domain model is evolving, it touches on 
model-lite and erroneous planning. Thirdly, it is based on 
communication theory and, in particular, on information 
or knowledge sharing concepts drawn from management 
and organization theory. 
The paper is divided into seven chapters. Chapter 2 
describes the author’s algorithm for modelling planning 
domains by acquiring planning operators from example 
domain states. Chapter 3 introduces knowledge sharing 
based on the Shannon (1948) model of communication. 
Chapter 4 describes the assimilation of planning domain 
knowledge, and chooses a suitable representation for 
sharing that knowledge between agents. Chapter 5 
describes two simple worked examples. Chapter 6 
surveys related research. Finally, Chapter 7 draws 
conclusions, identifying the key contributions of this 
paper, its limitations, and where further research is 
needed. 

Modelling Planning Domains  
The author’s algorithm for modelling planning domains 
by acquiring planning operators from example domain 
states is known as Planning Operator Induction (POI) 
(Grant, 1996). As the name indicates, POI employs 
inductive learning from examples. More specifically, it 
embeds Mitchell’s (1982) version space and candidate 
elimination algorithm, taking selected domain states as 
input examples and inducing STRIPS-style planning 
operators. 
The POI algorithm has been implemented and applied 
successfully to eight domains (Grant, 1996), including 
the blocks world, the dining philosophers problem, and a 
model of a real-world spacecraft payload based on a 
chemical laboratory instrument. For knowledge 
assimilation it has been applied to date just to the blocks 
world. 
The ontology employed in POI separates the domain 
representation into static and dynamic parts. The static 
part of the POI ontology represents invariant domain 
entities in terms of object-classes and -instances, of inter-
object relationships, and of inter-relationship constraints. 
By convention, relationships and constraints are binary3. 
For example, the blocks world consists of Hand, Block, 
and Table object-classes. The holding relationship 
links an instance of the Hand (object-) class to an 
instance of the Block class, and the onTable 
relationship links a Block instance to a Table instance. 
The holding and onTable relationships are 
constrained in that no Block instance may be both held 
and on the table simultaneously. Such constraints are 
known in the planning literature as domain axioms or 
invariants and in the database literature as cardinality 
and exclusion constraints (Nijssen & Halpin, 1989). The 
static part of the ontology (less the exclusion constraints) 
may be depicted using Chen’s (1976) Entity-
Relationship Diagramming (ERD) notation4. 
The dynamic part of the POI ontology represents domain 
entity behaviour in terms of states, transitions, and 
planning operators. Planning operators are 
reformulations of classes of domain transitions. 
Instantiated relationships synchronise the states of 
objects. For example, the holding hand1 block2 
relationship synchronises the states of the objects hand1 
and block2: hand1 must be holding block2 and 
block2 must be held by hand1 simultaneously. If 
hand1 ceases to be holding block2, then block2 
must simultaneously cease being held by hand1. 
Transitions combine synchronised changes in 
relationships. For example, the cessation of the 
                                                 
3 Higher arity relationships and constraints can be reduced to binary 
relationships and constraints by changing how the object - and 
relationship -classes, respectively, are modelled. Details are given in 
Grant (1996). 
4 The ERD notation is limited to depicting constraints between two 
instances of the same relationship, i.e. cardinality constraints. It cannot 
depict constraints between instances of two different relationships, i.e. 
exclusion constraints. The POI ontology and algorithm is not so 
limited. 
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holding hand1 block2 relationship may be 
combined with the advent of the onTable block2 
table1 relationship. In terms of Allen’s (1983) 
temporal logic, we would say that the relationships meet. 
Note that they meet because the domain constraint from 
the previous paragraph forbids them from overlapping. 
Grant (1995) says that the transition pivots around the 
(instantiated) binary domain constraint. 
The POI ontology is similar to McCluskey and Porteus’ 
(1997) object-centred representation for the specification 
of planning domains. The key differences are that, in 
POI, the relationships and constraints are strictly binary. 
Moreover, the constraints hold only between 
relationships. In addition, objects, relationships, 
constraints, states, and transitions all have classes, i.e. 
sorts in McCluskey and Porteus’ terminology. 
The POI algorithm has two parts: 
• Part 1: Acquisition. The purpose of the first part of POI 

is to acquire a static, object-oriented model of the 
domain from example domain states. POI does not 
require that the example domain states form a valid 
sequence, plan-segment, or plan, unlike other 
algorithms for acquiring planning operators. However, 
the examples may have to be carefully chosen. Part 1 
subdivides into three steps: 
• Step 1.1 : Acquire domain state description(s). 
• Step 1.2 : Recognise the objects and relationships in 

the state description(s). 
• Step 1.3 : Compile cardinality and exclusion 

constraints from the objects and relationships. The 
constraints can be generated exhaustively by 
constructing all possible pairs between relationships 
that share an object. For example, pairing the 
relationship holding ?Hand1 ?Block1 with 
holding ?Hand1 ?Block2 expresses the 
domain constraint that a hand cannot hold two (or 
more) blocks simultaneously5. By default, a 
constraint is assumed to hold if no counterexample 
can be found among the acquired domain state 
descriptions. Thus, if an agent observed a domain 
state in which two hands were indeed holding the 
same block then this constraint would no longer 
hold. 

• Part 2: Induction. The purpose of the second part of 
POI is to induce a dynamic model of domain 
behaviour from the static, object-oriented domain 
model. Domain behaviour is modelled using a state-
transition network from which planning operators can 
be extracted. Part 2 sub-divides into six steps: 
• Step 2.1 : Generate the description language for the 

domain. The description language is the set of all 
relationships between object-instances that satisfy 
the cardinality and exclusion constraints. 

• Step 2.2 : Construct the version space for the 
description language using the cardinality and 
exclusion constraints to eliminate invalid candidate 

                                                 
5 By convention, the same instance of the Block object-
class cannot be matched to the two different variables 
?Block1 and ?Block2. 

nodes. The version space is a partial lattice of valid 
nodes, with each node being described in terms of 
relationships between the domain object-instances. 

• Step 2.3 : Extract the domain states from the version 
space. The domain states are the lattice nodes in the 
maximally specific boundary of the version space. 

• Step 2.4 : Using the Single Actor / Single State-
Change (SA/SSC) meta-heuristic, determine the 
domain transitions between the domain states. The 
SA/SSC heuristic is that a single object (the actor) 
initiates the transition, undergoing a change in just 
one of its relationships. The actor is at the root of a 
causal hierarchy of state-changes in the other 
participating objects. For example, in the blocks 
world when a robot hand picks up a block from the 
table, the hand is the actor, making true its 
holding relationship with the block being picked 
up. The hand’s action causes the block both to act 
on itself so that it is no longer clear and to act on 
the table, breaking the onTable relationship. 

• Step 2.5 : Generalise the domain transitions as 
transition-classes. 

• Step 2.6 : Reformat the transition-classes as planning 
operators. 

Depending on how POI is to be used, Part 1 may be 
optional. If an agent observes an existing domain and 
uses POI to gain knowledge about how to plan actions in 
that domain, then Part 1 is essential. By contrast, if an 
ERD or equivalent static model of a domain (which may 
not yet exist) is available, then modelling can proceed 
directly to Part 2. In knowledge assimilation, one agent 
(the source) performs Part 1 and another (the recipient) 
performs Part 2. 

Knowledge Sharing  
Information and knowledge sharing has been extensively 
studied in management and organization theory. For 
simplicity, we will take the terms “information” and 
“knowledge” as being interchangeable, pace Ackoff 
(1989). Information sharing is a dyadic exchange of 
information between a source and a recipient (adapted 
from Szulanski (1996), p.28). Sharing involves the dual 
problem of “searching for (looking for and identifying) 
and transferring (moving and incorporating) knowledge 
across organizational subunits” (Hansen, 1999, p.83). 
For the purposes of this paper, we will take knowledge 
sharing as meaning knowledge transfer. Searching for or 
discovery of other agents that have suitable 
complementary knowledge about a domain is an area for 
future research. 
Shannon’s (1948) model of communication is useful for 
thinking about knowledge sharing. In the Shannon 
model, the source and recipient each operate within their 
own organizational contexts. Information transfer begins 
when the source generates a message. The message is 
encoded into a form (a signal) in which it is transmitted 
by means of a communications medium, such as 
electromagnetic waves, telephone cables, optical fibres, 
or a transportable electronic storage medium. Random 
noise and systematic distortion may be added during 
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transmission. The recipient decodes the signal and 
assimilates the decoded message into its own store of 
knowledge. 
 

 
Figure 2.   Linking source and recipient agents using 

Shannon (1948) model. 

For the purposes of this paper, we assume that the source 
and recipient are agents with an internal structure as 
shown in Figure 1. In general the agents should be able 
to exchange the outputs of their respective Planning, 
Controlling, State Estimation, Goal Setting, and 
Modelling processes, given suitable encoders and 
decoders (Figure 2). We concentrate here on the 
Modelling process, how the source’s knowledge should 
be encoded, and what decoder the recipient needs to 
assimilate that knowledge. We neglect the issue of noise 
and distortion in this paper. 

Assimilating Planning Domain Knowledge  
Lefkowitz and Lesser (1988) discuss knowledge 
assimilation in the context of acquiring domain 
knowledge from human experts. Their implemented 
system, Kn

Ac, was developed to assist experts in the 
construction of knowledge bases using a frame-like  
representation. Assimilated knowledge represented 
domain objects, relationships, and events. The main 
contribution of their research was in developing several 
generic techniques for matching sets of entities and 
collections of constraints. Research questions included: 
• How does the expert’s domain description correlate 

with the description contained in the knowledge base? 
• How should the knowledge base be modified based on 

the expert’s new information? 
• What should be done when the expert’s description 

differs from the existing one? 
Despite the contextual differences, there are strong 
parallels between Lefkowitz and Lesser’s (1988) work 
and assimilating planning domain knowledge. 
Assimilation of domain knowledge should be integrated 
with plan generation and execution. It should permit a 
variety of ways of learning, including learning-by-seeing 
(i.e. by observing the domain and inferring what actions 
are possible), learning-by-being-told (e.g. by domain 
experts or other agents), and learning-by-doing (i.e. by 
generating and executing plans). When knowledge is 
distributed over multiple agents, then individual agents 
may need to combine different ways of learning. In 
particular, an agent may well need to combine 
knowledge it gained from its own observations of a 
domain with information it has gained by being told by 
another agent. Like Lefkowitz and Lesser, learning 
concerns domain objects, relationships, constraints, and 

events. Analogues of Lefkowitz and Lesser’s research 
questions apply; here we are concerned with the planning 
analogue of their second question. 
Considering the POI algorithm from the viewpoint of 
encoding and decoding, we see that there are three forms 
in which knowledge relating to the domain model could 
be exchanged: 
• As cases. The source agent could transmit the domain 

states it has observed, i.e. the input information to Part 
1 of the POI algorithm. The source agent would not 
have to process its observations before transferring 
them to the recipient. The recipient agent would then 
have to add the source’s domain states to its own 
database of domain states, and perform Parts 1 and 2 
of the POI algorithm to obtain a set of planning 
operators. Exchanging knowledge in this form is likely 
to be verbose for real-world domains, possibly with 
duplicated observations. More importantly, it would 
limit knowledge assimilation to learning-by-seeing. 
The only thing that knowledge sharing achieves is that 
the recipient can “see” both what it can itself observe 
and what the source has observed. 

• As static domain models. The source agent could 
transmit its static domain model, i.e. the information 
as output by Part 1 and as input to Part 2. The source 
agent would have had to perform Part 1 before 
transmitting its static domain model to the recipient. 
The recipient agent would then have to add the 
source’s objects, relationships, and constraints to its 
own database of objects, relationships, and constraints. 
Where source and recipient agents disagree on 
whether a constraint holds, then the constraint is 
assumed not to hold (because one of the agents will 
have seen a counterexample). The recipient retains its 
own list of object-instances and does not assimilate the 
source’s object-instances list, because the recipient 
may not be able to execute plans on objects  that it 
cannot see. Then the recipient would perform Part 2 of 
the POI algorithm to obtain a set of planning 
operators. Exchanging knowledge in this form is likely 
to be concise. Moreover, it would allow learning-by-
seeing, learning-by-being-told, and their combination. 

• As planning operators. The source agent could transmit 
its dynamic domain model, i.e. the information as 
output by Part 2. The recipient agent would then 
simply have to add the planning operators obtained 
from the source to its own planning operators. 
Exchanging knowledge in this form is still more 
concise, but assumes that (1) the source and the 
recipient agents’ observations are sufficiently rich for 
both of them to be able to induce a set of planning 
operators, and that (2) their sets of planning operators 
are complementary. There is no way for additional 
planning operators to be induced by synergy. 

In this research, the encoding-decoding schema has been 
determined by the researcher. Ideally, the source and 
recipient agents should themselves be able to negotiate a 
suitable encoding-decoding schema, depending on 
considerations such as privacy, security, and 
communications bandwidth. Further research is needed 
to provide agents with such a capability. 
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Worked Examples  
Two worked examples should make the key issues clear. 
The first example is the one-block world and the second 
is taken from the three-blocks world. Because the one-
block world is simple, the first example is described in 
more detail. The second example illustrates the need to 
select example states carefully if the agents are to induce 
a full set of planning operators. 
Suppose two agents each observe a different state of a 
one-block world (Slaney & Thiebaux, 2001), as 
represented by Nilsson (1980)6. There are two possible 
states7: [[holding hand1 block1] [onTable 
block1 nil] [onTable nil table1]] and 
[[holding hand1 nil] [holding nil block1] 
[onTable block1 table1]]. Let us suppose that 
Agent1 is given the first state description and Agent2 the 
second. 
The following table depicts the static domain model that 
would result from their performing Part 1 separately, i.e. 
without knowledge sharing and assimilation: 
 
 Agent1’s model Agent2’s model 
Object -
classes 

Hand, Block, Table Hand, Block, Table 

Object -
instances 

hand1, block1, table1 hand1, block1, table1 

Relations holding ?Hand ?Block 
onTable ?Block nil 
onTable nil ?Table 

holding ?Hand nil 
holding nil ?Block 
onTable ?Block ?Table 

Constraints IF holding ?Hand1 
?Block1 
AND holding ?Hand1 
?Block2 
THEN INVALID 
-- hand cannot hold 
multiple blocks 
 
IF holding ?Hand1 
?Block1 
AND holding ?Hand2 
?Block1 
THEN INVALID 
-- block cannot be held 
by multiple hands 
 
IF holding ?Hand1 
?Block1 

IF holding ?Hand1 nil 
AND holding ?Hand2 nil 
THEN INVALID 
-- multiple hands cannot be 
empty at same time 
 
IF holding nil ?Block1 
AND holding nil 
?Block2 
THEN INVALID 
-- multiple blocks cannot be 
not held 
 
IF holding nil ?Block1 
AND onTable ?Block1 
?Table1 
THEN INVALID 
-- block cannot be not held 
and on a table                                                  

6 Distinguishing three object-classes (Hand, Block, Table) and 
yielding four operators (pickup, putdown, stack, unstack). See 
Grant et al, 1994. 
7 A third state would be observed in an orbiting spacecraft: 
[[holding hand1 nil] [holding nil block1] [onTable 
block1 nil] [onTable nil table1]]. During development of 
the POI algorithm the three states were indeed induced, resulting in the 
induction of a set of six operators (pickup, putdown, 
floatoff, floaton, letgo, capture). The author 
observed that he had failed to represent the action of gravity. To do so 
while retaining the Nilsson (1980) domain representation requires a 
triple constraint, stating in effect that a block must be either held by a 
hand or supported by a table or by another block. This can be solved by 
extending the POI ontology, either by allowing constraints of arity 
higher than two or by introducing an inheritance hierarchy of object-
classes. The author adopted the latter solution, because this has the 
synergistic consequence of reducing the complexity of the version 
space, leading to savings in induction time and memory requirements 
(Grant, 1996). 

AND onTable ?Block1 
nil 
THEN INVALID 
-- block cannot be held 
and not on a table 
NOTE: This constraint 
does not hold because 
the observed state is a 
counterexample. 
 
IF onTable ?Block1 
nil 
AND onTable ?Block2 
nil 
THEN INVALID 
-- multiple blocks cannot 
be off the table 
 
IF onTable nil ?Table1 
AND onTable nil 
?Table2 
THEN INVALID 
-- multiple tables cannot 
be clear at same time 

and on a table 
NOTE: This constraint does 
not hold because the 
observed state is a 
counterexample. 
 
IF onTable ?Block1 
?Table1 
AND onTable ?Block1 
?Table2 
THEN INVALID 
-- block cannot be on 
multiple tables 
 
IF onTable ?Block1 
?Table1 
AND onTable ?Block2 
?Table1 
THEN INVALID 
-- table cannot hold 
multiple blocks 

 
Neither of the agents would be able to induce any 
planning operators, because POI Part 2 would simply 
result in the induction of a single state, namely the state 
each agent had observed originally. There needs to be a 
minimum of two states for the SA/SSC heuristic to find 
any transitions. 
Now suppose that the agents share their domain 
knowledge. Since neither of them can induce planning 
operators separately, exchanging data in the form of 
planning operators is not feasible. However, they can 
exchange knowledge in the form either of cases or of 
their static domain models. For the one-block world it is 
simpler for the agents to exchange cases, but this does 
not apply to complex, real-world examples. 
Sharing their domain models enables the agents to create 
synergistic knowledge. Firstly, Agent1 learns from 
Agent2 that blocks can be on tables, and Agent2 learns 
from Agent1 that hands can hold blocks. Secondly, 
additional constraints can be identified, as shown in the 
following table: 
 
 Synergistic knowledge 
Relations holding ?Hand ?Block 

holding ?Hand nil 
holding nil ?Block 
onTable ?Block ?Table 
onTable ?Block nil 
onTable nil ?Table 

Constraints IF holding ?Hand1 nil 
AND holding ?Hand1 ?Block1 
THEN INVALID 
-- hand cannot be both empty and holding a block 
 
IF holding nil ?Block1 
AND holding ?Hand1 ?Block1 
THEN INVALID 
-- hand cannot be both held by a hand and not held 
 
IF holding ?Hand1 ?Block1 
AND onTable ?Block1 ?Table1 
THEN INVALID 
-- block cannot be both held and on a table 
 
IF onTable nil ?Table1 
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AND onTable ?Block1 ?Table1 
THEN INVALID 
-- table cannot be supporting both a block and nothing 
 
IF onTable ?Block1 nil 
AND onTable ?Block1 ?Table1 
THEN INVALID 
-- block cannot be both off and supported by a table 

 
The synergistic knowledge, together with the additional 
constraints, enables the agents to induce the pickup 
and putdown planning operators. They do not have 
enough knowledge to induce the stack and unstack 
operators because stacks of blocks and the on 
relationship between blocks does not exist in the one-
block world. 
The three-blocks world has 22 states, falling into five 
state-classes (Grant et al, 1994). Experiments with the 
implemented POI algorithm, adapted for knowledge 
assimilation, showed that it is not necessary for the 
agents to observe all 22 states (Grant, 1996). Just two, 
judiciously-chosen, example states sufficed8. In one state 
the hand must be empty, and in the other it must be 
holding a block. One state must show a stack of at least 
two blocks, and one stack must show two or more blocks 
on the table. Inspection shows that there are four pairings 
of the five state-classes that can meet these requirements. 
Two can be rejected on the grounds that they are 
adjacent, i.e. that they are separated by the application of 
just one operator. Successful knowledge assimilation has 
been demonstrated for the remaining two state-pairs: for 
all three blocks on the table paired with the state in 
which one block is held and the other two are stacked, 
and for a stack of three blocks paired with the state in 
which one block is held and the other two are on the 
table. Moreover, the induced set of planning operators 
can be used to generate and successfully execute a plan 
that passes through at least one novel state, i.e. a state 
that the agents had not previously observed. 
It is not known whether two (judiciously-chosen) 
example states suffice in all domains for the induction of 
a full set of planning operators. Hand simulations and 
experiments have only been done for the (one-hand, one-
table, and) one- and three-blocks worlds. More research 
is needed, e.g. by applying knowledge assimilation using 
POI to the  International Planning Competition 
benchmark domains and to real-world domains where 
planning knowledge is distributed geographically or 
organizationally. 

Related Work  
In 2003, Zimmerman and Kambhampati surveyed the 
research on applying machine learning to planning. They 
identified three opportunities for learning: before 
planning, during planning, and during execution. 
Learning techniques applied fell into two groups: 
inductive versus deductive (or analytical) learning. 
Inductive techniques used included decision tree 
                                                 
8 Introspection suggests that there may be a single state in the two-
hands, four-block world that could provide all the information needed 
to induce all four operators, but then the knowledge could not be 
distributed over multiple agents. 

learning, neural network, inductive logic programming, 
and reinforcement learning. They observed that early 
research emphasised learning search control heuristics to 
speed up planning. This has fallen out of favour as faster 
planners have become available. There is now a trend 
towards learning or refining sets of planning operators to 
enable a planner to become effective with an incomplete 
domain model or in the presence of uncertainty. 
“Programming by demonstration” can be applied so that 
the user of an interactive planner could create plans for 
example problems that the learning system would then 
parse to learn aspects peculiar to the user. 
In terms of Zimmerman and Kambhampati’s (2003) 
survey, this paper applies Mitchell’s (1982) inductive 
version space and candidate elimination algorithm to 
planning. The POI algorithm could be used before 
planning, during planning, or during execution. It centres 
on the learning of domain models in the form of planning 
operators. It exhibits an element of “programming by 
demonstration” in that the user shows POI example 
domain states, rather than example plans or execution 
traces. 
In his 2006 lectures on learning and planning at the 
Machine Learning Summer School, Kambhampati 
distinguished three applications of learning to planning: 
learning search control rules and heuristics, learning 
domain models, and learning strategies. Research in 
learning domain models could be classified along three 
dimensions: the availability of information about 
intermediate states, the availability of partial action 
models, and interactive learning in the presence of 
humans. POI does not need information about 
intermediate states nor partial action models, and it does 
not require the presence of humans. By comparison, 
other operator learning algorithms require as input:. 
• Background domain knowledge: Porter & Kibler 

(1986), Shen (1994), Levine & DeJong (2006). 
• Partial domain model (i.e. operator refinement, rather 

than ab initio operator learning): Gil (1992), 
DesJardins (1994), McCluskey et al (2002). 

• Example plans or traces: Oates and Cohen (1996), 
Wang (1996), Yong et al (2005). 

• Input from human experts: McCluskey et al (2002). 
POI can accept a static domain model from a human 
expert (e.g. for a domain that does not yet exist) 
instead of observing domain states, but this is not 
applicable to assimilating domain knowledge 
distributed over multiple agents. 

POI is closest to Mukherji and Schubert (2005) in that it 
takes state descriptions as input and discovers planning 
invariants. The differences are that POI also discovers 
objects and relationships and uses the information it has 
discovered to induce planning operators. Like 
McCluskey and his collaborators (McCluskey & Porteus, 
1997; McCluskey et al, 2002), POI models domains in 
terms of object-classes (sorts, in McCluskey’s 
terminology), relationships, and constraints. 
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Conclusions  
This paper has addressed the topic of planning with a 
domain model that is complete and correct but 
distributed across multiple agents. The paper takes the 
view that the agents must share their knowledge if 
planning is to succeed. The Planning Operator Induction 
(POI) algorithm (Grant, 1996) has been introduced as a 
means of acquiring planning operators from carefully-
chosen examples of domain states. Unlike other 
algorithms for acquiring planning operators (Porter & 
Kibler, 1986) (Gil, 1992) (Shen, 1994) (DesJardins, 
1994) (Wang, 1996) (Oates & Cohen, 1996) (McCluskey 
et al, 2002) (Yang et al, 2005) (Mukherji & Schubert, 
2005) (Levine & DeJong, 2006), the example domain 
states do not need to form a valid sequence, plan-
segment, or plan, nor do preceding or succeeding 
transitions have to be given. When agents share their 
partial knowledge of the domain model, the two parts of 
the POI algorithm can be divided between the source and 
recipient in the knowledge-sharing process. The agents 
exchange the static, object-oriented domain model 
resulting from Part 1 of the POI algorithm. This enables 
the recipient to identify synergies between the shared 
knowledge and knowledge it already has and to perform 
the induction, i.e. Part 2 of the algorithm. 
This paper makes several contributions. Its primary 
contribution is in showing how planning domain 
knowledge that is distributed across multiple agents may 
be assimilated by sharing partial domain models. 
Secondary contributions include: 
• The POI domain-modelling algorithm is presented that 

acquires planning operators from example domain 
states. The example domain states do not need to form 
a valid sequence, plan-segment, or plan, nor do 
preceding or succeeding transit ions have to be given. 

• The ontology used in the POI algorithm extends 
McCluskey and Porteus’ (1997) object-centred 
representation. Relationships and constraints are 
strictly binary. Constraints are between pairs of 
relationships, rather than domain-level axioms. Hence, 
both relationships and constraints are associated with 
(classes of) domain objects. 

A key limitation of the research reported here is that, 
while knowledge assimilation using the POI algorithm 
has been implemented, it has only been tested for the 
(one-hand, one-table, and) one- and three-blocks worlds. 
Future research should include: 
• Applying POI-based knowledge assimilation to a wider 

variety of planning domains, e.g. International 
Planning Competition benchmark domains. One 
research ques tion to be addressed is whether two 
(judiciously-chosen) example states suffice in all 
domains for the induction of a full set of planning 
operators. 

• Elucidating the conceptual links between the POI 
algorithm and plan generation using planning graphs. 

• Applying the POI algorithm to sense-making, i.e. the 
modelling of novel situations (Weick, 1995). An 
approach has been outlined in Grant (2005). 

• Extending the POI ontology to model inheritance and 
aggregation relationships, with the eventual aim of 
using the Unified Modeling Language (UML) as a 
representation for the static, object-oriented and 
dynamic, behavioural domain models in the POI 
algorithm. 

• Developing an integrated planning environment that 
incorporates domain modelling, plan generation, plan 
execution, state estimation, and goal setting to act on 
real and simulated domains. 

• Extending agent capability to (1) negotiating mutually-
acceptable encoding-decoding schemes, and (2) 
discover agents that have complementary knowledge. 

• Investigating the application of knowledge assimilation 
using POI to real-world domains where planning 
knowledge is distributed geographically or 
organizationally. Example domains include air traffic 
control and military Command & Control (Grant, 
2006). 
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Abstract

The International Planning Competition has provided a
means of comparing the performance of planners. It is sup-
posed to be a driving-force for planning technology. As the
competition has advanced, more and more complex domains
have been introduced. However, the methods for generating
the competition instances are typically simplistic. At best,
this means that our planners are not tested on the broad range
of problem structures that can be expressed in each of the do-
mains. At worst, it means that some search techniques (such
as symmetry-breaking and graph-abstraction) are ineffective
for the competition instances.
It is our opinion that a competition with interesting instances
(those with varied structural properties) would better drive the
community to developing techniques that address real-world
issues, and not just solving contrived competition test-cases.
Towards this end, we present a preliminary problem genera-
tor for the Driverlog domain, and introduce several important
qualities (or dimensions) of the domain. The performance
of three planners on instances generated by our generator
are compared with their performance on the competition in-
stances.

Introduction
The International Planning Competitions have been a driv-
ing force for the development of planning technology. Each
competition in turn has added to the expressivity of the stan-
dard language of AI Planning: PDDL. The domains that
have been created for each competition have also increased
in complexity and structure. For domains tested in the early
planning competitions, such as Blocksworld, problem gen-
eration was not considered a difficult problem: generate two
random configurations of the blocks and use those as the ini-
tial and goal states.

Slaney and Thiebaux showed that even for Blocksworld,
problem generation is an interesting problem. Using the in-
tuitive technique to generate states will not generate all pos-
sible states (Slaney & Thiébaux 2001). If a simple, intu-
itive problem generation strategy is not satisfactory for a do-
main such as Blocksworld, it seems highly unlikely that a
similar strategy would be satisfactory for a modern, highly-
structured domain.

This work addresses two questions. The first is how to
generate an interesting benchmark set for a complex struc-
tured domain (the Driverlog domain). The second question

asks whether or not the competition results accurately re-
flect the performance of the competing planners across the
benchmark problems that have been created.

Ideally, a set of benchmarks should test current planning
technology to its limits. More than simply supplying prob-
lems that reach outside of the scope of current planners,
a benchmark set should highlight the particular structural
properties that planners struggle with. This provides focus
for future research. Studying the reasons why our planners
fail to solve certain types of problems reveals where future
improvements might be made.

Benchmarks should, when appropriate, model reality in
a useful way. Of course, it is infeasible to expect planners
to solve problems on a massive scale. But it is possible to
retain structural features of real-world problems. Nobody
would write a logistics instance in which a particular pack-
age was in more than one location in the initial state, al-
though this would probably be allowed by the domain file.
The structural property that objects cannot occupy more than
one location is intuitive, but there may be other real-world
structural properties that are not as obvious.

The final function that a good benchmark set should pro-
vide is a solid foundation for critical analysis of different
planners. One criticism of the IPC could be that there are
simply not enough instances to know which planner is best
and when. Ideally, there should be enough results to prove
that some planner is faster, or produces higher quality plans
to a statistically significant level.

The Driverlog Problem

A transportation problem involves a set of trucks moving
packages from a starting location to a goal destination in
an efficient way. The trucks drive along roads that connect
the locations together, and a package can be picked up from
or dropped off to a truck’s current location. The Driverlog
domain extends this model by introducing drivers. Drivers
have their own path network that connects the locations to-
gether, allowing them to walk between locations. Trucks in
Driverlog can only move if they are being driven by a driver.
This introduces an enabler role moving away from a simple
deliverable/transporter model. As well as this, goal loca-
tions are often set for the drivers and the trucks, not just the
packages.
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Transportation domains can cover problems with inter-
esting road structures. However, Driverlog adds interesting
challenges, as there can be complicated interaction between
the two graphs structures and there are many more factors to
consider when deciding how to deliver the packages, includ-
ing additional goal types and useful driver truck pairings.

The Dimensions of Driverlog
A Driverlog problem comprises the following things: a set
of drivers, a set of trucks, a set of packages and a set of
locations. All of the drivers, trucks and packages are initially
at a location. A subset of the drivers, trucks and packages
have a goal location. Locations are connected in two distinct
ways: by paths (which drivers can walk along) and by roads
(which trucks can drive along).

We propose eight dimensions that we feel could be com-
bined to create interesting and challenging Driverlog prob-
lems. The dimensions largely focus on introducing struc-
tural features to the graphs, however, we also consider the
types of goals and number of the separate objects in the
problem. These could greatly affect the difficulty of the
problem.

Graph topology There are several options relating to the
graph topology, connectivity and planar or non-planar.
Planar graphs are graphs that can be drawn on a plane,
with no intersecting edges, a property existing in many
real road networks. This domain can be used to represent
other problems and it is likely that non-planar graphs will
also be of interest and increase the problem space. The
connectivity of the graph, from sparse to dense can also
be set, allowing a whole range of interesting structures to
be explored.

Numbers of objects The number of trucks, drivers, pack-
ages and locations are the traditional parameters for gen-
erating Driverlog problems. This dimension can be used
to set the size of the problem and can have some effect on
the difficulty.

Types of goalsThere are only three possible types of goal
in Driverlog: the goal location for trucks, drivers or pack-
ages. In real world transportation problems, the planner
can never consider delivering the packages in isolation;
the final destination of the drivers and trucks is also ex-
tremely important. Allowing the types of goals to be se-
lected provides control over the emphasis of the problem.

Disconnected drivers There are two separate graphs in the
Driverlog domain, the road graph and the path graph. The
interesting interactions that can happen between the two
graph structures are usually ignored. We want to en-
courage exploration of these interactions. Disconnected
drivers provide problems where drivers must traverse both
graphs (walking, or in a truck) to solve the problem.

One-way streetsLinks can be added between two locations
in a single direction. This means that trucks can move
from one location to another, but may have to find a differ-
ent route to return to the original location. Solving prob-
lems with directed graph structure forces careful planning
of how the trucks are moved around the structure. If the

wrong truck is moved down one of the one-way streets,
then many wasted moves could be incurred as the truck
traverses back through the graph. As well as adding an
interesting level of difficulty, we think this dimension is
particularly relevant, because of the increasing number of
one-way streets in the transport network.

Dead endsDead ends are locations, or groups of locations
that are joined to the main location structure in one direc-
tion only. This means that a truck cannot return once it has
moved into one of these groups of locations. This forces
the planner to carefully decide when to send the truck into
one of these groups, as it will be lost for the remainder of
the plan. For example, on difficult terrain there can be
craters that a robot can manage to move into, but are too
steep for the robot to get out again. In this case the planner
may want to balance the importance of the scientific gain
with the cost of the robot and termination of the mission.

SAT/ UNSAT This dimension allows the possibility of un-
solvable problems. Solvable means that there is a se-
quence of actions moving the state from the initial state to
a state that satisfies the goal formula. This option might
allow the exploration of more interesting properties in the
other dimensions, as sometimes it is impossible to ensure
that certain combinations are solvable.

Symmetry in objects Symmetry occurs in the Driverlog
problem when different objects or configurations of ob-
jects are repeated. For example, three trucks that have
the same start and goal conditions are symmetric. Also,
the underlying road network may be symmetric. Planners
that perform symmetry breaking can exploit symmetry to
reduce the amount of necessary search.

The Instance Generators
Four different generators have been written for this work.
In the future, these will be reduced to a single generator.
But since this is preliminary work, different generators were
produced for different important dimensions. These are Pla-
nar, Non-Planar, Dead-ends and Disconnected Drivers. The
generators explore the different dimensions identified as in-
teresting in the previous section. Three of these dimensions
are not explored: Symmetry in objects, types of goals and
SAT/UNSAT. The majority of modern planners have been
built around the assumption that instances will be satisfi-
able, and so this dimension may not produce any interest-
ing discussion. In all of the instances, each driver, truck and
package has a goal destination (unless otherwise specified).
Symmetry in objects cannot be explicitly varied in any of
the generators. It is our intention to add the capacity to vary
these dimensions in the future. One more restriction is that
except in the Disconnected Drivers generator, the path map
is identical to the link map. The generators do the following:

Planar
Generates instances with planar maps. The user can vary
the number of drivers, trucks, packages and locations. The
user is required to supply the probability of two locations
being connected. The user specifies if the map is directed
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or not. All of the generated maps will be connected. In the
implementation, if a generated map is not connected, it is
simply discarded and a new one generated.

Non-Planar
The Non-Planar generator is similar to the Planar generator
except that the user specifies a particular number of links in
the road-map and, of course, the resultant road-maps may
not be planar.

Dead-ends
To test road maps with dead-ends, the following method is
used for generating an instance. A tree is constructed as the
road map randomly, connecting locationn with a random
location, lower thann. There aret trucks and drivers, ini-
tially located at location 1. The lastt locations are then used
as destination locations for the packages. The trucks do not
have a destination location specified.

Each package is randomly assigned a destination from
those lastt locations. Each package is then initially placed
at any location on the path between location 1 and its des-
tination. The challenge in this problem is simply to drive a
truck to each destination and only load a truck with pack-
ages that are supposed to be delivered to that truck’s desti-
nation. Figure 1 shows one example. In this example, nor-
mal fonts represent the initial location of packages, italicised
fonts represent their goal locations.

Disconnected Drivers
The Disconnected Driver generator is designed to explore
the Disconnected Driver dimension. In order to do this, a
map with no paths is created. Each driver is paired with
a truck: the goal locations of the truck and driver are the
same. Their initial locations are not the same (although each
driver has a truck available). The challenge in the instances
generated is in swapping the drivers into the truck that shares
its goal location.

Experiments
To test the generators, we have used three of the most suc-
cessful planners of recent times, FF (Hoffmann & Nebel
2001), LPG (Gerevini & Serina 2002) and SGPlan (Chen,
Wah, & Hsu 2006). We used FF version 2.3, LPG version
1.2 and SGPlan version 41. All of the tests were performed
on a desktop computer with a dual-core Intel Pentium 4
2.60GHz CPU. The tests were limited to using 10 minutes
and 300MB of memory. The timings for FF and LPG mea-
sure system time + user time. Sadly, there is no simple way
of calculating this measure for SGPlan, and so clock time is
used. This could mean that SGPlan seems slightly slower
than in reality. However, system load was minimal during
testing, and any scaling in performance should be a very
small constant factor. The quality of plans is measured by
number of actions. As FF only produces sequential plans,
and LPG by default optimises number of actions, this was
thought a fairer measure than makespan.

We generated a huge number of benchmark test cases,
and then after some preliminary small-scale tests chose an

interesting selection of problems that covered a range of
difficulty for all of the planners. We highly recommend
this method. Without preliminary tests, it is impossible to
know what range of problems may provide difficulties for
the planners. It is far too easy to construct a benchmark set
composed entirely of either very easy or impossible to solve
problems.

We provide detailed results for planar road maps with four
drivers, four trucks, nine packages, and number of locations
varying between 10 and 30, in steps of five. For each size
of map, we generated 50 instances with probability of two
nodes being connected of between 0.1 and 0.9 both for di-
rected and undirected graphs. This gives 250 instances for
directed and undirected graphs. Planar graphs were selected
as they have a similar structure to real-world road networks.

We also used 180 of the generated Dead End instances.
These instances have between one and four trucks, they have
9 packages and all have 15 locations.

Results
The results of performing the above experiments can be seen
in Figure 2 to Figure 5. These graphs show the planar di-
rected results (both time and quality) for FF vs. LPG, FF vs.
SGPlan and LPG vs. SGPlan respectively. The graphs of the
timings are log-scaled, whereas the graphs showing quality
are linear scaled.

Time vs. Quality
The results shown in Figure 2 to Figure 5 show that there is
little to choose between the planners in terms of plan quality.
In each comparison, the two compared planners seem to gain
wins in what seems about half of the cases. However, of
the three planners, LPG is considerably better in terms of
time taken than the other planners. This highlights the fact
that planners have been built specifically with the task of
attaining satisfiability, rather than trying to optimise metrics.

SGPlan Dependence on FF
It was noticed that in many problems that were found diffi-
cult by FF, SGPlan also struggled. FF’s performance seems
to dominate that of SGPlan. This is unusual, as each goal in
a Driverlog problem should be reasonably straightforward
to solve in isolation. However, it is perhaps due to the fact
that some of the goals in Driverlog are strongly dependent
on resources that participate in other goals. This could mean
that combining the sub-plans becomes difficult for SGPlan.

Dead-end Example
Figure 1 shows an example of the Dead End instances gen-
erated. This instance had three trucks. The numbers in Fig-
ure 1 represent package locations. The italicised numbers
represent the goal locations of the packages. All three plan-
ners were incapable of solving this simple problem.

This highlights the fact that the planners do not reason
about resource allocation intelligently. If the problem is
viewed as a task of assigning packages to trucks, then the
problem becomes very simple. It also shows that the plan-
ners do not reason about the consequences of irreversible
actions.
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Figure 1: Dead-end instance in which all three planners fail

Instance 1 2 3 4 5 6 7 8 9 10
FF 9 23 13 17 23 14 18 24 32 21
LPG 7 27 13 16 31 14 21 25 32 22
SGPlan 9 24 13 21 24 14 18 30 35 19

Instance 11 12 13 14 15 16 17 18 19 20
FF 26 53 37 39 49 – – – – –
LPG 25 42 33 78 60 284 143 179 230 176
SGPlan 25 39 36 44 47 – – – – –

Table 1: Plan Quality for the 2002 IPC Benchmark Instances

Directed vs. Undirected
Figure 2 and Figure 3 show the results of the Planar Directed
and Undirected tests respectively. For each of the planners,
there was no large difference in the results between the di-
rected and undirected test cases. It was thought that for the
same reason the planners deal badly with dead-ends, they
may also deal badly with one-way streets. This appears not
to be the case, although further experiments may reveal more
specific forms of dead-end roads in which the planners strug-
gle.

Competition Comparisons
The planning competition provides a strong motivation in
our field and directs the activity of the community. In this
study we examined the generator used in the 2002 IPC (Long
& Fox 2003): the Driverlog problem generator. We feel that
the generator does not provide problems that capture the full
potential of what is a structurally rich domain. Therefore it
is our opinion that the competition has failed to fully explore
how the planners behave in this domain. Our approach fo-
cusses on generating problems with several varied structural

Instance 1 2 3 4 5 6 7 8 9 10
FF 0 0 0 0 0 0 0 0 0 0
LPG 0 0 0 0 0 0 0 0 0 0
SGPlan 0 0 0 0 0 0.1 0 0 0 0

Instance 11 12 13 14 15 16 17 18 19 20
FF 0 0.4 0.2 0.3 0.1 – – – – –
LPG 0 0.1 0.1 0.2 0.4 85.9 2.8 8.1 52.1 72.1
SGPlan 0 0.2 0.1 0.1 0.1 – – – – –

Table 2: Execution Time for the 2002 IPC Benchmark In-
stances

features and we feel our results provide more understand-
ing of the planners’ strengths and weaknesses. We believe
that this provides a far stronger base for making compar-
isons between the planners. In this section we describe the
Driverlog generator used in the competitions and discuss the
differences between the results of the competition and the
results found in this study.

Driverlog is a domain that is rich in structure, however the
current competition generator uses a very simple approach
to creating the test cases. The parameters to the generator,
are the number of trucks, drivers, packages and road loca-
tions. The connectivity of the road graph is determined by
making (number of road locations× 4) connections between
any two random locations. If the graph is not connected,
then additional connections are added between disconnected
locations until it is. It is highly likely that this method will
produce a very densely connected graph. The same hap-
pens for the path graph, except there are (2× the number of
locations) instead, thus increasing the chances of a sparser
path graph. These graphs are both undirected, removing any
chances of one way streets or dead-ends and each cover all
the road locations, removing the possibility of disconnected
drivers. As the graphs are so densely connected it is unlikely
that they will be planar and even less likely that they will re-
semble real-world road networks.

The objects are positioned randomly across the locations
and their goal locations (if required) are chosen randomly
too. The decision on whether an object has a goal is ran-
domly made, with 95% chance of a package having a goal
destination and 70% for both drivers and trucks. This means
that no control is given to the types of goal in the problem
and no effort is made to position the goals in an interesting
way.

We feel that the planning competition should be able to
prove that a planner is faster or produces better quality plans
to a statistically significant level. Also, that how a planner
performs in a particular area of planning should be identi-
fiable. In our approach we generated problems that incor-
porated several interesting structural features and spanned a
whole range of difficulties. This provides a solid base for
judging the performance of the planners across the whole
domain and additionally provides invaluable insight into
how the planner behaves when faced with specific structural
features. We believe that the competition generator fails to
explore the interesting features of this domain and makes no
attempt to incorporate real-world structures into the prob-
lems. Also, we feel that too few problems were generated
to determine the performance of the planners. Our results
show that our problems spanned a whole range of difficul-
ties, whereas the competition problems were found either
too hard or too easy. It is our opinion that the results pre-
sented here are sufficient to determine the best planner over
the whole domain and in addition, provide useful informa-
tion to the planner designer, regarding the planner’s capabil-
ities.

Depth of results: Number and Range
One of the motivations for this work was to improve the
quality of results that the planning competition could pro-
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Figure 2: FF vs. LPG Planar Directed Road Network
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Figure 3: FF vs. LPG Planar Undirected Road Network
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Figure 4: FF vs. SGPlan Planar Directed Road Network
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Figure 5: LPG vs. SGPlan Planar Directed Road Network
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Figure 6: Competition Benchmark vs. Planar Undirected Graph Density

vide. We feel that the competition would greatly benefit the
community if it not only suggested an overall winner, but
also highlighted particular features of planning that individ-
ual planners excelled in. The Driverlog domain provides an
opportunity to test the planners on many interesting struc-
tural problems. However, in the competition only 20 prob-
lem instances are generated, hardly enough to make a full
exploration of the domain. Table 2 shows the time results
for FF, LPG and SGPlan for the competition instances. It
is difficult to form any kind of of comparison, as the results
are so similar. In contrast, Figure 2 b) shows the time result
for FF and LPG for our planar problem set. The large prob-
lem set ranging over the entire dimension, provides results
that clearly shows how the planners compare throughout an
entire range of problem difficulties.

The results that we present for each dimension come from
a full range of problem difficulties. We feel that this gives
us a strong base to make informed claims about each plan-
ner’s abilities in terms of these dimensions. In the 2002
competition, the first 15 of the problems for Driverlog pro-
vided no challenge to the planners, and the last 5 were all
found extremely difficult (mostly impossible) (Long & Fox
2003). The problems failed to provide a smooth range of dif-
ficulty. We feel that if claims are going to be made about the
quality of plans a planner makes or how quickly it produces
those plans, then the planner must have been tested across
the whole range of possible problems.

Interesting structure

Driverlog problems have the potential of containing all sorts
of structural features. We feel that the dimensions intro-
duced earlier, capture a very interesting selection of these.

The competition generator constructs the graphs by ran-
domly forming many connections between nodes, and this
results in densely connected graphs. All of the graphs are
undirected and the road and path graphs must visit every
point. This means that the dimensions that we highlighted
either can not, or are very unlikely to appear in any of the
problems generated for the competition. The competition
therefore fails to explore much of the interesting structure
possible in this domain.

Our generators cover several structural features; the prob-
lems therefore test the planners across these features. This
means that our results can be used to determine more than
just the best planner: they also identify how a planner per-
forms on problems with a particular structural feature. In the
results section, we identified the dead-end feature as a par-
ticular problem for FF, LPG and SGPlan. We feel that this
sort of information will provide invaluable feedback to the
planner designer, allowing them to focus their research on
the areas of weak performance. As discussed, it is unlikely
that the competition generator will provide many problems
with interesting structure. As a result, it is impossible to
identify when a planner performs poorly using the competi-
tion instances.

Density and realism

The planning competition is a force that directs the plan-
ning community and in our opinion it should be used to
push planning towards dealing with real-world situations.
Although current planners cannot deal with large real-world
problems, we feel that realistic structures should be incor-
porated into planning problems wherever possible. The road
connections in real-world transport network often form pla-
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nar graphs. As we described previously, the competition
Driverlog generator is likely to generate very dense graphs,
contrasting with the real model. Figure 6 a) highlights the
connectivity of a typical competition problem, where b)
shows the more realistic, sparse structure generated by our
planar graph generator. The dimensions that we have pre-
sented in this work, have been designed specifically to test
planners on real-world structural features. It is therefore our
opinion that our generator is more likely to include realistic
structures within the problems it generates.

Future Work
This short study aims to motivate researchers to take the
problem of instance generation more seriously. To further
this work, several things can be done:

Create More Generators Driverlog is just one domain
from many previous competition domains. Instance
generators for the full range of competition domains
would help to further refine where planning technology’s
strengths and weaknesses are.

Complete Driverlog Generator Even the Driverlog gener-
ators as described in this work are not complete. New in-
teresting dimensions may be identified, which would re-
quire extending the generator to create problems across
this new dimension. One of the current dimensions
(amount of symmetry) is not yet varied explicitly in the
generators. Adding this capacity is part of the future work
for this project.

Richer Modelling Language PDDL is capable of express-
ing far more than the propositional instances generated
by our current generator. In the IPC, numeric and tempo-
ral versions of Driverlog were tested alongside the purely
propositional forms of the problem. These included dura-
tions on each of the actions, and also fuel costs for driving.
They also had different metrics to optimise. Clearly ex-
panding the generators to these dimensions is essential to
further planning technology in these areas.

Real-world Derived Instances Real logistics problems are
different from typical Driverlog instances both in size
and structure. Real logistics problems have huge num-
bers of locations. The structure of their underlying maps
will remain constant: road networks rarely change sig-
nificantly. If one goal of the planning community is to
address real-world problems, then real-world benchmarks
are required. Techniques to exploit structures that are con-
stant between different instances could be developed to
tackle these problems.

A Generator Generator There are common, repetitive
structures that occur in different planning domains. For
instance, there are many problems similar to Driverlog,
in which movement across a graph is required. If these
structures can be identified, then the dimensions identi-
fied here that relate to graph structures could be used as
generic dimensions in other problems with similar struc-
tures. Therefore, if enough different structures could be
identified, then a generic problem generator could be cre-

ated which would be able to generate instances of any do-
main that have interesting structure.

Conclusions
In this paper, we have tried to show that the problem of in-
stance generation is of critical importance to the planning
community. Having complex domains is not enough. To test
planners effectively, then benchmarks that explore all possi-
ble structural dimensions of our domains have to be created.

We have identified several structural dimensions for the
Driverlog domain, and have created instance generators that
explore several of these. After creating many instances our
results show that, for the planners tested, there is little dif-
ference in plan quality. The planners also cannot handle re-
source allocation intelligently (as seen in the dead-end ex-
ample).

We have shown that the IPC generator does not gener-
ate structurally interesting instances, and have made various
criticisms of the competition benchmarks. It must be re-
membered that running the IPC already requires a great deal
of work, and so this work is not created to undermine the ef-
forts of the organisers. However, it does show that creating
instance generators should not simply be the responsibility
of the competition organisers.

This work is still preliminary, and a completely unified
Driverlog generator that can generate instances anywhere in
the structural dimensions is essential. There is still plenty
work to be done to understand what structural properties
underlie difficult instances. Hopefully this work will con-
vince its readers that instance generation is an important
topic both for comparing our planners and for understand-
ing what makes a difficult planning problem.
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Abstract 
AI planning constitutes a field of interest as its techniques 
can be applied to many areas. Contemporary systems that 
are being developed deal with certain aspects of planning 
and focus mainly on dealing with advanced features such 
as resources, time and numerical expressions. This paper 
presents VLEPpO, a Visual Language for Enhanced 
Planning problem Orchestration. VLEPpO is a visual 
programming environment that allows the user to easily 
define planning domains and problems, acquire their 
PDDL representations, as well as receive solutions, 
utilizing web services infrastructure. 

1. Introduction 
AI planning has been an active research field for a long 
time, and its applications are manifold. A great number of 
techniques and systems have been proposed during this 
period in order to accommodate designing and solving of 
planning domains and problems. In addition, various 
formalisms and languages have been developed for the 
definition of these domains, with Planning Domain 
Definition Language (PDDL) [4][5][6] being dominant 
among them.  

Research among contemporary planning systems has 
revealed a lack of appropriate integrated visual 
environments for representing accurately PDDL elements 
and structures, and consequently using these structures to 
produce quality plans. This provided the motivation for 
the work presented in this paper.  

The proposed visual tool is intended to cover the need 
for such an environment by providing an easy to use, 
efficient graphical user interface, as well as 
interoperability with planning systems implemented as 
web services. The elements offered in the interface 
correspond to PDDL elements and structures, making the 
representation of most contemporary planning domains 
possible. Furthermore, importing from and exporting to 
PDDL features are provided as well. Drag and drop 
operations along with validity checks make the use of the 
environment easy even for users not particularly familiar 
with the language. 

The rest of the paper is organised as follows: Section 
2 reviews related work in the field by presenting several 
planning systems, while Section 3 discusses the eminent 
formalisms for representing planning domains and 
problems. Section 4 presents our visual tool and 
demonstrates its use through examples, and finally, 
Section 5 concludes and discusses future goals.  

2. Related Work 
There have been a few experimental efforts to construct 
general-purpose tools which offer user interfaces for 
defining planning domains and problems, as well as 
executing planners which provide solutions to the 
problems.  

The GIPO system [1] is based on an object-centric 
view of the world. The main idea behind it is the notion 
of change in the state of objects throughout plan 
execution. Therefore, the domains are modelled by 
describing the possible changes to the objects existing in 
the domain. The GIPO system is designed to work with 
both classical and HTN (Hierarchical Task Networks) 
domains. In both cases, it offers graphical editors for 
domain creation, planners, animators for the derived 
plans and validation tools. The domain models are 
represented mainly in an internal representation language 
called OCL (Object Centered Language) [8], which is, as 
the name implies, object oriented, in accordance with the 
GIPO system. Translators from and to PDDL have been 
developed, which cover only a few parts of the language 
(typed / conditional PDDL).  

SIPE-2 [2] is another system for interactive planning 
and execution of the derived plans. As it is designed to be 
performance-oriented, it embodies many heuristics for 
increased efficiency. Another useful feature is the plan 
execution monitoring, which enables the user to feed new 
information to the system in case there is some change in 
the world. In addition, the system offers graphical 
interfaces for knowledge acquisition and representation, 
as well as plan visualization. SIPE-2 is an elaborate 
system with a wide range of capabilities. However, it 
uses the ACT formalism, which is quite complicated and 
does not correspond directly to PDDL, although PDDL 
descended partially from this formalism, but also from 
other formalisms such as ADL. Therefore, there is no 
way to easily use a PDDL file to construct a domain in 
SIPE-2, or export the domain or problem to PDDL.  

ASPEN is an environment for automated planning and 
scheduling. It is an object-oriented system, originally 
targeted to space mission operations. Its features include 
an expressive constraint modelling language which is 
used for defining the application domain, systems for 
defining activity requirements and resource constraints, 
as well as temporal constraints. In addition, a graphical 
user interface is included, but its use in confined to 
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visualization of plans and schedules, in systems where 
the problem solving process is interactive.  

ASPEN was developed for the specific purposes of 
space mission operations and therefore, it has only a few 
vague correspondences to PDDL. Furthermore, it does 
not offer a graphical interface for creating the planning 
domains.  

In conclusion, although the above systems are useful, 
none of them offers direct visual representation of PDDL 
elements, a feature which would make the design very 
efficient for the users already familiar with the language. 
Moreover, even the systems which offer translation to 
PDDL do not cover important features of the language. It 
should be mentioned that a couple of other systems which 
provide user interfaces can be found in the literature, but 
they are not mentioned in this section because of their 
being developed for specific purposes. 

The VLEPpO tool is based on ViTAPlan [3] a 
visualization environment for planning based on the 
HAPRC planning system. VLEPpO extends ViTAPlan in 
numerous ways providing the user with visualization 
capabilities for most of the advanced features of PDDL 
[6] and a more accurate and expressive visual language. 

3. Problem Representation 
A crucial step in the process of solving a search problem 
is its representation in a formal language. The choice of 
the language can significantly affect not only the 
comprehensiveness of the representation but also the 
efficiency of the solver. The PDDL language is nowadays 
the standard for representing planning problems. PDDL is 
partially based on the STRIPS [7] formalism. Since the 
environment presented in this work has a close 
connection with PDDL, a brief description of the most 
important language elements will be provided in the 
following section.  

3.1. The PDDL Definition Language 
PDDL [4] stands for Planning Domain Definition 
Language. Although it was initially designed for planning 
competitions such as AIPS and IPC, it has become a 
standard in the planning community for modelling 
planning domains. PDDL focuses on expressing the 
physical properties of the domain at hand in each 
planning problem, such as the available predicates and 
actions. However, at the same time, there are no 
structures or elements in the language to provide the 
planner with advice, that is, guidelines about how to 
search the solution space, although extended notation 
may be used, depending on the planner.  

Each domain definition in PDDL consists of several 
declarations, which include types of entities, variables, 
constants, literals that are true at all times called timeless, 
and predicates. In addition, there are declarations of 
actions, axioms and safety constraints. These elements 
are explained in the following paragraphs.  

Variables have the same semantics as in any other 
definition language, and are used in conjunction with 
built-in functions for expression evaluation. In more 
recent versions of PDDL, fluents seem to gain 

momentum instead of variables when there is a need for 
values that can change over time, as a result of an action.  

Constants represent objects that do not change values 
and can be used in the domain operators or the problems 
associated with a domain.  

Relations between objects in the domain are 
represented by predicates. A predicate may have an 
arbitrary number of arguments, whose ordering is 
important in PDDL. Predicates are used to describe the 
state of the world at a specific moment. Moreover, they 
are used as preconditions and results of an action.  

Timeless predicates are predicates that are true at all 
times. Therefore, they cannot appear as a result of an 
action unless they also appear among its preconditions. In 
other words, timeless predicates are not affected by any 
actions available to the planner.  

Actions enable transitions between successive 
situations. An action declaration mentions the parameters 
and variables involved, as well as the preconditions that 
must hold for the action to be applied. PDDL offers two 
choices when it comes to defining the results of the 
action: The results can either be a list of predicates called 
effects, or an expansion, but not both at the same time. 
The effects, which can be both conditional and 
universally quantified, express how the world situation 
changes after the action is applied. More specifically, 
inspired by the STRIPS formalism, the effects include the 
predicates that will be added to the world state and the 
predicates that will be removed from the world state.  

Axioms, in contrast to actions, state relationships 
among propositions that hold within the same situation. 
The necessity of axioms arises from the fact that the 
action definitions do not mention all the changes in all 
predicates that might be affected by an action. Therefore, 
additional predicates are concluded by axioms after the 
application of each action. These are called derived 
predicates, as opposed to primitive ones. In more recent 
versions of the language the notion of derived predicates 
has replaced axioms, but the general idea described 
remains the same.  

Safety constraints in PDDL are background goals 
which may be broken during the planning process, but 
ultimately they must be restored. Constraint violations 
present in the initial situation do not require to be fulfilled 
by the planner.  

After having defined a planning domain, problems can 
be defined with respect to it. A problem definition in 
PDDL must specify an initial situation and a final 
situation, referred to as goal. The initial situation can be 
specified either by name, or as a list of literals assumed to 
be true, or a combination of both. In the last case, literals 
are treated as effects; therefore they are added to the 
initial situation stated by name. Again, the closed-world 
assumption holds, unless stated otherwise. Therefore, all 
predicates which are not explicitly defined to be true in 
the initial state are assumed to be false. The goal can be 
either a goal description, using function-free first order 
predicate logic, including nested quantifiers, or an 
expansion of actions, or both. The solution given to a 
problem is a sequence of actions which can be applied to 
the initial situation, eventually producing the situation 
stated by the goal description, and satisfying the 
expansion, if there is one.  
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PDDL 2.1 [5] was designed to be backward 
compatible with PDDL 1.2, and to preserve its basic 
principles. It was developed by the necessity for a 
language capable of expressing temporal and numeric 
properties of planning domains.  

The first of the extensions introduced were numeric 
expressions. Primitive numeric expressions are values of 
functions which are associated with tuples of domain 
objects. Further numeric expressions can be constructed 
using primitive ones and arithmetic operators. In order to 
support numeric expressions, new elements were added 
to the language. Functions are now part of the domain 
definition and, as mentioned above, they associate a 
number of objects with an arithmetic value. Moreover, 
conditions were introduced, which are in fact 
comparisons between pairs of numeric expressions. 
Finally, assignment operations are possible, with the use 
of built-in assignment operators such as assign, increase 
and decrease. The actual value for each combination of 
objects given by the functions is not stated in the domain 
definition but must be provided to the planner in the 
problem definition.  

A further extension to PDDL facilitated by numeric 
expressions is plan metrics. Plan metrics specify the way 
a plan should be evaluated, when a planner is searching 
not for any plan, but for the optimal plan according to 
some metric.  

 Other extensions in this version include durative 
actions, both discretised and continuous. Up to now, 
actions were considered instantaneous. Durative actions, 
as the term implies, have a duration which is declared 
along with their definition. Furthermore, as far as 
discretised durative actions are concerned, temporal 
annotations are introduced to their conditions and effects. 
A condition can be annotated to hold at the start of the 
interval, at the end of the interval, or all over the interval 
during which the action lasts. An effect can be annotated 
as immediate, that is, it takes place at the start of the 
interval, or delayed, that is, it takes place at the end of the 
interval.  

In PDDL 3.0 [6] the language was enhanced with 
constructs that increase its expressive power regarding 
the plan quality specification. The constraints and goals 
are divided into strong, which must be satisfied by the 
solution, and soft, which may not be satisfied, but are 
desired. In addition, the notion of plan trajectories is 
introduced, which allows the specification of 
intermediate states that a solution has to reach, before it 
reaches the final state.  

4. The Visual Language 
VLEPpO (Visual Language for Enhanced Planning 
problem Orchestration) is an integrated system for 
visually designing and solving planning problems, 
implemented in Java. It offers an efficient and easy-to-
use graphical interface, as well as compatibility and 
interoperability with PDDL. The main goal during the 
implementation of the graphical component of the tool 
was to keep the interface as simple and efficient as 
possible, but, at the same time, represent accurately and 
flexibly the features of PDDL. The range of PDDL 
elements that can be represented in the tool is quite wide, 

and covers the elements that are used more frequently in 
contemporary planning domains and problems. In the 
following, the features of the tool will be discussed in 
more detail.  

4.1. The Entity – Relation Model 
The entity – relation model is used to design the structure 
of data in a system. Our visual tool employs this well-
known formalism, adapting it to PDDL. Therefore, the 
entities in a planning domain described in PDDL are the 
objects of the domain, while the relations are the 
predicates. These elements are represented visually in the 
tool by various shapes and connections between them.  

A class of objects in the tool is represented visually by 
a coloured circle. A class in PDDL represents a type of 
domain objects or action parameters. From a class the 
user can create parameters of this type in operators, and 
objects of this type in problems, by dragging and 
dropping the class on an operator or a problem, 
respectively. The type of a parameter or object is denoted 
by their colour, which is the same as the corresponding 
class.  

Consider the gripper domain for example, where there 
is a robot with N grippers that moves in a space, 
composed of K rooms that are all connected with each 
other. All the rooms are modelled as points and there are 
connections between each pair of points and therefore the 
robot is able to reach all rooms starting from any one of 
them with a simple movement. In the gripper domain 
there are L numbered balls which the robot must carry 
from their initial position to their destination. 

Following a simple analysis the domain described 
above can be encoded using four classes: robot, gripper, 
room and ball. However, since the domain does not 
support the existence of multiple robots, the class robot 
can be implicitly defined and therefore there is no need 
for it. The three remaining classes are represented in 
VLEPpO using three coloured circles as outlined in 
Figure 1. 

 

 
Figure 1. The classes in Gripper domain. 

 
A relation is represented by a coloured rectangle with 

black outline. A relation corresponds to a domain 
predicate in PDDL and it is used for defining connections 
among classes. The relations in PDDL and therefore in 
VLEPpO are of various arities. Unary relations are 
usually used to define properties of classes that can be 
modeled as binary expressions that are either true or false 
(e.g. closed(Door1)).  

If at least one pair of class and relation is present in 
the domain, the user can add connections between them. 
Each connection represents an argument of a relation, and 
the class shows the type of this argument. A relation may 
have as many arguments as the user wishes, of any type 
the user wishes. The arguments are ordered according to 
the numbers on each connection, because this ordering is 
important to PDDL.  

The Gripper domain has four relations, as depicted in 
Figure 2: a) at-robot, which specifies the position of the 
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robot and it is connected only with one instance of room, 
b) at which specifies the room in which each ball resides 
and therefore is connected with an instance of ball and an 
instance of room, c) holding which defines the alternative 
position of a ball, i.e. it is held by the robot and therefore 
it is connected with an instance of ball and an instance of 
gripper and d) empty which is connected only with an 
instance of gripper and states that the current gripper does 
not hold any ball. 

 

 
Figure 2. The relations in the Gripper domain. 

 
Note here that although non-typed PDDL requires 

only the arity for each predicate and not the type of 
objects for the arguments, the interface obliges the user to 
connect each predicate with specific object classes and 
this is used for the consistency check of the domain 
design. According to the design of Figure 2, the arity of 
predicate holding, for example, is two and the specific 
predicate can only be connected with one object of class 
ball and one object of class gripper. 

The aforementioned elements, classes, relations and 
connections combined together form the entity – relation 
model of the data for the planning domain the user is 
dealing with.  

4.2. Representing Operators 
Operators have direct correspondence to PDDL actions, 
which enable transitions between successive situations. 
The main parts of the operator definition are its 
preconditions and results, as well as the parameters. 
Preconditions include the predicates that must hold for 
the action to be applied. Results are the predicates that 
will be added or removed from the world state after the 
application of the action. Operators in the visual tool are 
represented by light blue resizable rectangles in the 
Operator Editor, comprised by three columns. The left 
column holds the preconditions, the right column holds 
the effects, and the middle one the parameters. 

Dragging and dropping a relation on an operator will 
add the predicate to the preconditions or effects, 
depending on which half of the operator the shape was 
dropped on. Parameters can be created in operators by 
dropping classes on them. Adding a connection in the 
ontology enables the user to add corresponding 
connections in the operators. Other elements that can be 
imported in operators will be discussed in more detail in 
the section about advanced features.  

For example, in the gripper domain there are three 
operators: a) move which allows the robot to move 
between rooms, b) pick which is used in order to lift a 
ball using a gripper and c) drop which is the direct 
opposite of pick and is used to leave a ball on the ground 
(Figure 3) 

 

 
Figure 3. The operators in the Gripper domain. 

 
The default view for an operator is in preconditions / 

results view which follows a declarative schema that is 
different from the classical STRIPS/PDDL approach. 
However, there is a direct way to transform definitions 
from one approach to the other.  

Although the preconditions / results view is more 
appropriate for visualizing operators, the system gives the 
user the option to use the classical add / delete lists view, 
therefore the STRIPS formalism is accommodated as 
well. If selected, the column on the left, as before, shows 
the preconditions that must hold for the action to be 
executed, but the column on the right shows the facts that 
will be added and deleted from the current state of the 
world upon the execution of the action.  

 

 
Figure 4. Pick operator in add/delete lists view. 

 
As an example, the pick operator of the Gripper 

domain is considered. According to the STRIPS 
formalism, the operator is defined by the following three 
lists, also depicted in Figure 4. 

 
prec = {empty(GripperObj1), at-robot(RoomObj1),   

at(BallObj1,RoomObj1)} 
add = {holding(GripperObj1, BallObj1)} 
del = {empty(GripperObj1), at(BallObj1, RoomObj1)} 
 
The equivalent operator in Preconditions / Results 

view is presented in Figure 5. 
 

 
Figure 5. Pick operator in preconditions / results view. 
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4.3. Representing Problems 
For every domain defined in PDDL a large number of 
problems that correspond to this domain can also be 
defined. Problem definitions state an initial and a goal 
situation, and the task of a planner is to find a sequence 
of operators that, if applied to the initial situation, will 
provide the goal situation. The problem shape in the 
visual tool is much like an operator in form, but different 
semantically. It is represented by a three-column 
resizable rectangle in the Problem Editor. Left column 
holds the predicates in the initial state, right column holds 
the predicates in the goal state, and middle column holds 
the objects that take part in the problem definition.  
 

 
Figure 6. A Problem instance of the Gripper domain. 

 
Figure 6 presents a problem instance of the gripper 

domain, which contains two rooms (Bedroom and 
Kitchen), one ball (Ball1) and the robot has two grippers 
(rightGripper and leftGripper). The initial state of the 
problem defines the starting locations of the robot and the 
ball (Kitchen and Bedroom respectively) and that both 
grippers are free. The goals specify that the destination of 
both the ball and the robot is the kitchen. 

4.4. Advanced Features 
The basic PDDL features described above are adequate 
for simple planning domains and problems. However, the 
language has many more features divided into subsets 
referred to as requirements. An effort has been made in 
order for the visual tool to embody the most significant 
and frequently used among them.  

An advanced design element offered by the system, 
which has direct representation in PDDL, is a constant. 
The constant is visually represented similarly to a class, 
but it is enhanced with a red circle around it to 
discriminate it from a class. The constant must be of a 
type, and the tool enables the user to drag and drop it on a 
class to denote that. Constants can be used either in an 
operator or in a problem, where they are treated similarly 
to parameters or objects, respectively.  

A derived predicate is another advanced PDDL feature 
that is represented by a group of design elements in the 
visual tool. The term refers to predicates that are not 
affected by operators, but they are derived by other 
relations using a set of rules. Derived predicates in fact 
existed in the first version of the PDDL language as well, 
under the notion of axioms. Visually, they are represented 
by a rounded rectangle with a specific colour, but they 
are not complete unless they are enhanced with an 
AND/OR tree that indicates the way they are derived by 
other relations. Consequently, AND, OR and NOT nodes 
for the construction of the tree are also offered as design 

elements. In the current implementation, AND and OR 
nodes are binary, that is, they accept only two possible 
arguments, while NOT nodes are by default unary. Each 
of the node arguments can be either another node of any 
type, or a relation. An example of a derived predicate is 
depicted in Figure 7. 

 

 
Figure 7. A derived predicate with AND/OR tree. 

 
Among the advanced features is the option to indicate 

that a predicate is timeless, that is, the predicate is true at 
all times. This operation involves a lot of validity checks, 
which will be explained in the corresponding paragraph.  

Another PDDL feature incorporated in the tool are 
numerical expressions. In order for numerical expressions 
to function properly, the definition of a number of other 
elements is involved. Consequently, a combination of 
design elements in each frame is used. First of all, in the 
ontology frame the user can import functions, which are 
represented by rectangles with double outline. These 
functions may or may not have arguments. As with 
simple relations, functions can be dragged on operators. 
However, in order to appear in the PDDL description of 
an operator, they must be involved in a condition or in an 
assignment. The next step is to actually import conditions 
and assignments which involve these functions in the 
operator. In that case, a dialog box appears facilitating the 
import of a condition or an assignment, by showing all 
the available options that the user can select among. 
Furthermore, for each function imported in the tool, a 
new rectangle appears in the problem frame, which 
corresponds to this function. This rectangle is used to 
declare the initial values of the function for the problem 
at hand. 

Furthermore, the system supports discretised durative 
actions. The definition of a durative action includes 
setting the duration of an operator, in combination with 
temporal annotations (Figure 8). In this case, the action is 
considered to last a specific period of time, while the 
preconditions can be specified to hold at the beginning of 
this period, at the end of this period, or all over the period 
(combination of these choices is also possible). Effects 
can be immediate, that is, happen at the beginning of the 
action, or delayed, that is happen at the end of the action.  

 

 
Figure 8. An example of a durative action. 
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Finally, a very useful element for problem designing is 

maps. Maps represent a special kind of relations that have 
exactly two arguments of the same type, and are expected 
to have many instances in the initial state of a problem 
(Figure 9). For each relation that fulfills these conditions 
a map can be created. Objects which take part in the 
instances of the relation can then be dragged on the map, 
and connections can be created between them. Each of 
these connections represents an instance of the relation 
that the map corresponds to. In conclusion, maps do not 
have an exact representation to PDDL, but they express a 
part of the initial state of the world, thus making the 
problem shape more readable. The use of maps is not 
mandatory, as the same relations can be simply 
represented in the problem shape. 

 

 
Figure 9. A map for the relation connected(C1, C2). 

4.5. Syntax and Validity Checking 
A very important aspect in every tool for designing and 
editing planning domains is syntax and validity checking. 
Planning domains have to be checked for consistency 
within their own structures, and planning problems have 
to be checked for consistency and correspondence to the 
related domains. This visual tool attempts to detect 
inconsistencies at the moment they are created and notify 
the user about them, before they propagate in the domain. 
In the remainder of this paragraph several examples will 
be given, in order to illustrate the validity checking 
processes of the system.  

Whenever the user attempts to insert a new connection 
in an operator or in a problem, necessary checks are 
performed and if a corresponding connection cannot be 
found in the ontology an appropriate error message is 
shown. Special care must be taken to verify that the types 
of parameters and objects match to the types of 
arguments of the predicates.  

As already mentioned, the system supports timeless 
predicates, which are, by definition, true at all times. 
Therefore, they are allowed to appear in the preconditions 
of an operator, but not in the add or delete lists. As a 
consequence, if the user tries to add a timeless predicate 
in the preconditions part of an operator, it will 
automatically appear in the effects part, so the add and 
delete lists will not be affected. Furthermore, if the user 
tries to set a predicate timeless, checks will be performed 
to determine if this operation is allowed. Finally, timeless 
predicates are not allowed to appear in a problem. In all 
above cases, error messages occur in order to warn the 
user and help them correct the domain inconsistencies.  

Another example is that of constants. Checks are 
performed to confirm that the class of a constant has 
already been defined before the user attempts to use the 
constant in an operator or a problem. Furthermore, 

additional checks are performed about the types of 
arguments, similar to those performed for simple objects.  

4.6. Translation to and from PDDL 
The capability to export the domains and problems 
designed in the tool to PDDL constitutes another 
important feature. All of the design elements that the user 
has imported in the domain, such as predicates and 
operators, along with comments, are exported to a PDDL 
file, which is enhanced with the appropriate requirements 
tag. The user is offered the option to use typing, 
therefore, the same domain can produce two different 
PDDL files, one with the :typing requirement and one 
without it. Details about exporting are presented in the 
remainder of the paragraph.  

Despite the fact that a class in the visual tool always 
represents the same notion, that is, the type of domain 
objects or parameters, it takes different forms when it 
comes to exporting the domain. In case the requirement 
:typing is declared, the class name is included in the 
(:types ) construct of the domain definition, and for each 
object, parameter and constant a type must be declared. 
In case typing is not used, classes are treated as timeless 
unary predicates and appear in the corresponding part of 
the domain definition. In addition, for each parameter in 
an operator, a precondition that denotes the type of the 
parameter must be added in the PDDL definition, 
although it does not appear visually in the tool. Likewise, 
for each object, a new initial literal denoting the type of 
this object must be included in the problem definition. 

The elements in the Ontology Editor are combined 
together in order to formulate the domain constructs in 
the syntax that the language imposes. For example, 
relations, connections and, if typing is used, classes are 
combined to formulate the predicates construct. Likewise, 
functions and derived predicates constructs are formed. 
As far as constants are concerned, they may appear in the 
place of parameters in operators and objects in problems, 
and they also appear in the special construct (:constants ) 
in the domain definition.  

Exporting the operators is quite more complicated, 
because a combination of several elements of the 
Operator Editor and the Ontology Editor is needed. Slight 
changes occur to an operator definition depending on 
whether the :typing requirement is declared.  

Finally, exporting the problems is quite similar to 
exporting the operators, but the problems are stored in a 
different PDDL file. Therefore, numerous problems can 
be defined for the same domain. If maps are used, care 
must be taken to include the information they embody in 
the list of predicates included in the initial state. 
Furthermore, if functions are used, their initial values 
provided by the user in the Problem Editor will be part of 
the declaration of the initial state of the problem, in the 
corresponding construct. 

The visual tool also offers the feature of importing 
planning domains and problems expressed in PDDL, 
visualizing them, and thus enabling the user to 
manipulate them. However, importing PDDL is subject to 
some restrictions. The most important is that the domains 
and problems must declare the :typing requirement. If no 
typing is used, syntax is not enough, and semantic 
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information is necessary in order to discriminate types of 
objects from common unary predicates.   

4.7. Interface with Planning Systems 
As the tool is intended to be an integrated system not 
only for designing but for solving planning problems as 
well, an interface with planning systems is necessary. 
This is achieved by providing the ability to discover and 
communicate with web services which offer 
implementations of various planning algorithms. 
Therefore, a dynamic web service client has been 
developed as a subsystem. The requirement for flexibility 
in selecting and invoking a web service justifies the 
decision to implement a dynamic client instead of a static 
one. Therefore, the system can exploit alternative 
planning web services according to the problem at hand, 
as well as cope with changes in the definitions of these 
web services.  

The communication with the web services is 
performed by means of exchanging SOAP messages, as 
the web service paradigm dictates. However, in a higher 
level, the communication is facilitated by the use of the 
PDDL language, which constitutes the common ground 
between the visual tool and the planners. An additional 
advantage of using PDDL is that the visual tool is 
released by the obligation to determine the PDDL 
features that a planner can handle, thus leaving each 
planning system to decide for itself.  

The employment of web services technology for 
implementing the interface results in the independency of 
the visual tool from the planning or problem solving 
module. Such a decoupling is essential since new 
planning systems which outperform the current ones are 
being developed. Each of them can be exposed as a web 
service and then invoked for solving a planning problem 
without any further changes to the visual tool or the 
domains and problems already designed and exported as 
PDDL files. 

5. Conclusions and Future Work 
In this paper a visual tool for defining planning domains 
and problems was proposed. The tool offers an efficient 
user interface, as well as interoperability with PDDL, the 
standard language for planning domain definition. The 
elements represented in the tool cover a wide range of the 
language, while the user is significantly facilitated by the 
validity checks performed during the design process. The 
use of the tool is not confined to designing planning 
problems, but the ability to solve them by invoking 
planners implemented as web services is offered as well. 
Therefore, the tool is considered an integrated system for 
designing and solving planning problems.  

Our future goals include the extension of the tool in 
order to represent even more complex PDDL language 
elements, as well as other planning approaches, such as 
HTN (Hierarchical Task Network) planning. Such an 
extension is believed to broaden the range of real world 
problems that can be represented and solved by the tool. 
Visual representation of the produced plans, along with 
plan metrics are also among our imminent goals.  
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Abstract
This paper describes a constraint programming ap-
proach to solving a scheduling problem with earliness
and tardiness cost using a problem specific search pro-
cedure. The presented algorithm is tested on a set of
randomly generated instances of the job shop schedul-
ing problem with earliness and tardiness costs. The ex-
periments are executed also for three other algorithms,
and the results are then compared.

Introduction
Scheduling problems with storage costs for early finished
jobs and delay penalties for late jobs are common in indus-
try. This paper describes a constraint programming (CP) ap-
proach (Barták 1999) to solve a scheduling problem with
earliness and tardiness costs, which is for distinct due dates
NP-complete already on one resource (Baker & Scudder
1990).

This paper focuses on the job shop scheduling prob-
lem with earliness and tardiness costs. This problem—
introduced in (Beck & Refalo 2001; 2003)—is solved there
using hybrid approach based on probe backtrack search
(El Sakkout & Wallace 2000) with integration of constraint
programming and linear programing. This hybrid approach
performed significantly better than the generic (naive) CP
and MIP algorithms. With another hybrid approach, com-
bining local search and linear programming (Beck & Refalo
2002), results slightly worse than in (Beck & Refalo 2001)
were obtained. The large neighborhood search (Danna &
Perron 2003) applied to the same earliness tardiness job shop
problem outperformed both hybrid approaches of Beck &
Refalo.

This paper describes a search procedure for scheduling
problems with earliness and tardiness costs which initially
tries to assign to variables those values that lead to a solu-
tion with minimal cost. It is developed by improving of the
search procedure used in (Kelbel & Hanzálek 2006) where
constraint programming is applied to an industrial case study
on a lacquer production scheduling. While in (Kelbel &
Hanzálek 2006) tardy jobs were not allowed, the procedure
described in this paper allows both early and tardy jobs, i.e.
optimal solutions are not discarded.

The proposed search procedure is tested on a set of ran-
domly generated instances of the job shop scheduling prob-

lem with earliness and tardiness costs. It significantly out-
performs simple (default) models introduced in (Beck & Re-
falo 2003), and in average it gives results better than the
Unstructured Large Neighborhood Search (Danna & Perron
2003).

Earliness Tardiness Job Shop Scheduling
Problem

The definition of the earliness tardiness job shop scheduling
problem (ETJSSP) is based on (Beck & Refalo 2003). We
assume a set of jobs J = {J1, . . . , Jn} where job Jj con-
sists of a set of tasks Tj = {Tj,1, . . . , Tj,nj

}. Each task has
given processing time pj,i, and required dedicated unary re-
source from a set R = {R1, . . . , Rm}. Starting time Sj,i

of a task, and completion time defined as Cj,i = Sj,i + pj,i,
determine the result of the scheduling problem. For each job
Jj there are precedence relations between tasks Ti and Ti+1

such that Cj,i ≤ Sj,i+1 for all i = 1, . . . , nj − 1, i.e. Tj , the
set of tasks, is ordered.

Concerning earliness and tardiness costs, each job has as-
signed a due date dj , i.e. the time when the last task of the
job should be finished. In general, the due dates are distinct.
The cost function of the job Jj is defined as αj(dj − Cj,nj

)
for early job and βj(Cj,nj

− dj) for tardy job, where αj and
βj are earliness and tardiness costs of the job per time unit.
Taking into account both alternatives, the cost function of
the job can be expressed as

fj = max(αj(dj − Cj,nj ), βj(Cj,nj − dj)). (1)

An optimal solution of the ETJSSP is the one with minimal
possible sum of costs over all jobs

min
∑

Jj∈J
fj .

In this article, a specific ETJSSP will be considered in
order to be consistent with the original problem instances
(Beck & Refalo 2003). All jobs have the sets of tasks with
the same cardinality, which is equal to the number of re-
sources, i.e. nj = m for all j. Each of the nj tasks of the job
is processed on a different resource. Next, the problem has
a work flow structure: the set of resources R is partitioned
into two disjunctive setsR1 andR2 of about the same cardi-
nality, and the tasks of each job must use all resources from

67



the first set before any resource from the second set, i.e. task
Tj,i for all i = 1, . . . , |R1| requires resource from set R1,
and task Tj,i for all i = |R1| + 1, . . . , nj requires resource
from set R2.

The Model With Search Procedure for
ETJSSP

When solving constraint satisfaction problems (Barták
1999), constraint programming systems employ two
techniques—constraint propagation and search. The search
consists of a search tree construction by a search proce-
dure (called also a labeling procedure) and applying a search
strategy (e.g. depth-first search) to explore the tree. The
search procedure typically makes decisions about variable
selection (i.e. which variable to choose) and about value
assignment (i.e. which value from domain to assign to the
selected variable).

Our approach to solving ETJSSP is based on usual con-
straint programming model with a problem specific search
procedure. The scheduling problem is modeled directly by
using a formulation from the previous section, yet by using
higher abstraction objects for scheduling (e.g. tasks and re-
sources) available in ILOG OPL Studio (ILO 2002). The
model uses scheduling-specific edge-finding propagation al-
gorithm for disjunctive resource constraints (Carlier & Pin-
son 1990). In the used CP system we obtained better perfor-
mance of the computations when the cost function (1) was
expressed as fj ≥ αj(dj − Cj,nj

) ∧ fj ≥ βj(Cj,nj
− dj).

Most of the constraint programming systems have a de-
fault search procedure that builds the search tree by assign-
ing the values from domains to variables in increasing order.
The idea of our search procedure is based on the fact that
only Cj,nj

, the completion time of the last task of the job,
influences the value of the cost function, and that the val-
ues of Cj,nj

inducing the lowest values of cost functions fj

should be examined first.
The search procedure, inspired by time-directed labeling

(Van Hentenryck, Perron, & Puget 2000), is directed by the
cost, only once at the beginning of the search (as an initial-
ization of the search tree), however. It is denoted as cost-
directed initialization (CDI) and performs as described in
Algorithm 1: variables representing completion time Cj,nj

are selected in increasing order of the size of their domains,
then the value selection is made according to the lowest
value possible of the cost function. In the second branch
of the search tree, this value is disabled. This is done only
once for each task Tj,nj , then the search continues with the
default search procedure.

Slice Based Search available in (ILO 2002), based on
(Beck & Perron 2000), and similar to Limited Discrepancy
Search (Harvey & Ginsberg 1995) is used as a search strat-
egy to explore the search tree constructed by the CDI pro-
cedure. This is necessary for obtaining good performance,
since using depth first search instead, the algorithm was not
able to find any solution for about 50% of larger size in-
stances of the ETJSSP.

Algorithm 1 – CDI search procedure

1. sort the last tasks of all jobs, Tj,nj for all j, according to
the nondecreasing domain size of Cj,nj

2. for each task from the sorted list from domain of Cj,nj

select a value vj leading to minimal fj and create two alter-
natives in the search tree:
• Cj,nj = vj

• Cj,nj 6= vj

3. Continue with the default search procedure for all vari-
ables

Experimental Results
The proposed algorithm CDI was tested against two sim-
ple generic models introduced in (Beck & Refalo 2003),
a mixed integer programming model with disjunctive for-
mulation of the problem (MIP), and a constraint program-
ming model with SetTimes heuristic as a search proce-
dure and depth-first search as a search strategy (ST). The
third model used for performance comparison is the Un-
structured Large Neighborhood Search (uLNS) (Danna &
Perron 2003) by enabling Relaxation Induced Neighbor-
hood Search (RINS) via IloCplex::MIPEmphasis=4
switch in Cplex 9.1 (Danna, Rothberg, & Le Pape 2005;
ILO 2005), while using the same MIP model as in (Beck
& Refalo 2003). The hybrid algorithm from (Beck & Refalo
2003) was not used due to its implementation complicacy.

Benchmarks are randomly generated instances of the
ETJSSP according to Section 6.1 in (Beck & Refalo
2003). The problem instances have a work flow struc-
ture. Processing times of tasks are uniformly drawn from
the interval [1, 99]. Considering the lower bound tlb
of the makespan of the job shop according to (Taillard
1993), and a parameter called looseness factor lf , the due
date of the job was uniformly drawn from the interval
[0.75 · tlb · lf, 1.25 · tlb · lf ]. The job shops were generated
for three n×m sizes, 10×10, 15×10, and 20×10, and for
lf ∈ {1.0, 1.3, 1.5}. Twenty instances were generated for
each lf—size combination.

The tests were executed using ILOG OPL Studio 3.6 with
ILOG Solver and Scheduler for the CP models, and ILOG
Cplex 9.1 for the MIP models, all running on a PC with CPU
AMD Opteron 248 at 2.2 GHz with 4 GB of RAM. The time
limit for each test was 600 s, after which the execution of
the test computation was stopped, and the best solution so
far was returned.

Table 1 shows the average ratio of the costs of the best
solutions obtained by the MIP, uLNS, and ST to the best
solutions obtained by CDI, for all types of instances.

In Tables 2 and 3 the ST algorithm will not be included
due to its poor performance. Table 2 shows the number of
instances solved to optimality within 600 s time limit, and
also the number of instances, for which the algorithm proved
the optimality of the solution. The CDI usually needed less
time than the MIP or uLNS to find a solution with optimal
cost, but in many cases it was not proven as an optimum in
given time or memory limit. In Table 2 a solution found by
the CDI model was considered as the optimal solution when
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size 10× 10 15× 10 20× 10

lf MIP/CDI uLNS/CDI ST/CDI MIP/CDI uLNS/CDI ST/CDI MIP/CDI uLNS/CDI ST/CDI

1.0 1.8 1.2 2.6 4.7 3.1 6.2 5.3 4.9 6.7
1.3 4.8 1.8 9.2 18.4 5.3 28.3 14.0 14.3 25.8
1.5 3.8 2.1 8.1 7.9 1.9 37.9 5.5 5.7 50.6

Table 1: Average ratio for the best values of cost functions of solutions found within 600 s

the value of the objective function was equal to the one of
the proven optimal solution found by the MIP models or to
a lower bound found by the MIP.

Table 3 is inspired by (Beck & Refalo 2002). For each
problem instance, the lowest cost obtained by any of the
used algorithms is selected. Then, Table 3 contains the num-
ber of instances for which the algorithm found the solution
with the best cost, i.e. equal to the lowest cost, and the num-
ber of solutions with uniquely best cost, i.e. if no other al-
gorithm has found solution with the same or lower cost.

Conclusion and Future Work
We have shown an algorithm called cost-directed initializa-
tion (CDI) designed to solve the earliness-tardiness schedul-
ing problem. The algorithm was compared to other algo-
rithms MIP, uLNS, and ST, on randomly generated earli-
ness tardiness job shop benchmarks. The CDI was able to
find within 600 s a solution that is usually better than the
one found by any of the MIP, uLNS, or ST. With respect to
the best obtained value of the cost function, the CDI algo-
rithm performed better than the other algorithms. However,
the weak point of the CDI is that the optimum, even if it is
found, is usually not proved.

Since the CDI search procedure does not exploit the struc-
ture of the job shop problem, it is possible to apply it on
other earliness/tardiness problems but the results may vary.
Revisiting the lacquer production scheduling problem (Kel-
bel & Hanzálek 2006) with the CDI, the solution of the
case study was further improved from the cost 886,535 to
777,249 due to the allowance of tardy jobs.

The earliness tardiness job shop scheduling problem, as
considered in this paper, does not fully correspond to real
production, since only the last tasks of jobs have direct im-
pact on the cost of the schedule. If there is enough time,
i.e. the looseness factor is big, there can be quite a big delay
between the tasks of the same job, and so a storage would
be needed also during the production, but at no cost (since
no such cost is defined). So the payed storage of the final
product can be replaced by the free storage during the pro-
duction.

There are some approaches to making formulation of this
problem closer to real life. Either by assignment of the due
date, earliness cost, and tardiness cost to all task (Baptiste,
Flamini, & Sourd To appear in 2008), or by introduction of
buffers with limited capacity that are used during the pro-
duction (Brucker et al. 2006).

The approach with limited buffers is also used in the for-
mulation of the lacquer production scheduling (Kelbel &
Hanzálek 2006) where each job needs a limited buffer (mix-
ing vessel) during the whole time of its execution.

In future, we would like to focus on the formulation and
solution of the job shop problems with earliness and tardi-
ness costs and with generic limited buffers.
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Abstract

The paper addresses the scheduling of a single machine
with tool changes in order to minimize total comple-
tion time. A constraint-based model is proposed that
makes use of global constraints and also incorporates
various dominance rules. With these techniques, our
constraint-based approach outperforms previous exact
solution methods.

Introduction
This paper addresses the problem of scheduling a sin-
gle machine with tool changes, in order to minimize the
total completion time of the activities. The regular re-
placement of the tool is necessary due to wear, which
results in a limited, deterministic tool life. We note that
this problem is mathematically equivalent to schedul-
ing with periodic preventive maintenance, where there
is an upper bound on the continuous running time of
the machine. After that, a fixed-duration maintenance
activity has to be performed.

Our main intention is to demonstrate the applica-
bility of constraint programming (CP) to an optimiza-
tion problem that requires complex reasoning with con-
straints on sum-type expressions, a field were CP is
generally thought to be in handicap. We show that in-
deed, when appropriate global constraints are available
to deal with such expressions, CP outperforms other
exact optimization techniques. In particular, we would
like to illustrate the efficiency of the global COMPLE-
TION constraint (Kovács & Beck 2007), which has been
proposed recently for propagating the total weighted
completion time of activities on a single unary resource.

For this purpose, we define a constraint model of the
scheduling problem. The model makes use of global
constraints, and also incorporates various dominance
properties described as constraints. A simple branch
and bound search is used for solving the problem. We
show in computational experiments that the proposed
approach can outperform all previous exact optimiza-
tion methods known for this problem.

The paper is organized as follows. After reviewing
the related literature, we give a formal definition of
the problem and outline some of its basic character-
istics. Then, we propose a constraint-based model of

the problem. The algorithms used for propagating the
global constraints that are crucial for the performance
of our solver are presented. Afterwards, the branch and
bound search procedure used is introduced. Finally,
experimental results are presented and conclusions are
drawn.

Related Work
The problem studied in this paper has been introduced
independently in the periodic maintenance context by
Qi, Chen, & Tu (1999) and in the tool changes con-
text by Akturk, Ghosh, & Gunes (2003). Its practical
relevance is underlined in (Gray, Seidmann, & Stecke
1993), where it is pointed out that in many industries
tool change induced by wear is ten times more frequent
than change due to the different requirements of subse-
quent activities. Also, in some industries, e.g. in metal
working, tool change times can dominate actual pro-
cessing times (Tang & Denardo 1988).

Akturk, Ghosh, & Gunes (2003) proposed a mixed-
integer programming (MIP) approach and compared
the performance of various heuristics on this problem.
The basic properties of the scheduling problem have
been analyzed and the performance of the Shortest Pro-
cessing Time (SPT) schedules evaluated in (Akturk,
Ghosh, & Gunes 2004). Three different heuristics have
been analyzed and a branch and bound algorithm pro-
posed by Qi, Chen, & Tu (1999). The performance of
four different MIP models have been compared in (Chen
2006a).

The same problem has been considered with differ-
ent objective criteria, including makespan (Chen 2007b;
Ji, He, & Cheng 2007), maximum tardiness (Liao &
Chen 2003), and total tardiness (Chen 2007a). In (Ak-
turk, Ghosh, & Kayan 2007), the model is extended to
controllable activity durations, where there are several
execution modes available for each activity to balance
between manufacturing speed and tool wear. The ba-
sic model with several tool types has been investigated
by Karakayalı & Azizoğlu (2006). A slightly different
problem, in which maintenance periods are strict, i.e.
the machine has to wait idle if activities complete ear-
lier than the end of the period, has been investigated
in (Chen 2006b).
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A brief introduction to constraint-based scheduling is
given in (Barták 2003), while an in-depth presentation
of the modeling and solution techniques can be found
in (Baptiste, Le Pape, & Nuijten 2001).

Problem Definition and Notation

There are n non-preemptive activities Ai to be sched-
uled on a single machine. Activities are characterized
by their durations pi, and are available from time 0.
Processing the activities requires a type of tool that is
available in an unlimited number, but has a limited tool
life, TL. Worn tools can be replaced with a new one,
but only without interrupting activities. This change
requires TC time. It is assumed that ∀i pi ≤ TL, be-
cause otherwise the problem would have no solution.
The objective is to determine the start times Si of the
activities and start times tj of tool changes such that
the total completion time of the activities is minimal.

Constraint programming uses inference during search
on the current domains of the variables. The minimum
and maximum values in the current domain of a variable
X will be denoted by X̌ and X̂, respectively. Hence, Ši

will stand for the earliest start time of activity Ai, and
Ĉi for its latest finish time.

The above parameters and the additional notation
used in the paper is summarized in Fig. 1. We assume
that all data are integral. A sample schedule is pre-
sented in Fig. 2.

n - Number of activities
pi - Duration of activity Ai

pmax- Maximum duration of activities Ai

TL - Tool life
TC - Tool change time
Si - Start time of activity Ai

Ci - End (completion) time of activity Ai

tj - (Start) time of the jth tool change
aj - Number of activities processed after the

jth tool change
bj - Number of activities processed before the

jth tool change
X̌ - Minimum value in the domain of variable X

X̂ - Maximum value in the domain of variable X

Figure 1: Notation

Basic Properties

The single-machine scheduling problem with tool
changes, denoted as 1|tool − changes|

∑
i Ci, has been

proven to be NP-hard in the strong sense in (Akturk,
Ghosh, & Gunes 2004). The same paper and (Qi, Chen,
& Tu 1999) investigated properties of optimal solutions.
Below we outline these properties, in conjunction with
a symmetry breaking rule that can also be exploited to
increase the efficiency of solution algorithms.

Property 1 (No-wait schedule) Activities must be
scheduled without any waiting time between them,
apart from the tool change times.

Property 2 (SPT within tool) Activities executed
with the same tool must be sequenced in the SPT order.

Property 3 (Tool utilization) The total duration of
activities processed with the jth tool is at least TL −
pminafter

j + 1, where pminafter
j is the minimal duration

of activities processed with tools j′ > j.

Consequence Every tool, except for the last one, is
utilized during at least Umin = TL − pmax + 1 time,
where pmax is the largest activity duration. Hence, the
number of tools required is at most d

∑n
i=1 pi/Umine.

Property 4 (Activities per tool) The number of ac-
tivities processed using the jth tool is a non-increasing
function of j.

Property 5 (Symmetry breaking) There exists an op-
timal schedule in which for any two activities Ai and
Aj such that pi = pj and i < j, Ai precedes Aj .

Modeling the Problem
In our constraint model we apply a so-called machine
time representation, which considers only the active pe-
riods of the machine. It exploits that the optimal so-
lution is a no-wait schedule (see Property 1), and con-
tracts each tool change into a single point in time, as
shown in Fig. 3. Then, a solution corresponds to a se-
quencing of the activities, with the last activity ending
at
∑

i pi, and instantaneous tool changes between them.
The objective value of a schedule in the machine time

representation takes the form
n∑

i=1

Ci + TC

m∑
j=1

aj .

Technically it will be easier to work with bj than with
aj , hence, we rewrite the objective function to the
equivalent form

n∑
i=1

Ci + TC

m∑
j=1

(n− bj).

We decompose this function to K1 =
∑n

i=1 Ci and
K2 = TC

∑m
j=1(n − bj). Note that K1 corresponds to

the total completion time without tool changes, while
K2 represents the effect of introducing tool changes.

The variables in the model are the start times Si

of the activities, the times tj of the tool changes, and
the number of activities processed before the jth tool
change, bj . The two cost components K1 and K2 are
also handled as model variables. For the sake of brevity,
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Figure 2: A sample schedule. Wall clock time representation.
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Figure 3: Machine time representation of the sample schedule.

we also use Ci = Si + pi to denote the end time of
activity Ai.

Then, the problem consists of minimizing K1 + K2

subject to

(c1) Time window constraints, stating ∀i : Si ≥ 0 and
Ci ≤

∑
i pi;

(c2) Resource capacity constraint: at most one activity
can be processed at any point in time;

(c3) Activities are not interrupted by tool changes: ∀i, j :
Ci ≤ tj ∨ Si ≥ tj ;

(c4) Limited tool life: ∀j : tj+1 − tj ≤ TL;

(c5) Property 3 holds: ∀j : tj+1 − tj ≥ TL− pmax + 1;

(c6) Property 4 holds: ∀j : bj − bj−1 ≥ bj+1 − bj ;

(c7) Property 5 holds: ∀ii, i2 such that i1 < i2 and pi1 =
pi2: Ci1 ≤ Si2;

(c8) The total completion time of activities Ai is K1;

(c9) The number of activities that end before tj is bj ;

(c10) K2 = TC
∑m

j=1(n− bj).

Note that while constraints c1-c4 and c8-c10 are
fundamental elements of our model, c5-c7 incorporate
dominance rules to facilitate stronger pruning of the
search space. All the ten constraint can be expressed
by languages of common constraint solvers. However,
significant improvement in performance can be achieved
by applying dedicated global constraints for propagat-
ing c8 and c9. We discuss those global constraints in
detail in the next section.

Propagation Algorithms for Global
Constraints

Below, both for c8 and c9, we first present how the con-
straint can be expressed in typical constraint languages.
Then, we introduce a dedicated global constraint and a
corresponding propagation algorithm for either of them,
in order to strengthen pruning.

Total Completion Time
The typical way of expressing the total completion time
of a set of activities in constraint-based scheduling is
posting a sum constraint on their end times: K =

∑
Ci.

However, the sum constraint, ignoring the fact that the
activities require the same unary resource, assumes that
all of them can start at their earliest start times. This
leads to very loose initial lower bounds on K; in the
present application Ǩ =

∑
i pi.1

In order to achieve tight lower bounds on K and
strong back propagation to the start time variables
Si, the COMPLETION constraint has been introduced
in (Kovács & Beck 2007) for the total weighted com-
pletion time of activities on a unary capacity resource.
Formally, it is defined as

COMPLETION([S1, ..., Sn], [p1, ..., pn], [w1, ..., wn], K)

and enforces K =
∑

i wi(Si +pi). Checking generalized
bounds consistency on the constraint requires solving
1|ri, di|

∑
wiCi, a single machine scheduling problem

with release times and deadlines and upper bound on
the total weighted completion time. This problem is
NP-hard, hence, cannot be solved efficiently each time
the COMPLETION constraint has to be propagated.
Instead, our propagation algorithm filters domains with
respect to the following relaxation of the above problem.

The preemptive mean busy time relaxation (Goemans
et al. 2002), denoted by 1|ri, pmtn|

∑
wiMi, involves

scheduling preemptive activities on a single machine
with release times respected, but deadlines disregarded.
It minimizes the total weighted mean busy times Mi of
the activities, where Mi is the average point in time at
which the machine is busy processing Ai. This is eas-
ily calculated by finding the mean of each time point
at which activity Ai is executed. This relaxed problem
can be solved to optimality in O(n log n) time.

1The lower bound is a little tighter if symmetry breaking
constraints (c7) are present to increase the earliest start
times of some activities.
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The COMPLETION constraint filters the domains of
the start time variables by computing the cost of the
optimal preemptive mean-busy time relaxation for each
activity Ai and each possible start time t of activity Ai,
with the added constraint that activity Ai must start
at time t. If the cost of the relaxed solution is greater
than the current upper bound, then t is removed from
the domain of Si. The naive computation of all these
relaxed schedules is likely to be too expensive, compu-
tationally. The main contribution of (Kovács & Beck
2007) is showing that for each activity it is sufficient
to compute relaxed solutions for a limited number of
different values of t, and that subsequent relaxed so-
lutions can be computed iteratively by a permutation
of the activity fragments in previous solutions. For a
detailed presentation of this algorithm and the COM-
PLETION constraint, in general, readers are referred
to the above paper.

Number of Activities before a Tool Change
Constraint c8 describes a complex global property of
the schedule. Standard CP languages make it possible
to express this property with the help of binary logical
variables indicating whether a given activity ends before
a point in time, i.e.

yi,j =
{

1 if Ci ≤ tj
0 otherwise.

Then, bj can be computed as bj =
∑

i yi,j . This repre-
sentation would be rather inefficient, but implementing
a global constraint for this purpose is rather straight-
forward.

The NBEFORE global constraint states that given
activities Ai that have to be executed on the same unary
resource, the number of activities that can be completed
before time tj is exactly bj :

NBEFORE([S1, ..., Sn], tj , bj)
The propagation algorithm for this global constraint

is presented in Fig. 4. It first determines the set of
activities M that must be executed before tj , and the
set of activities P that are possibly executed before tj .
Computing the minimal (maximal) number of activi-
ties scheduled before tj is performed by sorting P by
non-decreasing duration, and then selecting the activi-
ties that have the highest (lowest) durations. The algo-
rithm completes by updating b̌j , b̂j , and ťj . The time
complexity of the propagator is O(n log n), which is the
time needed for sorting P .

We note that it is straightforward to extend this al-
gorithm with propagation from mj and tj to Si, and
also to t̂j . This extension has been implemented, but
did not achieve additional pruning, and therefore it has
been later omitted.

A Branch and Bound Search
We apply a branch and bound search that exploits the
dominance properties identified for the problem. It con-

structs a schedule chronologically, by fixing the start
times of activities and the times of tool changes. In
each node it selects, according to the SPT rule, the
minimal duration unscheduled activity A∗ that can be
scheduled next. The algorithm first checks if one of the
following dominance rules can be applied at this phase
of the search.
• If the remaining activities can all be scheduled with-

out any tool changes, then A∗ must be scheduled
immediately, because all the unscheduled activities
must be scheduled according to the SPT rule. See
Property 2 and lines 4-5 of the algorithm.

• If A∗ cannot be performed before the next tool
change, then no unscheduled activities can be per-
formed before the next tool change, since none of
them have shorter durations than A∗. Therefore the
next tool change must be performed immediately.
See Property 1 and lines 6-7 of the algorithm.
If one of the dominance rules can be applied, then

the algorithm adds the inferred constraint, which may
trigger further propagation, and then reselects A∗

w.r.t. the new variable domains. Otherwise, it cre-
ates two children of the current search node, according
to whether
• A∗ is scheduled immediately and the next tool change

is performed after (but not necessarily immediately
after) A∗; or

• A∗ is scheduled after the next tool change.
In the latter case, it also adds the constraint that

another activity must be scheduled before the next tool
change. Hence, the next tool change must be performed
after Cmin, which is the lowest among the end times
of unscheduled activities (see line 9). Note that Cmin

exists because if there is an unscheduled activity (A∗),
then there are at least two unscheduled activities.

Also observe that the initial solution found by this
branch and bound algorithm is the SPT schedule.

Experimental Result
We ran computational experiments to evaluate the per-
formance of the proposed CP approach from several
aspects. We addressed understanding how the COM-
PLETION and NBEFORE global constraints improve
the performance of our model compared to models using
only tools of standard CP solvers. We also measured
how problem characteristics influence the performance
of our approach, and finally, we compared it to previous
exact solution methods.

All models and algorithms have been implemented in
Ilog Solver and Scheduler version 6.1. The experiments
were run on a 2.53 GHz Pentium IV computer with 760
MB of RAM.

Two different problem sets were used for the experi-
ments. The first set was generated as instances in (Qi,
Chen, & Tu 1999), the second as in (Akturk, Ghosh,
& Gunes 2003). Qi, Chen, & Tu (1999) took activity
durations randomly from the interval [1, 30] and fixed
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1 PROCEDURE Propagate()
2 M = {Ai | Ŝi < ťj}
3 P = {Ai | Či ≤ t̂j} \M
4 Sort P by non-decreasing duration
4 kmin = min number of activities in P with total duration ≥ ťj −

∑
Ai∈M pi

5 kmax = max number of activities in P with total duration ≤ t̂j −
∑

Ai∈M pi

6 b̌j = |M |+ kmin

7 b̂j = |M |+ kmax

8 ťj =
∑

Ai∈M pi + total duration of the kmin shortest activities in |P |

Figure 4: Algorithm for propagating the NBEFORE constraint.

1 WHILE there are unscheduled activities
2 A∗ = Unscheduled activity with min ŠA∗, min pA∗

3 T = Earliest tool change time with T̂ > ŠA∗

4 IF there is no such T
5 ADD SA∗ = ŠA∗ (Property 2)
6 ELSE IF T̂ < ČA∗

7 ADD T = ŠA∗ (Property 1)
8 ELSE
9 Cmin = min Či of unscheduled activities Ai 6= A∗

10 BRANCH: - SA = ŠA and CA ≤ T
11 - SA ≥ T and T ≥ Cmin

Figure 5: Pseudo-code of the search algorithm.

the value of TC to 10. The number of activities n
has been varied between 15 and 40 in increments of
5, while values of the tool life TL have been taken from
{50, 60, 70, 80}. We generated ten instances with each
combination of n and TL, which resulted in 240 prob-
lem instances. The time limit for these problems was
set to one hour.

In (Akturk, Ghosh, & Gunes 2003), in order to obtain
instances with different characteristics, four parameters
of the generator were varied, each having a low (L) and
a high (H) value. These parameters were the mean
and the range of the durations (MD and RD), the tool
life (TL), and the tool change time (TC). Generating
ten 20-activity instances with each combination of the
parameters resulted in 24 · 10 = 160 instances. Since
this set contains harder instances, we set the time limit
to two hours.

We did not perform comparisons with the MIP mod-
els proposed in (Chen 2006a), because that paper
presents experimental results only on very easy in-
stances containing few (in most cases only one) tool
changes over the scheduling horizon.

Results on Qi’s Instances and Comparison
to Naive Models
We compared the performance of four different CP
models of the problem that represent the two cost com-
ponents K1 and K2 in different ways. K1 was expressed

either by a sum constraint (Sum)or by the COMPLE-
TION constraint (COMPL), while K2 was described us-
ing binary variables (Bin) or the NBEFORE constraint
(NBEF ). Note that the COMPL/NBEF is the model
proposed in this paper.

The achieved results are displayed in Table 1. Each
row contains cumulative results for ten instances with
a given value of n and TL. For each of the models,
column Opt shows the number of instances for which
the optimal solution has been found and optimality has
been proven, column Nodes contains the average num-
ber of search nodes, and Time the average search time
in seconds. Nodes and Time also contain the effort
needed for proving optimality.

The results show that the proposed approach,
COMPL/NBEF solves instances with up to 30-35 activ-
ities to optimality. It outperforms the alternative CP
representations that do not benefit from the pruning
strength of the COMPLETION and NBEFORE con-
straints. Instances with a short tool life and hence,
many tool changes are more challenging. This is due to
the poorer performance of the SPT heuristic, and higher
importance of the bin packing aspect of the problem.
In contrast, Qi, Chen, & Tu (1999) report that the av-
erage solution time of 20-activity instances with their
branch and bound approach was in the range of [55.94,
3.57] seconds, depending on the value of TL, and their
algorithm could not cope with larger problems.
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n TL Sum/Bin COMPL/Bin Sum/NBEF COMPL/NBEF
Opt Nodes Time Opt Nodes Time Opt Nodes Time Opt Nodes Time

15 50 10 36278 10.8 10 877 0.0 10 31134 5.4 10 49 0.0
60 10 55477 13.6 10 1018 0.2 10 49975 7.7 10 76 0.0
70 10 18275 3.1 10 358 0.0 10 14357 1.5 10 17 0.0
80 10 19748 2.9 10 303 0.0 10 15502 1.4 10 19 0.0

20 50 6 5365305 2605.5 10 42853 35.1 8 6579567 1685.3 10 7183 3.7
60 7 5365603 1778.5 10 19092 16.2 7 7511826 1436.0 10 133 0.0
70 9 2544734 735.1 10 8051 7.1 9 3119249 558.0 10 84 0.0
80 10 910496 241.8 10 1957 1.4 10 762404 127.8 10 46 0.0

25 50 0 6282502 3600.0 10 639147 727.3 0 11727713 3600.0 10 99239 78.0
60 0 9132083 3600.0 10 91385 126.4 0 15404729 3600.0 10 1126 0.4
70 1 10815570 3587.7 10 83095 104.2 2 16222223 3327.3 10 979 0.2
80 1 11484097 3358.2 10 91029 122.1 1 16808958 3287.7 10 1082 0.6

30 50 - - - 3 2581475 3229.5 - - - 9 230088 452.5
60 - - - 4 2093233 2804.0 - - - 10 55374 46.9
70 - - - 8 961460 1640.2 - - - 10 7877 6.6
80 - - - 10 318435 560.9 - - - 10 1721 1.1

35 50 - - - 0 3108739 3600.0 - - - 7 1724651 2002.6
60 - - - 0 3193284 3600.0 - - - 9 355709 449.5
70 - - - 0 2858550 3600.0 - - - 10 160239 166.9
80 - - - 2 2000949 3162.0 - - - 10 8121 8.9

40 50 - - - - - - - - - 1 2371440 3297.7
60 - - - - - - - - - 6 1088871 1597.6
70 - - - - - - - - - 10 279844 393.5
80 - - - - - - - - - 10 85854 143.3

Table 1: Experimental results on instances from (Qi, Chen, & Tu 1999): number of instances where optimality
has been proven (Opt), average number of search nodes (Nodes), and average solution time in seconds (Time), for
four different CP models. The models use binary variables (Bin) or the NBEFORE constraint, and a Sum or a
COMPLETION constraint to express the objective function. Dash ’-’ means that none of the instances with the
given n could be solved to optimality.

Results on Akturk’s Instances and Effect of
Problem Characteristics

Experimental results on the instances from (Akturk,
Ghosh, & Gunes 2003) are presented in Table 2. The re-
sults on the l.h.s. have been achieved by a naive model
with sum back propagation instead of the COMPLE-
TION constraint, the results on the r.h.s. by the com-
plete CP model.

Each row displays data belonging to a given choice
of parameters MD, RD, TL, and TC, as shown in the
leftmost columns. While the COMPLETION model
managed to solve all instances to optimality and also
proved optimality, the sum model missed finding the
optimum for 2 instances and proving optimality in 5
cases. The COMPLETION model was 10 times faster
on average than the sum model.

These results confirm that short tool life implies
many tool changes and renders problems more compli-
cated for our model. Low mean duration makes things
easier, which is probably due to the higher number of
symmetric activities, since these activities can be or-
dered a priori. Although a low range of durations has a
similar effect, it also has a negative impact on the per-
formance of the SPT heuristic, among which the latter
seems to be the stronger.

Compared to the MIP approach presented in (Ak-

turk, Ghosh, & Gunes 2003) our CP model solves more
instances, and does this more quickly: the MIP model
achieved an average solution time of 1904 seconds, it
was not able to solve all instances, and for the 15% of
the instances it found worse solutions than one of the
heuristics.

Conclusion
A constraint-based approach has been presented to sin-
gle machine scheduling with tool changes. The pro-
posed model outperforms previous exact optimization
methods known for this problem. This result is signif-
icant especially because the problem requires complex
reasoning with sum-type formulas, which does not be-
long to the traditional strengths of constraint program-
ming. This was made possible by two algorithmic tech-
niques: global constraints and dominance rules. Specif-
ically, we applied the recently introduced COMPLE-
TION constraint to propagate total completion time,
and defined a new global constraint, NBEFORE, to
compute the number of activities that complete before
a given point in time. Furthermore, we could formulate
the known dominance properties as constraints in the
model.

The introduced model can be easily extended with
constraints on the number of tools and with weighted
activities. The machine-time representation is appli-
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MD RD TL TC NBEF/Sum NBEF/COMPL
Opt MRE Nodes Time Opt MRE Nodes Time

L L L L 10 0 1891018 529.9 10 0 38128 23.3
L L L H 10 0 968087 205.9 10 0 102237 52.1
L L H L 10 0 79344 11.9 10 0 237 0.1
L L H H 10 0 12269 1.6 10 0 73 0.0
L H L L 10 0 667659 171.8 10 0 3692 2.3
L H L H 10 0 127866 23.7 10 0 78955 25.7
L H H L 10 0 78775 13.2 10 0 27 0.0
L H H H 10 0 6664 0.7 10 0 29 0.0
H L L L 7 1.71 16430139 3548.8 10 0 1614494 596.4
H L L H 10 0 5606737 1018.0 10 0 47902 25.1
H L H L 10 0 2170750 357.9 10 0 895 0.3
H L H H 10 0 222435 40.6 10 0 9023 3.6
H H L L 8 0 6020041 2102.8 10 0 81249 43.9
H H L H 10 0 186735 35.7 10 0 23214 11.3
H H H L 10 0 86856 12.5 10 0 20 0.0
H H H H 10 0 154639 19.2 10 0 1648 0.8

Table 2: Experimental results on instances from (Akturk, Ghosh, & Gunes 2003), for models using sum and COM-
PLETION back propagation: number of instances where optimality has been proven (Opt), mean relative error in
percents (MRE), average number of search nodes (Nodes), and average solution time in seconds (Time).

cable to solving the same problem with other regular
optimization criteria, such as minimizing makespan, or
maximum or total tardiness. However, it seems to be
impractical to apply this model to multiple-machine
problems, because the time scales would differ machine
by machine.
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Abstract 
The paper proposes a comprehensive approach to University 
Timetabling Problem, presents a constraint-based approach to 
automating solving and describes a system that allows 
concurrent access by multiple users. The timetabling needs to 
take into account a variety of complex constraints and uses 
special-purpose search strategies. Local search incorporated into 
the constraint programming is used to further optimize the 
timetable after the satisfactory solution has been found. Paper 
based on experience gained during implementation of the system 
at the Silesian University of Technology, assuming coordinating 
the work of above 100 people constructing the timetable and 
above 1000 teachers who can have influence on timetabling 
process. One of the original issues used in real system, presented 
in the paper, is multi-user access to the timetabling database 
giving possibility of offline work, solver extended by week 
definitions and dynamic resource assignment.   

 

Introduction 
Timetabling is regarded as a hard scheduling problem, 
where the most complicated issue is the changing of 
requirements along with the institution for which the 
timetable is produced. Automated timetabling can be 
traced back to the 1960s [Wer86]. Some trials of 
comprehensively approaching the timetabling problem are 
presented in the timetabling research center lead by prof. 
Burke [PB04] and in several PhD thesis 
[M05],[Rud01],[Mar02]. There are works connected with 
general data formulation , metaheuristic approaches, and 
user interfaces for timetabling. The paper presents a 
proposition of a comprehensive approach to the real-
world problem at Silesian University of Technology. This 
paper presents the methods used for automated 
timetabling, data description and user interaction 
underlining connection of different idea to built whole 
timetabling system.  

Problems description 
A number of timetabling problems have been discussed in 
the literature [Sch95]. Based on the detailed classification 
proposed by Reise and Oliver [RL01], the presented 
problem consists of a mixture of following categories: 

Class-Teacher Timetabling (CTT) – the problem 
amounts to allocating a timeslot to each course provided 
for a class of students that has a common programme, 
Room Assignment (RA) - each course has to be placed in 
a suitable room (or rooms), with a sufficient number of 
seats and equipment needed by this course.  
Course Timetabling (CT) - the problem assumes that 
students can choose courses and need not belong to some 
classes. 
Staff Allocation (SA)  - the problem consists of assigning 
teachers to different courses, taking into account their 
preferences. The problem assumes that one course can be 
conducted by several teachers. 
 
Till now Examination Timetabling (ET) was not required, 
but is planned to be added in future. 
 
Comprehensive approach to University Timetabling 
Problem (UTP), besides taking into account different 
timetabling problems, also assumes following tasks: 

- formulating timetable data requires a lot of 
flexibility, 

- automated methods should be available for sub-
problems and should be able to take into account 
many soft and hard constraints, 

- timetabling can be conducted by many users, 
simultaneously, which requires assistance in 
manual timetabling and quick availability to 
different resources’ plans. 

Constraints 
Timetable of UTP has to fulfill the following constraints, 
which can be expressed as hard or soft: 

- resources assigned to a course (classes, teachers, 
rooms, students)  have time of unavailability and 
undesirability, 

- courses with the same resource cannot overlap, 
- some courses must be run simultaneously or in 

defined order, 
- some resources can be constrained not to have 

courses in all days and more than some number 
during a day, 

- no gaps constraint between courses for the same 
resource or gaps between some specific courses 
can be strictly defined, 
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- the number of courses per day should be roughly 
equal for defined resource - p, 

- courses should start from early morning hours. 
 

Data representation 
Although UTP data is gathered in relational database for 
multi user access, data for the solver is saved as a XML 
file, which also expresses sub-problems for the solver. 
The main advantage of using XML file is the ability of 
defining relations between courses, resources and 
constraints in a very flexible way. The flexibility of UTP 
features: 

- defining arbitrarily resources (classes, teachers, 
rooms, students) 

- allowing assignment of some different resources 
to one course, 

- assigning resources can be treated as disjunction 
of some resources, where also a number of 
chosen resources can be defined, 

- constraints can be imposed on every resource 
and every course, 

Additionally in UTP we are supposed to produce a plan 
which is coherent during a certain time-span (it would be 
for example one semester), with courses taking place 
cyclically with some period (most often one-week 
period). But frequently we face a situation where some 
courses do not fit into the period mentioned above, for 
example some of them should appear only in odd weeks 
or only in even weeks and thus have a two week period. 
Seeking solution to this problem we introduced the idea of 
“week definition”. Different week definitions can be 
defined in the timetable, together with the information, 
which of them have common weeks and the courses 
assigned to them. 
 
Multi user access 
 
The UTP requires taking into account that there are many 
timetable designers, who are engaged in timetabling 
process. The teachers and students are asked to submit  
information about their choices as well as time 
preferences. The appropriate management of the user 
interaction is solved by introducing 3 levels of the rights 
assigned to each user and connected  with set of resources 
like groups, teachers, students and rooms: 

- user can be administrator of the resource, 
- user can be planner of the resource, 
- user can only use resource for courses. 

Additionally each resource and courses have user which is 
call “owner”. Owners and administrators can block 
resources to restrict changing them.  
 
Manual timetabling assistance 
 

Timetable designers often do not want to introduce all the 
constraints and trust the computer  in putting courses in 
the best places. Manual timetabling assistance with 
constraint explanation seems to be a very important step  
in making timetable system useful. The assistance 
requires very quick access to a lot of data and relations 
between them to provide a satisfactory interface. 
Therefore after dragging the course, colors of unavailable 
timeslots change to color defining what sort of constraints 
will be violated. For example overlapping of rooms 
courses has gray color and undesirable hours of a teacher 
leaded the course has yellow color.   

Structure of the system 
The proposed solution for comprehensive approach to 
UTP requires a usage of different languages and 
technologies for different features. Therefore the proposed 
system consists of 4 parts as presented in Figure.1. The 
system was firstly presented by the author in [LW03]. 
Presented system was extended mainly by multi-user 
access. 

Web application
(PHP and JavaScript)

Dynamic web pages

Solver
(ECLiPSe)

Timetable Manager
(VC++)

Dedicated file format, STTL
XML file with problem description 

XMLfile with solution

Database

SQL statements

 
Figure 1, Diagram of four parts of the system, their 
dependencies and their output data format. 
 
Web application 
HTML seems to be an obvious solution for presenting 
results of the timetabling process in the Internet, but it 
provides only static pages which are not sufficient for 
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SAT. JavaScript improves the user interface and provides 
the capability to create dynamic pages. 
As  client-side extensions it allows an application to place 
elements on a HTML form and respond to user events 
such as mouse clicks, form input, and page navigation. 
Server-side web-scripting languages provide developers 
with the capability to quickly and efficiently build Web 
applications with database communication. They became 
in the last decade a standard for dynamic pages. PHP 
being one of the most popular scripting languages was 
chosen for developing the system. Its main advantages are 
facilities for database communication. People are used to 
Web services which provide structured information, 
search engines, email application etc. The proposed 
system had to be similar to those services in its 
functionality and generality. Most timetable applications 
give a possibility to save schedules for particular classes, 
teachers and rooms as HTML code, but they do not allow 
interaction with its users. Creating a timetable is a process 
which involves often a lot of people working on it. There 
are not only timetable designers, but also teachers, who 
should be able to send their requirements and preferences 
to the database. This is to a high extent facilitated by a 
web application, which allows interaction between 
teachers, students and timetable designers. An example 
screen of the web timetabling application is presented in 
Figure 2. 
 

 
Figure 2. The example screen of the Web application 
 
Timetable Manager 
It is hard to develop a fully functional user interface using 
only Internet technologies. Therefore VC++ was used to 
build the Timetable Manager, a program for timetable 
designers. The idea of the program was to simplify 
manual timetabling and to provide as much information as 
possible during this process. Operating on the data locally 
significantly increases performance during data 
manipulation, data manipulation is based on SQL queries 
on database. Well-known features – drag and drop can be 
implemented, layout is based on tree navigation. One of 
the most important feature of the timetamble manager is 
assistance during manual timetabling. Small timetables, 

which automatically show schedules for resources of a 
selected course can be freely placed by the user. During 
manual scheduling available timeslots are shown and 
constraint violations are explained by proper colors. Data 
can be saved in two ways: 

- data  is saved locally in dedicated file format, 
- data  is synchronized with remote database. 

The system takes into account privileges of users and does 
not allow unauthorized change of data. An example 
screen of the Timetable Manager is presented in Figure 3. 
 

 
Figure 3. The example screen of manual assistance in 
Timetable Manager 
 
 
Multi user support 
Allowing user to work locally forces to develop of a data 
synchronization mechanism between locally changed data 
and remote database. The proposed mechanism is based 
on idea of versioning systems like CVS or SVN. But 
taking into account  timetable data is much harder than 
text files, because of complicated relations between data.  
The main advantages of this mechanism are following: 

- simultaneously changes are allowed and in case 
of conflict possibilities discard changes or 
introduce them are given to the user, 

- user have very quick access to all timetable 
without blocking them for other users, 

- changes can be applied for a lot of data (e.g. 
through locally solver) , 

- if data are not changed by one user or user has no 
rights to change data, there updated without 
inform the user, 

- default values for changes are chosen in such a 
way, that newest changes are taken or changes 
with higher level of rights. 

 
Two actions are proposed to take care of integrity of the 
data: 
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Import/update  (it is required if data are changed 
remotely and user want make export) 
1. Assume unique index for each course and resource 

and date of the last change. Indexes of deleted 
resources are remembered in separate table. 
maxIndex – the greater value of all indexes. 

2. Remember locally current state (local_UT) and a 
whole state of the last imported timetable (last_ 
remote_UT). 

3. Select changes from database, which are newer than 
last_ remote _UT. 

4. Introduce changes to the last_remote_UT and build 
remote_UT. 

5. Indexes of local resource, which are greater than  
last_remote_UT.maxIndex are increased by  
remote _UT.maxIndex - last_ remote _UT.maxIndex. 

6. Compare all data of the 2 timetables (remote_UT and 
local_UT), and check what kid of data was changed 
locally or remotely. Give user possibilities to accept 
or reject changes for data which change both locally 
and remote. 

7. By default assume acceptance of the changes. 
8. Replaced last_remote_UT with remote_UT. 
 

 
Export/commit 
1. Make Import to check changes and build remote_UT. 

Export is available if the last_remote_UT does not 
differ from remote_UT. Otherwise import is forced.  

2. Compare local_UT with remote_UT  based on the 
last change date to show user what changes will be 
exported 

3. Assume default introduced changes to send them to 
database. 

4. If some resources or courses are removed, store 
indexes with data in a special table. 

 
Multi user support was the most desire feature of the 
whole timetable system. It can be solved by online 
working on database with multi-user access, transactions 
and locking tables. But this solution was rejected, because 
of low performance in case of simultaneous work of many 
users. 

Automated timetabling based on Constraint 
Programming paradigm 

 
The presented solver is written in ECLiPSe [ECL] using 
the Constraint Programming paradigm and replaced 
solver written in Mozart/Oz language. Main idea of the 
methodologies are similar to those widely presented in 
author’s PhD thesis [Leg06], [Leg03]. The main idea of 
the solver were: 

- effective search methods are customized for taking 
soft constraints into account during the search, based 
on the idea of value assessment [AM00] 

- custom-tailored distribution strategies are developed, 
idea of constraining while distributing, which 
allowed to effectively handle constraints and search 
for ’good’ timetables straight away, 

- custom-tailored search methods were developed to 
enhance search effectiveness of timetabling 
solutions, 

- integration of Local Search techniques into the 
Constraint Programming paradigm search enhanced 
optimization of timetabling solutions . 

Additionally flexibility of the timetable definition was 
widened by the week definitions and dynamic resource 
assignment. 

 
Week definitions  
The idea of incorporating week definitions into the 
problem definition comes from the fact that scheduling an 
“odd” course will cause unused time in the “even” weeks 
and vice versa. This might cause long gaps between 
courses and could also render the problem unsolvable. To 
deal with this disadvantage we could prolong the 
scheduling period from one to two weeks to take account 
of courses with a longer cycle. This unfortunately has a 
drawback of doubling the domains of the courses' start 
variables and a necessity to add special constraints (to 
enforce the weekly scheduled courses happening in the 
same time during both weeks). The aforementioned 
solution would however not apply in some situations, for 
example in the case when some courses are required to 
happen only a few times in the semester or only in the 
second half of the semester. It would also increase the size 
of variable domains causing a great computational 
overhead. We can eliminate these drawbacks thanks to the 
introduction of week definitions. Week definitions are 
logical structures that group a certain number of time 
periods from the whole time-span. Referring to the 
previous examples a week definition of odd weeks would 
consist of weeks numbered  <1 , 3 , 5 …15>, week 
definition of all weeks<1,2,3,…16> and so on , more 
examples below:  
 
week_def{id:”A”, 
 weeks:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
}  ( all weeks ) 
week_def{id:”O”,  weeks:[1,3,5,7,9,11,13,15]}  
 ( odd weeks ) 
week_def{id:”E”, weeks:[2,4,6,8,10,12,14,16]}  ( 
even weeks ) 
week_def{id:”SHO”, weeks:[9 ,11,13,15]}  (second 
half of the semester odd weeks) 
week_def{id:”F4W”, weeks:[1,2,3,4]}   (first four 
weeks) 
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For certain pairs of week definitions we state whether 
they are in conflict, which corresponds to the fact that 
their sets of weeks have common elements. Basing on the 
example above we would say that conflicts are: 
 
week_def_conflict{id1:”A”, id2:”O”} 
week_def_conflict{id1:”A”, id2:”E”} 
week_def_conflict{id1:”A”, id2:”SHO”} 
week_def_conflict{id1:”A”, id2:”F4W”} 
week_def_conflict{id1:”O”, id2:”SHO”} 
week_def_conflict{id1:”O”, id2:”F4W”} 
week_def_conflict{id1:”E”, id2:”F4W”} 
 
Having defined week definitions we take from the input 
data assignment at least one of them to each course: 
 
course {id:”act1”,start_time:SA1 duration:5, … ,  
week_defs:[“O”] , … } 
(“act1” taking place in odd weeks) 
course {id:”act2”,start_time:SA2 duration:7  
week_defs:[“F4W”, “SHO”] , … }, 
(“act2” taking place in first four weeks of the 
semester and in odd weeks of the second half of 
the semester ) 
 
These information is used at the constraint setup phase. 
Pairs of courses which do not contain any conflicting 
definitions are excluded from the constraint setup, 
because they occur in different weeks and therefore there 
is no risk that they would require the same resources 
during the same time. 
Pairs of courses that contain at least one pair of 
conflicting week definitions, are potentially competitors 
for the same resources during the same time and need to 
be taken under consideration during constraint setup. 
The idea of week definitions is a universalized and 
convenient approach of handling courses which are 
exceptional and do not occur regularly within each time 
period.  
 
Dynamic resource assignment  
We have taken the approach that resources do not have to 
be instantiated at the phase of problem definition, which 
on one hand enforces a more complex programmatic 
approach but on the other better reflects the nature of real 
timetabling problems and also allows greater flexibility at 
search phase (possibility of balancing resource usage, 
moving courses between resources might lead to further 
optimization of the cost function). 
Normally we would assume that a course requires a fixed 
set of resources to take place. That would be for example, 
a group of teachers, a group of classrooms and a group of 
students, all known and stated at the time of problem 
definition. We extend this model by enabling the user to 
state how many elements from a group of resources are 
required , without an explicit specification which ones 
should be used. This flexibility is achieved thanks to the 

definition and management of resource groups 
implemented in our XML interface and processed by the 
solver. The data structure is such that for every course we 
define resources. Resources are defined by a (theoretically 
unlimited) number of resource groups. Each group 
contains indexes, that correspond to certain resources and, 
as a property, a number of required resources. 
The number of required resources can range from one to 
the cardinality of the group. When the number of required 
resources is maximal, all the resources within the group 
need to be used, but for any number below the maximum 
we are left with a choice of resources.  
 
 
<Course> 
… 
<Resources> 
  <Group required=2 > 
   <Resource>teacher_32</Resource> 
   <Resource>teacher_78</Resource> 
   <Resource>teacher_93</Resource> 
  </Group> 
  <Group required=1 > 
   <Resource>classroom_122</Resource> 
   <Resource>classroom_123</Resource> 
   <Resource>classroom_144</Resource> 
   <Resource>classroom_215</Resource> 
  </Group> 
  <Group required=1 > 
   <Resource>students_group_23</Resource> 
  </Group> 
  <… optionally more groups> 
</Resources> 
</ Course > 
 
This structure is translated into resource variables list in 
each course.  
 
Course  … , resource_variables_list:[Teacher1, 
Teacher2, Classroom1, StudentGroup1] , …} 
 
And domains of those variables present in the list 
 
domain(Teacher1)=domain(Teacher2) = [teacher_32, 
teacher_78, teacher_93 ] 
domain(Classroom1)=[classroom_122 , 
classroom_123 , classroom_144 , classroom_215] 
 
For every group of resources we create as many resource 
variables as number of required resources, and give each 
of them a domain of all resources in a group , then 
constrain them to be all-different (since we cannot use any 
resource twice in one course). For those groups where all 
resources are required, variables should get instantiated 
right away which corresponds to the model with fixed 
resources: 
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StudentGroup1 = students_group_23 
 
What we need to ensure now is that any two courses do 
not use the same resource at the same time. This is 
achieved for instantiated resources by imposing a 
constraint that prevents courses from overlapping in time, 
for every pair of courses that use the same instantiated 
resource and are in conflict according to week definitions. 
It is sometimes possible to set up global constraints 
involving more than two courses that require the same 
resource but only if each pair in the group is in conflict 
according to their week definitions, which is not always 
the case. 
 
What still needs to be handled are the uninstantiated 
resource variables with domains. To do this we impose a 
suspended test on every pair of courses that have at least 
one common resource in their resource variables domains 
and are in conflict according to their week definitions. 
The tests wait for instantiation of both resources that 
could potentially be the same, and checks if they are. If 
the test succeeds, the constraint that prevents the pair of 
courses from overlapping is imposed on the courses. The 
invocation of tests and consequently imposing of 
constraints happens at the search phase when resources 
get instantiated by the search algorithm.   
 
To enhance the constraint propagation it is useful to 
impose a second set of tests on the courses to ensure that 
the same resources are not chosen for courses that overlap 
in time. To achieve this , for each pair of courses that are 
in conflict according to their week definitions we impose 
a test checking whether the courses overlap (different 
conditions guarding for domain updates are acceptable 
here, domain bound changes as well as variable 
instantiation ). If the test succeeds the all-different 
constraint is imposed on resource lists of the two courses 
stating that none of the variables in one list takes the same 
value as any variable in the other  ( since they can not use 
the same resources whilst overlapping in time and 
belonging to conflicting week definitions ). 
 
This second set of tests (considering courses’ start times) 
is redundant. We notice that its declarative meaning is the 
same as for the first set of tests (considering resource 
variables) , but in the case when we proceed through the 
search tree both by instantiating start times for courses 
and resource variable, we get a better constraint 
propagation and avoid exploring some parts of search tree 
which do not contain a solution. 
 
There is a need to use these suspended tests that set up 
constraints during search phase, because at the constraint 
setup phase we do not have the knowledge which 
activities will overlap in time or which will use the same 
resources  therefore we need to wait for further 

instantiation of variables. This slight complication is the 
consequence of using dynamic resource assignment.  

Results 
The final results cannot be presented, because of the 
implementation stage of the whole system. Some results 
are taken from previous solver written in Mozart/Oz 
language for two small real problem – one from high-
school and departure at the Silesian University of 
Technology. Results presented in Figure 4 shows that 
using a too complicated propagator can twice increase 
time and memory consumption. 
 

 
Figure 4. Comparison of two types of no overlap 
constraints. 
 
Schedule.serialize is a strong propagator to implement 
capacity constraints. It employs edge-finding, an 
algorithm which takes into consideration all tasks using 
any resource. This propagator is very effective for job-
shop problems. However, for the analyzed cases this 
propagator is not suitable, because most tasks have 
frequently small durations and the computational effort is 
too heavy as compared with the rather disappointing 
results. FD.disjoint which although may cut holes into 
domains, must be applied for each two courses that cannot 
overlap. Those constraints enable also the handling of 
some special situations connecting with week definitions 
described in previous section. 
 
Popular first-fail (FF) strategy was compared with 
custom-tailored distributed strategy (CTDS) based on 
constraining while distributing and choosing those values 
for variables, which have smallest assessment (assessment 
for value was increased when soft constraints were 
violated). Optimization was checked for popular branch-
and-bound and idea of incorporation local search into 
constraint programming.  This idea based on following 
steps after finding feasible solution: 
1. Finds a course which introduced highest cost (e.g. 

makes gaps between courses) 
2. Finds a second course to swap with the first one. 
3. Creates a new search for the original problem from 

memorized initial space. 
4. Instantiates all courses (besides these two previously 

chosen) to the values from solution. It can be made in 
one step because they surely do not violate constraints. 

5. Schedules first course in the place of the second one. 
6. Finds the best start time for the second course. 
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7. Computes the cost function. If it has improved, the 
solution is memorized, else another swap is 
performed. 

Results of comparisons are presented in Figure 5.  

 
Figure 5. Comparison of two types of distribution strategy 
and optimisation methods. 

Conclusion and future work 
Presented system describing comprehensive approach to 
real-world University Timetabling problem is still during 
implementation at the Silesian University of Technology. 
Most of the parts system has been already implemented, 
but it is still not used in full range. Multi-user paradigm 
has been already implemented and tested. It is one of the 
most important feature appreciated by the user, which use 
nowadays only manual assistance of the presented system.  
Authors plan test different methodologies based on 
Constraint Programming and Local Search after gathering 
data from whole university. The different search methods 
will be tested similar to Iterative Forward Search 
presented in [M05]. 

References 
[AM00] S. Abdennadher and M. Marte. University course 

timetablingusing constraint handling rules. Journal of 
Applied Artificial Intelligence, 14(4):311–326, 2000. 

 [ECL] The ECLiPSe Constraint Programming System, 
http://eclipse.crosscoreop.com/ 

[Leg03] W. Legierski. Search strategy for constraint-
based class-teacher timetabling. In Practice and 
Theory of Automated Timetabling IV, volume 2740 of 
Lecture Notes in Computer Science, pages 247–261. 
Springer-Verlag, 2003. 

[LW03] W. Legierski and R. Widawski. System of 
automated timetabling. In Proceedings of the 25th 
International Conference Information Technology 
Interfaces ITI 2003, Lecture Notes in Computer 
Science, pages 495–500, 2003. 

[Leg06] W. Legierski. Automated timetabling via 
Constraint Programming, PhD Thesis, Silesian 
University of Technology, Gliwice, 2006. 

[Mar02] M. Marte. Models and Algorithms for School 
Timetabling A Constraint-Programming Approach. 
PhD thesis, Ludwig-Maximilians-Universitat 
Munchen, 2002. 

[M05] T. Muller. Constraint-based Timetabling. PhD 
thesis, Charles University in Prague, Faculty of 
Mathematics and Physics, 2005. 

[PB04]  S. Petrovic and E.K. Burke, Edmund K, 
Handbook of Scheduling: Algorithms, Models, and 
Performance Analysis, Chapter 45: University 
Timetabling,CRC Press,Edt: J. Leung, 2004 

[RL01] Oliveira E. Reise L.P. A language for specifying 
complete timetabling problem. In Practice and Theory 
of Automated Timetabling III, volume 2079 of 
Lecture Notes in Computer Science, pages 322–341. 
Springer-Verlag, 2001. 

[Rud01] H. Rudova. Constraint Satisfaction with 
Preferences. PhD thesis, Masaryk University Brno, 
2001. 

[Sch95] A. Schaerf. A survey of automated timetabling. 
In Wiskunde en Informatica, TR CS-R9567. CWICent, 
1995. 

 [Wer86] J. Werner. Timetabling in Germany: A survey. 
Interfaces, 16(4):66 74, 1986. 

 
 

 
 

85



���������
	���
�����������	���������� �"!
�$#%�'&(	)�*���+�-,%.��"/0�1� �"!
�

24365%36798;:=<?>)@BADCFEDGIHJ36K�3L:NMOCP@Q@SRTCP<?<�G�K�3VUT3�WYXZ8\[�] MO^�@`_bac]da�^�7e367e3gfhCP@`i
jlknmpoQoSqFoSrdsbo`t�uOvlw?xzyp{}|~y\���'yp{Sxzyp�"���?xzyp{

� mp����ypxz�S�����?x�w��}o~r ��vO�p�p�"�n���O��qz���O��vO�O�l�"�n���\�"q������I���`���I�O�)�

�%�0���"���p�S�

  ¡`¢J£S¤�¥§¦B¨©¢nª�¥�«;«�¥�¤�ª�¬B¨®­"¯�°©±`²
³~±B¥1´D¨©¢1µS²§¢V¦B­�¶·¢n¶-¸n¥�±�¯Z­�°©±`¹
°©±`²J¶·£l¢n¸n°»ºB¸1­"¯�°©¥§±`¶b¥"«�µS¼S±B­�ª�°©¸�³~±B¥1´D¨©¢1µS²§¢½°©¶'­�¦B­"¤·¤�°©¢�¤D¯�¥
¯�¡`¢�´D°®µ`¢n¶·£S¤�¢1­§µ
¬B£`¯Z­"³¾¢�¥"«�¿bÀP£B¨®­"±B±B°©±`²`Á0Â�­�¸Z¡B°©±B¢�¨®¢n­"¤�±`¹
°©±`²'¡B­�¶\¦l¢n¢n±-¬B¶·¢nµ-´D°»¯�¡�¶·¥§ª�¢�¶·¬`¸n¸n¢n¶·¶\°®±-¯�¡`¢P£B­�¶L¯1Ã"¦B¬S¯\¯�¡`¢
°©±`£B¬`¯�¶ ¤�¢nÄ~¬`°»¤�¢1µ�­�¤�¢-¢n°»¯�¡B¢�¤d¯�¥�¥�µS¢�¯Z­�°©¨©¢1µpÃQ¥�¤d¯�¡`¢½¨©¢1­"¤�±`°©±B²
£S¤�¥�¸n¢n¶·¶�¡Q­�¶)¤�¢1Ä�¬B°»¤�¢1µ�ª�­"±�¼�¢�Å`­"ª�£B¨©¢n¶nÁ}ÆB¬S¤·¯�¡B¢�¤1ÃÇ¨®¢n­"¤�±`¹
°©±`²J¡Q­"¶ ¦l¢n¢n±I¸n¥�±`ºQ±`¢1µ�¯�¥�£S¤�¥§£l¥§¶·°»¯�°©¥§±B­�¨\­�¸�¯�°©¥�±B¶D¥�¤d£B­"¤·¯�¶
¥"«;­�¸�¯�°©¥§±`¶½¶·¬B¸Z¡}­�¶b£`¤�¢n¸�¥§±QµS°»¯�°®¥�±B¶nÁ�  ¡B¢�ºQ¢n¨®µ�¥"«0¥�±~¯�¥�¨©¥§²�¹
°©¸1­"¨F¢n±B²�°©±B¢n¢�¤�°©±`²I¡B­�¶b¡Q­§µÈ­"±È°©ª�£Q­�¸?¯�¥�±�¯�¡B¢-´D°®µ`¢�¤�¸n¥§ªV¹
ª�¬B±`°©¯É¼�°©±Ê¯�¡B­"¯I­"£B£B¨©°©¸1­�¯�°®¥�±T¥§±�¯�¥�¨®¥�²§°©¢n¶}Ë�´D¡B°©¸Z¡=¸n¥�±�¯Z­�°©±
Ì ¶L¯Z­"¯�°©¸nÍ}¶L¯·¤�¬B¸?¯�¬`¤Z­�¨P³~±B¥1´D¨©¢1µ`²�¢�¥�«'­"£B£B¨©°©¸1­�¯�°®¥�±B¶ZÎ�­"¤�¢�¦l¢�¹
¸�¥§ª�°©±B²)´D°�µS¢n¶·£`¤�¢n­§µOÁPÏb¢�¤�¢½´ ¢-°©±�¯·¤�¥~µ`¬`¸n¢-­Jª�¢�¯�¡`¥~µ`¥�¨®¥�²�¼
¯�¡B­"¯�°©¶�¦Q­"¶·¢1µN¥�±N¯�¡`¢�¢�ÅS°©¶L¯�¢n±B¸�¢�¥�«�­%¶L¯·¤�¥§±`²�¶L¯·¤�¬B¸?¯�¬`¤Z­�¨
ª�¥~µS¢n¨l¥�«Ç­�±
­�£`£B¨©°©¸1­"¯�°©¥§±OÁPÐ�¶·°©±B²�­�¶·ª�­"¨®¨l±~¬`ªJ¦l¢�¤;¥�«Ñ¬B¶·¢�¤
¯·¤Z­"°©±B°©±B²�¶·¢nÄ~¬`¢n±B¸�¢n¶nÃÇ´ ¢�°©¨©¨©¬B¶L¯·¤Z­�¯�¢I¡`¥1´Ò¯�¡`¢Vª�¢�¯�¡`¥~µ%¸1­"±
°©±Bµ`¬B¸�¢J­"¸�¯�°©¥§±%¶·¸?¡`¢nª�­�­�±QµÈ¸n¥�ª�£l¥§¬`±Qµ�ª�¢�¯�¡`¥~µ`¶nÁ- \¥
µS¥
¯�¡`°©¶ ´ ¢½¢�Å~¯�¢n±Bµ�Ó�ÀÕÔ0Ö�× ¶'Ö�£`ª�­�³¾¢�¤0¶L¼S¶L¯�¢nªØ¶·¥�¯�¡B­"¯d°»¯D¸1­"±
°©±Bµ`¬B¸�¢�­�¸�¯�°©¥�±B¶�«z¤�¥§ªÙ¯·¤Z­"°©±B°©±B²È¶·¢1Ä�¬`¢n±B¸n¢�¶½´D°©¯�¡`¥§¬S¯�°©±�¯�¢�¤·¹
ª�¢nµ`°®­"¯�¢-¶L¯Z­�¯�¢-°®±S«�¥"¤�ª�­"¯�°©¥§±}­"±Qµ
´D°»¯�¡B¥�¬`¯D¤�¢1Ä�¬B°»¤�°©±B²J¨�­�¤�²§¢
±~¬`ªJ¦l¢�¤�¶b¥�«d¢�Å`­"ª�£B¨©¢n¶nÁ�  ¡`°®¶-ª�¢?¯�¡B¥~µ}¶·¡B¥1´D¶-¯�¡B¢V£l¥"¯�¢n±`¹
¯�°®­"¨p«z¥�¤D¸n¥�±B¶·°®µ`¢?¤Z­�¦B¨»¼�¤�¢1µS¬B¸n°©±`²)¯�¡`¢b¦`¬`¤Zµ`¢�±I¥"«Ç³~±B¥1´D¨©¢1µS²§¢
¢�±B²§°©±`¢n¢�¤�°©±B²SÃQ°©±�¯�¡Q­�¯D°»¯'´0¥§¬`¨�µ
¦l¢-£l¥§¶·¶·°©¦B¨©¢-¯�¥J¢nª�¦l¢1µI¯�¡`¢
ª�¢?¯�¡B¥~µ�°®±�¯�¥-­"±�­�¬S¯�¥§±`¥§ª�¥§¬`¶F£`¤�¥�²�¤Z­�ªÚËÛ­"²§¢n±�¯?ÎÑ´D¡B°©¸Z¡J¤�¢�¹
Ä�¬`°©¤�¢nµÈ¯�¥
µ`¥I£B¨®­"±B±B°©±`²`Á½Ü�¢J°©¨©¨®¬`¶L¯·¤Z­"¯�¢)¯�¡B¢V­"¨©²§¥�¤�°»¯�¡`ªÝ­�¶
£B­"¤·¯0¥�«Ñ­�±�¥�Þ¾¢�¤Z­�¨©¨lª�¢�¯�¡`¥~µJ¯�¥�°®±Bµ`¬`¸n¢b¶L¯·¤�¬`¸�¯�¬`¤�¢nµ�µ`¥§ª�­"°©±
ª�¥~µS¢n¨gÃP­�±Bµ(¸n¥§ª�ª�¢n±�¯)¥§±�°©±`°©¯�°®­"¨ ¤�¢n¶·¬B¨»¯�¶�¯�¡B­"¯�¶·¡B¥1´ß¯�¡`¢
¢?à�¸1­�¸?¼�¥"«Ç¯�¡B¢-°©±QµS¬B¸n¢nµ
ª�¥~µ`¢�¨O¢�ª�£B°»¤�°©¸1­�¨©¨»¼�Á

á~â0ãSäBådæ�çbèlã`éÕå0â

� mp�bup�?o`êpqz�"tØo~rprÛo`�?t
vpq�|�w?xzyp{�ëQypo�ì-qz���p{S�DêO|`�Z�§�;k"oSyBw�|Sx�yOx�yp{
�?u\�§k�x��\k"|~w?xzoSyO�-oSrD�l�QyO|~t�x�kVëByOo�ì-q��§�l{S��x���|ÈêO|S�?��xz�"�½w?o�w�mp�
ì-x��l���?up����|S�=vpupw�|~ë`�Èo~r-í�îVupq�|~ypyOx�yp{\ï(sbvp�����"yBw�mpxz{Smðup��o~ñ
�Oqz��|~upupqzx�k"|�w�x�o`yO�½�Zv\knm�|S�bw�mp�VvO�Z�VoSr;upq�|~ypyOx�yp{
w?�§knmpypo`q�o`{S�
ì-x�w?mpxzy}ò)íJjlí�ó �bôÊ|~�n�dõ-o��S���d�?�§ö`vOx����½u\�����?xz�Zw?��yBw'�?�§�Zo`vp�nk����
k�o`t�up�?x��?x�yp{Êo~r-w?�§|~tÈ�
o~r�mpxz{Smpqz�ð�ZëQxzq�qz���÷ëByOo�ì-q��§�l{S�}��yp{Sx�ñ
yp���"�n�"�`î·yÈuO|~�?w?x�k�vpq�|~�§�S|�uO�?o`êpq���tør6|`k�xzyp{�í�î x��dw?oIo��S�"�nk�o`t��
w?mO��yO�"���ùw?oTmO|S���4k�ol�l�(|~yO�4tÈ|~yQvO|Sq�qz�ðtÈ|~xzy`wn|~xzy4|`k1w?xzoSy
��knmp�"tÈ|�ì-x�w?mpxzy%|S{S�"yBwn�)ú6|�up�?o`êpqz�"tÙì-mpx�knmÈq�xzt�x®wn�'w�mp�"xz�b|Svlñ
w?o`ypoSt
�pû1ïüîLw�x���uÑo`���Zxzêpqz�%w�o=v\�Z�(qz��|~��ypxzyp{Nw?��knmOypxzöBvp�§��w?o
mp��q�u�o��S����k"oSt��Dw�mp�½up��oSêpqz�"t(�~��{Jv\�Zxzyp{Jw?oQoSq�� ì-mpx�knm
xzyO�lv\k��
|Sk�w?xzoSyO�Vo`�Vt��"w?mpol�p��rÛ�?o`t+��ýp|~t�upqz����ï}þ�yp�Èt���w?mOoQ�Nx��Vw?o
�"t
ê\�§�ÿ|~{S��yBw���ì-x�w?mÿw?mO�Ê|~êpxzqzx®w��ùw?oðxzyO�lvOk"�(w?mp�Ê�p��w�|Sx�qz���

�ZuÑ��k"x®�\k�|�w�x�o`y÷o~r)|`k1w?xzoSy4�?knmp��tÈ|(rÛ�?o`t ��ýp|~t�upqz�%upq�|~yOypx�yO{
w?�n|Sk��§�"�\u\oB�?�?xzêpq����?vpupupqzxz����êQ��|Èw���|Sx�yp����ï � q�|~ypypxzyp{Èw���|`k��§�
|~����|Sy=o`���p�"�����Ê�?��w�oSr½|`k1w�x�o`yNxzyO�Zw�|~y\k������Pì-mO�"�����§|SknmT|Sk�ñ
w?xzoSy=x�yO�Zw�|SyOk���x���x��l�"yBw?x��O�§�NêQ� y\|~t���upq�v\�Vw?mp�Èo`ê�����k�w�x�ylñ
��wn|~yOk"����w?m\|�w�|S�?��|��Ñ�§k1w?�§��oS�)|S�?��yp�§k��§�?��|~��x�qz�}up�����?�"yBw-êpvlw
ypo~wd|��Ç��k�w?�����SêQ��|Sk�w?xzoSy���ýl��k"vlw?xzoSy�ï � mpx�� xz�0w�mp�½ëBxzyO�
o~rÑx�ylñ
rÛoS��t�|~w?xzoSy(ypo`�?tÈ|~qzqz�%��ýluÑ��k�w?���Ê|S��|}�?oSqzvlw�x�o`y(w?o}upq�|~yOypx�yO{
up�?o`êpqz�"tÈ�"ï

î·yùw�mpxz��u\|~uÑ�"��ìb���l�§�?k"�?xzêÑ��w�mp�(�?�§�ZvOq®wn�
oSrJ|Sy4xzyQ�S���Zw?xz{`|~ñ
w?xzoSyÊxzyBw?oðúÛ���§ûZk�o`yO��w��?v\k1w?xzyp{(|Sk�w?xzoSyT�?knmp��tÈ|�|SyO� upq�|~yOypx�yO{
mp�"vp��x���w�xzk��}rÛ��oSthw?�n|~xzypxzyp{4�?�����?x�o`yO�%ì-mOxzknmßk�oSt�uÑo`�?�ÊoSrI|
mO|~yO�lrÛvpq�oSr
|Sk�w?xzoSyYw���|`k��§�"ï � mp�ÊtÈ|~xzyÒ�����?vpq�w�x��}w�mO|�w(x�w
xz�(uÑo`���Zxzêpqz�=rÛoS��|~yØ|~{`�"yBw(w?oÿx�y\�lvOk��ð�l�"w�|Sx�qz���Ø�?u\�§k�x��\k"|~ñ
w?xzoSyO��oSr½|`k1w�x�o`yT��knmp��t�|�rÛ��oSt �Zxzyp{Sqz�}|Sk�w?xzoSy=w?�n|Sk"����|Svlw?oSñ
t�|~w?x�k"|Sq�qz�S�-ì-x�w?mpo`vlw(�?�§ö`vOx���x�yO{ðx�yBw?���?t��§�lxz|~w?�=��wn|�w?�Nx�yprÛoS�?ñ
t�|~w?xzoSy�rÛo`�'��|`knmÈw?�n|~xzypxzyp{��"ýl|St�upq��`ï � mO��w?�n|S�p��ñLo���x��'w?mO|~w
w?mp�È|~{`�"yBw�ó �J�loStÈ|~xzyT�l����k���x�upw?xzoSyN�?mpo`vpqz�Nk�o`y`wn|~xzyO�Jx�yQ��|~��x�ñ
|~yBw��-�l�§�?k"�?xzêpxzyp{�oSê����§k1w����"q�|�w�x�o`yO�-|~yO��o`ê�����k�w-�Zw�|~w?�§�"ï � mO�
x�yO�pvOk��§�Ò|Sk�w?xzoSyO��|~���N�p��w�|Sx�qz���Ò�"ypo`vp{Sm rÛoS�(vO�?�Êxzy�upq�|~ypñ
ypx�yO{���yp{Sxzyp�§�"ï��=�Èup�����?�"yBwI|~yT|~qz{So`�?x�w?mOt�rÛoS��{`�"yp����|~w?xzyp{
�ZvOknm��poStÈ|~xzy�t�ol�l�"q��"�~|SyO���?mpo�ìTmpo�ìTw?mO�bup��xzt�x�w?xz�S��|Sk�w?xzoSy
�?knmp��tÈ|
k�|~y�ê\��êpvOx�q�w)vpu(xzy`w�oÈ�loStÈ|~xzy�t�ol�l��qz��ï

î·yÚoSvp�=up���"�Qx�o`vO��ì�oS��ë�ì��÷mO|¾�`�ù�?mpo�ì-yÚmpo�ì
	 �Ñ|�w�óV�loSñ
t�|Sx�y÷|`k1w�x�o`yO�Ik�|~yðêÑ�%xzyO�lvOk"���TrÛ��oSt ��ýp|~t�upqz����ï í)k�w?xzoSyO�
k"|~yðêÑ�%xzyO�lv\k����ùvO�?x�yp{
�������������÷ú6ôÊk§sbqzvO�Zë`�"�`� õ�xzknmO|S���lñ
�Zo`y���� jlx�t�uO�?oSy
�������`û
ì-mpxzknmYm\|S�}êÑ�"��y �"t
ê\�§�p�l�§�ÿx�ylñ
w?�"�n|Sk�w?xz�S��q�� xzy �"!$#%� úÉjQxzt�uO�Zo`y&��'(��)+*,�����p�¾û1��úÉjQxzt�uO�Zo`y
�����.-Sû�ï/�"!$#%�+|Sxz�O�È�loStÈ|~xzyÿk�oSy\��w��?vOk�w?xzoSy��bo��Ç�"��x�yO{N�§�lx®ñ
w?oS�n���~��|~qzxz�p|~w?xzoSy
w?oQoSq����`|J{S�n|~upmOxzk�|~qlqzx®rÛ�"ñÕmpx��Zw?oS�����§�lx®w�oS�D|SyO�
upqz|Sypypxzyp{ w�oQoSq��"ïùþ�vlw�upvlw�rÛ�?o`t0�1!2#%��xz�
w?mO��k"oSt�upqz��w?�§�
|~yO�4��|~qzxz�p|~w?�§�ü�poStÈ|~xzy4êÑ�"xzyp{ðt�ol�l�"qzqz���ÿxzyÿ|=��|~��x�|~yBwÈo~r
3Jî � þ
ó �Çx�yBw?���?y\|~q~q�|~yp{`vO|~{`�(�%4�5�ú76�xzv8�4ô k¾sbq�v\�Zë`�"�%�������`û
oS� � �J�96'ï)�����?�Tì��T��ýQw?��yO� 3Jî � þ
ó ��þ�uOt�|SëS���(�?�l��w��"t
�ZoÊw?mO|~w�x�w�k�|~y4x�yO�pvOk��(|Sk�w?xzoSyO�IrÛ�?o`t w?�n|~xzypxzyp{N�?��öBvp��yOk��§�
|~yO��x�w�����wn|�w�xzk)oSê����§k1wbt�ol�l��qÑ|Sq�o`yp�S�Bì-x®w�mpoSvpwbxzy`w��"��t����lx�|�w��
��wn|�w?�VxzylrÛoS��tÈ|�w�x�o`y�|SyO�%ì-x�w?mOoSvlw�����öBvpxz�?xzyp{�qz|S�?{`�VyBvOtIêÑ�"�n�
o~rb�"ýp|~t�upqz����ï � mpxz�Ik�oSy\�Zx��l�"�n|~êOq�� �����pvOk��§�Jw?mp�ÈêpvO���l��yTo~r
ëByOo�ì-q��§�l{S�
�"yp{`x�yp���"��x�yO{O�F�Zo�w?m\|�w�|%uO�?o`{S�n|~t ú6|~{`�"yBwnû�k"|Sy
u\���ZrÛo`�?tÙëQypo�ì-qz���l{`�)|Sk�ö`vOxz�?x®w�x�o`y}�n|�w?mO�"�bw?mO|Sy}x®w-olk"k"vp���?xzyp{
w?mp��oSvp{`mü|=mQvptÈ|~ypñL�l��xz�S�"y4up��oQk"�����È�ZvOupu\o`�Zw����üêQ�ù|Nw?oQoSq
�ZvOknm(|S�:3Jî � þ
ï

86



� mp���n|�w�x�o`yO|~qz�VrÛoS���Z�"wZw?xzyp{}vOu(w?mpx��)uO�?o`êpq���t x��)|`�-rÛoSqzqzo�ì��"ï
� mp�V|Sk�ö`vOxz�?x®w�x�o`y��V�����\yp�"t��"yBw�o~r�r6|`k1w?v\|~qÑoS�½��wn|�w?x�k�ëByOo�ì-q®ñ
���p{S�½êQ�
|~{`�"yBw�� x�� ���"q�|�w?xz�S��q��
��w���|Sx�{`m`w?rÛoS��ì�|S����ïFî·y
w�mp��k�o`ylñ
w?�"ýQw�oSr�w?mp�TxzyBw?�"��yp�"w(|SyO� o`u\��y��?�Q�Zw?��tÈ�"��x®w�x���yOo~w(vpylñ
����|S�?oSy\|~êpqz�}w�mO|�w}|~yÿ|~{`�"yBwÈk"|~yü|Sk�ö`vOx�����|SyO�÷�����\yp���ZvOknm
ëQypo�ì-qz���l{`�Èì-x®w�mù�Zo`t��%�l�"{`�?���}o~r)|Svlw?o`ypoSt
�Sï � mp����|Supxz�
��ýluO|SyO�?x�o`y%o~r0{SqzoSêO|Sq�qz�}|Sk�k��§�?�?x�êOq��JoSyBw?o`q�o`{Sxz���bì-x®w�mpxzy(�Zw�|Sylñ
�p|S���4rÛoS��tÈ|�wn�}�Zv\knm |S��þ:� 6D���ZvpuOu\o`�ZwÈw�mp�ÊypoSw?xzoSyüw?m\|�w
xzy`w��"qzq�xz{S��yBwb|~{`�"yBw��dì-xzqzq\mO|¾�`��|Sk�k������ w�o�r6|Sk�w?vO|SqOëQypo�ì-qz���l{`�Sï
î·y(k�oSyBw���|`��w§�`w�mp��|~t�oSvOy`w-oSrP� �ÇoS�?w-yp�"�§�l���%w?o��"y\k�ol�l�Vêpvp{
rÛ���"�S�`|Sk"k"vp�n|�w?�½|Sk�w?xzoSy��ZuÑ��k"x®�Ñk"|�w�x�o`yO�d|~y\�Iupq�|~yOypx�yO{JmO�"vp��xz�Zñ
w?x�k"���F|~yO��w�o%tÈ|~xzyBw�|Sx�y�w�mp�"t(�Çx����?x�{`ypx��\k"|Sy`w§ï)íøyO��k��§�?��|~���
up����k"oSyO�lx�w?xzoSy�oSrdw?mp�
vO�?��o~r'k"vp�?���"yBw�|Svlw?o`tÈ|�w?�§�(upq�|~ypypxzyp{
w?�§knmpypo`q�o`{S��xz�bw?m\|�w'w�mp�"���J��ýlxz�Zw���|I�p��w�|Sx�qz����|Sk�w?xzoSy%�?u\�§k�x��pñ
k"|~w?xzoSy��\|~yO�(xzy�tÈ|~yQ��k�|S�?�����lmp�"vp��x���w�xzk�ëQypo�ì-qz���p{S�Sïb���"y\k��
ì��Ik"|Sy(|`�Zë%w?mp�
ö`vO���Zw?xzoSy��'rÛoS�)���S���?�%|S{S��y`w-w�mO|�wJk"|~y�uÑ�"�?ñ
rÛoS��t�upqz|Sypypxzyp{O�OtIvO�Zw)ì���mO|~y\��k�ol�l��|~y\�(mO|~yO�(tÈ|Sx�yBw�|Sx�y
x�w���|Sk1w�x�o`yÒ�l�§�?k"�?xzulw?xzoSy\����ò�o\��x®r�|~{S��yBw��%|S�?� w?o4|`knmpxz�"�S�
w?mOxz��ëQx�yO� o~r'|~vpw?oSyOoStI�`�Ow�mp�"y w?mp���(�?mpo`vpqz� ê\��k"|~u\|~êpqz�IoSr
qz��|~��ypxzyp{�|~yO�������Oypxzyp{È|Sk�w?xzoSy�ëQypo�ì-q��§�l{S�V|~y\��mO�"vp��xz�Zw?x�k"��ï

���	��
���
 äQâbéLâ����}äBå���� ���

� mp��{S�"yO�"�n|~qb�?x�w?vO|~w?xzoSy÷x��Io`yp�%ì-mO�"����|~y4|~{S��yBw
yp�����p�Iw?o
uÑ�"�?rÛoS��t9�?�§|S�?oSypxzyp{T|~êÑoSvlw%|`k1w�x�o`yO��w?oð|SknmOx����S��|T�l���?x������
{SoB|~qÕ�O|~y\��x�y�u\|~�?w?x�k�vpq�|~��uÑ�"�?rÛoS��t�upqz|Sy�{S��yp�"�n|�w�x�o`y�ì-x�w?mOx�y
|~y=�"yQ�Qxz�?o`ypt��"yBw)w�mO|�w�x�w�mO|S�JëQypo�ì-qz���l{`�Io~r�ï�í)k�w?xzoSyO��|S�?�
����|~q\ìbo`�?q���oSuÑ�"�n|�w�x�o`yO�dw�mO|�w½knmO|~yp{`�½w?mp�J��wn|�w��)o~rFo`ê�����k�w§ú6�nû
xzyùw�mp��ìbo`�?q��÷xzyÿ�Zo`t��(ì½|¾�Sï � mp��|~{S��yBw�mO|`��ëQypo�ì-q��§�l{S�
o~r;oSê����§k1w����Q|~yO��k�oSqzqz��k1w�x�o`yO�bo~r;�?x�t�xzqz|S�bo`ê�����k�w��btÈ|~ëQx�yO{Ivpu
�lx���w�x�y\k1wDk�q�|S���Z�§�"ï;îLwdëByOo�ì��Pw�mp�½u\oB�?�?xzêpq��-�Zw�|~w?���0oSrÑ|)w��BuOxzk�|~q
oSê ����k1w-oSr;��|`knm�k"qz|`�?��ï îLw-mO|S�½ëQypo�ì-qz���l{`��oSr;�"ýQx��Zw?xzyp{�upqz|SyO�
w?m\|�w�o~w�mp�"��|~{`�"yBw����ÇoS��|%w?�n|~xzyp�"�§�ÇmO|S�JvO�?���Fï � mp���?��upqz|SyO�
|~���½ì-�?x�wZw��"yÈxzy�w?���?tÈ�doSrÑ�`�"��êO�d|~yO�È|��Ñ�§k1w�����oSê����§k1wn��úFupx�knë
vpuðêpqzolknëNíÝì-x�w?mð{`�?xzupuÑ�"���J�Pqzx�rgwIvpuðì-mp���"q'íÝì-x�w?m �Z|`knë
�-û1ïÇí)�p�px®w�x�o`yO|~qzq��`�Çw?mp��|~{`�"yBw�x���|`�?�?vpt�����w�o�m\|¾�S�I|~ýQxzoStÈ�
�l�§�?k"�?xzêpxzyp{�|�y\|~xz�S��upmQ�l�Zx�k"�Jo~r�w?mO�Èìbo`�?q��Fï���o�ì��"�S�����Çw�mp�
|~{`�"yBwdmO|S� yOo~wD|~y���ýlupqzxzk"x®w'�?uÑ��k�x��\k�|�w?xzoSy�o~rÇ|Sk�w?xzoSyO� xzyÈ�ZvOknm
|�ì�|¾��w?m\|�w�x®w�k�|~yÊ����|`�Zo`yÊ|~êÑoSvpw�w�mp�"xz���Z�QyBw?mO���?xz��úÛo`��w�mp�
|~{`�"yBwD�loQ��� mO|¾�`���?vOknm�|V�ZuÑ��k"x®�\k�|�w�x�o`y
êpvpwDyp�"�§�p� w?oV�����OyO�S�
tÈ|~xzyBw�|~xzy�oS�-�"�`oSqz�S�Jx®w1û1ï

3Jxz�S�"yIw?mpx�� �Zx�w?v\|�w?xzoSyP�¾w?mp�½qz��|~��ypxzyp{�up��oSêOq���tÚxz�;w?oJxzyO�lvOk"��|
rÛvpqzqÇuO|~�n|~t���w��"��xz�?�����?u\�§k�x��\k"|~w?xzoSy}oSrP|Sk�w?xzoSyO�'ì-mpxzknm�k"|~yÈêÑ�
vO�?���
w?o��poJuOqz|Sypypxzyp{��B|~yO�
w?o�xzyO�lv\k��-mp��vp�?x��Zw?x�k"� ì-mpx�knmÈk"|~y
êÑ�)vO�?����w�oItÈ|~ë`�-w?mO�)����|S�?oSyOx�yp{�xzyQ�So`q��`����x�y%w?mp��upq�|~ypypxzyp{
k�o`t�upvlw�|~w?xzoSyO|Sq�qz�=w?�n|Sk�w�|~êOq��`ï��pvp�?w?mp�����Dw?mp��|~{`�"yBw��?mpo`vpqz�
êÑ�}|~êpqz��w?o �$���! �}|~yQ� ��ýlx���w�x�yO{�u\|~�n|~t���w��"��xz�?��� �?uÑ��k�x��\k�|�ñ
w?xzoSyNo~r½|Sk1w�x�o`yO���Ç|SyO� mO�"vp��xz�Zw?x�k"���Çw?m\|�w�x®w�k"vp�?���"yBw�q��(mpo`qz�p��ï
� mp�I|`k1w�x�o`y �ZuÑ��k"x®�\k�|�w�x�o`yO�)�?mpoSvOqz�(êÑ�I�l�"w�|~xzqz������ypoSvp{`m��Zo
w?m\|�w�w?mp���Tk�|~y÷êÑ�%xzypupvpw�w�oÊtÈ|~xzyO�Zw?����|St upq�|~yOypx�yO{ w?�§knmlñ
ypo`q�o`{S�ð|S���"uOx®w�oSt�xz�?���4êQ�÷k�o`t�uÑ��w�x®w�oS�n��x�y4w?mO��î � s úgw�mp�
êpx�ñL|SypyQvO|~qFxzyBw?���?yO|~w?xzoSyO|SqÇupqz|Sypypxzyp{Èk�o`t�uÑ��w�x®w�x�o`y\û1ï

�#"�$\�&%('*)6�l�,+-$�./$�0-�,13254V�&$\�*)�26%

�=�VrÛoS��tIvpq�|�w���w�mp��qz��|~��ypxzyp{�up�?o`êpqz�"t |`��rÛoSqzq�o�ì��7�

î�ò � � � �;í��?�?vpt��Èw?mO�}x�yOupvlwIw�o�w?mO�%qz��|~��ypxzyp{�up��oSêpqz�"t xz�
|�	 t�oQ�p�"qÕópo~r;w?mp�Vì�oS��qz�F�l|SyO��|��?��w-o~r;w?�n|~xzypxzyp{È�Z�§ö`vO�"yOk"�����
{Sxz�S�"y�|S��rÛo`q�qzo�ì��8�
�Sïz�bñ;w?mp���?��|S�?�-|�yQvpt
ê\���Do~rFk�q�|S���?���d�§|Sknm�k�oSyBwn|~xzypx�yO{�|��Z�"w
o~rÇoSê����§k1w����S�§|Sknm�oSê����§k1wDêÑ�"qzoSyp{B� w?o�o`yp���?��w)ú6k�|~qzq��§�È|��Zo`�Zw1û
�Sï ��ñ0��|`knm�o`ê�����k�wDo~rF��|`knm�k"qz|`�?�Dt�|¾�
ê\�)�?��qz|~w?���
w�o�oSê����§k1wn�
o~rÇo~w?mO�"�'k"qz|`�?�?�����S|~y\��mO|¾�S�½up��oSuÑ�"�?w���ñ;��|Sq�vp�-���"q�|�w�x�o`yO�?mpx�u\�
ì-x®w�m=�?��wVo~r�êO|S�?xzkI��|~qzvp���Èú6ê\oQoSqz��|SyÊo`�J��k"|Sqz|S�nû�ï � mp���?��qz|~ñ
w?xzoSyO�½|~y\�%up��oSuÑ�"�?w?xz����|~���V�l���OyO����x�y�w?mp��v\�ZvO|SqÇì�|¾��vO�?x�yO{
up�?�§�lx�k"|�w�����ï
�Sï �Tñ
�§|SknmYoSê ����k1w�o~r��§|Sknm k�q�|S���%|~w�|÷t�o`t���yBw%x�yÒw?xzt��
mO|S��|
�pýl��� 	»�Zw�|�w��Sózï � mpx����Zw�|~w?�Jxz�-�p���Oyp�§�}êQ�}x�w������"q�|�w?xzoSypñ
�Zmpxzu(ì-x®w�m�o~w�mp�"��o`ê�����k�w���|SyO�9��oS�½w?mO���¾|Sq�vO��o~r up��oSuÑ�"�?w?xz����ï
� mp�"���I|~���I|��ZtÈ|~qzqÕ�O�OyOx®w��
yQvpt
ê\���)o~r'�Zw�|~w?�§��rÛo`�)��|`knm oSêpñ
����k1w)k"qz|`�?��ï
�Sï :�ñ;w?mp���?�-x��'|��?��wbî0oSrFx�yQ��|~��xz|SyBw�� ���"q�|�w?xzyp{Vw�mp��up�����lx�k"|~w?�§�
{Sxz�S�"y�|Sê\o��`�Sï�î·ylrÛoS��tÈ|~qzq��`�\|È�?��w)x��)|`�l��öBvO|~w?��x�rD|~yQ�,	»k�o`t�ñ
t�o`yN�?�"yO�?�SóFxzylrÛ���?��yOk���k"|SyNêÑ��t�|`�l�
rÛ�?o`t�w?mp��t(�P�Zv\knm=|`�
ypoS��tÈ|~qÇx�yprÛ�"���"yOk"���-|~êÑoSvpw)�ZuO|~w?x�|~qF���"q�|�w�x�o`yO�"ï
�Sï -I|��?��w�o~r0w?�n|~xzypxzyp{�upqz|SyO�-oSrPw?mO�VrÛoS��t

úÛxzypx®w�xz|SqP�Zw�|�w��S�Q�Oy\|~qP�Zw�|~w?�§û
 ��� �<;"�=;?>,@7;
 ��� �BA �6AC>,@DA
ï�ï
 ��� �7E"�FE&>,@GE

 ��� �<;IHJHK ���� �8E�|S�?��w�mp� yO|St����}oSrVw?mp�MLT|Sk1w�x�o`yO�ÈxzyYw?mO�
w?�n|~xzypx�yO{�uOqz|Sy��0|SyO�Nw?mp���=|S�?�È|`�?�?vpt����Nw?o(w���|SyO�ZrÛoS��t+w?mO�
x�ypx�w?x�|~qB��wn|�w��Dx�yBw�o½w?mp�'�OyO|~qB��wn|�w��Sï;�)�"��� � ; > �NAG>7HKH � E |S�?�d�§|Sknm
q�x���wn�PoSrOoSê ����k1w0yO|~t��§��úOw?mO�"��k�o`vpq���ê\��yQvpqzq�û;o~rpvOyOknmO|~yO{Sxzyp{
oS�1	 up���"��|~xzqÉó"oSê����§k1w��P�?�§öBvpx������JêQ�V|~y�|Sk�w?xzoSy���|~y\�O@7;I>I@ A >8HJHP@GE
|~������|`knm}q�x��Zw��bo~rPo`ê�����k�wbyO|St��§�b|��Ñ�§k1w����}êQ��w?mO���"ýQ�§k�vlw�x�o`y
o~rOw�mp��|Sk�w?xzoSy�ï0�'|`knmIo~rÑw?mO��qzx���wDoSr\up���"��|~xzqloSê ����k1wn� tIvO�ZwDêÑ�
up�?�§�Z��yBwVxzyð�Zo`t��}��wn|�w?�`�Pêpvpw�w?mO|~w
��wn|�w��}�loQ���VypoSwIknmO|~yp{`�
�lvp��x�yp{È|`k1w?xzoSy���ýl�§k�vlw�x�o`y�ï

ñÊ| ú6u\oB�?�?xzêpq����"t�ulw��pûT�?��w÷o~r���ýlx���w�x�yp{ø|`k1w�x�o`y ��knmp�"tÈ|Oï
�Yx®w�mpx�yØw�mpx���rÛoS��tIvOqz|~w?xzoSy���|Sk�w?xzoSyÚ��knmp�"tÈ|Y|~���ðuO|S��|St��"ñ
w?�"��x��Z�§�%o`ê�����k�w�w���|SyO�ZrÛoS��t�|~w?xzoSyO��ï

þJ� ��� � � |T�Z�"wÈo~rJ|`k1w�x�o`yü��knmp�"tÈ|Êw?mO|~wÈñ�xz�Èk"oSyO�?x���w��"yBw
ì-x®w�m�w?mp����wn|�w�xzk
�loStÈ|~xzy�t�ol�l�"q k�o`t�uÑoSyO�"yBw���ú��`ï���ñn�Sï :BûD�Oñ
k"|~yùê\�(xzyO��wn|~yBw?x�|�w����ùx�yBw?oNw?mO��w���|Sx�yOx�yp{Nupq�|~yO�(ú��`ï -`ûI�?vpulñ
upq�xz�����\|~y\��ì-xzqzqFw?�n|~yO�ZrÛoS��t w�mp��xzypx®w�xz|Sq;�Zw�|~w?��xzy`w�o�w?mp���OyO|~q
��wn|�w?�bmp�"vO�?x���w�xzk�� �l�"��x��`���VrÛ��oStØw�mp��w?�n|~xzypxzyp{)upq�|~y\�Pw�mO|�wdk"|Sy
ê\��vO�?���%w?oÈ{`vpx��l��|
uOqz|Sypyp�"�

Q � ã � ådæ

� mp�
qz��|S�?yOx�yp{�t���w?mOoQ�Nx��J�?uÑ��k�x��O�§�ÊêQ�(w?mO��|Sq�{`oS��x®w�mpt��l��ñ
�?k"�?xzulw?xzoSy�xzy��0xz{Svp�����Sïdî·y(oSvlw�q�xzyp�`�Qw?mp��t���w�mpol��xz�7�

úÛxgûIv\�Z��|=�Z�"w�oSr�mp��vp��xz�Zw?x�k"�È|SyO�ùxzylrÛ���?��yOk��§�Iw�o=w?�n|SknëTw?mO�
knmO|~yp{`x�yO{���wn|�w?�§�PoSrl��|SknmIoSê����§k1wP����rÛ���?�����Jw�o)ì-x�w?mpxzyI|-w���|Sx�ypñ
x�yp{ÿ�"ýl|St�upq��`�Jw�|~ëQxzyp{ |S�p�¾|SyBw�|~{`�NoSr
w�mp�÷�Zw�|�w�xzkS��oSê����§k1w?ñ
��wn|�w?�ÿxzylrÛoS��tÈ|�w�x�o`yÙ|SyO� x�yQ��|~��x�|~yBw��=ì-x�w?mpxzyÙw?mp� �poStÈ|~xzy
t�ol�l��qÉï�î·ylrÛ�"��rÛvpq�q��l��wn|~xzqz��o~r-oSê����§k1w�w���|SyO�Zx�w?xzoSy\�JrÛoS���§|Sknm

87



���������	��
���
������������
���(£Q­"¤·¯�°®­"¨Çµ`¥�ª�­�°©±�ª�¥~µS¢n¨
����¯·¤Z­�°©±B°©±B²J¶·¢1Ä�¬B¢n±`¸n¢���� �÷´D°©¯�¡"!ÿ­�¸?¯�°®¥�±B¶nÃQ­�±Qµ
¢1­�¸Z¡ �$# �%�$�4¡Q­"¶'¸�¥§ª�£l¥§±`¢n±�¯�¶'&
�)( *+�	�,�)-	�)( 
��.��/	��0213-��)(54768��9�:�0;9�:"< ±B­�ª�¢§ÃS¬B±`¸?¡B­�±`²§°©±B²�¥§¦�=L¢n¸�¯�¶nÃB¸?¡B­�±`²§°©±B²V¥�¦>=Õ¢n¸�¯�¶nÃ
?�@BA £B­"¤Z­�ª�¢?¯�¢�¤�°©¶·¢1µ�­�¸?¯�°®¥�±Èµ`¢�¶·¸�¤�°©£`¯�°©¥§±`¶�­"±Qµ
Ï� C!üª�¢�¯�¡`¥~µ`¶
D ÁFE�¢�ºQ±`°©¯�°©¥�±B¶'&
�+(54+< ¸n¬`¤·¤�¢�±~¯D¶L¯Z­�¯�¢-¥�«P­"±�¥§¦�=L¢n¸?¯ �
�+(HG+< ¶·¥"¤·¯�¥"«F¥§¦�=L¢n¸?¯ �
�+( IJ< ºQ±B­�¨O¶L¯Z­"¯�¢-¥�«P­"±�¥�¦>=Õ¢n¸�¯ �
��K < ¶L¯Z­"¯�¢-¸n¨®­�¶·¶'¥�«P­"±�¼ :��ML�N�9POQG.RS��R3� �
� K < ­Vµ`°©¶L¯�°©±B¸?¯b£B­"¤Z­"ª�¢�¯�¢�¤d´D¡B°©¸Z¡�¤Z­�±`²§¢n¶d¯�¡S¤�¥§¬B²�¡�¯�¡B¢�¶·¥�¤·¯'¥�« L�T2U��.4VRW�
XZY < ¶·¢�¯'¥"«�­�¨©¨Ñ¶·¥"¤·¯�¶b¥"«F£Q­�¤Z­�ª�¢�¯�¢?¤�¶b­"±QµI¥§¦�=L¢n¸�¯�¶'°©±�¢�ÅS£S¤�¢n¶·¶·°©¥§±JX
� Á «z¥�¤b¢1­�¸Z¡ � °©±[��� �üµ`¥
\ Á ÆB¥"¤�ª^] < ¨©°®¶L¯'¥"« � K «z¥�¤b­�¨©¨ � °©± �)( 
��.��/	�	0_18`[�)(54768��9�:�0;9�:�a
bSÁ «z¥�¤'¢1­�¸Z¡ � °©±�¨©°©¶L¯ �)( 
��c��/	�)1 µ`¥
d Á ¶L¯�¥�¤�¢-¸�¥§ª�£l¥§±`¢n±�¯D¥�«Ç¯�¡`¢½£`¤�¢�Þ§­"°®¨PË �+(HG�-%� K -��+(54 K�Î
e Á ¢n±BµI«z¥�¤
f Á «z¥�¤'¢1­�¸Z¡ � °©±�¨©°©¶L¯ �)(54768��9%:�029�: µ`¥
g Á °»« � °®¶D±`¥�¯'­	hp¢�¸�¯�¢1µ�¦�¼
­�¸�¯�°©¥�±B¶D°©±�¯�¡B¢�¤�¢�¶L¯b¥"«i��� �
j Á ¯�¡B¢�±�¨©¢�¯kX <l�m( I K
D'n Á ¢�¨®¶·¢�¸Z¡B¥�¥�¶·¢mX�«z¤�¥§ªØ¯�¡`¢-¶L¯Z­"¯�¢-¸n¨®­"¶·¶·¢n¶b¥"« �+(;4 ¶·¬`¸?¡I¯�¡Q­�¯
D�D Á Xpo<l�+(54 K ­"±Qµ"]FYD¸n¥§±�¯Z­�°©±`¶kXZY
D � Á ¶L¯�¥"¤�¢-¯·¤Z­�±B¶·°»¯�°©¥§±rq < Ë �+(HG�-%� K -��+(54 KZstX�Î
D'\ Á ª�­�¯�¸?¡I«z¤�¢n¢-Þ�­"¤�¶D°©±rqð´D°»¯�¡�¯�¡`¥§¶·¢-°©±u]
D b`Á ¢n±Qµ�«�¥�¤
D�d Á «�¥�¤�ª ­"¸�¯�°©¥§±B¶d«�¤�¥§ªø¸�¤�¥§¶·¶L¹6£S¤�¥~µ`¬B¸?¯b¥"«�­�¨©¨\¶L¯�¥�¤�¢1µ
¯·¤Z­"±B¶·°»¯�°©¥§±`¶
D'e Á ¶·¬B¸Z¡
¯�¡Q­�¯D¯�¡B¢-­"¸�¯�°©¥§±B¶b­"¤�¢-¸�¥§±B¶·°©¶L¯�¢n±�¯D´D°»¯�¡�°©±~Þ§­�¤�°�­"±�¯�¶
D�f ÁP¢n±Qµ�«�¥"¤
D'g ÁP£`¤�¥~µS¬B¸n¢�­Jª�¢?¯�¡B¥~µ�«z¤�¥§ªÚ¯�¡`¢½¶·¢1Ä�¬B¢n±`¸n¢n¶d¥"«P­�¸�¯�°©¥§±`¶�­"¶D°®±�Ö�£Bª�­"³¾¢�¤1Á
�����wv)x>y @ ��x ª�­"¯�¸Z¡I«�¤�¢n¢�Þ§­�¤�¶d°®±rqT´D°©¯�¡
¯�¡B¥§¶·¢-°©±J]
D ÁP¤�¢�£l¢1­"¯
� Á «z¥�¤'¢1­�¸Z¡�£B­"¤Z­�ª�¢?¯�¢�¤{z�°©±�¯·¤Z­�±`¶·°©¯�°©¥�±|q½ÃPz[o<l� Ã
\ Á ¸Z¡B¥�¥§¶·¢�­�£Q­"¤Z­"ª�¢�¯�¢�¤+}�°©±J]4¯�¥Vª�­�¯�¸?¡�´D°»¯�¡
bSÁ z�¶·¬B¸Z¡
¯�¡B­"¯$}Jo<l�+-'G�L���R ËSzQÎ <~G�L��7R ËM}SÎ?Ã
d Á ¢n±BµI«z¥�¤
e Á;¬`±�¯�°®¨p£B­"¤Z­�ª�¢?¯�¢�¤Dª�­"¯�¸Z¡�¶·¢�¯'°©¶D¸n¥§±`¶·°©¶L¯�¢n±�¯
f Á;¢�±Qµ

�0x�{`vp�?���C�bþ�vlw?qzx�yO�V�����?xz{Sy(o~r;w?mp� � � � � �������Ií�qz{So`�?x�w?mpt

�l�QyO|St�x�kJoSê����§k1w§ï

úÛxzxgû�vO�?�(w?mp�(w���knmpypx�öBvp���}o~rJw?mp��o`�?xz{SxzyO|~q�þ�uOt�|SëS����|Sq�{`o~ñ
��x®w�mpt úÉô k§sbqzvO�?ëS���S��õ-x�knmO|~�n�p�?oSy�� � jQxzt�u\�Zo`y �����.�Sû%w?o
{S��yp�"�n|~qzx��Z��o`ê�����k�w�����rÛ�"���"y\k�����|~yO�Yk"�?�§|�w�� uO|~�n|~t��"w?�"��x��Z�§�
oSuÑ�"�n|�w�oS�d��knmp�"tÈ|)rÛ�?o`tøw?mO���ZuÑ��k"x®�\k�o`ê�����k�wdw?�n|~yO�?x®w�x�o`yO�0��ýQñ
w?�n|Sk�w?�§�%xzyðúÛxgûbrÛ�?o`t w?mO�Vw?�n|~xzypx�yO{
�"ýl|St�upq��§�"ï

� oÊxzq�qzvO�Zw?�n|�w?��w?mO��tÈ|~xzyùxzypypo���|~w?xzoSyO�
o~r-w�mp�(t��"w?mpol�F�'ìb�
ì-xzq�q\vO�Z��|Sy���ýp|~t�upqz�-ì�|Sq�ëBñÕw?mpo`vp{Sm
w�|SëS��yIrÛ��oSt�oSvp�D��t�upx��?ñ
x�k"|~q½���¾|Sq�v\|�w?xzoSy4x�yQ�`oSqz�Bxzyp{=|~yù�"ýQw?�"y\�l���÷w��B����ñ·knmO|Syp{S�%�po~ñ
tÈ|~xzy�ï�í)���ZvOt���|�w?�n|~xzypxzyp{Ê�?��öBvp�"y\k����P��� xz�Ix�yOupvlw
xzyBw?o
� � � � ��� ����|SyO�}w�mpx��-mO|S�-k"oSt�uÑoSyp��y`wn�-|S��rÛo`q�qzo�ì��8�

yO|St��C�D�lo vpu��puO�?���¾|Sx�q �dì-���"yOknm �O� �Z|`knë��p�Bw?��x�t(�C�OknmO|~yO{Sxzyp{��
mQvpê��`� yQvlwn�"�
yO|St��C���Z|Sknë �lo�ì-y��\knmO|~yp{`x�yO{��0mBvOê��S� �Z|Sknë��
yO|St��C�'w�x�{`mBw?�"y��\up���"��|Sx�q �'ì-���"yOknm �p� mBvOê��S� w?��x�t(�C�OknmO|~yO{Sxzyp{��
yQvlw����

yO|~t��G� |Supupqz� w?��x�t � up�?����|~xzq�� mQvpê��C� knmO|Syp{Sxzyp{9�
w?��x�t(�S� ì-mp���"q -

� mpxz�Nxzq�qzvO�Zw?�n|�w?�§�T|Ò�?mpoS�?wNup��olk��§�lvp���÷rÛoS�=tÈ|~ëQxzyp{ß|�k"|S�
ì-mp�"��qP����|S�p�}rÛoS��oSuÑ�"�n|�w�x�o`y�oSyOk"��x®wJmO|S�)ê\���"y mQvpyO{}oSy(w�o
|~y}|~uOup�?o`up��xz|~w?��ì-mp���"qÑmQvpê�ï î·ylrÛoS��tÈ|~qzq��`�B�po vpu%xz�'w?mp�JoSupñ
�"�n|�w?xzoSy%o~rPupvpwZw?xzyp{�w?mO��yQvlwn�½oSy}w�mp�JmBvOê�oSr;|Iì-mO�"�"qÇì-mp��y
x®wVxz� �Z|Sknë`����vOu�ï � mp�IyO|St����V�Zv\knmÊ|S��ì-�?��yOknm �O�\mQvpê���|~���
�?�"rÛ�"���"yOk"���Fw�oJ|`k1w�vO|~qBoSê����§k1wn�"ï � mp�'up���"��|Sx�qQoSê ����k1wn�Pm\|¾�S�dw�o
ê\�
yp��k"�����?|S�?xzq���up�����?�"yBw)xzyÊ|ÈuO|S�Zw�xzk"vpqz|S���Zw�|~w?��êpvpwJ���"tÈ|~xzy
vpyO|��Ç��k�w?�§�÷ú 	 ì-�?��yOknm �OóOx���|¾��|~xzq�|~êpqz�S��	 �Z|`knë �OóOx��"�Z|`knëQx�yp{%vpu
w?mp�Jì-mp�"��qÉ� 	 w?��x�t(�`óBx���mQvpê��Só �bì-mp�"��q\w��?xzt |~y\�}mO|`�Dw�o
mO|¾�`�
ê\���"y����"t�o��S�§�Oû1ï � mp���?��oSê����§k1wn��yp������w?oÈêÑ��xzy�uO|~�?w?x�k�vOqz|S�
��wn|�w?�§��rÛo`�)w�mp��|Sk1w�x�o`y�w?o���ýl�§k�vlw��S�F|~yO� w?mpoB�Z����wn|�w���� 	 uO�?�"ñ
�¾|Sx�qÕóPo`�
�Zw�|¾�Nw?mp���?|St����lvp��xzyp{ ��ýl�§k�vlw�x�o`y÷o~r½w?mO��|`k1w?xzoSyPï
� mp�%	 knmO|Syp{Sxzyp{\ó�oSê����§k1w��dknm\|~yp{`���Zw�|~w?��úÛmQvpêP��êÑ��k"oSt����dr6|S�Zñ
w?�"yO����vpu��Qw�mp��yQvlw�����|~���)r6|`��w��"yp�§��vpu\û1ï

88



� oðx�qzq�v\��w���|~w?���Zo`t���o~rJw?mp�Ê�p���Oypx�w?xzoSy\�Èx�y 6Px�yp�ð��oSr�w�mp�
|~qz{So`�?x�w?mOtÚx�y �0x�{`vp�����`�Sì��bmO|¾�`�-k�oSt�uÑoSyp��yBw��0o~rF|~y�oSê����§k1w
|S��rÛo`q�qzo�ì��7�
����� �GH���� 	 vpylr6|S�Zw?��yp���PúÛmQvpê��¾û1�

�Z|Sknë`��� vOuPúÛmQvpê��`� �Z|`knë��`û�

����� �GH �
� 	 oSy {`�?o`vpyO��ú6mQvpê��§û��Qr6|S�Zw?��yp����ú6mQvpê��§û�

����� �GH���� mQvpê

�dýp|St�uOq��§�½o~r;oSw?mp���-oSuÑ�"�n|�w�x�o`yO�-|~����ú6m |~yO� �-|~���Ju\|~�n|~t���ñ
w?�����nû �

����� �GH�������	 vOylr6|S�Zw?��yp����ú6m\û1���Z|SknëS�§� vpu;úÛm�� �?û�

����� �GH�������	 mBvOê�� �Z|`knë�


6�xzyp���%x®w��"�n|�w?�§��w�mp��oSvp{`mN|~qzq w?mO�Iw���|Sx�ypxzyp{���ýp|~t�upqz����ï �OoS�
w?mO�V�O���Zw½w?�n|~xzypxzyp{���ýp|~t�upqz�S�Qw�mp��up��oSêpqz�"tcxz��w�o}�l��w��"��t�xzyp�
ì-mO|~w-w?mp��yp��ì��Zw�|~w?���-|S�?�VoSr;mQvpê���|SyO�%yQvlwn�"�`ï

î·y 6Px�yO���O��q��"w"#���	 ì�� ���¾w��~y���m�
Õï0î·y 6Px�yp�§�*:~ñ��p�§w?mp��up���"��|~xzq
k�o`t�u\o`yp�"yBw��%|~����{`o~wÈrÛ��oSt w?mp�Êk"vp���?��y`w}�Zw�|~w?�Êk"qz|`�?�?����oSr
ì-���"yOknm �O� �Z|Sknë���|~yO�Nw?��xzt��`�P|S�Jxzy=w?mp��oS��xz{SxzyO|~q'þ�uptÈ|~ë`�"�
|~qz{So`�?x�w?mOt�ï � mO�}q�oQo`u÷��wn|~�?w?xzyp{ oSyðqzxzyp����x��
x�yBw?��yO�l�§�Tw?o
�l�"w?�"��t�x�yO�Dw?mO�b�l�§��w�x�yO|~w?xzoSy�oSrp��|`knm�oSê����§k1wPw�mO|�w0xz�0knmO|Syp{S�§�
êQ�}w�mp�I|Sk�w?xzoSy(êÑ�"xzyp{}qz��|~��yp�§�FïDmQvpê���x��-w�mp���O�n��w)knm\|~yp{`x�yp{
oSê ����k1w§ï*�O�?o`tÚw?mO��{`x��`�"y�uO|~�?w?x�|~ql�l�"�Oypx�w?xzoSy�o~r\w?mp���poStÈ|~xzy��
x�w�mO|S��rÛo`vp����wn|�w���k�q�|S���Z�§�bì-mOxzknm�ìb��y\|~t���jÇ��ñ :��

jÇ����	 o`y {S��oSvOyO��úÛmÑû1� r6|S�Zw?�"yO����ú6m\û�
L�
j � ��	 �Z|`knëS��� vpuPúÛmP� �?û�� r6|`��w��"yp�§��úÛm\û�
Õ�
jl�!��	 rÛ���"�BúÛm\û�� �Z|`knëS��� vpuPú6m�� �?û�� vOylr6|S�Zw?��yp����ú6m\û�
L�
j6:"��	 vpypr6|S�Zw?�"yO����ú6m\û1� �Z|Sknë`��� vOuPúÛm�� �?û�


mQvpê��`ó �Vk�vO�?���"yBw���wn|�w?��x��Vypo~w�yp�§k��§�?��|~��x�qz�(x®wn�J�OyO|SqdoSyp�`��|S�
xzyNw�mp��w?�n|~xzypxzyp{(�Z�§ö`vO�"yOk"��x�w�x��V�?�"rÛ�"���?�§� w�o(|S{`|Sx�yüúÛxzyNw�mp�
�?��k�o`yO� oSrDw?mO���?��öBvp��yOk��`�$#��%� � &G@('  ÇûV|`�J|�knmO|Syp{Sxzyp{%o`êlñ
����k�w�ï½����yOk���qzx�yO�}� ��x��-��ýl�§k�vlw����Fï*) k�|~ypyOo~w�êÑ�Ij6: ú6�?x�y\k��
w?mOxz�Vx��Vk�vp���?��yBw?qz��w�mp��{S��yp�"�n|~qzxz��|�w�x�o`y�o~rDw�mp��oSê����§k1w�ó �Vk�vp�?ñ
���"yBw��Zw�|~w?�`�b|~y\�ðw?mO��o`ê�����k�w�m\|S�
w?oðknmO|Syp{S����wn|�w?�(k�q�|S���nû1ï
î·y 6Px�yO�%�S� #+�Èú��,	 ì-�?��yOknm����Z|SknëÇ�Ñw?��x�t(�ÇyQvlw����ÇmBvOê$
gû�k�o`ylñ
w�|Sx�y\��|Sq�q\w?mO�V�?oS�?w��bxzy%��|`knm}o~r0��wn|�w?�Vk�q�|S���?���½jÇ�S�»j ��|SyO��jp�p�
|~y\�%�?o�w?mOxz�-�loQ�§�'ypoSw�y\|~���?o�ìY�lo�ì-y%w?mp�VknmpoSx�k��§�"ïd�)�"yOk"�J�
w?�n|~y\�Zx�w?xzoSyO�-|S�?�V�Zw?oS�������

úÛmQvpêP�pm��-	 vpylr6|`��w��"yp�§��úÛm\û�� �Z|`knëS�§� vpuPú6m�� �?û�
/.
	 oSy {`�?o`vpyO��ú6m\û1� r6|S�Zw?��yp���PúÛm\û�
gû
úÛmQvpêP�pm��-	 vpylr6|`��w��"yp�§��úÛm\û�� �Z|`knëS�§� vpuPú6m�� �?û�
/.
	 rÛ�?���`úÛmÑû1� �Z|SknëS�§� vpu;úÛm�� �?û1� vpylr6|`��w��"yp�§��úÛm\û�
gû
úÛmQvpêP� m�� 	 vOylr6|S�Zw?��yp����ú6m\û1� �Z|Sknë`��� vpuPú6m�� �?û�
 .
	 �Z|SknëS�§� vpu;úÛm�� �?û1� r6|S�Zw?��yp����ú6m\û�
Ûû

îLw?����|~w?xzoSy�o~rFqzx�yO�0�Jì-x�w?mÈo`ê�����k�w  � '1�S�½olk"k�vO���'yp��ýQw�ï îLw'm\|S�
w?mO�?���V�Zw�|~w?�§�8�

� ����	 w?xz{SmBw§úÉò�� m\û�

� � ��	 q�oQoB�Z�Bú6ò�� m\û�

� �!��	 mO|¾�S� yQvlw��§ú6òJû�


� mpx��-qz��|S�O��w?o��
u\oB�?�?x�êOq��Jw?�n|~y\�Zx�w?xzoSyO�7�

úÛyQvlw����pò��2	 mO|¾�`� yQvlwn��úÉò�û�
3.4	 w?xz{SmBw§úÉò�� m\û�
dû
úÛyQvlw����pò��2	 mO|¾�`� yQvlwn��úÉò�û�
3.4	 q�oQo`�?�`úÉò�� m\û�
 û

|~yO�Nmp�"y\k�� �(u\oB�?�?xzêpq���xzyO�lvOk"���T|Sk�w?xzoSyT�?knmO�"tÈ|TúÛqzx�yp��� -Sû�ï
� mp���?���Zx�ý�oSulw�x�o`yO�D|~���½w?mO�"y%knmp�§knëS�§�IrÛo`�'k�o`yO�?xz�Zw?��yOk���ì-x®w�m
w?mp���loStÈ|~xzy�xzyQ�¾|S�?x�|~yBwn�Fì-mpx�knmI|~���'�?mpo�ì-y�x�y �0x�{`vp�?� �lï � mO�
k�oSy���vpyOk1w�x�o`y÷o~r)�Zw�|~w?�%k"oSyO�Zw?�n|~xzyBw��Ix�y÷êÑo~w�m÷w�mp� 6;��jð|SyO�
õ���j(oSrdw?�n|~yO�?x�w?xzoSyO�)o~rdw?mO�
yp��ì-q���rÛo`�?t�����|`k1w�x�o`yÊ�?knmO�"tÈ|
tIvO�ZwPêÑ��k"oSyO�?xz�Zw?��yBwPì-x®w�m�w?mO���?�'xzyB��|S�?x�|~yBw���ï�î·yIk�|S�?���Pì-mp�"���
w?mp���%|~���Vypo~w§�lw?mp��|`k1w�x�o`y���knmp�"tÈ|
xz�)�lxz��k"|S���p���Fï

� mpxz�V�����pvOk��§�Vw?mp�ÈyQvpt
ê\����o~r�oSulw�x�o`yO�Vw�o |��?xzyp{Sqz�}|Sk�w?xzoSy
�?knmp��tÈ|pï � �?olk��§�?�?xzyp{
oSr;w�mp��oSw?mp�����È|Sk1w�x�o`yO�-xzy�w?mp��w���|Sx�ypñ
x�yp{4�Z�§ö`vO�"yOk"� q��§|S�p�}w?oü|÷�Zxzyp{`q�� xzyBw?���?up����wn|�w�x�o`yYo~r���wn|�w��
knmO|~yp{`������|S�(w�mp�ùknmO|Syp{Sxzyp{ÿoSê����§k1wn��x�yQ�`oSqz�S���ß|~���÷|~qzq�xzy
w?mp��x��J�OyO|Sqd��wn|�w?�§�"��|SyO� mO�"yOk"����t�oS���I{S��yp�"�n|~qzx��Z�§� |Sk�w?xzoSy
�?knmp��tÈ|S�F|~���d{S��yp�"�n|�w����Fï3�;xzyO|Sq�qz�S�¾|½mpxz�"�n|~�nknmpxzk�|~q�t���w�mpol�Vxz�
{S�"yO�"�n|�w?�§�}úÛqzxzyp�V�65`û�êQ��k�oSt
êpxzypx�yO{)w�mp��:J|`k1w?xzoSy
�?knmp��tÈ|)xzy
|È�Zxzt�x�q�|~�-r6|`�ZmOx�o`y�w�o�w?mp�IoS��x�{`x�yO|Sq0þ�uptÈ|~ë`�"���?�l��w��"t úÉô k1ñ
sbq�vO�?ëS���S�lõ-x�knmO|~�n�p�?oSy�� � jQxzt�u\�Zo`y �������`û1ï

798+: � äQé ��� â0ã%; 
 âbæ=< � ;`ç��Éã%;

� mp�(t��"w?mpol�4mO|S��êÑ�"��y4xzt�upqz�"t��"yBw?�§�ÿ|~yO�ùt����?{`���4ì-x®w�m
w?mp�Èo`�?xz{SxzyO|~q'þ�uptÈ|SëS�"���?�l��w��"t(ï��=�}|~����vO�Zxzyp{(w�mp�%��|~t��
��ýlu\���?xzt��"yBw�|SqD|~upuO�?oB|SknmN|`�Vìb��vO�?���Nw�o�w����Zw�w?mp�%oS��x�{`x�yO|Sq
�Z�l�Zw?�"t �

> �=�-mO|~y\�QñLk"��|~rgwdw?�n|~xzypxzyp{��Z�§ö`vO�"yOk"��� rÛ��oSt |V��|Syp{S��o~r��loSñ
tÈ|~xzyO�b�Z��q��§k1w?xzyp{I|`k1w�x�o`yO�dw�mO|�w�ì-x�qzqOêpvOx�q��%�?�"yO�?xzêpq��)t��"w?mlñ
ol�p��rÛo`�½w?mO|~w)�loStÈ|~xzy�ï

> �=��v\�Z��þ�uptÈ|~ë`�"� �Vw?o�xzyO�lvOk"�J|`k1w?xzoSy\��|SyO�}mOx�����|S��knmpx�k"|SqúÉ� � ò-ñÕw��Qu\�¾û�t���w?mOoQ�O�½rÛ�?o`tÝw?mO�Vw?�n|~xzypx�yO{��?��öBvp��yOk��§�"ï
> ���Zxzyp{4�Zw�|SyO�p|S���ÿupq�|~yOyp�"�n�"�-ì��Nk"oSt�uO|S�?� uÑ�"�?rÛoS��tÈ|~yOk"�
vO�?xzyp{Êo`qz�ùmO|~yO�lñLk"��|~rgw?���4|Sk�w?xzoSy4��knmp��t�| w?oNw?mp�(vO�?��o~r
xzyO�lvOk"���(��knmp�"tÈ|pï

jQvOk"k"�����½ì-x�qzqFêÑ� ��vO�l{S�§��vO�Zxzyp{�w?mO�VrÛoSqzq�o�ì-xzyp{Èk���x®w��"��xz|��

> îLr'|%�¾|Sq�x�� �?��wJo~rDvpypx�öBvp�IyO�"ì |`k1w?xzoSy\��x����l�"�Oyp�§� |S�J|Sk�ñ
w�x�o`yO�Jw?mO|~w
k"|Sy=�?oSqz�S��w�mp�%��|~t���up�?o`êpqz�"tÈ�Jw?mp�%oS��x�{`x�yO|Sq
w���|Sx�ypxzyp{��Z�§öBvp�"yOk"���½ì��"���J|Sx�t��§��|~w��Ok�|~y � ��������������x�ylñ
�lv\k���w�mp���?�Iì-x�w?mOoSvlwJmO|¾�Qx�yp{}w?o%��yOk�ol�l��|}{`�?�§|�w)�l�§|~q0o~r
xzyQ�¾|S�?x�|~yBwn�bxzyBw?o�w?mO���loStÈ|~xzy�t�ol�l��qz�<�

> î�� x�wdt�o`�?�½�@?Èk"x���yBw xzy�w?���?tÈ� o~rÑ� �ÇoS�?w w?xzt���w�o�k�oSy\��w��?vOk�w
|��lo`t�|Sx�y�vO�?x�yO{ � �������������G�

> î��Vx�w
|�w�qz��|`��w�|`�V�A?}k�xz�"yBw��0xzyNw��"��tÈ��o~r½upq�|~ypypxzyp{(w�x�t��S�
w�o �?�§|Sknmð{`o`|~q���vO�?xzyp{
� � � � �������Ê�l���\yp���÷|`k1w�x�o`yO�I|SyO�
t���w�mpol�p�<�

��uVw?o-yOo�ìNì��DmO|¾�`�0�"ýlu\���?xzt��"yBw?�§�Vì-x®w�m �-�loStÈ|Sx�yVt�ol�l�"q��8�
w?mp�(��ýQw��"yO�l�§�4w��B����ìbo`�?q��F�b|SyO�ùw?mp�(mpxzëQx�yp{ð�lo`tÈ|~xzyßúÉ�Z���
m`w?w?u�� �G��upq�|~ylrÛo`�?t(ï mBv\�Fï |`k~ï vpë��¾{`x�uÑo6��rÛo`���l��wn|~xzqz��o~rPw�mp���?�§û�ï

jQx�y\k��Vx�y\�lvOk1w�x�o`y��Z�§ö`vO�"yOk"���-�l��q�xz�S�����Z���S�"�n|~qÇ|Sk�w?xzoSyO�-|SyO��|
�Zxzyp{Sqz��t��"w?mpol�F��xzypx®w�xz|Sq)�?��öBvp�"y\k�����ì��"���%wn|~xzq�o`�?�§�ðw�o=uO�?oSñ

89



D Á��;Ä�¬`°®Þ�­�¨©¢n±`¸n¢-¦l¢�¯É´ ¢n¢n±
¡~¬B¦ IV��G.R3��9 �cO ­�±QµI±~¬`¯�¶ R_0 :�6�R���1HL�L�GV� ¥§±
¡~¬B¦\Á��� & 6�N8Ti(�� I'��G.R3��9 �cO Ë � Î
	 s�� * & 9�N�R_G ( Ë R_0 :�6%R Ë *J- � Î�
 1HL�L�GV� Ë *u- � Î·Î��
� Á��;Ä�¬`°®Þ�­�¨©¢n±`¸n¢-¦l¢�¯É´ ¢n¢n± U���47� 029 N�GV� ­"±Qµ U���47���cO N�
 Á��� & 6�N8Ti( ��� & U'��47�m(�� U���47� 029 N>GV� Ë � - � Î�	�s U���47���cO N	
 Ë � - � Î��
\ Á��;Ä�¬`°®Þ�­�¨©¢n±`¸n¢-¦l¢�¯É´ ¢n¢n±
¡~¬B¦�±`¥�¯ I��c�.� ­"±Qµ�� 6��.�V1 L	9 ¡~¬B¦\Á��� & 6�N8Ti(�� � I7�.�.� Ë � Î
	 s���� &�� 68�7�V1�( � 6��.�V1 L�9 Ë�� - � Î��
b`Á��;Ä�¬`°®Þ�­�¨©¢n±`¸n¢-¦l¢�¯É´ ¢n¢n± R_��0;� L�9 � 6��.�V1 ­"±Qµ R_��02� L�9 Á� q &�� 6��.�V1 R_�702� ( � � &�� 6��.�V1�(��HR_��02� L�9 � 68�7�V1 Ë�q - �NÎ�	�s R_�702� L�9 Ë�� - q'Î��
d Á-Ö�±B¨»¼
­J¶·°©±B²�¨®¢�¶·¢�¯'¥"«F±~¬`¯�¶d¸1­"±�¦l¢-¥§±�­J¡~¬B¦\Á��� & 6�N8Ti( � *�� & 98N>R_G ( � *�� & 9�N�R_G ( � � Ë R_0 :�6�R Ë *!�	- � Î�
 1HL�L�GV� Ë *���- � Î·Î"

Ë R_0 :�6�R Ë *#��- � Î�
 1HL�L�GV� Ë *���- � Î·Î%$ s�Ë *!�C< *#� Î'&
e Á-Ö�±B¨»¼
­J¶·°©±B²�¨®¢-´D¡`¢n¢n¨O¸1­�±�¦l¢-¥�±�­J¡~¬`¦\Á��� & 6�N8Ti( � � � &�� 6��.�V1�( � � � &�� 6��.�V1 ( �(� � 68�7�V1 L�9 Ë�� � - � Î"� 68�7�V1 L�9 Ë�� � - � Î%$ s�Ë�� � < � � Î)&
f ÁkE½¥§ª�­"°©±�¸n¥�±B¶L¯·¤Z­�°©±�¯�&PÀÉ«F±~¬S¯�¶D­"¤�¢½¯�°©²§¡�¯'¥§±�­J¡~¬B¦
¯�¡`¢n±
¯�¡`¢½¡~¬B¦
ªJ¬B¶L¯ ¦l¢½¥§±�¯�¡`¢½²�¤�¥�¬B±BµOÁ��� & 6�N8Ti(�� Ë)� * & 98N�R_Gi()R_0 :�6�R Ë *J- � Î·Î s L	9 :��ML�N�9PO Ë � Î��
g ÁkE½¥§ª�­"°©±�¸n¥�±B¶L¯·¤Z­�°©±�¯�&P°»«P­�¯·¤�°©ªØ°©¶b¥�±�­�´D¡`¢n¢n¨gÃB¯�¡`¢n±
¯�¡`¢�´D¡B¢n¢�¨Ñ°©¶D¥§±È­J¡~¬`¦�­"±QµI¯�¡`¢-±~¬`¯�¶D­"¤�¢½¯�°©²�¡~¯1Á� � &�� 6��.�V1 ( � q &�� 68�7�V1 R_�702� (+* R_��0;� L�9 � 6��.�V1 Ë�q - �NÎ sË)� � & 6�N8TZ( � 68�7�V1 L�9 Ë�� - � Î·Î " Ë)� * & 9�N�R_Gi(�R_0 :�6�R Ë *J- � Î·Î',

�;xz{SvO�?�8�N� î·yQ��|~��xz|SyBw����"yOk"ol�l����xzy�w�mp���dýQw��"yO�l�§� � �Q�?�(�=oS��qz�

�lvOk"�4|Òt��§|~ypxzyp{SrÛvpqIt���w�mpol�F��|~yO�ø�?v$?}k�xz�"yBw=x�ypx�w?x�|~q��?��ñ
öBvp�"y\k���� ì��"���½k�oSt�uÑo`�?����w?o�k�o��`�"� |~qzqQw?mp�½tÈ|���o`� �?vpêlñÕw�|`�Zël�
w?m\|�w-k�oSvOqz�ÈêÑ�J�?�§ö`vOx�������êQ��w?mO���lo`t�|Sx�yPï0î·y���|`knm%k"|`�Z�-w�mp�
|~{`�"yBw�êÑ�"{B|~y�êB�YëQypo�ì-xzyp{ÿ�loStÈ|Sx�y�ëByOo�ì-q��§�l{S�Nêpvlw�mO|S�
�?ëS��wnknmQ�)oS�;ypoSypñÕ�"ýQx��Zw?�"yBw�r6|`k1wn�P|~êÑoSvpw;x�w��;u\oSw?�"yBw�xz|Sq`|Sk�w?xzoSyO��ï
�po`�Vw?mp�}�DýQw?�"y\�l��� � �B�����No`�?q��Nìb�È�l���Bx��?��� ���Z�§ö`vO�"yOk"���
o~rÇêÑ��w�ì��"�"y��V|SyO� -V|`k1w�x�o`yO� x�yÈqz�"yO{~w?mPï0í�rgw?�"�b|S�p�lxzyp{�5Vxzylñ
��|~��xz|SyBw��bw?o
w?mp���poStÈ|~xzy%ì��Vx�yO�pvOk��§��|��?��w-o~r |Sk1w�x�o`yO�½|~yO�
t���w�mpol�p�I|SyO�TvO�?x�yp{ w?mp�§�Z�}ì��Èup��ol�lvOk��§�ð| �lo`t�|Sx�yTì-x�w?m
���
|Sk�w?xzoSyO�-|SyO� ��t��"w?mpol�p��ï � mp�Vyp�"ì��S�����?x�o`y%ì½|S�bw?�§��w����
o��S��� 5�wn|S�?ëQ�JxzyÊw�ì�o(ì�|¾�l�)ñ-�O�n��w�q�� v\�Zxzyp{ ��vO��wI|`k1w�x�o`yO�Jx�y
w?mO��uOqz|Sypypxzyp{N|SyO�ù�?��k"oSyO�lqz�ðvO�?x�yO{N��x®w�mp�"�%��vO�Zw�t��"w?mpol�p���
oS�-|�k�o`tIêpxzyO|�w�x�o`y%oSrPt���w?mOoQ�O�-|~yO��|Sk�w?xzoSyO��ï � o�x�qzqzvO��w���|~w?�
w?mO�
�����?vpq�w����Çw�ìbo�o~rDw�mp�È|Sk1w�x�o`yO�)w?mO|~wJì��"���IxzyO�lvOk"���ÊrÛ�?o`t
w?mO���?vpyOypx�yO{��"ýp|~t�upqz�Jì��"����|S��rÛo`q�qzo�ì��8�-/.103214351-327698�4�:<;>=3?1-/@�AB6�C�D�EGFIHKJL4�:<;1MON(HP)Q HPSR :T6�U�D�E�H)C�D�EGFGH P 8�4�:<;10L?1=/D�.B6�C�D�EGFIHVJL4�:<;WMWNGHX 4 R 5�03A10L?76�C�D�EGF3N QZY�[P -/A>=3\�2�-/D�A�?B6)C�D�EGFLNGH X 4 R 5�03A10L?B6)C�D�EGFLN Q NGHR :�6S8�4�:<;]H9JL4�:<;>M^H P 8�4�:_;W=�`aA>=aD R 076KJ341:<;>M7HbC�DLEGFLN QcY�[P U>43d�0�=L8�4�:<;]69JL4�:<;>M>N Q N Q H P)Q NTe

-a.10L21435�-32B6b5>`a\LU�5�03AB6�f�2�03A>:aU1M7H�CLD�EGFGH�g�D�5 R FGHSh�21`ji^FLN(HPbR 076�@�2�03AW:aU�H)f�2�03AW:<U1M7H P U143d�0�=/@�2�03AW:aU]6)f�2�03AO:aU�MWN Q N(HR 076�U�D�EBH�C�D�EGFIH P -/A>=/\�21-/D�A�?B6�C�D�EIFLN(H X 4 R 5�03A10�?B6)C�D�EGFLN Q NGHR 076�@�U10L0�k�=35�21`ji+Hbh�21`ji�FGH P 5�2>`jiI=L- X�X 6bh�21`ji�FLN Q N Q HPbR :�6�A�D�5 R H�g�D�5 R FGH P k�-�- R 0^6�g�D�5 R FGH�C�D�E(F3N QcY�[P 5>`/\3U�5B6�g�D�5 R FGH�CLD�EGFLN Q N Q H PlQ NTe
�Ymp�"��� ��vO�Zw
|Sk�w?xzoSyO�Iìb���?�Èv\�Z�§�Tx�y÷uOqz|Sypypxzyp{O� upq�|~yTw�x�t����
rÛoS�È�ZmOoS�?w�uOqz|SyO��o~rVvpu4w?oY� �Êw?oÿ� �N|`k1w�x�o`yO��ìb���?�(|~êÑoSvpw
w?mp�)��|~t���|`�drÛoS�Dw?mp��m\|~yO�Qñ·k��n|�rgw������`�"�n�ZxzoSy�o~rÇw?mO�)�loStÈ|Sx�y�ï
�poS��upq�|~yO��qzoSyp{`�"�bw?mO|SyN� ��|`k1w?xzoSy\�bêÑo~w�m��`�"�n�ZxzoSy\�dw?oQo`ëÈx�ylñ
k�����|S�?xzyp{Sqz��qzoSyp{�w�x�t��§�Dw�oI�Zo`q��`�Sï ��o�ì��"�`�"�Dì-mp���?�)t��"w?mpol�p�
oS�Dk�o`tIêpxzyO|~w?xzoSyO�doSr�|Sk1w�x�o`yO�D|SyO��t���w?mOoQ�O�Dì��"����v\�Z�§��upqz|Sy
w?xzt��§��ì��"���D�Zxz{SyOx®�\k�|~yBw?qz���?mpo`�Zw��"�§ï � mp�drÛvpqzqBupqz|Sypypxzyp{�up��oSêpñ
q���t rÛoS��w?mpx��J��ýQw?��yO�l���N�loStÈ|Sx�y x��V�l���\yp��� w?o�ê\�C�nm?í k"|S�
xz��rÛoSvOyO��w�o�mO|¾�`��w�ì�o �Ñ|�wJw��B�������ÇoSyp��x��)rÛo`vpyO� w?o�ê\� �\|~w
|~yO��k"|Sy�êÑ�½�pýl����êQ�Iv\�Z�-oSrOw?mO��upvpt�u��`ì-mpx�q��ZwDw?mp�-oSw?mp���dxz�
upvpyOk�w?vp�����
|~yO�I�?�§ö`vOx�������w?mp�brÛvpqzqQw��B���bknm\|~yp{`�b�l�§�?k"�?xzê\�§��xzy
w?mp��uO�?���BxzoSv\�d�S�����?x�o`y
oSrÇw?mp�J�loStÈ|~xzyToOï;�)�?xzyp{���vO�Zw�|`k1w?xzoSy\�
ypo)�?oSqzvlw?xzoSy�ì½|S��rÛoSvpyO��w?o-w�mpxz�;up��oSêpqz�"tÚ|~rgw?�"�0�%�-mOoSvp�n�Fêpvlw
vO�Zxzyp{�t��"w?mpol�p��|~yO� ��vO��w-|VrÛ��ì |Sk1w�x�o`yO��|�k�o`�?����k�wb�Zo`q�vpw?xzoSy

90



ì½|S��rÛoSvOyO�(|�rgw?�����S�V�Z�§k�o`yO�p��ï

�dýluÑ�"��x�t���y`wn|�w�x�o`yÊì-x�w?mNw?mp�ÈmpxzëQx�yO{��lo`tÈ|~xzyNx���|�w�|~y=��|S�Zñ
qzx������Zw�|S{S�Sï�í)���S��w�ypoùxzyQ�¾|S�?x�|~yBwn�}mO|¾�`��ê\���"y�|`�p�l�§�ÿw?o
w?mO���poStÈ|~xzy�ï8�Yx�w?mpo`vlwVw?mp�§�Z��ì����lo(ypoSwJ{`��wVvpypx�öBvp�È�Z�"w��
o~rd�"ýl|St�upq��It�|~w?���?x�|~qFrÛo`�)xzyO�lvOk�w?xzoSy�êpvpwJ|~qz����|S�p�%ì���mO|¾�S�
�?�"�"y}|`k1w�x�o`yO�d{S��yp�"�n|�w����Fï �=��xz�p�"yBw?x��O��� -Ju\oSw?�"yBw�xz|SqOt���w�mlñ
ol�p�JrÛoS�Vw�mpx����loStÈ|Sx�yT|~yO�ÊrÛoS�VrÛo`vp��o~rbw?mp�§�Z�Èì���oSêlwn|~xzyp���
��ýp|St�uOq��Ê�?��wn�}oSr�ypo÷q�|~��{S�"�}w?mO|Sy �pïø�)o�ìb���S�"�}w?mp�Ê�prgw?m
{S��yp�"�n|�w���� �%5}��ýp|St�uOq����Z�"w��J�Zo��"x�w?mp���V|��Z�"w�oSr'x�yQ��|~��x�|~yBw��
ì-xzq�q êÑ�
|S�O�l��� w?o}w�mp��|~{S��yBw�ó ��ëQypo�ì-qz���l{`�S�ÑoS�)ì��Iì-xzqzq0v\�Z�
w?mO�"oS���}�����OyO�"t��"yBw½w?oÈ�����lv\k��Jw?mp���"ýp|~t�upqz�V�?��wn��rÛvp�?w?mp����ï

�p��oSt�w�mp�I�����?vpq�w���oSêlwn|~xzyp��� �?o}r6|S��ì��Ik�|~yÊk"oSyOk"q�vO�p��w?m\|�w
|~y |S{S��y`w§�-{Sxz�S��yÿ| 	 ì�oS��ëQx�yO{T�Zw?olknëÇó'oSr�u\oSw?��y`w�xz|Sq�|`k1w?xzoSy
�?��öBvp�"y\k������Q|~yO�Èm\|¾�Bxzyp{��loStÈ|~xzy}ëQypo�ì-qz���l{`�)|~y\�}| 	 ê\��q�xz��r�ó
|~êÑoSvpwdw?mp�)�Zw�|~w?�§�do~rFoSê ����k1wn�dx�w�	 ëQypo�ì���óS|~êÑoSvpwDì-x�qzqOêÑ�)|~êOq��
w?o�{`�"yp����|~w?��x�w���o�ì-yT��ýp|St�uOq��§��|~yO�=vO�?��w?mO�"t+w�oÊ�?vpupupqz�
x�w��?�"q�rDì-x®w�m uO|~�n|~t��"w?�"��x��Z�§��|`k1w?xzoSy\�-w?o��Zvpx�w����S���?��u\oB�?�?x�êOq��
oSê ����k1wDk"oStIêOx�yO|~w?xzoSy�ï jQxzyOk��-t���w�mpol�p�dk"|Sy
êÑ�½rÛoS��t����IrÛ�?o`t
w?mO�}|Sk1w�x�o`yN�?��öBvp��yOk��§�Jw?mp�}|S{S�"yBw��ZmOoSvpq��ÊêÑ�}|~êOq���w?o(upq�|~y
�A?}k"x���y`w�q���|~yO��|~vpw?oSyOoSt�oSvO�?qz�Sï

< � � 
 ã � æ�� å;ä��

� mp�)|Svlw?mOoS�n� o~r=ú 3V|~��qz|SyO�F�Bõ-�`|Sq�qÕ���ßõ-x�knm �����O�§û;mO|¾�S���p��ñ
�S��q�o`u\�§�Ê|��Z�l�Zw?��t9úÕsboSqzq�|~{S��y\û)ì-mpxzknmNq��§|~��yO��w�|`�Zë�t�ol�l�"q��
rÛ��oSt ��ýp|~t�upqz����ï � mO�"xz�
ì�oS��ëNx����Zxzt�x�q�|~�Iw?o=oSvp�n��xzyðw?m\|�w
w?mO�"�È�ZmOo�ìüo`���p�"��x�yp{B�do~rFw�mp��w�|S�?ë
w?o
|`knmpxz�"�S��w?mp�)w�|S�?ëÈ|~yO�
w?mO���?�(k"oSyBw�|Sx�yüêÑo~w?mÿup��xzt�x�w?xz�S�§�È|~yO�4ypo`ylñÕuO�?xzt�x®w�x��`����ï4î·y
ú �=v����'|~yp{\�.���`xz|Syp{ ������-SûPw�mp�)|~vpw?mpo`���d�l�§�?k"�?xzêÑ�)í)õ�ôNjÇ�
|ð�?�Q�Zw?��t xzyYì-mpx�knmYoSuÑ�"�n|�w?o`����|S�?��qz��|S�?yp�§�ùì-x�w?mOoSvlw}w�mp�
yp�����YrÛo`��v\�Z����xzyBw?�"���S��yBw?xzoSy�ïÙ��o�ì��"�`�"��í�õ�ôÊj �?�§ö`vOx������
tÈ|~yQ�4w?�n|~xzypx�yO{ù��ýp|St�uOq��§�%k�o`yBw�|~xzypxzyp{÷��|~qzx�� �Zo`q�vpw?xzoSy �?��ñ
öBvp�"y\k������Q|~yO��up�����?�"yBw�q���xz��k"|SuO|~êOq���oSrFx�yO�pvOk�xzyp{Io`ypqz� 	 �\|�w§ó
�lo`t�|Sx�y\�"ï

þ�vp�½ì�oS��ëÈxz�-|Sqz�?o�|Sx�t��§��|~w�qz��|S�?ypxzyp{��loStÈ|Sx�yO�-k"oSyBw�|Sx�yOx�yp{
êÑo~w?m�|Sk�w?xzoSy}��knmp�"tÈ|I|SyO�Èmpxz�"�n|~�nknmpx�k"|SqO�?knmO�"tÈ|%ú6t��"w?mpol�p�nû
�"y\k"|~u\�Zvpq�|�w�x�yO{=�?�"�`�"�n|~q½�?knmp��tÈ|pï � ��|`k1w?x�k"|SqbuOqz|Sypypxzyp{=�po~ñ
tÈ|~xzyO�V|~���
ê\|S�?��� o`y 	 mpxz�"�n|~�nknmpxzk�|~qPw�|S�?ë�yp�"w�ìbo`�?ëÇó ú6� � òJû
�l�§k�oSt�uÑo`�?x®w�x�o`y�ï � mp��knmOx��"rb�lx+�Ñ���?��yOk��
ê\�"w�ìb���"y w�mp��� � ò
uO|S��|`�lx�{`t |~yO�4k�q�|S���Zx�k"|Sq��lo`tÈ|~xzyO�Ix��
w?mO|~wÈx�yùw?mp��rÛoS��t��"�
	»k�oSt�uÑoSvpy\�FóÑw�|S�?ël��k�|~y êÑ�È�l��k"oSt�uÑo`�?����xzyBw?o�w?mp���Zxzt�upqz�"�
	 w�|S�?ël�"ó\uO|~�?w?x�k�vOqz|S�-w?o%k"qz|`�?�?x�k"|~q;�loStÈ|~xzyO��ï���o�ì��"�`�"��� � ò��
k"|Sy�ê\�)�px ?}k�vOq®wDw�o�k�o`yO��w��?v\k1wDtÈ|~yQvO|Sq�qz�I|~y\�È|~vlw�mpoS�n� mO|¾�S�
ì�oS��ëS����x�y�up��oQ�pvOk�xzyp{�w?mp�§�Z�½vO�?x�yO{�t���w�mpol�p�0rÛ��oStÚtÈ|Sknmpxzyp�
qz��|~��ypxzyp{Oï�î·y ú6�'�?o`qÉ���)�"yO�pq������8�hò)|Sv ���	� �`û%w?mp�÷|Svlñ
w?mOoS�n�}|~��{Svp�(w�mO|�w�� � ò�o`u\����|~w?oS�n�È|~����t�oS������ýlup�������Zxz�S�
w?m\|~yTw?mOo`�?�}o~r�k�q�|S���?xzk�|~q'�lo`tÈ|~xzyO��|S�Iìb��q�q�|S��êÑ�"xzyp{ t�o`�?�
�A?}k"x���y`w§ï � mO�"oS����w�xzk�|~qFvpy\�l�"��upxzypypxzyp{�rÛoS� 	»��xz{Sm 6P�"�`�"qPí�k1ñ
w?xzoSy\�"ólú6�96Pí���ûPxz�0up�����?�"yBw�����xzy úÉô |~�?w?mOxÉ���=oSq�rÛ�S��� õ�vO�?�?�"qzq
�������Sû1ïd�'|`knm�� 6;íÚ|S�lt�x�w��-o`yp�VoS�-t�oS�����$���! ��� �D ' �'xzyBw?o
�?��öBvp�"y\k����%o~r�|Sk�w?xzoSyO���-ì-mp���?�=|~y |Sk�w?xzoSyYt�xz{SmBw�êÑ�Êmpxz{Sm
qz�"�S��qVoS��up�?xzt�x®w�x��`�Sï � mO�NuO|Su\���(x�yBw?��ol�lvOk"����|ùup��o���|~êpqz�
�?oSvpyO�Y|SyO� k"oSt�upqz��w?�N|~qz{SoS��x�w?mpthì-mpx�knmYxz��x�t�upqz�"t���y`w����
vO�?x�yO{ü|ÿj � õ-î � jBñÕqzxzëS�Êq�|~yO{SvO|S{S�Sï � mp�T|~qz{So`�?x�w?mOt w�|~ë`���
|S�p�¾|SyBw�|~{`��o~r 	»�Zo`vpyO��|~y\��k�oSt�upqz��w��SóÑ�l����k���x�upw?xzoSyO��|~yO�F�\x®r

�ZvOk�k��§�?�ZrÛvpqÕ�`����w�vp�?y\�'|�up��xzt�x�w?xz�S�)�?�"�Oyp�"t���y`w�o~r��?oSt��)mpxz{Smpñ
q����S�"q½upq�|~y\�Iw�mO|�w}|`knmpx����S�§��w�mp�({So`|Sq��?��w�rÛ��oSt w�mp�(x�ypx�w?x�|~q
��wn|�w?�`ï

î·yßúÉò�� �Z|~w?xÕ��6P|~yO{Sqz�"�S���4�Vo`ypxzë%�����%�Bûlw�mp�'|~vpw?mpo`���F�l�§�?k"�?xzêÑ�
mpo�ì w?mp���=xzyO�lv\k��,' ��)+�<@��$� �%��'�

� � )K@��	
 � � �B@����$���9�VrÛ�?o`t �"ýQñ
u\���Zwbw?�n|Sk��§�"ï � mp�)w?��q���oS����|Sk�w?xz�S��up�?o`{S�n|~tÈ�dxzyO�l�"ý}t��"w?mpol�p�
êB�Êw?mp�È{`o`|Sqz�Jw�mp�"�T|Sknmpxz�"�`�Sï � mO�"�Êv\�Z�Èt���w�mpol�p�I�p�"��x��`���
rÛ�?o`t*��ýlupq�|~y\|�w?xzoSyßêO|`�Z�§��qz��|S�?yOx�yp{üw�oÒknmO|~xzyßêO|SknëQì½|~�n�p�
rÛ�?o`t w?mp�Ê�"yO�ü�����?vpq®w}oSr�w�mp� ��|~t�upqz�(w?�n|Sk��`ï � mp���"ýQuOqz|~ñ
yO|�w�x�o`y÷��w��?vOk�w?vp���}w�mQvO�Io`êlw�|Sx�yO���ðx��I����wn|~xzyp���ðw?o up��ol�lvOk"�
yp�"ìÚmpxz�"�n|~�nknmpx�k"|Sq;�Zw?��vOk1w�vp�?�§�"ï � mp��t���w�mpol�Êx���|Supupqzx��§��w�o
	 ���"uÑo~wn�"óÑì-mpx�knm x�yQ�`oSqz�S���)k��n|�w?�§�-w�mO|�w�k"|Sy�ê\��q�oB|S�l�§�(x�yBw�o
w?��vOknël�P|~y\�I�Zw�|Sknë`���Fï;��o�ì��"�S����w�mp���poStÈ|~xzyI�?o�k�o`yO�Zw?��vOk1w����
�?�§�Zvpq�w?�§�Ixzy�w?mO���ZvOk�k��§�?�ZrÛvpqO�?oSqzvlw?xzoSy�o~rÇ�S���?��rÛ�"ìÿup��oSêpqz�"tÈ��ï

�pvp�?w?mp���dw?mO�"oS����w�xzk�|~q\ìbo`�?ë�o`y}� � òÒupqz|Sypypxzyp{�x��Dup�����?�"yBw����
x�yÿúÛî·qz{SmO|St�x���'%��)+*�������-`û1ï � mOxz�VuO|Su\���Vx�yBw?��ol�lvOk"���V|�rÛoS�?ñ
t�|Sq�x��?t ì-mp���?��êB���Zx�w?vO|~w?xzoSyO�)|~���Jt�ol�l��q�qz���(ì-mp���?�V{`�"yp����|Sq
x�ylrÛo`�?tÈ|~w?xzoSy�x��d|¾��|~xzqz|Sêpq��bo~r\w�|S�?ël� |~yO�
�ZvpêpñÉwn|S�?ëQ���¾w?o`{S�"w?mp���
ì-x®w�mÊ�Zo`t��Iupq�|~y�w���|`k��§��êpvlwJw?mO�"���
|~���IyOo��l�"w�|~xzq��"ï�î·y w?mO�
��|~��qz�
ì�oS��ë
|Sq�qÑx�yprÛoS��t�|~w?xzoSy%|Sê\o`vlwbt��"w?mpol�p��ì½|S�D����öBvpxz�����
��ýpk���ulw
rÛo`��w?mp��up����k�o`yO�lx�w?xzoSyO��ï � mpx���q�xzt�x®wn|�w�x�o`yùx��
o��`�"�?ñ
k�oSt��½xzyÈqz|~w?�"�dì�oS��ë�êQ��w�mp����|~t��-{S��oSvpu(úÛî·qz{Sm\|~t�xÉ�`ò)|~vP���
ô�vpypo���ñ·í��Qx�q�| �����%�Bû-|}yO�"ìø|~qz{So`�?x�w?mOt 	»�)�%6Dódú6� � ò���o~ñ
t�|Sx�y 6��§|~��yp�"�1û-x��Vup�����?�"yBw?�§� ì-mpx�knmNqz��|S�?y\��� � ò �poStÈ|~xzy
�l����k���x�upw?xzoSyO�;rÛ��oSt uOqz|SyIw���|`k�����ï �b�"w�ìb���"y!���J|~yO� ������upqz|Sy
w?�n|Sk��§�½|~���J����öBvpxz�����Èw�oÈx�y\�lvOk��Vw�mp���l�§�?k"�?xzulw?xzoSy\�"ï

� � ò-ñ·ô í����'õ�xz�%up�����?�"yBw?�§�4xzyøú6�)oS{`{ � ô vpypo	�"ñLí)�Qx�q�|
�������~û�ï � mpx��D����k"�"xz�S���'|S�Dxzypupvpw�|Ij � õ�î � jÈ�lo`tÈ|~xzyÈt�ol�l��qÉ�
|�k"oSqzq��§k1w?xzoSyNo~r-j � õ-î � jÊupq�|~yO��|SyO�Êw�|S�?ë �l�"�Oypx�w?xzoSyO��|SyO�
up�?ol�lv\k�����|~y � � ò �lo`tÈ|~xzyYt�ol�l��qÉï � mp�Ê�"ýlu\���?xzt��"yBw�|Sq
mB�QuÑo~w�mp���?xz�'xz�'w?m\|�w�|~rgw?����|VrÛ��ì up��oSêpqz�"tÈ�'mO|¾�S��êÑ�"��y%|~y\|~q�ñ
�Q�?���I|~y
� � òÿ�loStÈ|~xzyIt�ol�l��qBì-xzqzqBêÑ�½vpq�w?xzt�|~w?��q���o`êlw�|Sx�yp�§�
|~êpqz��w?o��Zo`q��`��t�o`�Zw��Zo`q���|Sêpq��Iup�?o`êpqz�"tÈ�"ï�í �S�����?x�o`y(o~rdw?mO�
q�o`{Sx���w�xzk���ñÕw?�n|~yO�?uÑoS�?w�|�w�x�o`y
�lo`tÈ|~xzyÈxz�bknmpo`�?�"y�rÛoS�'w?mp����ýluÑ�"�?ñ
x�t��"yBw%|SyO�ü{SoQol�ù�����?vpq�w��}|S�?�(oSêpw�|~xzyp�§�FïÒ��o�ì��"�`�"��w?mO���?�
{SoQol�È�?�§�ZvOq®wn�b|S�?��ypo~w��?��upq�x�k"|~w?�§�ÈrÛoS�bw?mO��êpqzolknël��ñLìbo`�?q��È�loSñ
t�|Sx�yPïøþ�yO� up��oSêpqz�"t xz�%w?mp�Êqz|S�?{`��yBvOtIêÑ�"�%oSr�t��"w?mpol�p�
ì-mpxzknm
mO|¾�S�'w?oJê\�½qz��|S�?yp�§�F��ì-mp���?��oSyp��t���w�mpol�It�xz{SmBw �?vpêlñ
�Zvpt��V|~ypoSw?mp����ï � mp���}�Zvp{`{S�§��w½knmpoQo`�?x�yp{�w?mp�Vt�o`�Zwb{`�"yp����|Sq
t��"w?mpol�(ì-mp���?��w?mpx���x��-w�mp�
k�|S�?�Sï-í�ypoSw?mp���)up��oSêOq���tcx��-rÛo`�
w?mp��upq�|~yOyp�"�Èw�oðvO�?��t��"w?mpol�p�}x�y |Syüxzyl�OyOx®w��"qz�4����k"vp���?xz�S�
t�|Sypyp����ï

� å;âbè��Lç/;`éÉå0â/;

þ�vp��ìbo`�?ëð|~y\�÷w�mp���?�§�ZvOq®wn�
���"uÑoS�?w?�§�÷mp���?���l��u\��yO�üoSyü|
��w��?vOk�w?vp�����
�Qx���ì4oSrÇ�poStÈ|~xzy�ëByOo�ì-q��§�l{S�½|~êÑoSvlwDo`ê�����k�w��dêÑ��ñ
x�yp{}|¾��|Sx�q�|~êpqz�Sï �Ymp���?�§|S�-xzy�up��oSuÑo`�?x®w�x�o`yO|~qÕ�Ok�q�|S���?xzk�|~q�upq�|~ypñ
ypx�yO{%��wn|�w����)|S�?�Vr6|Sx���qz��|~��êpx�w?�n|~�����?��wn��o~rdup��oSuÑo`�?x�w?xzoSyO���pì��
|S���Zvpt��-w�mO|�w�w?mO�J�?uO|Sk"�)oSr;��wn|�w����bxz�b�?�§��w��?x�k1w����Èxzy}w�mO|�w½oSêpñ
����k1wn�V|~���
up����ñ·k�o`yOk���x��`����w�o�m\|¾�S�
|%�pýl���N�Z�"w�o~r'upq�|~v\�Zxzêpqz�
��wn|�w?�§�"ï �Yx�w?mpxzy w�mpxz��rÛ�n|~t��"ì�oS��ëÇ�-ìb�NmO|¾�S�N�l����k���x�êÑ���Ò|
t��"w?mpol�NrÛoS�Ix�yO�pvOk�xzyp{ |Sk�w?xzoSyð��knmp�"tÈ|�w?m\|�wI|S�p�¾|SyOk��§�Vw?mO�
��wn|�w?�)o~rÇw?mp�J|~�?wDx�y}w?mO|~wbx�w'�?�§öBvpx������Dypo�xzy`w��"��t����lx�|�w��)��wn|�w��
x�ylrÛo`�?tÈ|~w?xzoSy��po`�)q�|~��{S�VyQvptIêÑ�"�n��oSr w?�n|~xzypx�yO{È��ýp|~t�upqz�����pw�o

91



xzyO�lvOk"��|
��|Sq�x��(|Sk1w�x�o`y���knmp��t�|��?��w§ï!�pvp�?w?mp�����OoSvp�-up���"qzxzt�x�ñ
yO|S�?���?�§�Zvpq�w��;�ZmOo�ìÊw�mO|�w;w?mp�DmOx�����|S��knmpx�k"|Sq~t���w�mpol�p��xzyO�lvOk"���
ì-x�w?mðw�mp�%|Sk�w?xzoSy÷��knmp�"tÈ|�k�|~yðqz��|S�=w�o t�oS���È�A?}k�xz�"yBw
�po~ñ
tÈ|~xzy(t�ol�l��qz��ï

þ�uptÈ|~ë`�"� ��xz�J|~yÊx�t�up��o��S��t���yBw)oSy=þ�uOt�|SëS���)xzy w?m\|�w)w�mp�
q�|�wZw��"� ����öBvpxz�����(xzy`w��"��t����lx�|�w��÷��wn|�w?�ðxzylrÛo`�?tÈ|�w�x�o`yß�pvp�?xzyp{
qz��|~��ypxzyp{OïIþ�uptÈ|SëS�"� ��|~vpw?oStÈ|~w?x�k"|~qzqz��xzylrÛ������w?mOxz�Jxzy`w��"��t���ñ
�lx�|�w��
�Zw�|�w���xzylrÛoS��tÈ|�w?xzoSy |SyO��w?mO�"yÊuO�?olk������p��x�y�w�mp�
��|~t��
r6|S�?mpxzoSy |`�Tþ�uOt�|SëS���N|~y\�øxzyO�lvOk"���Êw?mp�ÿ�?|St��ùoSuÑ�"�n|�w�oS�
��knmp�"tÈ|pïÒþ�uptÈ|SëS�"� � k�|~yüq�o`{Sx�k"|Sq�qz�ðê\� �?�"��yü|`�È|T�ZvpuÑ�"�?ñ
�?��w
oSrJþ�uptÈ|~ë`�"�§�;ì-mp���?�%w?mp����ýQw?�n|(rÛvpy\k1w?xzoSy\|~qzx®w��Txzyüþ�ulñ
tÈ|~ë`�"� �(�?��t�o��S����w?mp��yp�����ðw�oN|`�Zë=w?mO�%w���|Sx�yp���IrÛo`�
t�o`�?�
xzylrÛoS��tÈ|�w?xzoSyPï

þ�vp�-�"ýQuÑ�"��xzt���yBw��½ì-x�w?m�w?mp� m���xzëQx�yp{È��oStÈ|~xzyTo��?mpo�ìYw?m\|�w
rÛvp�?w?mp���ü�p�"�S��q�o`upt��"yBw4yO�"���O�÷w�o êÑ�ÒtÈ|S�l�Òw?o�w?mp�Úþ�ulñ
tÈ|~ë`�"� �½|~qz{SoS��x�w?mptØ�Zo�w?mO|~w0x�w0k�|~yIk"oSuÑ�Dì-x®w�m
�lo`tÈ|~xzyO��ì-x�w?mm?�Zw�|~w?x�k/o
ëQypo�ì-q��§�l{S�`ï

WÿC��nC�MOCPa)8ÇCP@

�'�?o`qÉ�§��ïK�~�)�"yO�pq������ �\ïK�~|SyO��ò)|Sv����Iï�jÇïp���	� �pï`sboSt�upqz��ýlx�w��
õ����?vpq®wn�ÈrÛo`��� � ò � q�|~ypyOx�yp{\ï��� 9 ��) �(@ ���,��' � � � ��'�
 � �
�? &��9� ' 
 � � 
 ��) !  ' ��) ) 
 �.�D �2� �	����5S�Oï
3V|S�?q�|~y\�F�;õ-�B|~qzq��0|~yO�Tõ-x�knm�ï������p�`ï 6P��|~��ypxzyp{�mpx�����|S��knmOx®ñ
k�|~qÇwn|S�?ë}t�oQ�p�"q��-êQ���l�"�Oypxzyp{È|~yO�������Oypxzyp{���ýp|St�uOq��§�"ïdî·y
# �B@6� � ��& 
  � � @ ��' � �
	 
 ��� '�!D ' � �  ���'�
-@& ���) 4!@? 6� ���$�D � � @& 
�  @ ' )+��& �.� 41� � ' � �$�"ï
�)oS{`{O�~s�ï��~|SyO��ô�vpyOo	��ñ·í��Qxzqz|O����ï��������Qï�6P��|~��ypxzyp{)�)x�����|S�Zñ
knmOxzk�|~q � |S�?ë�ò��"w�ìbo`�?ël�FrÛ��oSt � qz|Sy � ��|`k�����ïSî·y # �B@�� �2��& 
  �(�
@ ��' � � !�4��9#{�
� ����� @��$� � � @2� @? ��9� '�
 � � 
 ��)"!D ' � ) ) 
 �.�8 � �
# )+�& 9 
  � �& & 5 � ���  
  �~ï
î·qz{Sm\|~t�xÉ�-þ
ïK��ò)|~vP���
ï�jÇïJ�)ô�vOo	��ñ·í��Qxzqz|O���IïK��|~yO�ÿí�m\|p�
�
ï �Úï ������-lï 6P��|~��ypxzyp{ðup����k"oSyO�lx�w?xzoSy\�ÈrÛoS��upq�|~ypypxzyp{
rÛ��oSt�uOqz|Sy w?�n|Sk"���J|~yO�N� � òÙ�Zw?��vOk1w�vp�?�`ï 4!@�� � � ' ��'�
-@& ���)
!D ' � ) ) 
 ���8 � �:�p�`ú :Qû � �%5 5��Ñ�7:`�Oï
î·qz{Sm\|~t�xÉ� þ
ïK�0ò)|~vP�;�
ï;jÇïJ�0|SyO�Nô vpypo	�"ñLí)�Qx�q�|p�P�Iï������ �pï
6P��|S�?ypxzyp{-w�oJ�po)mBw?y
upqz|Sypypxzyp{OïBî·y�# �B@6� � ��& 
  � � @ � ' � �k� 
����
' � �D ' � !  ' ���  ��' 
-@? ��)%4!@& �� � �$�8 � � @? �� � ' @�� ��' ��& # ) �& ��
 
  � �& &u� � � ��& � ) 
  �S�\�	�����%���S�pï
6Px�vP�Ç�
ïz�P|~yO�Êô k§sbqzvO�?ëS�"�`� � ï�6'ï �������pï � mp�}þ�s 6 6P|Sylñ
{`vO|~{`�JôÊ|~yQvO|~qÕ���d�"�n�?x�o`yN�`ï �pï � �§knmpypx�k"|~qF���"uÑoS�?w��p���"u\|~�?wZñ
t���y`w�o~r�sboSt�upvpw?xzyp{�|SyO��ô |�w�mp�"tÈ|~w?x�k"|~q jlk�xz�"y\k������Ç��ypx�ñ
�`�"�n�Zx�w��Èo~r ��vO�O�l�"�n���\�"q��Nï
ôÊ|~�?w?mpxÕ���JïK� �=oSq�rÛ�S� �OïJ�0|SyO�Tõ-vO���Z��q�qÕ�0jFï �������QïÈjQ��t�|Sylñ
w�xzk��JrÛoS�I�)x�{`mlñLq����S�"qDí�k1w�x�o`yO�"ïÈî·y # ��@6� � ��& 
  �(� @ ��' � � !  ��
' ���  ��'�
-@& ���) 4!@& �� � �2�D �2�/@& �� � ' @�� ��' ��& # )+�? � 
  �
�? &
� � � ��& � ) 
  �� !�4��9#{� �!�"���"ï
ôÊk§sbqzvO�Zë`�"�`� � ï"6DïJ��õ-x�knmO|~�n�p�?oSy��'òIïD��ïJ��|~yO�ÿjQxzt�uO�Zo`y��
õ�ïOôðï �������pï í)y(î·y`w��"�n|Sk�w?xz�S��ô���w�mpol��rÛoS�-î·yO�lv\k�xzyp{�þ�ulñ
����|~w?o`��������k���x�ulw�x�o`yO��ï�î·y$# � �u� 
���' � !D ' � �  ���'�
-@& ���) 4!@& ��
� ���$�8 � � @& %�9� '�
 � � 
 ��)�!  ' ��) ) 
 ���8 � �(# )+�? � 
  � ��& � ' ���9�nï
ò)� �Z|~w?xÕ�pò�ïJ� 6P|~yO{Sqz�"�S� � ïJ�p|~yO���VoSypxzëÇ� � ï �����%�pï 6���|S�?yOx�yp{
mOx�����|S��knmpx�k"|Sqdw�|`�ZëTyp�"w�ìbo`�?ël�IêB�To`êO�Z���?��|~w?xzoSy�ïNî·y !�4'� 5
� �)(+* # �B@�� � � & 
  �(� @ � ' � �J��,�� & 
  ' ���  ��' 
-@? ��) ��@? 6� ���$�8 � �

@& -�,�%� � 
  ���)+� ���  
  �S� � ��-��������lï½ò���ì �Do`�?ëÇ�Çò ���Ñ�Jjlí��
í)s�ô � �������"ï
jQxzt�u\�Zo`y��\õ�ï\ôðïK�Ñô k§sbqzvO�?ëS���S� � ï 6DïJ�/.ÑmO|SoO� �ÚïJ�\í)�Bqz��w?w��
õ�ïbjÇïJ��|SyO�ü�)o`ypxz|~w��)s�ï&�����p�`ï 3Jî � þ �'í�yÿî·yBw?��{S�n|�w����
3J��|Supmpx�k"|Sq � oBo`qPw�o��?vpupuÑoS�?wJ�Vypo�ì-qz���p{S���DyO{Sxzyp�"���?xzyp{}xzy
í�î � qz|Sypypxzyp{OïÇî·y # �B@�� � � & 
  �(� @ �:' � �0( ' � � � �B@ � � �? 4!@? ��
� � �2�D �2� @& # )+�? � 
  �~ï
jQxzt�u\�Zo`y���õ�ï'ôðï&������-pï 3JxzuÑoð{S�n|~upmpx�k"|Sq½x�yBw?���Zr6|`k��(rÛo`�
upq�|~ypypxzyp{}ì-x�w?mNoSê����§k1wn�"ï-î·y # �B@6� � ��& 
  � � @ � ' � � !D ' � �  ����
' 
-@? ��)�4!@& �� � �$�8 � � �D@�� �  �@ ' )+��& ���$�  � 
  ��2��� 
  � 
  �# )+�? ��
 
  � �? & � � � ��& � ) 
  �~ï
�NvP����ïJ� �'|~yO{O�%1
ïJ�Ê|~y\� �`x�|~yp{\� �
ï �����.-lï í���tÈ�8�
í)k�w?xzoSylñL�?��qz|~w?xzoSy�t�ol�l��q�qzxzyp{��?�l��w��"tÙrÛo`�-q��§|~��ypx�yO{
|Sk�öBvpxz�?x�ñ
w?xzoSy(t�ol�l�"q��"ïdî·y # �B@�� � � & 
  �(� @ � ' � �2	 
 ��� ' !D ' � �  ���'�
-@& ��)
4!@�� � ��' 
 '�
-@& @& �  @ ' )+��& �.�u�  �	
  � ��� 
  �9�D@��3� ! # )+�? ��
 
  �~ï

92



���������
	��
�
����������������������������� �"!#���$���
%��&���
��%(')�*�+�,�-�.���*�0/21�1��
��34�&�.���#�5/6�.�����7���8/2�
'9���*�����
��%

:<;>=?;�@BADCFEHG,IKJ�LNM
OQP�RTSUSWVNSWX.YZS\[-]_^Q`HacbTd?e�bgfihjbTdWacbTk
k
lHacbTd

m RTk�n�bTacoWk
lqpHar`ts?S�X�u�^_fTfTk
l�ptv_k
Vcf w_u�^_f_fQk
l�ptvgk
Vxfyu{z�|*}\z{u�w_n,~
Vrk
k��{RU^_fN� eWPW� ^_�

���+�
�
���T�W�

�����t�K���F�K�
�Q�q�����<���\�W�t�������t�K���\�t �¡\¢���£� 
¤i�\��¥��¦�W�¦�\§
���\�q�t�K�H�¨�©�Z�¦�j¤x�ª�
����¡K¢��{�t *�
�K�K¢©«­¬Z���\¢r�
�K�\�¦�\§>�t��¥®�K�K 
¢� �§
«
¯ ����°� 
¢¦°����K§#¥�±\���t�q���t¢©«i�ª°��
��¢r�
¡K¢����K¢¦�
�K�K���\§­���K§
���K���®²¨�t ­�
�
�
�K�\¢¦��¥ª���t�� ����
�t�ª��³�´����\�q°���¢� ��µ�� �£���¥q�t�©�t�q�t�¦�?¡U�
�����µ 
�
£� 
�t��°����t�¦ 
�g¶��t��¥®�K�\ �¢� �§
�¦¥��
¢W�¦�W¤c�®�
�·���t±K¥q�t±W�t�.�
�K�,¸��K ª��¢��ª�W§��
�q�K§����\���q�t���K§��
���Q��¥q�t�� 
¤N�
�"�
�K�K¢���¥ª���t�¦ 
�g¶K�
�K�����4§
 > ����t 
�
�K�\¢�«#�t�K������¥q�t�©�t�q�t�¦���t ��¹�� *�
�K�\¢¦��¥ª���t�� ��i�
�t�ª�
��³»º��\�,¥H�t��¼
�t�H�t�r�#¡Q 
�t���K��¢��i�t #��°
�
¢�±U���t�&�t�K�> �°��H�®�
¢�¢N¤x�ª�
���¦¡\��¢¦�©��«�¶ �
�K�
���*¥ª�
���������K�q�t�¨�\��°���¢� ��K£��q���$¥� 
���t�¦��±\����¶��K��¢���±K�$�t �¤c �¥�±K�
 
�i�t�\�>�U�����t�, 
¤��t�K�&�
�\�K¢���¥ª�
�t�� ������\��¥H�y�
�t��¢���¸���¢©«?�t ­¡Q�
£� 
�·�.���t �±\¡K¢����� �£��
³

½\¾Z¿QÀTÁ4Â G{A ¿TÃtÁj¾

Ä bÅlHk�P�k
bK`�Æ Ä P�SWbTXÇk
lqk
b_P
k
pFÈ Ä Y¨Æ,É¨O�w�h¨Y¨Æ Ä®Ê `qRTk
lqkËR_e�oWk
Ì k
k
b-e�bU^T[ Ì k
lDSWX_ÍZS\lH�QpHRTSW]gp fQk
o\S�`qk
f>`qS{Æ Ä ]TVceWbTbTacbTd{eW]QÎ
]TVcacP
e�`qarS\b_p
wKe�b_f Ä Y¨Æ{ÉZO-ar`qpHk
VrX�d\aro\k
p.eWb­e�Í»e�l�f�`HS"Ï Ì k�pt`ZeW]QÎ
]TVcacP
e�`qarS\b Ï�]_e�]Ðk
l��DÑÒR_arVck»[­eWbUs*e�]T]TVcaxP
e�`qarS\b_p$`Hk
bgf*`qS Ì k»arb
Æ Ä Î·lqacP�R�k
bKoUaclHS\bT[­k
bK`qpDp®^gP�R�eWp+OU]_eWP
k m k
P�RTb_SWVcSWdWs\w
`qRTk
lqkjaxp
e�d\lHS�Í4acbTd Ì SQfQs�S�X_eW]T]TVcacP
e�`HacSWbgpNXÇlqSW[Óe�Í4axfQk
l+l�e�bTd\k�S�X_eWl®Î
k
e\p
��ÆÔbTS�`�e Ì Vck>k�ÕTe�[­]TVck�acp4`HRTk�O Ä Æ{z{hjÖ×ÈÙØ�fQk
Ú�Î®Û{Vraco�e�lqk
p
Ü
Ý&Þ�ßcà�á�â\âWã Ê ]TlqS�ätk�Pª`�w$fQk
o\k
VcSW]TacbTdy`HSUS\Vcp&XÇS\l�RTk
Vc]TacbTd�]gk
S�Î]TVckF`HSå[­eWb_e�d\k�XÇS\lHk�pt`yv_lqk�vgdWRK`HacbTdålHk�p®S\^TlqP
k
p
�×OUk
o\k
l�e�V
S�`qRTk
l»bTSW`qe Ì Vrk�eW]T]TVcacP
e�`HacSWbgpZÍ¨k
lqk>fQk
pqP�lqa Ì k
fiacb�`qRTk>lHk�P�k
bK`
Ä Y¨Æ,É¨OåÏ æµS�oKacbTdµÉjVceWbTbTacbTd�e�bgfçOQP�RTk
fT^TVracbTd�`qS�`HR_kiè4k�e�V
ÑFSWlqVcfNÏWÍZS\lH�QpHRTSW]yÈÙæ�s\k
l�p Ü�Ý.Þ�ßcà�á�â\âKé Ê �Du,S�ÍZk
oWk
l�w�Í¨k�pt`qarVcVe�]_]gk�e�l*`qS Ì k�oWk
lHs�XÙe�l-e�Í¨e�sµXÇlHS\[2`qRTk�]ÐSWacbK`#Í4RTk
lHk�eW^QÎ
`HS\["e�`Hk�f�]_VceWbTbTacbTd�`qk
P�RTb_SWVcSWdWs�P
e�b Ì k-XÇl�e�b_P�RTaxpHk
f�`qS�`qRTk
pHS�Xê`tÍ»e�lqk{k
bTdWacbTk
k
lHacbTd­P�S\[-[#^TbTar`tsW�

Û{^Tl"Í¨SWlq�ëacp­[­SW`Haco�e�`Hk�f Ì sçacbUoWk
p®`Hacd\e�`HacSWb_p-acbK`HSF`HRTk�^gp®k
S�X¨Æ Ä ]TVxe�b_bTarb_diacb�Vxe�lqdWk
Î·pqP
eWVrk�ì�í�î Ý�ï í ß eW]T]TVcacP
e�`qarS\b_p
��Æ,^QÎ`HS\["e�`Hk�f�e\pHpHk
pqp®[­k
b\`»e�b_fi]Tlqk
fQaxPª`qarS\b�oUaxe*[­SWbTar`HS\lHacbTd­e�b_f
[­SQfQk
VcVracbTdiacp&ðK^Ta¦`qk�Í¨k
VcV+fTk
oWk
VrS\]gk�f�arbµ`HRTk�p®k#�Kacb_fTp{S�XjeW]QÎ
]TVcacP
e�`qarS\b_p
w Ì ^Q`4`HRTk
lHk�axp4e-bTk
k�fi`HS"fQk
o\k
VcSW]�p®SWXê`tÍ¨eWlHk>pH^T]QÎ
]ÐSWlH`#`qR_e�`­k
b_e Ì Vck
p-eWPª`qaro\kyfTk
P�axpHarS\b�p®^_]T]gS\l®`­SWl-k
o\k
b�eW^QÎ
`HS\bTSW[­S\^_p.P�S\b\`qlHS\VQk
d>acb-Í»e�`qk
l�ñ�ò_SUSQf�P
SWbK`HlqSWV È�è4S Ì áWâWâKé Ê wSWlDlHSKeWf&`qlqeWb_p®]ÐSWlH`$bTk
`tÍZS\lH�>P�S\bK`HlqSWVgÈÙó�e�lqarS\^_pZ|
ôWô\ô Ê � u�S�Í»Î
k
o\k
l�wWRTS�Í<XÇk
e\p®a Ì Vck�axp.`HR_k�^_pHk�S�X Æ Ä ]_VceWbTbTacbTd>`HSUSWVxp�Í4ar`HR_arb
pH^_P�R�e�båe�]T]_VraxP
e�`HacSWb�eWlHk�e\õ7u�S�Í×P
SW^TVxfëÍ¨kik
o�e�Vc^_e�`qkie�b
e�]_]TVraxP
e�`HacSWb�acb�`Hk
lH["p{S�X.Í4RTk
`HRTk
l{ar`&P
e�b Ì k
bTk
vT`{XÇlqSW[öÆ Ä

]TVceWbTbTacbTdy`Hk�P�RTbTSWVcSWd\sWw$eWb_fFRTS�Í9P
e�bËÍ¨k­fTk�`Hk
lH[­acbTk"Í4R_e�`
e�lqk
eWp?S�X*`qRTkFeW]T]TVcacP
e�`qarS\b÷ÍZS\^TVxf÷P
eW^_p®k�`HRTkF[­S\p®`i]TlqS Ì Î
Vrk
[­p�õ Ä b"`HR_acpj]_e�]Ðk
lZÍZk�k
ÕQ]TVrS\lHk»`qRTk,P�R_eWlqe\Pª`qk
lqacp®`HaxP
p�SWXNeWb
e�]T]TVcaxP
e�`qarS\b�e�lqk
e#`HR_e�`{["e��\k>`HRTk#e�]T]TVcaxP
e�`qarS\b�S�X�Æ Ä ]TVxe�bTÎ
bTarb_d�XÇk
eWpHa Ì Vrk\� m S�[­S�`qaro�e�`qk"`HR_k�fQaxpHP
^_pHpHacSWb wDÍZk"^_pHk"`tÍ¨S
]_e�lH`HaxP�^TVxe�l�eW]T]TVcacP
e�`HacSWbgp&XÇlHS\[6`HR_k m l�e�b_pH]ÐSWlH`�eWb_f�ÑFe�`Hk
l
æµe�b_eWdWk
[-k
bK`,p®k
lHoUaxP�k*acb_fQ^_p®`Hlqack
p�lqk
pH]Ðk
Pª`qaro\k
VcsW� m R_k
pHk�e�lqk
Í4acfQk{lqeWbTdWacbTdgw\P�S\[­]TVrk
ÕNw\acbUoWSWVcoWk,[­eWbUs­p®`qeW�Wk�R_SWVxfQk
l�pjeWb_f
SWlqd\e�b_acpqe�`qarS\b_p
w�eWb_f>R_e�o\k�e�VcVrack
f&lqk
pHk
e�l�P�R>e�b_f�fQk
oWk
VrS\]T[­k
bK`
e�lqk
eWp
�

m RTacp,k
b_fTk
e�oWS\^Tl4R_e\p�[�^gP�R�arb�P
SW[­[­SWb�Í4ar`HR�`qRTk*d\k
bTk
lqeWV
e�lqk
eiS�X Ì ^_p®acbTk�pHp�]_lHSQP�k�pHp>P�R_eWbTdWk-`qRTlHS\^TdWR�`HR_k"arbK`HlqSQfQ^_P�Î
`HacSWb�S�X�bTk
Í)`Hk�P�RTbTS\VrS\dWsWwQeWb_fyarb�]_eWl®`qacP
^TVxe�l¨`HRTk�arbK`HlqSQfQ^_P�Î
`HacSWb?SWX$�UbTS�Í4Vrk�fQdWk�fUÎ Ì eWpHk
f"Æ Ä `Hk�P�RTbTSWVcSWd\sW� m RTk{]ÐS�`qk
bK`Haxe�V
]TlHS Ì Vck
[øe�lqk
eWp�arb÷`HRTkËe�]T]_VraxP
e�`HacSWb÷SWX�e�^Q`qSW["e�`qk
fÒ]TVxe�bTÎ
bTarb_d0eWlHkËacbÓp®S\[-këP
eWpHk
p�pHar[­acVceWl�`HSÒP�R_e�VcVck
bTd\k
p�e�Vclqk
eWfTs
ÍZk
VrV»�UbTS�Í4bçÍ4RTk
b<ac[­]TVck
[­k
bK`HacbTdë~�ù4OçpHsQpt`qk
["p
� m R_k
pHk
arb_P
Vr^gfQk�`qRTk0Ï �UbTS�Í4Vck
fTdWk Ì S�`H`HVck
bTk�P���Ï»Î-`qRTkËfQa¦ú?P
^TV¦`ts8S�X
�Kb_S�Í4Vrk�fQdWk-k
VcacP
a¦`�e�`qarS\bËeWb_f�XÇSWlq[�^TVxe�`qarS\b wN`HR_k?e�o�eWarVxe Ì arVca¦`ts
S�X,k
ÕU]Ðk
lH`qp­eWb_f�k
ÕQ]gk
l®`qacpHkWwjeWb_fë`qRTk�oWk
lHarvgP
e�`HacSWb wjo�eWVraxfTe�Î
`HacSWb wjeWb_fç["eWarbK`Hk
b_e�bgP�kyS�X{�UbTS�Í4Vck
fTdWk Ì eWpHk
p
� m RTkypH^ Ì Î
ätk
Pª`"SWX,`HR_acp­]_eW]gk
l?P
eWb Ì ki`�e��\k
båarb<`HRTk�P
SWbK`Hk
ÕK`"SWX,`HR_k
ÍZk
VrVÐ�UbTS�Í4b?lqk
eWpHSWbgp.XÇSWl¨XÙeWarVc^Tlqk,S�XDk
e�lqVcs­~�ù4O�w\`HS­fQS-Í4a¦`qR
`HRTk
arl Ì lHar`®`qVrk
bTk
pqp,eWb_f�p®`qe�bgfUÎ·eWVrS\bTk�b_e�`H^TlqkW�4u�S�Í¨k
o\k
l�w_e�]TÎ
]TVraxP
e�`HacSWb_p{S�XjeW^Q`HS\["e�`Hk�fµ]TVxe�b_bTarb_diP
eWb�e�VxpHS?`qeW�Wk-eWfQo�e�bTÎ
`qe�d\k4S�XN`qRTk,[­SWlqk�lqk
P
k
bK`jfQk
o\k
VcSW]T[­k
b\`�p.`qR_e�`»e�VcVrk
oKaxe�`qk4`HR_k
Ï �UbTS�Í4Vck
fQd\k Ì SW`®`HVck
b_k
P���Ïrû�`HRTk�fTk
oWk
VrS\]T[­k
bK`�S�X.pHR_e�lqk
fySWbTÎ
`HSWVcSWd\ark�p»e�b_fidWVcS Ì eWVrVcs�e\P
P�k�pHpHa Ì Vrk&�UbTS�Í4Vck
fQd\kWwTe�bgf?`qRTk*fQk�Î
oWk
VcSW]_[-k
bK`*S�X4pt`�e�b_fTeWlqf w$`qSKS\VjpH^T]T]ÐSWlH`�k
bUoUarlqSWb_[-k
bK`qp>XÇS\l
`HRTk?k
bTdWacbTk
k
lqarbTd�SWX»�UbTS�Í4Vck
fTdWkW�yØTS\l�e�fQaxpHP
^_pHpHacSWbËS�X»`HR_k
p®ac[­arVxe�lqa¦`qark�p4e�b_fyfQaxpt`qarb_dW^Taxp®R_arbTd­XÇk�e�`q^TlHk�p Ì k
`tÍZk
k
b��UbTS�Í4VrÎ
k
fQd\k*k
bTd\arb_k
k
lqacbTd"XÇSWl>Æ Ä ]_VceWbTbTacbTdieWb_fµ~�ù4O�wg`HRTk-lHk�eWfQk
l
acp+lqk�XÇk
lqlqk
f�`qS&pHk
P�`HacSWb é SWXgÉjüDÆ,ý{h m Ï p+è�S\eWfT[­eW]iÈ�ùZac^Tb_fTS
Ü�Ý»Þ�ßrà¨á�â\â } Ê �

Ä b�`qRTacp»]ge�]Ðk
l4Í¨k&e\fTfQlqk
pqpj`qRTk�]TlqS Ì Vck
[þSWXDk
o�eWVr^ge�`HacbTd-`HR_k
XÇk
eWpHa Ì arVcar`tsFSWX{e�]_]TVrsUacbTd�Æ Ä ]TVxe�bTb_arbTd�`Hk�P�RTbTSWVcSWd\sWw Ì sëfQk�Î
oKaxpHarbTd?e�p®k
`,S�X.k
o�eWVr^_e�`HacSWb�P�lqar`Hk
lqaxe Ì eWpHk
fySWb�[­SW`Haco�e�`HacSWb w
`Hk
P�R_bTSWVcSWd\acP
e�V_acbQXÇl�eWp®`Hlq^_Pª`q^Tlqk{e�bgf?�UbTS�Í4Vck
fQd\k�k
bTd\arb_k
k
lqacbTd
eWpH]gk�Pª`qp,S�XZeWb�e�]_]TVraxP
e�`HacSWb � m S Ì S�`HR�arVcVr^gpt`qlqe�`Hk#eWb_fµk
o�e�VrÎ
^_e�`qk{`qRTk*^_pHk�XÇ^_VrbTk�pHp�S�X+`HRTk�p®k*P
lHar`Hk
lHaxe�Í¨k�^_pHk>`HRTk
[ÿ`qS"arbQÎ
oWk
p®`Hacd\e�`Hk.`qRTkZXÇk
eWpHa Ì arVcar`ts�S�XgeW]T]TVcsKacbTd&e�^Q`qSW["e�`qk
f�]TVxe�b_bTarb_d
`Hk
P�R_bTSWVcSWd\s»`HS4`qRTkje�]_]TVraxP
e�`HacSWb_p
� ØTS\l k
e\P�R&XÇk
e�`q^Tlqk.ÍZk.l�e�bT�

93



ar`#eWp�VrS�Í�wD[-k�fQac^T[ SWl*RTacdWR$wDacb_fQaxP
e�`HacbTdµar`qp�P
SWbK`Hlqa Ì ^Q`HacSWb
`HS�Í»e�l�fTp»e�b�S�o\k
l�e�VcVgXÇk�eWpHa Ì arVca¦`ts�XÙeWP�`HSWl���ÑFk*P�S\b_P�Vc^_fQk�Í4ar`HR
e­p®R_SWlH`4fTacpqP�^_pqpHarS\biSWX$`HR_k�^_p®k�SWX$`qRTk*P�lqa¦`qk
lqace_�

� L��.I Ã��&Ã E Ã�¿ M��	�
�.EHG�� ¿TÃtÁj¾ C À_Ãt¿ L À_Ã �

ÑFkµeWpqp®^T[­k�`qR_e�`�eWbÅÏ e�]_]TVraxP
e�`HacSWb0e�lqk
e_Ï.R_eWp Ì k
k
bÒacfQk
bQÎ
`Harv_k�fNw,e�bgfå`HRTk
lHk�acpieë]Tlqar["eËXÙe\P�axeçP
e\p®k�XÇS\l"`HR_k�^_pHk�SWX
e�^T`HSW["e�`Hk
fF]TVxe�b_bTarb_dµÍ4a¦`qRTacbëa¦`�� Ä bË`qRTk�P
eWpHk"S�X»`HRTk?`tÍZS
e�]_]TVraxP
e�`HacSWb_p�P�SWbgp®axfQk
lqk
f Ì k
VcS�Í�ûiÈÙa Ê lHSKeWfFbTk
`tÍZS\lH��[­eWbQÎ
e�d\k
[­k
bK`�û?]TVxe�bTbTacbTdËP
eWb Ì ki^_pHk
fçXÇSWl"fQl�e�Í4arb_d�^T]<]TVceWb_p
`HS�k
e\p®kyP�SWb_dWk
p®`HacSWbëS\l#eWVrVck
oUaxe�`Hk�`HRTkyk
��k
P�`qp#S�X�acb_P�axfQk
b\`�p
ÈÇaca Ê ògSKSQf�]TlHk
oWk
b\`qarS\b�e�bgfç["e�b_eWdWk
[-k
bK`
û?]TVxe�b_bTarb_d�["e�s
Ì k�eW]T]TVcark�fë`qS�XÇS\lH[ ]_VceWb_p#XÇSWl­k
o�eWP
^_e�`qarS\b_p
���&aro\k
b�`HRTaxp
P�S\bK`Hk�ÕU`�wDÍ¨k?]ÐS\p®`H^TVxe�`qk�e�bU^T[ Ì k
l�S�X4�Wk
sFðK^Tk�pt`qarS\b_p>`HRge�`
bTk
k
f�`qS Ì k-P
SWb_pHaxfQk
lqk
f�acb�k
o�e�Vc^_e�`qarbTd?`HRTk#XÇk
e\p®a Ì acVrar`tsµe�b_f
k
��k
P�`HacoWk
bTk
pqp+S�X_^Q`qarVcaxp®acbTd>e�^Q`qSW["e�`qk
f*]_VceWbTbTacbTd_�DÑ�k»dWlqSW^_]
`HR_k
[×acbK`HS?}­e�lqk
e\p
û

������� �����T�Q��� ����� �T�W� � ���

æ�SW`Haco�e�`HacSWb�XÙeWPª`qSWl�p acb_P�Vc^_fQkZ`HR_kZXÇ^_b_fQk
lq[­k
bK`qeWVKeWb_f*^_b_fQk
lHÎ
VcsKacbTdilHk�eWpHSWb_p�XÇSWl{`HRTk-arbK`qlHSQfQ^_P�`HacSWbµSWXj]TVxe�bTb_arbTd�`Hk�P�RTbTSWVrÎ
SWd\sW� Ä X�e?P�^Tlqlqk
bK`,p®sQp®`Hk
[ fQk
VracoWk
lqp�eWb�SW]Q`qar[#^T[öp®S\Vr^Q`qarS\b w
SWl&e?pH^ Ì pHk�`{SWX�pt`�e��Wk
RTSWVxfQk
lqp�eWlHk#pHe�`Haxptv_k�f�Í4a¦`qR�`HR_k�SW]Ðk
lHÎ
e�`qarS\bµS�X.`qRTk#pHsQpt`qk
[ö^_pHarb_diP�^_lHlqk
bK`�`qk
P�RTbTS\VrS\dWs\w_`qRTk
b�`qRTk
[­S�`qaro�e�`qarS\b�["e�s Ì k-`HSUS�ÍZk�e����#Æ,b�k
ÕQeW[­]TVrk­SWXZVcS�ÍÔ[­S�Î
`Haco�e�`qarS\båaxp"Í4RTk
lHk�`qRTk
lqk�["e�s Ì kµ]Tlqk
pqp®^Tlqky`HSëacbK`HlqSUfT^_P�k
eWfTo�eWb_P�k�fi`Hk
P�R_bTSWVcSWd\s"XÇSWl�ar`qp,S�Í4b�pHeW�WkWw_lqe�`HRTk
l»`HS�pqe�`qacp®XÇs
e-]gk
lqP
k
acoWk�f�bTk
k
fN�

Û{oWk
lqeWVrVT`HRTk&ð\^_k
p®`HacSWb_p�`HR_e�`¨pHRTSW^TVxf Ì k{e\p®�\k
f­acb_P�Vc^_fQk\û�eWlHk
`HR_k
lqk�P�S\[-]Ðk
VcVcarbTd�lHk�eWpHSWb_p&XÇS\l*`qRTk�acbK`HlqSUfT^_Pª`qarS\bëS�X4`Hk�P�RQÎ
bTS\VrS\dWs�û#axp#a¦`-Vrac�Wk
VrsF`HSFfQk
VcacoWk
l-eµp®`Hk
]<P�R_e�bTd\k?axp#ðK^_eWVrar`ts
S�X$pHk
lqoUacP
k Ì k
acbTd#S��Ðk
lHk�f­k
d#arb_P
lHk�eWpHk
f­lqk
Vcace Ì acVrar`ts­S�X ]TVxe�b_p
w
P�S\lHlqk
P�`HbTk�pHp,S�Xj]_VceWb_p
wNlqk
eWV¦Î¹`Hac[­k#pH]gk
k
fUÎ·^T]�arb�`HRTk-dWk
bTk
l�e�Î
`HacSWb$w�eWb_fëk
ÕUk�P�^Q`qarS\bëSWl-fQacp®`Hlqa Ì ^Q`HacSWb�S�X4]TVxe�b_p�õþÑÒacVrV»Æ Ä
]TVxe�bTb_arbTd#k
b_e Ì Vck{e�pHacdWbTarvgP
eWbK`HVcs#[­SWlqk{P
S\p®`®Î·k
��k
P�`HacoWk,pHSWVc^QÎ
`HacSWby`qS­pHSW[­k>]Ðk
l�P�k
acoWk�f�]_lHS Ì Vrk
[?õ

 ���!#" �%$ �&��'���( �Ù�W� '*)+��� � "-, �"� �&.0/21
3 � �4� �T��� � ���

ØTk�eWpHa Ì arVca¦`ts"Í4ar`HR�lqk
pH]gk�Pª`¨`HS-`HR_k>eW]T]TVcacP
e�`qarS\b Ï p»P
SWbK`Hk
ÕK`4acbQÎ
P�lqk
e\p®k�p,arX¨`HRTk
lHk-acp�eWVrlqk
e\fQsµeiRTard\R�Vck
o\k
V�S�XZ`Hk�P�RTbTSWVcSWd\acP
e�V
fQk
oWk
VcSW]_[-k
bK`{Í4ar`HRTacbµ`qRTk-pHk
lqoUacP
k*SWl&acb_fQ^_p®`HlqsW� Ä b�RU^T["e�b
P�S\bK`HlqSWVcVrk�f-pHsQpt`qk
["pj`HRTk
lHk,eWlHk{p®k
oWk
l�e�V_ÍZk
VrVÐfQk�v_b_k
f"]TRgeWpHk
p
acb­P
SWbK`HlqSWV¹û ^TbgfQk
l�pt`�e�b_fTarbTd>Í4R_e�`�acp�Rge�]T]Ðk
bTacbTd�acb-`HRTk�pHsQptÎ
`Hk
[�w4k
o�e�Vc^_e�`qarb_dë`HR_e�`�^Tb_fTk
l�pt`�e�b_fQacbTd8ÈÙacp?`HRTk
lHk�eë]TlqS Ì Î
Vck
[?õ Ê eWb_f­dWk
bTk
l�e�`qarb_d*e�b?k5�Ðk�Pª`HacoWk,]TVceWb"`HS�RTk
Vc]�e�VcVck
oUace�`Hk
`HR_k�]TlqS Ì Vck
[�� m RTk�acbK`HlqSUfT^_Pª`qarS\bµS�X�]TVxe�b_bTarb_d?`Hk�P�RTbTS\VrS\dWs
axp�[­SWlqk"Vrac�Wk
Vrs�`HS Ì k"XÇk
e\p®a Ì acVrar`ts�arX Ätm acp*eWVrlqk
e\fQs�R_k
e�oUarVcs
^_pHk
f�acb�`HRTk#P�SWVcVck
Pª`qarb_d_w_]_lHSQP�k�pHpHacbTd"e�b_f�acbK`Hk
lq]Tlqk�`�e�`HacSWb�SWX
fTe�`qeTwTeWb_f?acb�]TlqS�oKaxfQacbTd#pH^T]T]ÐSWlH`»XÇSWl»`qRTk�P�^TlqlHk
bK`»fQk�P�axp®acSWb
]TlqSQP�k
pqpHk
p
� Ä X�`HRTk#fTe�`�e"P�SWVcVck
Pª`qk
fyR_e\p,e�b�^TbgP�k
lH`qeWarb�acbK`Hk
lHÎ
]Tlqk�`�e�`HacSWb$wWSWlZacpjarbgP�SW[­]TVck�`qkWw\`HRTk
b"`HR_k4XÇk
e\p®a Ì acVrar`ts�XÙe\Pª`qSWljaxp
Vck
pqp®k
bTk
fN�

�&acoWk
b-`qRTk�b_e�`H^Tlqk4S�X�`HR_k»`Hk
P�R_bTSWVcSWd\acP
e�VTP�R_eWbTdWk\w�a¦`ZacpjRTk
Vc]QÎ

XÇ^TVWarXQ`HRTk
lHkZe�VclHk�eWfQs�k
ÕQacp®`qp$k�ÕQ]gk
lHac[­k
bK`qeWVW]TVxe�`HXÇSWlq["p�`HS,pH^T]QÎ
]gS\l®`�`qRTk,acbK`HlqSQfQ^_Pª`qarS\b"S�XNbTk
Í0`Hk
P�R_bTSWVcSWd\sW� m sU]TaxP
e�VcVcs�`qRTacp
ÍZS\^TVcf�P�SW[­]Tlqaxp®k�SWX RTaxpt`qSWlqacP
e�V�fTe�`�e�e�bgf?e�pHar[#^TVxe�`HacSWbip®sQp®Î
`Hk
[�Í4R_acP�RËP
eWb Ì k#^_pHk
f�`HSyacbKo\k
p®`Hacd\e�`Hk*`qRTk­k
��k
P�`HacoWk
b_k
pqp
S�X$`qk
P�RTb_acðK^Tk�p»S6�ÐÎ¹Vcarb_kW�

ØTk
e\p®a Ì acVrar`ts#eWVcpHS�fQk
]Ðk
bgfTpjS\b­RK^_[­eWb-XÙeWPª`qSWl�p
ûDa¦XN�\k
s#p®`qeW�Wk
Î
RTSWVxfQk
l�p�eWlHk�^TbUÍ4arVcVracbTd�`HS�e\P
P
k
]Q`#`HRTky�Uarb_fçS�X,e�^T`HSWb_SW[�s
fQk
Vcaro\k
lqk
f Ì s*eW^Q`HS\[­e�`Hk�f*]TVxe�bTb_arbTd{`HR_k
b-a¦`.Í4acVrVUbTSW` Ì k¨XÇk
e�Î
p®a Ì VckW��Æ�b�k
ÕTe�[­]TVck�acpjÍ4RTk
lqk4`qRTk&P
^TlqlHk
b\`�]_lHS Ì Vrk
[ S�Í4bTk
l�p
P�SWbK`qlqe\Pª`�S\^Q`�`qRTk�]TVxe�b_bTarb_dµ`qe\p®�F`qS�e�`qRTaclqfë]ge�lH`tsW� m R_k
`HRTaclqf­]ge�lH`ts*acpjbTS�`ZbTk
P
k
pqpHeWlHacVrs�dWSWacbTd>`qS*RTk,e>Í4acVrVcacbTd*]_eWl®`HÎ
bTk
l¨arb�`HRTk&oWk
bK`H^Tlqk,arX$`qRTk{b_k
ÍÒ`qk
P�RTbTS\VrS\dWs#`HRTlqk
e�`Hk
b_pZ`HR_e�`
P�SWbK`qlqe\Pª`�7�`HRTk»`qRTarl�f-]_e�lH`tsWwWRTS�ÍZk
oWk
l
w�["e�s�R_SWVxf��UbTS�Í4Vck
fQd\k
`HR_e�`+axp�bTk
P
k
pqpHeWlHs&XÇS\l�pH^_P
P�k
pqp
� Ä b­p®^T[­["e�lqsWw�`qRTk»�Wk
s*ð\^_k
p®Î
`HacSWb_p4eWlHk\û

8:9<;>= Ý ; î-? Ý·Ü ìA@Uî�í ß íB? ; ì Þ�ß ; îDC ïHÞ = Ý¹ïFE ì ÝGEQïHÜ û
ÑÒa¦`qRTarbµ`HRTk-P�SW[­]T^T`Hk
l&p®sQp®`Hk
[­p�`HR_e�`&eWlHk*P
^TlHlqk
bK`qVrs Ì k
arb_d
^_p®k�f�acb-`HRTk4]ÐS�`qk
bK`Haxe�VTeW]T]TVcacP
e�`qarS\b-eWlHk�eTw�e�lqk4p®S\]TRTaxpt`qacP
e�`qk
f
p®sQp®`Hk
["p4^gp®k�f�k�ÕU`Hk
b_p®acoWk
Vrs�XÇSWl�["eWb_e�d\k
[­k
bK`�acbQXÇSWlq["e�`HacSWb$w
e�b_fgñ�SWlZXÇSWl4fQk�P�axp®acSWbyp®^T]_]gS\l®`ªõ�ÑÒR_e�`4axpZ`HRTk>Vck
oWk
VNS�X `qk
P�RQÎ
bTSWVcSWd\acP
e�VÐ`qeW�Wk�Î·^T]yarby`qRTk*e�lqk
eKõ�Æ�lqk{`qRTk�P
^TlHlqk
bK`�pHsUp®`Hk
["p
pt`�e�b_fUÎ�e�VcSWb_k{S\lZXÇ^_VrVcsiacbK`Hk
lHS\]gk
lqe Ì Vrk�õ

H Þ�Ý·Þ?Þ6I�Þ ; ßrÞ�J ; ß ; ÝGK�Þ î�L	M E_Þ�ß ; ÝGK û

Ä p�`HRTk
lHk�e*lHk�eWfQs�pH^T]T]_Vrs-S�XNfTe�`�e&`HS�pH^T]T]_Vrs­pt`�e�`qk4arbQXÇS\lH["e�Î
`HacSWb�SWbµ`HRTk#S Ì pHk
lqoWk�f�p®sQp®`Hk
[?õ Ä p�`qRTk#fTe�`qe�arbµR_ard\RµVrk
oWk
V
ÈÇacbQXÇSWlq["e�`HacSWb­k
ÕK`qlqe\Pª`qk
f Ê XÇS\lH[�w�S\l�acp�a¦`jacb?e>oWk
lHs�VrS�ÍåVrk
oWk
V
ÈÇk
d�bU^T[­k
lHaxP
eWV Ê XÇS\lH[?õ Ä p�`HRTk,f_e�`qe�`Hlq^_pt`tÍ¨SWlH`HRUs*S\lZfQSUk�p�ar`
P�SWbK`�e�acbye"pHard\bTarvgP
eWb\`,eW[­SW^TbK`�S�X.^TbgP�k
lH`qeWarbK`tsTõ�Y¨eWbµfTe�`�e
Ì k­k�ÕU`qlqe\Pª`Hk�fµXÇlqSW[6e�p®`qeWb_fTe�l�f�f_e�`qeyacbK`Hk
lHXÙeWP
k�õ Ä p&`HR_k
lqk
RTacp®`HS\lHaxP
eWV4fTe�`�e�eWb_fgñ�S\l"eFpHac[�^TVxe�`qarS\b<k
bKoUaclHS\bT[­k
bK`-`HR_e�`
P
e�b Ì k�^_p®k�f?`qS­`Hk�pt`�bTk
Í÷`qk
P�RTbTS\VrS\dWs"S���VracbTk�õ

N EPO"Þ îRQ Þ ì Ý í ï = û
Æ�lqk?`HR_ki]TlqS Ì Vrk
[ S�Í4bTk
l�p�ÈÇ`HRTk�P�^Tlqlqk
bK`#]TlqS�oUacfTk
l�p*S�X&p®SWÎ
Vr^Q`qarS\b_p Ê eWb_f?SW`HRTk
l�pt`�e��\k
RTS\VcfQk
lqpjSW]Ðk
b�e�b_fypH^T]T]ÐSWlH`HacoWk&S�X
arbTb_S�o�e�`HacSWb#`HS�RTk
Vr]"ac[­]TlqS�oWk¨`HRTk
arlj[-k
`HRTSQfTpje�b_f­pHsUp®`Hk
["pqõ

S��UT2�&�WVX'�"W.
(�"	YZ�&( � �
"W" �[� �&(\� �T�W� � ���

m RTk
lqk#axp>e�Í¨k
VcV.�UbTS�Í4b�P�Rge�l�eWPª`qk
lqacpqe�`qarS\b�S�XZÆ Ä ]TVxe�b_bTarb_d
`Hk
P�R_bTSWVcSWd\s>`HR_e�`�a¦`jlqk
ðK^Taclqk
pD`HRTk,]TlHk
Î¹k
bTdWacbTk
k
lqarbTd&S�XNe>p®]Ðk�Î
P�arvgPµfTe�`qe Ì eWpHk�S�X*eWP�`HacSWb_p
w»RTk
^Tlqaxpt`qacP
p?k�`�P�� m RTkµ`qeWpH�åS�X
k
bTd\arbTk
k
lqarb_dë�Kb_S�Í4Vrk�fQdWkµacbK`HSåp®^_P�R)eç]_eWl®`qacP
^TVceWl"XÇSWlq[øacp
a¦`�p®k
V¦X$["e\fQk&XÇk
eWpHa Ì Vrk Ì s­`HRTk>]Tlqk
pHk
bgP�k&S�XDe#bU^T[ Ì k
l»S�XDXÙeWP�Î
`HSWl�p
w$p®^gP�RËe\p
û�k�ÕQacp®`HacbTd�RTacdWRËVck
oWk
V.XÇSWlq["e�Vcacpqe�`qarS\b_p>S�X¨`HR_k
fQSW["e�acb wDk�ÕQacp®`HacbTdµR_ard\RFVck
o\k
V.XÇS\lH["eWVraxpHe�`HacSWb_p>SWX4]TVceWb_p
wDS\l
`HRTk»k�ÕQaxpt`qk
b_P
kZSWXÐpHar[­acVceWl�]TVceWbTbTacbTd>fQSW["e�acb-[-SQfQk
Vcp
� m R_k
pHk
XÙeWPª`qSWl�p*e�lqk"oWk
lHs�lHk
Vrk
o�e�bK`*arb��Kb_S�Í4Vrk�fQdWk"k
bTdWacbTk
k
lHacbTd�XÇS\l
~�ù»O�acb-d\k
bTk
lqeWV�w\eWp�ar`�acp.Í¨k
VcVQ�UbTS�Í4b#`HR_e�`ja¦XNe�VcVQ`qRTk4k�ÕQ]Ðk
lHÎ
`Haxp®k4Vcark�p�pHSWVck
Vcs*arb­`qRTk Ì l�e�acb_p�SWXÐk
ÕU]Ðk
lH`qp
w�`qRTk
b­`qRTk,eW[-S\^TbK`
S�X,k5�ÐS\l®`­arbUo\SWVcoWk
fçarbå�UbTS�Í4Vrk�fQdWkik
VcacP
a¦`�e�`qarS\b<e�bgfç�UbTS�Í4VrÎ
k
fQd\kZXÇS\lH[#^TVxe�`HacSWb-P
eWb Ì k4oWk
lHs�R_ard\R-acb_fQk
k
fN��Æ�]_]TVraxP
e�`HacSWb_p
Í4RTk
lqk4`HR_k
lqk{e�lqk�k
ÕUaxp®`HacbTd�k
b_P�SQfQacbTd\pZS�X$e\Pª`qarS\b_pjeWb_f"]TVxe�b_p
e�lqk.`HRU^_p+oWk
lHs�e�`®`Hl�eWP�`HacoWk\�$u�k
b_P�k\w�a¦Xg�Kb_S�Í4Vrk�fQdWkZS�XT`qRTk¨P
^TlHÎ

94



lqk
bK`&]_VceWbTbTacbTdi]_lHSQP�k�pHp{acb�`qRTk"e�]T]TVcaxP
e�`qarS\b�eWlHk�e?axp{b_S�`>arb
Í4lqa¦`H`Hk
b�XÇS\lH[�wTS\l»`HRTk
lHk*eWlHk�b_S"k�ÕTe�[­]TVck
p»SWX+]Tlqk
P
acpHk
Vcs�k
bQÎ
P�SQfQk�fµ]TVxe�bgp
wÐ`HR_k
bµ`qRTk#XÇk
eWpHa Ì arVcar`tsyaxp&VrS�Í�w�S\l{e�`>Vck
eWp®`,`qRTk
e�[­S\^TbK`#S�X�lqk
pHSW^_lqP
k"bTk
k�fQk
fç`HS�P
lHk�e�`qk�e�fQS\["e�acbë[-SQfQk
V
e�bgfç]TVxe�bTb_arbTdFRTk
^TlHaxp®`HaxP
p#[­e�s Ì ky]TlHS\RTa Ì a¦`qaro\kW� m RTky�Wk
s
ðK^Tk
p®`HacSWbgp¨`HS"P�S\b_p®axfQk
l�e�lqkWû
� ß í = Ü î Ü =A= Ý í�� ïHÜ5I ; í E = Þ ��� ß ; ì Þ�Ý ; í�î =��

Ä p#`HRTk�eW]T]TVcacP
e�`HacSWbåe�lqk
e�P�VcS\pHkiS\l­eWb_e�VcSWd\SW^_p*`HSËe�]_lHk
oKarÎ
SW^gp-fTk�v_bTk�få]TVceWbTbTacbTd Ì k
b_P�RT["e�lq��wjSWl"eFP�^Tlqlqk
bK`#vgk
VxfQk
f
pHsUp®`Hk
[?õ�Y¨e�bi]_e�lH`qp»SWX+fQS\[­eWarby[­SQfQk
Vxp»SWl»]Tlqk
oUacSW^_pHVrs"k
bQÎ
dWacbTk
k
lqk
fyP�SWbgpt`qlqeWarbK`qp Ì k�lHk
Î¹^gp®k�f_õ

� ï í�ì Ü L EQïHÜ C�í ïFO"Þ�ß ;>= Þ�Ý ; í�î ; î Ý @ Ü � ï í J
ßrÜ5O6Þ�ïHÜ�Þ �
Æ�lqk4`qRTk
lqk�k�ÕQaxpt`qarb_d*k
b_P
SQfQk
fNw\XÇSWlq["e�VcacpHk
f­S\l�Í4lqa¦`H`Hk
bTÎ·fQS�Í4b
]TlqSQP�k
fT^TlHk�p�SWl.]TVxe�bgpqõ Ä p�`qRTk�P�^Tlqlqk
bK`�p®sQp®`Hk
[9["e�b_eWdWk
f Ì s
k�ÕQ]Ðk
lH`qp¨^_pHarb_d*`HR_k
acl¨S�Í4bik�ÕQ]Ðk
lqark
b_P�k\wKS\l¨fTS*`HR_k
s?R_e�o\k�lqk�Î
P�S\^Tl�p®k,`HS­["e�bU^_e�Vxp¨e�b_f�`Hl�e�acbTacbTd-eWacf_pqõ�Æ,lHk{`HRTk
lHk>lqk
e\fQarVcs
e�o�e�acVce Ì VckZk
ÕQeW[­]TVrk�p�S�Xg`HRTk»�UarbgfTp.S�XÐ]TVxe�b_p+`qR_e�`�e�lqk¨bTk
k�fQk
f
`HS Ì k�dWk
bTk
l�e�`qSWlqk
f_õ
� ��� ï í	� ï ; Þ�Ý·Ü î Ü =A= C�í ï ��
 � ßrÞ î_î ; î-? = í ß EQÝ ; í�î �
u�S�ÍÿXÙe�l?fQSUk
p#`qRTkµP�S\b_pt`qlH^gPª`HacSWb<S�X{eF]TVxe�b<XÙe�VcV4acb\`qS�`qRTk
P�VxeWpqpHacP4fQk
v_bTar`HacSWb"SWXÐd\k
bTk
lqe�`HacbTd>SWl�fQk
lqarb_d\p�S�XNacb_p®`qe�bK`qace�`Hk
f
eWP�`HacSWbÓpqP�RTk
["e<`HS÷e\P�RTark
oWkËdWSKe�Vxp�SWl�fTk
P�S\[­]gSKp®kF`qe\p®�Qp�õ
z{SKk�p�]_VceWbÓdWk
b_k
l�e�`HacSWb�acbUoWSWVcoWkçe÷dWlqk
e�`FfQk
eWV�S�X"^TbgP�k
lHÎ
`qeWarbK`ts\w�[-arÕQk
f#fQacpqP�lqk�`qkZeWb_f�P
SWbK`HacbU^TSW^_pDo�e�lqace Ì Vck
p
w�S\lDVxe�lqdWk
e�[­S\^TbK`qp»S�X+RU^T["e�b�p®�UacVrVêõ

��
�
 E Ã A � ¿QÃ®Áj¾ � À L������ Á � Â�� L ¿��FÁ�À J
@ � ¾ ����L���L ¾Z¿

����� �"!$#&%('�#*),+

è4SKeWfµb_k�`tÍ¨SWlq��[­eWb_e�d\k
[­k
bK`"ÈÙè�ý{æ Ê lqk
Vcark�p{S\bFP
SW[­]TVck�ÕNw
acb\`qk
d\lqe�`Hk
f7pHsUp®`Hk
["på`HS [­k
k�`)arb_P
lHk�eWpHarb_d9lqk
ðK^TaclHk
[­k
bK`qp
^T]ÐSWb8`HRTkFlHSKeWf0bTk
`tÍZS\lH�0pH]gk�P�arv_k
f8Í4a¦`qRTarb)]gS\VraxP�s÷fTSUP
^QÎ
[­k
bK`qp4XÇlHS\[×P�k
b\`qlqeWV e�b_fiVcSUP
e�VNd\S�oWk
lqbT[­k
bK`�� m RTk�lqk
pH]ÐSWbQÎ
pHa Ì acVca¦`ts­XÇS\lZ["e�bge�dWacbTd�`HRTk&lHSKeWf­acbQXÇl�eWp®`Hlq^_Pª`q^TlHk{arb�`HRTk�n{~
lqk
p®`qp+Í4a¦`qR*`qRTk4u�acdWRUÍ¨e�sQpDÆ�dWk
b_P�s?È�u,Æ Ê XÇS\l+`HRTk»[­S�`qSWlqÍ¨e�s
e�bgf?`qlH^Tb_��lqS\eWf�bTk�`tÍ¨SWlq�?e�bgf?`qRTk*ü SQP
eWV Æ�^Q`qRTSWlqar`ts�ÈÙüDÆ Ê
XÇSWl{`HR_k#^Tl Ì eWbµbTk�`tÍ¨SWlq���&OUR_SWlH`,`Hk
lH[7`qlqe�ú"P�k
o\k
bK`qp
wNp®^_P�R
eWpDlqS\eWf>Í¨SWlq�Qp
w�eWP
P�axfQk
bK`�w�e\fQoWk
lqpHk�Í¨k
e�`HRTk
lDP�S\b_fQar`HacSWb_p
w�SQPªÎ
P�^_lHlqarb_diS\bFk
a¦`qRTk
l>`qRTk"[­S�`qSWlqÍ¨e�s�SWl�^_l Ì eWb�b_k�`tÍ¨SWlq�µP
e�b
R_e�o\k&fQk
o�eWp®`qe�`qarb_d­e6�Ðk�Pª`�p»SWbySWbTk�e�b_S�`HR_k
l���YZ^_lHlqk
bK`HVcs"RU^QÎ
["e�b<SW]Ðk
l�e�`HS\lqp�lHk�p®]ÐSWbgfË`HS�`HRTaxp-�Uarb_f�S�X,]_lHS Ì Vrk
[ ^_p®acbTd
`HR_k
acl-k
ÕQ]gk
l®`­�UbTS�Í4Vrk�fQdWk\w Ì ^Q`­`HRTk
arl-k
��k
P�`HacoWk
bTk
pqp-acp-Vcar[-Î
ar`Hk
f�eWp»`qRTk
syR_e�oWk>`qS?acb\`qk
lq]Tlqk�`{P
SW[­]TVck�Õ�arbQXÇS\lH["e�`HacSWbyXÇk
f
`HS*`HRTk
[ywQfQk�P�axfQk�S\b"Í4RTacP�R"SWX e�b?e�lql�e�s*S�X$e\Pª`HacSWbgp�`HS�`�e��\kWw
e�bgf�fQk
eWV$Í4ar`HR�`qRTk�acbK`Hk
lHXÙeWP
k Ì k�`tÍ¨k
k
b�^Tl Ì e�bµe�bgf�[-SW`HS\l®Î
Í»e�si`qlqe�ú?P�P�S\bK`HlqSWV¹�&ÑÒar`HR_arb�`HRTk­n,~þ`HRTk
lHk#acp>eyfQ^Q`ts�SWb
ü$Æ{pZ`HS-[­eWb_e�d\k�`qRTk
acl¨`Hl�e�ú?P�bTk
`tÍZS\lH�QpZk�ú?P�ack
bK`qVrs?eWb_f"lqk�Î
fQ^_P
kj`qlqe�ú?Pj]ÐSWVcVr^T`HacSWb ��YZVrk�e�lqVrs>`qRTk
lqk¨acp�e{bTk
k�f�`HS>fQk
oWk
VcSW]
pHsUp®`Hk
["p�`HRge�`�Í4acVrV»pH^T]T]ÐSWlH`*`HRTkilHSKeWfFbTk
`tÍZS\lH��SW]Ðk
l�e�`HS\lqp
S Ì ätk
Pª`qaro\k
p{Í4RTk
bµ`HRTk
s�`Hlqsi`qS�`�eWP��UVck�P�S\bTdWk�pt`qarS\bµSWl{S�`HR_k
l

]TlHS Ì Vck
["p
w�p®^gP�R*eWpNk
ÕQP
k
pqp®acoWk+XÇ^Tk
VWk
[-axpqp®acSWb_p
w�arb*eWb�arb_P
lHk�eWp®Î
arbTd\VrsiP�SW[­]TVck�Õik
bUoUarlqSWbT[­k
b\`��

-/.10�243(0 '�#*),+ 3 ��#*+(5768!9#&'���!$# 0

��� �D� �T�Q�D� ����� �T��� � ����: $&� ( $

ÑÒa¦`qRTarbµè,ý,æëw_`HRTk
lHk*axp�e­Í¨k
VcVDfQk
v_bTk�f�p®]TVcar` Ì k
`tÍZk
k
b�^TbQÎ
fQk
l�pt`�e�b_fTarbTd#Í4R_e�`»axpZRge�]T]Ðk
bTacbTd-arb�`HRTk�pHsQpt`qk
[�wQe�b_f�dWk
bTÎ
k
l�e�`HacbTd?eWb�k
��k
Pª`qaro\k*]TVxe�b�`qS?RTk
Vc]�eWVrVck
oUaxe�`Hk>`qRTk�]_lHS Ì Vrk
[��
Ä b"`HRTk{XÇSWlq[­k
l»P
e\p®k\wW`qRTk
lqk&eWlHk{["e�bUs­lHk�e�Vg`Hac[-k>fTe�`qe�XÇk
k
fTp
XÇlHS\[ Í4RTaxP�RÅ�UbTS�Í4Vck
fTdWkëe Ì SW^Q`�`qRTkçpHsUp®`Hk
[�P
e�b Ì kçk
ÕUÎ
`Hl�eWPª`qk
fNw�acb_P
Vr^_fTarbTd)VrSUS\]�fTk�`Hk�Pª`qSWl�p
w�Æ{ý,ÉZè ÈÙe�^T`HSW["e�`HaxP
bK^_[ Ì k
ly]TVce�`Hk�lHk�P�SWd\bTar`HacSWb Ê w,e�b_fÅY4Y m ó�� Ä b÷`qRTk�Vxe�`H`Hk
l
P
eWpHkWw�`HRTk�`Hl�e�ú?Pµ["eWb_e�d\k
liP
e�b)[­eWb_e�d\k�eåp®ar`H^_e�`HacSWb Ì s
arbTar`Haxe�`qarb_d�eµl�e�b_dWk"S�X&eWPª`qarS\b_p�7.`HRTaxp#arb_P
Vr^gfQk
p#`HR_kipHk�`®`qarb_d
S�Xj`qlqe�ú?P#VcacdWRK`>`Hac[-acbTdKp
wDo�eWlHaxe Ì Vrk­[­k
pqpHeWdWk­p®acdWbgp"ÈÇó{æ�O Ê w
o�eWlHaxe Ì Vrk­p®]Ðk
k�f�Vcac[-ar`qp"ÈÙó&OQü Ê w l�e�[­]F[­k�`Hk
lHacbTd�e�b_f�l�eWfQacS
Ì lHSKeWfTP
eWp®`HacbTd_� Ä b�lqk
eWV$`qar[­k#`Hl�e�ú?P#P
SWbK`HlqSWVDS�XjVxe�lqdWk�lHSKeWf
bTk�`tÍ¨SWlq�Qpjar`4R_eWp Ì k
k
b�fQk
[-S\b_p®`Hl�e�`Hk�f"`qR_e�`4bTk�P�k
pqpqe�lqs-]_lHSWÎ
P�k
pqpHarbTdie�b_fµfTk
P�axpHarS\bµ["e��Uarb_d�axp Ì k
s\SWb_f�`HRTk­P
eW]_e Ì acVca¦`qark�p
S�XDRU^T["eWbyS\]gk
lqe�`HS\lqp»e�VcSWb_kWwTe�bgfye\p¨`HRTk*fTk
["e�b_fiXÇS\l4lHSKeWf
^_pHeWdWk4acb_P�lqk
e\p®k�p
wW`HRTaxp¨fQa¦ú?P
^TV¦`ts­acb?["e�b_eWdWacbTd�`qlqe�ú"P�k
��k
PªÎ
`HacoWk
Vcs Ì k
P
SW[­k
p­[­SWlqk�eWP�^T`HkW�ÒÆ{fTfQar`HacSWb_eWVrVcsWwZ`HRTkµP
S\p®`"S�X
P�SWb_dWk
p®`HacSWbiacp»acb_P
lHk�eWpHarbTd-S�oWk
lj`qar[­k*eWb_f�acby`HRTk*n{~ eWVrS\bTk
acp�k
ÕU]Ðk
P�`Hk�f-`HS>lHaxpHk»`HS<;.} â Ì arVcVcarS\b Ì s á�â | â � Ä [­]TlqS�oWk
[­k
bK``HS*`qRTk&k�ú?P�ack
b_P
s"S�XN`qlqe�ú"P&P�S\bK`HlqSWVgeWb_f"["e�bge�dWk
[­k
bK`¨eWVcpHS
P
e�b Ì k&VracbT�Wk�f­`HS�`HRTk{lHk�fQ^_P�`HacSWb?SWX k
[­acpqpHarS\b_p�SWX$e�aclj]ÐSWVcVr^QÎ
`qe�bK`�p»]TlHSQfQ^gP�k
f Ì s?lqS\eWf�`Hl�e�ú?PW�

Æ�b÷e�]_]TVraxP
e�`HacSWb0XÇS\liÆ Ä ]TVxe�b_bTarb_d�P�S\^TVcf Ì kµ`qSçdWk
bTk
l�e�`qk
`Hl�e�ú?PieWb_f�`Hl�e�b_pH]gS\l®`"pHsUp®`Hk
[B]TVxe�b_p"eWb_fåP�SW^_lqpHk
p-S�X>eWP�Î
`HacSWb_piarb8lHk�e�VrÎ�`qar[­kµ`qS�k
b_e Ì Vck�[­S\lHk�k
��k
Pª`qaro\k�P
SWbK`HlqSWV{S�X
arb_P
acfTk
bK`qp­e�bgfçk
o\k
bK`qp
�çÆöp®ac[­arVxe�l"eW]T]TVcacP
e�`HacSWb�[-acdWRK` Ì k
`HS"RTk
Vr]�Í4ar`HRµP�lqaxp®axp»["e�b_eWdWk
[­k
b\`�e\P�lqS\pqpj`qRTk�üDÆÓe�b_f�u,Æ
P�SWbK`qlHS\VrVck
f"b_k�`tÍ¨SWlq�Up Ì s"dWk
b_k
l�e�`HacbTd#]TVceWb_p¨Í4RTaxP�R?`qeW�Wk>eWP�Î
P�SW^_b\`»S�X�ü$Æ�e�bgfiu{Æ)]_lHacSWlqa¦`qark�p»e�b_f�arbK`Hk
lqe\Pª`qarS\b_p
�.u,k
b_P
k
`HRTk
lHk4axpje�P
Vrk�e�ljeWar[ e�b_f-[­S�`qaro�e�`HacSWb­XÇSWl�`HRTk�acbK`HlqSQfQ^_Pª`qarS\b
S�X,`qRTaxp­�Kacb_fåS�X{`Hk�P�RTbTSWVcSWd\s�û�`qSFacb_P
lHk�eWpHki`qRTk�ðK^_e�Vca¦`ts�S�X
]TVceWb_p"ÈÇÍ4R_acP�RëacbUoWSWVcoWk-Vcard\R\`�p
w+ó&OTü$p
wDó>OQæµp
wDk
`qP Ê w$`�e��UacbTd
arbK`HS­eWP
P�S\^TbK`»eWb�acb_P�lqk
e\p®acbTd­e�[­SW^TbK`»S�X+arbQXÇS\lH["e�`HacSWb?ògS�Í�w
Í4RTacP�R<Í4arVcV Ì k
bTk
vT`­`HRTk�ðK^_e�Vcar`tsFSWX{Vca¦XÇky`qRTlHS\^TdWR�lHk�fQ^_P�k�f
P�SWb_dWk
p®`HacSWbye�b_fi]ÐSWVc^Q`qeWb\`�k
[­acpqp®acSWbgp
�

! " �%$ �
��'���( ���W� ' )+��� � "<, �"� �
. /21
3 � ��� �T�W� � ���

8:9<;>= Ý ; î-? Ý·Ü ìA@Uî�í ß íB? ; ì Þ�ß ; îDC ïHÞ = Ý¹ïFE ì ÝGEQïHÜ � @ ; ?D@

m RTk
lqk>R_eWp Ì k
k
b�e-d\SKSQfilHk�P�S\lqf�S�X.eWfQS\]Q`HacSWbyS�X�P�SW[­]T^T`Hk
l
p®sQp®`Hk
["p{arb�lHSKeWf�bTk
`tÍZS\lH�i`Hl�e�ú?P#["e�b_eWdWk
[­k
b\`�wÐeWb_f�P
^TlHÎ
lHk
b\`qVrs÷`HRTk
lHkçeWlHkëk
[-k
lHd\arb_d0P
SW[­[­SWb�p®k
lHoUaxP�kë]TVxe�`HXÇSWlq["p
Í4RTacP�RÒÍ4acVcV Ì k Ì k
bTk�vÐP�axe�V{`HSç]TlqSQfQ^_P�`qp�eWb_fÒpHk
lqoKaxP�k�p"fQk�Î
VracoWk
lHk�f Ì sµ`qk
P�RTbTS\VrS\dWs�]TlqS�oUacfTk
l�p
�"u�acdWRËVck
o\k
V�fTe�`qey]TVxe�`®Î
XÇSWlq[­pypH^_P�RÅe\p?`qRTkëu,Æ�Ï p>= ïHÞ[I�Ü
ß 
 î�C�í ïFO­Þ�Ý ; í�î N ; ?%@$? Þ6Ke�VcVrS�Í p®S\]TRTaxpt`qacP
e�`qk
fÓpHS�Xê`tÍ»e�lqkë]_eWP���e�d\k
py`qS Ì S�`HRÓ[­S\bTa¦Î
`HSWl"eWb_f<fTacpqp®k
[­arb_e�`Hky`Hl�e�ú?PyacbQXÇSWlq["e�`HacSWb Ì SW`HRå`HSËSW`HRTk
l
p®k
lHoUaxP�k
p�eWb_f)`HSå`HRTk�dWk
b_k
l�e�V>]T^ Ì VcaxP÷ÈÇk
dåacbÅ`HRTk�^T�÷Í¨k
R_e�oWk�Í4Í4Í�� `Hl�e�ú?P�k
bTdWVxe�bgfN� P
S_� ^T� Ê � m RTkFfQk
o\k
VcSW]T[­k
b\`iS�X

95



pHk
VrXêÎ·e\fTe�]Q`qarb_d�P�S\[­]T^Q`Hk
l-pHsQpt`qk
["p-p®^_P�RåeWp­O_Y4Û�Û m�� RgeWp
Ì k
k
båSWb_kySWX,`qRTk�[-SKpt`­ac[-]ÐSWlH`qeWbK`"pHacbTdWVckyfTk
oWk
VrS\]T[­k
bK`qp
�
O_Y4Û�Û m p®sQp®`Hk
["p�e�lqk»^_pHk
f#ÍZS\lHVxfQÍ4axfQkj`qS*P�S\b\`qlHS\VK`HRTk¨`Hac[-Î
acbTd\p�eWb_fyS6�Np®k
`qp4SWX+d\lHS\^T]_p»SWXD`qlqe�ú"P>VcacdWRK`qp�P
SWbTb_k
Pª`qk
f Ì s
eFVrSQP
e�V»lHSKeWf�bTk�`tÍ¨SWlq��� m RTk
s<eWfTeW]Q`#`qSëfQa ��k
lqk
bK`­`Hl�e�ú?P
Vck
oWk
Vcp
wNe�^Q`qSW["e�`qacP
e�VcVrs�eWf�ät^_pt`qarb_diVcard\RK`,`Hac[­arb_d\p>e�`&lHk
Vce�`Hk
f
ät^Tb_P�`HacSWb_p#acbëlHk�eWPª`qarS\bF`HS�pH^_fTfQk
bçSWl�dWl�eWfQ^_eWVjP�R_eWbTdWk�p>arb
`Hl�e�ú?P{ò_S�Í�p
�

H Þ�Ý�Þ�Þ[I�Þ ; ßcÞ�J ; ß ; Ý K�Þ î L M E_Þ�ß ; ÝGK � O"Ü L ; EPO×Ý í+@ ; ?D@

Ä b-`HRTk�n{~­w�`HRTk�n m æ�Y��»axp�e&lHk
Vce�`HacSWb_eWVUf_e�`qe Ì eWpHk»P�SWbUo\k
bQÎ
`HacSWb�XÇS\l,fTe�`qe?P
SWVcVrk�Pª`Hk�f�e�b_f�fQaxp®`Hlqa Ì ^T`Hk
f�acb�`qRTk�P�S\^Tl�p®k�SWX
`Hl�e�ú?P¨["e�b_eWdWk
[-k
bK`
�Dn m æ�Yç]TlHS�oUaxfQk
p�e&RTacdWR-Vrk
oWk
V�wWp®`qeWbQÎ
fTeWlqf�]_Vce�`®XÇSWlq[7XÇSWl{`Hl�e�ú?P�eW]T]TVcacP
e�`qarS\b_p4`qSi^_pHk#eWb_f�acbK`Hk
lHÎ
SW]Ðk
l�e�`qkW�+ü SQP
eWVKÆ,^Q`HRTS\lHar`Hack
p�^gp®k»p®sQp®`Hk
[­p�pH^_P�R#e\p+OgY4Û�Û m
e�bgf�n m æ�Y8`qS�["e��\k�k
��k
Pª`qaro\k#eWb_f�k�ú?P�ack
bK`&^_p®k�S�X.`Hk�P�RQÎ
bTS\VrS\dWs�acb�["e�bge�dWacbTdi`HRTk­VcSQP
e�V.lqS\e\fµbTk
`tÍZS\lH����u,S�ÍZk
oWk
l
w
`HR_k
lqk{e�lqk{pHSW[­k&p®RTS\l®`HXÙe�VcVcpjÍ4a¦`qRiP
^TlHlqk
bK`»p®sQp®`Hk
["p
wKeWb_f"lqacp®Î
acbTd>`Hl�e�ú?P»Vck
oWk
Vcp�Í4arVcV_S\bTVrs#k�ÕTeWP
k
l Ì e�`qk¨`HRTk,pHar`H^_e�`HacSWb � m RTk
[­S\p®`,p®k
lHacSW^gp»]TlHS Ì Vck
[ÿaxp»`HRge�`
wÐe�Vr`HRTS\^TdWRy[­S�`qSWlqÍ¨e�sQp»e�b_f
P�ar`ts�P
k
bK`Hlqk
p�R_e�o\k¨`Hl�e�ú?PZò_S�Í�[­SWb_a¦`qSWlqk
fNw�`qlqe�ú?PjògS�Í�SW^T`®Î
pHacfQk{S�X `qRTk
pHk{eWlHk�eWp.axp¨VceWlHd\k
Vcs�^Tb_�Kb_S�Í4b wQe�b_f­`qRTk
lqk,axp¨pt`qarVcV
e­RTacdWRµfQk
dWlqk
k�SWX+^TbgP�k
lH`qeWarbK`tsiS�X�`HRTk#pt`�e�`H^gp�S�X.pHSW[­k*bTk
`®Î
Í¨SWlq�Up
�

è4k
d\e�l�fQacbTd�k
o�eWVr^ge�`HacSWb#]TVxe�`®XÇS\lH["p$XÇSWlD`Hk�pt`qarbTd&bTk
Íë`Hk�P�RTbTSWVrÎ
SWd\s�S��gÎ·VcarbTk\w+`HRTk
lHkiacp#eµVcSWbTd�p®`qeWb_fQacbTdµRTaxp®`HSWlqsFS�X4`Hl�e�bgptÎ
]ÐSWlH`{lqk
pHk
e�l�P�R�^_pHarb_dipH^_P�Rµ[­k�`qRTSQfTp
wNÍ4ar`HR�VceWlHd\k�e�[­S\^TbK`qp
S�X.fTe�`qe­e�o�e�acVce Ì Vrk{XÇSWl»`qk
p®`HacbTd?e�bgfipHar[#^TVxe�`HacSWb$�

N EPO"Þ î Q Þ ì Ý í ï = � @ ; ?%@

h.ÕQ]Ðk
lH`Haxp®k4acb"["e�b_eWdWk
[-k
bK`je�b_f­S\]gk
lqe�`HacSWb­S�X�`HR_k�bTk�`tÍ¨SWlq�
e�]_]gk�e�l�p�`HS Ì k4`qRTarb$wUeWb_f-`HR_k
lqk4acpZe�lHk�e�Vcacpqe�`qarS\b#Í4ar`HR_arb"`qRTk
pHk
lqoKaxP�kµ`HR_e�`i`qRTacp
w,eWb_fÒ`qRTk�d\lHS�Í4acbTdçP�S\[­]TVrk
ÕQa¦`ts0S�X�`qRTk
]TlqS Ì Vck
[�w*Í4acVcV�lqk
ðK^TaclHkë[­SWlqkË`Hk�P�RTbTS\VrS\dWaxP
e�V�acbUoWk�pt`q[-k
bK`
�
m RTk
lHk�eWlHk*e­l�e�b_dWk�S�X.RTacdWRTÎ�`qk
P�RµpHk
lqoKaxP�k�]_lHS�oUaxfQk
l�p»arb�`qRTk
pHk
Pª`qSWlZÍ4RTS#eWlHk{k�ÕQ]gk
lHack
bgP�k
f?arb�`Hk
P�R_bTSWVcSWd\acP
e�VTacbTbTS�o�e�`qarS\b �
Æ�VcV p®`qe��\k
RTS\VcfTk
l�pZeW]T]gk�e�l¨lHk�eWfQs­`qS#k
[ Ì l�eWP
k�XÇ^TlH`HR_k
l»`Hk�P�RQÎ
bTS\VrS\dWaxP
e�V.acbTbTS�o�e�`HacSWb0ÈÇk
pH]Ðk
P�axe�VcVcs�dWacoWk
bF`HRTk"]_e\pt`�pH^_P
P�k
pqp
S�X�O_Y4Û�Û m�Ê �

T2�
�WV ' "W.&(�"2Y �
( � �
"-" �[� �
(\� �T�W� � ���

� ß í = Ü î Ü =A= Ý í�� ïHÜ5I ; í E = Þ ��� ß ; ì Þ�Ý ; í�î =�� O­Ü L ; EPO
ÑÒar`HRTacb�`HR_k*e�lqk
eTwT`HRTk
lHk�R_e�o\k Ì k
k
bµe�`H`Hk
[-]T`qp4`qS?acb_P�S\lH]ÐS�Î
l�e�`Hk�pHSW[­k��Uacb_fTp$S�XTp®]Ðk
P
a¦vÐP�e�^Q`qSW["e�`qk
f>lqk
e\p®S\bTarb_d»pHsQpt`qk
["p
acb\`qS�`HR_k,P�S\b\`qlHS\VTS�XN[­S�`qSWlqÍ¨e�s�acb_P
acfQk
bK`qpZk
d�acb­`HRTk&æ�Û&ü$Æ
pHsUp®`Hk
[ÿÈ�OK`qarVcV¹w\É�� ùëe�b_f#u,e�l Ì SWl�fNw�ù&� �g�U|
ôWô�� Ê �Dý�S>pH^_P�R#e�`®Î
`Hk
[­]Q`DR_e\p Ì k
k
b�[­e\fQk�acb�VrSQP
e�V\eW^Q`HR_SWlqa¦`tsKÎ�P�SWbK`qlHS\VrVck
f,lHSKeWfTp
acbi`qRTk*n,~­�

è4k
d\e�l�fQacbTd p®ac[­arVxe�lÒfQS\[­eWarbgp
w�`qRTkÓÉ�ac]gk�p®Í¨SWlqVxf×fQS\[­eWarb
XÇlqSW[ Ä É¨YjÎ��{pHR_eWlHk�pDpHSW[­kZP�Rge�l�eWPª`qk
lqacp®`HaxP
p$Í4a¦`qR#lqS\e\f>`Hl�e�bgptÎ
]ÐSWlH`
û-`HRTk Ì eWpHaxP�fQS\[­eWarbçP
SWb_pHaxpt`�p*S�X,eWb�e�l�P
p�e�b_fëb_SUfTk
p

	 �����t��
 �
���.�.�4³ ��¥� � 
��¼�±W�t¥�³ ¥� �£��
� �����t��
 �
���.�.�4³ ±\�t£�¥
³ §
 �°T³ ±\¸��

bTk�`tÍ¨SWlq��w�Í4ar`HR×pHSW[­k8eWlqP
p8ÈÇlqS\e\fTp Ê Ì a�e�b_fÿpHSW[­k÷^_bTa¦Î
fQarlqk
P�`HacSWb_eWV��¨Æ�Vxp®SgwT`qRTk?Ï `Hl�e�b_pH]gS\l®`qk
l�Ï ÈÇ]Tac]Ðk�SWl,lHSKeWf Ê fQSUk
p
bTS�`¨[-S�o\k4Î�S Ì ätk�Pª`qpZ[­S�oWk,eWVrS\bTd�`qRTk
[���z{k
pH]Ta¦`qk,`qRTk
lqk Ì k�Î
arbTd�Í»e�sQp>`HS�e Ì p®`Hl�eWP�`�`HRTkyP�SW[­]TVck�ÕQar`ts�SWX4lHSKeWfFbTk�`tÍ¨SWlq�Qp
ÈÇk
d Ì s Ì ^Tb_fTVracbTdµ`qlqe�ú?P­arbK`HS�fQacp®`Hacb_P�`-ðK^_e�bK`�e Ê `HR_kiP�S\[-Î
]TVrk
ÕQa¦`ts�SWX�`HRTk­lqS\e\fµbTk
`tÍZS\lH��["e�s�ÍZk
VrV�P
e�^_pHk#ey]TlqS Ì Vck
[
S�X+pqP
eWVrk&`qS­P
^TlqlHk
b\`4]TVxe�b_bTarb_d-k
bTdWacbTk�p
�

� ï í�ì Ü L EQïHÜ C�í ïFO­Þ�ß ;>= Þ�Ý ; í�î ; î Ý @ Ü � ï í J�ßcÜ
O6Þ�ïqÜqÞ � O­Ü L ; EPO
É�Vxe�b_pDfQS,k
ÕUaxp®`DSWb#]_e�]Ðk
l�w Ì ^Q`.e�lqkjbTSW`D]TVck
bK`qa¦XÇ^TV¹�.z,k�P�axp®acSWbgp
e�b_fi]TVxe�b_p�eWlHk>["eWfTk Ì sik�ÕQ]Ðk
lH`qp»SWby`qRTk Ì eWpHaxp4S�X.P�S\VrVxe�`qk
f
arbQXÇS\lH["e�`HacSWb0S�X>`HR_k�lqS\eWfåbTk
`tÍZS\lH���ÔYZ^TlqlHk
b\`?]_lHSQP�k�fQ^Tlqk
XÇSWlq[�^TVxe�`qarS\b�axp�e�`»`HR_k�Vrk
oWk
VNSWX.O��&üFP
SWb_p®`Hlq^_P�`qp
�

� ��� ï í � ï ; Þ�Ý�Ü î Ü =A= C�í ï � 
 � ßrÞ îgî ; îW? = í ß EQÝ ; í�î � O­Ü L ; EPO
É.e�l�e�[­k�`qk
lqacpHk
fyeWP�`HacSWb_p{P
e�b Ì k�XÇSWlq[-k�f�`HSi[­SUfTk
VD`HRTk­eWP�Î
`HacSWb_p¨[­k
bK`HacSWb_k
fye Ì S�oWkWwUe�Vr`HR_SW^Td\R�`qRTk>k
��k
Pª`�p»S�XDpH^_P�R�eWP�Î
`HacSWb_p{["e�s Ì k-fTa¦ú?P�^_V¦`&`HSik
b_P
SUfTk�acb�]TlqSW]ÐS\pHa¦`qarS\b_e�V XÇSWlq[y�
É�lqSW]ÐS\pHa¦`qarS\b_e�V�fQk�pHP
lHac]Q`qarS\b_p�S�X4lqS\e\f�b_k�`tÍ¨SWlq��pt`�e�`q^_p�eWb_f
dWS\eWVNP�lqa¦`qk
lqace-e�lqk>bTS�`4dWk
bTk
l�e�VcVcs"^_p®k�fyarb�P�^_lHlqk
bK`�p®sQp®`Hk
[­p
�

��
�
 E Ã A � ¿TÃtÁj¾ � À L���� � E Á¨Á4Â 
 À L �jL ¾Z¿TÃtÁj¾ � ¾,Â
� � ¾ ����L,�9L ¾j¿

ØDVcSUSQfi]_lHk
oWk
bK`qarS\byeWb_fy[­eWb_e�d\k
[­k
bK`*ÈÙØ�ÉZæ Ê acbKo\SWVcoWk�p
wTe\p
arbFè�ý,æëw$VrSQP
eWV.e�b_f�b_e�`qarS\b_e�V.e�^T`HRTS\lHar`Hack
p
w p®k
lHoUaxP�k#arb_fT^_ptÎ
`Hlqark�p
w¨e�b_f�lHk�p®k�e�l�P�Rçarbgpt`qa¦`q^Q`Hk�p
� m RTaxp­acp"fT^Tky`HSËa¦`�p­]gk
l®Î
P�k
acoWk�f�ac[-]ÐSWlH`qeWb_P�k\ûN`HR_lHS\^TdWRTS\^Q`�[­eWbUs�]_e�lH`qpDS�XT`qRTk»ÍZS\lHVxf
`HRTkÒ]Tlqk
o\k
bK`HacSWb$w?k
eWlHVcsÔÍ»e�lqbTarb_d_w?P�lqaxp®axpëe�b_f�]ÐS\p®`®Î�P�lqacpHaxp
[­eWb_e�d\k
[­k
bK`¨S�X$Í»e�`qk
l»arb_bK^_b_fTe�`qarS\b�axp»e�b�ac[­]gS\l®`�e�bK`»XÙeWP�Î
`HSWl"acb0RU^T["e�b0ÍZk
VrVrÎ Ì k
arbTdg�ÒÑ�k�Rge�oWk�acfTk
bK`Harv_k
f<`tÍ¨Sëe�lHÎ
k
eWp�Í4RTacP�R�arb_P
SWlq]gS\lqe�`Hk>`tÍ¨S?]ÐS�`Hk
bK`Haxe�VDeW]T]TVcacP
e�`qarS\b_p�SWXjÆ Ä
]TVceWbTbTacbTd_ûiXÇSWl­VcSWbTd�`Hk
lH[ ]TVceWbTbTacbTdFS�X{acbQXÇl�eWp®`Hlq^_Pª`q^Tlqk�`qS
]TlHk
oWk
b\`»SWl4Vck
pqpHk
by`HRTk�lqaxp®�?SWXDògSKSQfQacbTdgwTe�b_fiXÇSWl4lqk
eWV¦Î¹`Hac[­k
]TVceWbTbTacbTd#`HS­p®^T]_]gS\l®`»ò_SUSQf?k
oWk
bK`4["e�b_eWdWk
[-k
bK`
� m RTk&XÇSWlHÎ
[-k
l¨eWlHk�e�P
SWb_pHacfTk
l�pjpH^_P�RiP
lHar`Hk
lHaxe�e\pZP
Vrac["e�`HaxP&P�R_e�bTd\k{eWb_f
]gS\]T^TVxe�`HacSWbëP�R_eWbTdWk\w$e�bgf�["e�s�arbUoWS\Vro\k-ò_SUSUfËfQk
XÇk
b_P
k?fQk�Î
p®acdWbçS\l�k
oWk
b�lHacoWk
l#fQk�p®acdWb � m RTkyVce�`®`qk
l­e�lqk
e�XÙeWVrVxp�^_b_fQk
l
`HRTkµR_k
eWfTarbTd�S�X*P�lqacpHaxp"["e�b_eWdWk
[­k
b\`�w4e�b_f0["e�s�acb_P
SWlq]gSWÎ
lqe�`Hk»k
o�eWP
^_e�`qarS\b­[­eWbTdWk
[­k
bK`
��u�k
lHk�È�eWp.acb?è�ý{æ Ê `qRTk
lqk4acp
`HRTk�bTk
k
fy`qS"^Tb_fQk
lqp®`qeWb_fyÍ4R_e�`4`qRTk�p®`qe�`q^_p4SWXD`qRTk�k
o\k
bK`�acp
Î�`HRTaxp�axp�k�pHpHk
bK`qaceWVN`HS?pH^T]T]ÐSWlH`�`HR_k�eWP�`HacoWk�["e�b_eWdWk
[-k
bK`�S�X
e�bUs"acfTk
bK`Harv_k
fy]TlqS Ì Vrk
[­p
�

ùZk
VrS�Í ÍZk�P
SWb_P
k
bK`Hl�e�`qkyS\b0k
o�e�Vc^_e�`qarb_dË`HRTk�XÇk�eWpHa Ì acVca¦`ts<S�X
Æ Ä ]TVxe�bTbTacbTd�`qS�pH^T]T]ÐSWlH`*ò_SUSQfËk
oWk
bK`*[­eWb_e�d\k
[­k
bK`�w+eWb_f
^_p®k¨`qRTk4arbTXÇSWlq[­e�`HacSWb-XÇlqSW[ fQk
VracoWk
lqe Ì Vck
p+S�XÐ`HRTk�P
^TlqlHk
b\`�hZn
]TlHSWätk
P�`-Ï Ø�ü+Û�Û&z&p®ar`Hk\Ï�`HS�p®^_]T]gS\l®`�ar`��"Ø+ü�Û�Û&z{pHar`Hk­e�ac[­p
`HS,fQk
oWk
VrS\]>`HSUSWVxp�`HS{RTk
Vc]*acb�k
o�eWP
^_e�`qarS\b�["e�b_eWdWk
[­k
b\`�w
]ge�lHÎ
`HaxP�^TVxe�lqVrs­[­k�`�e�Î¹`HSUSWVxpjeWb_f"XÇl�e�[­k
ÍZS\lH�Qp�XÇS\lj`qRTk Ì ^TarVxfQacbTd-S�X
p®]Ðk
P
a¦vgP>fQk�P�axp®acSWb�pH^T]T]ÐSWlH`,p®sQp®`Hk
["p�È�z&OTO Ê �

� �����t��
 ���ª�.�.�4³ �K � ��\���©�t��³ �K�H���

96



- .10�243 0 '9#&) + 3 ��#4+(5 68!$#&'�� !$# 0

��� �����T�Q��� ���4� �_��� � ����: $
� ( $

m RTk­bTk
k
f�XÇSWl�]TVxe�b�dWk
b_k
l�e�`HacSWbFp®^_]T]gS\l®`�acb�`qRTk­lHk�e�VrÎ�`qar[­k
pqP�k
bge�lqarS­axp,fQaclHk�Pª`qVrs�p®^_]T]gS\l®`qk
f Ì s�Ø+ü�Û�Û&z{pHar`Hk*lqk
pHk
eWlqP�R û
Ï �&aro\k
b-`HRTk4Vxe�lqdWk¨o�e�lqark
`ts*S�X�]ÐS\pqp®a Ì Vck»pqP�k
b_e�lqacS\p+dWk
bTk
l�e�`qarbTd
òge\p®R�ò_SUSUf_p
w�`qRTk�]TlHk
Î�ògSKSQfëd\k
bTk
lqe�`HacSWbëSWX{e�VcV¨`HRTk�P�S\lHlqk�Î
pH]gS\b_fQacbTd�k
[-k
lHd\k
b_P
s#]_VceWb_pjaxp¨SW^Q`¨S�X lqk
e\P�R ÏÐÈ�Ø�ü+Û�Û&z&p®ar`Hk
Í¨SWlq�K]_VceWb w ]_eWdWk á } Ê � m RTaxp�ac[­]TVrack
p*`HR_e�`�`HRTk�[-SW`Haco�e�`HacSWbaxp�pHar[­acVceWl�`HS�arb_P
acfTk
bK`�["e�b_eWdWk
[-k
bK`*arbë`qRTk�è�ý{æ e�]_]TVrarÎ
P
e�`HacSWbiÎ.`HS Ì k*e Ì Vck&`HS"]TlqSQfQ^_P�k�pHSW^Tbgf�]TVxe�bgp»arb�lqk
e�VÐ`qar[­k
acbilqk
pH]gS\b_pHk�`HS­e-P�lqacpHacpZacb�Í4RTaxP�R�`qRTk
lqk>e�lqk{e#bK^_[ Ì k
l4e�b_f
[­a¦ÕyS�X+arbQXÇS\lH["e�`HacSWb�pt`qlHk�e�["p
�

)+��� � "-, �­� �&. /21
3 � ��� �_��� � ���

8:9<;>= Ý ; îW? Ý�Ü ìB@QîÐí ß í ? ; ì Þ�ß ; î�C ïHÞ = Ý¹ïFE ì Ý EQïHÜ � O­Ü L ; EPO�� @ ; ?%@

m RTk
lHkçeWlHkË["e�bUs)fTk
P�axpHarS\bÅpH^T]T]ÐSWlH`�p®sQp®`Hk
[­p�`HR_e�`�R_e�oWk
Ì k
k
b�P
lHk�e�`Hk�f"`qS-R_k
Vc]yacbiò_SUSUfyk
oWk
bK`»["e�b_eWdWk
[­k
b\`4acb�`qRTk
n,~­w�ØTl�e�bgP�k�eWb_f�ý�k
`HRTk
lHVxe�b_f_p{eWVrS\bTk?ÈÙè4S Ì á�â\âKé Ê � m RTk�p®k
z>OTO�eWlHki`tsU]TaxP
e�VcVcs � Ä OUÎ Ì e\p®k�f�pHar[#^TVxe�`HacSWbåp®sQp®`Hk
[­p-Í4ar`HR
^_pHk
lHÎ�XÇlqack
b_fQVcsyarbK`Hk
l®XÙe\P�k�p
� m R_k
s�P
e�b�arbQXÇS\lH[öS\b�ò_SUSUf�fQacp®Î
`Hlqa Ì ^Q`HacSWbgp
w.axfQk
bK`qa¦XÇsç]ÐSW]_^TVce�`HacSWb w�`qlqeWb_pH]gS\l®`#eWb_fç]_lHS\]gk
l®Î
`Hack
p�e�`ylqaxp®� 7*k
o�eWVr^ge�`HkF`qRTkËVrac�Wk
VrsÒk5�Ðk�Pª`HacoWk
bTk
pqpyS�X#ò_SUSUf
fQk
XÇk
b_P
k
p�k
`qP���YZSW[­[�^_bTacP
e�`qarS\b Ì k�`tÍ¨k
k
båÏ eWP�`HS\lqp
ÏNacp*oWk
lqs
ac[-]ÐSWlH`qeWbK`Zacb"ò_SUSQf"k
o\k
bK`Z["e�bge�dWk
[­k
bK`{ÈÙe\pjacb?SW`HRTk
lZacb_P�arÎ
fQk
b\`�ñ�P
lHaxp®axp»["e�b_eWdWk
[-k
bK` Ê e�b_f�R_k
b_P
k*p®sQp®`Hk
["p4eWlHk*eWar[­k
f
e�`+arbTXÇSWlq[­e�`HacSWb*fQaxpqp®k
[-acb_e�`HacSWb�eW[-S\bTd�k
[-k
lHd\k
b_P
s&pHk
lqoUacP
k
p
e�bgfiP
SWbTbTk�Pª`qk
fySWlqd\eWbTacpqe�`qarS\b_p
�

m RTkZbK^_[ Ì k
l+S�X_fQk�P�axp®acSWb�pH^T]T]ÐSWlH`+pHsQpt`qk
["p$pH^Td\dWk
p®`qpDe�RTacdWR
Vck
oWk
V\SWXQ`Hk�P�RTbTSWVcSWd\acP
e�V\arbQXÇl�eWp®`Hlq^_P�`H^TlqkW�$u,S�ÍZk
oWk
l
w�lHk�e�VrÎ�`qar[­k
^_pHk­S�X�`qk
P�RTbTS\VrS\dWs�Í4ar`HRTacbF`HRTk"pHk
Pª`qSWl>e�]T]Ðk
eWlqp{`qS Ì k­`qeWl®Î
dWk
`Hk�f-e�`jfQaxpHpHk
[­acb_e�`qarbTd�acbQXÇS\lH["e�`qarS\b-e Ì S\^Q`.`HR_k4^TbQXÇSWVxfQacbTd
P�lqaxp®axp.`qS*`HR_k,l�e�bTd\k�S�X k
[-k
lHd\k
b_P
s#pHk
lqoUacP
k
p.`qR_e�`»e�lqk,P
eWVrVck
f
^T]ÐSWb�`qS�eWpqp®axp®`
�»ý�S?pHsUp®`Hk
["p,pHk
k
[×`HS?k
ÕQacp®`�`HRge�`,]Ðk
lHXÇSWlq[
pH^T]T]ÐSWlH`DXÇS\lDògSKSQf�k
oWk
bK`D["e�b_eWdWk
[-k
bK`+acb�d\k
bTk
lqeWV�w�SWl+k
o�e\PªÎ
^_e�`HacSWb-]TVceWbTbTacbTd>XÇSWl�ògSKSQf#k
o\k
bK`qp�acb­]_e�lH`HaxP�^TVxe�l�w Ì s*d\k
bTk
l®Î
e�`qarb_d�]TVceWb_p.acb"lHk�p®]ÐSWbgp®k¨`HS#e�p®]Ðk
P
a¦vgP4fTacpqeWp®`Hk
l
� Ä b_fQk
k
fNw\arb
`HR_k­eWlHk�e?SWX�ò_SUSQf�k
oWk
bK`>["e�b_eWdWk
[­k
b\`�w�ÍZk"P�S\^TVxf�v_b_f�bTS
k
oUaxfQk
bgP�k>`HRge�`�`qRTk
lqk�k�ÕQaxpt`�p�p®sQp®`Hk
[­p4`HR_e�`,P
e�b�o�e�VcaxfTe�`qk�SWl
pHar[#^TVce�`Hk*]_lHk
Î¹k
ÕUaxp®`HacbTd"k
o�eWP
^_e�`qarS\b�]TVceWb_p�7_`qR_e�`,axp,pHsQpt`qk
["p
`HRge�`4arb_]T^Q`�Í»e�`Hk
l4fQacp®`Hlqa Ì ^Q`HacSWby[­SQfQk
Vxp
wTeWb_fyp®ac[�^TVxe�`qk,`qRTk
k�ÕQk�P�^Q`qarS\b�S�X&fQacpqeWp®`Hk
l#]_VceWb_p�acb�lqk
eWV¨`Hac[-k\wje�bgfçk
o�eWVr^_e�`Hk
`HR_k
[��

H Þ�Ý�Þ�Þ[I�Þ ; ßcÞ�J ; ß ; Ý K�Þ î L M E_Þ�ß ; ÝGK � O"Ü L ; EPO�� @ ; ?D@

z&e�`qe"XÇlHS\[7[­k
`Hk
S\lHS\VrS\dWaxP
eWVN]TlHk�fQaxPª`HacSWbgp
w�fTe�`�e?P�S\b_P�k
lHb_arbTd
]ÐSW]T^TVxe�`qarS\bµfQk
bgp®ar`Hack
p
wg]ÐSW]_^TVce�`HacSWb�P�Rge�l�eWPª`qk
lqacp®`HaxP
p
wQ]TRUsQp®arÎ
P
eWVZe\pHpHk�`�p�ÈÙpqe�XÇk Ì ^TacVcfQacbTd�k�`qP Ê eWb_fëk
o�e\P�^_e�`HacSWbëlqSW^Q`qk
p*axp
lqk
eWfTarVcs�e�o�e�acVce Ì VckW�yÛ{bF`HR_k"S�`HR_k
l*R_eWb_fNw+Í4RTacVrk"S Ì `qeWarbTacbTd
fTe�`qe"XÇS\l&pHac[�^TVxe�`qarS\bµacp&]ÐS\pqp®a Ì VckWw�ar`&axp>P�^TlqlHk
bK`HVcsibTSW`&]ÐS\p®Î
pHa Ì Vck"ÈÙe\P
P�S\lqfTarbTd�`HS"Ø�ü+Û�Û&z&p®ar`Hk Ê `HS­dWk
bTk
l�e�`qk{^T]i`HS"fTe�`Hk
[­SQfQk
Vxp�S�X¨Í¨e�`Hk
l�Vrk
oWk
Vxp
w oWk
VrSQP�ar`Hack
p>k
`qP­acbËlHk�e�V�`Hac[­kWw+fQ^Tk
`HSi`HR_k-eW[-S\^TbK`&SWXZP�S\[­]T^Q`qe�`HacSWb_eWV$`qar[­k­lqk
ðK^TaclHk�fN��u�k
bgP�k
e�bUs�pHac[�^TVxe�`qarS\b-pHsQpt`qk
["p.Í¨SW^TVxf�b_k
k
f#`qS�^_p®k4]_lHk�P�SW[­]T^T`Hk
f

[-SQfQk
Vcp
�

N EPO"Þ îRQ Þ ì Ý í ï =�� O"Ü L ; EPO�� @ ; ?%@

è4k
pHk
eWlqP�R�e�b_fµarbTb_S�o�e�`HacSWb�acb�`HRTaxp&e�lqk
e­axp,eWP
P�k
]Q`Hk�fµeWp�eWb
k
pqp®k
b\`qaceWVgS\bTdWS\arb_d#eWP�`HacoUa¦`qark�p Ì s�p®`qeW�Wk
RTSWVxfQk
l�p�acbi`HRTk&v_k
VcfNw
RTk
b_P
k,`qRTk
lqk&ÍZS\^TVcf Ì k&bTS#`HRTlqk
e�`qpZ`HS#XÇk
e\p®a Ì acVrar`tsW��æ�e�bUs­S�X
`HRTk­]ÐS�`Hk
bK`Haxe�V�^_pHk
l�p
w RTS�Í¨k
oWk
l
w�Í¨SW^TVxfFbTS�` Ì k Ätm Vca¦`qk
l�e�`qk
e�b_f"R_k
b_P
k{e�bUs­Æ Ä pHS�Xê`tÍ»e�lqk4Í¨SW^TVxf"bTk
k
f­`qS Ì k{k
[ Ì k
fTfQk�f
Í4a¦`qRTarb�^_pHk
lHÎ¹XÇlHack
b_fTVrs"acbK`Hk
lHXÙeWP
k
p
�

T2�&�WVX'�"W.
(�" YZ�&( � �
"W" �%� �&(\� �_��� � ���

� ß í = Ü î Ü =A= Ý í � ïqÜ
I ; í E = Þ ��� ß ; ì Þ�Ý ; í�î = � O"Ü L ; EPO
m RTacp�e�lqk
eËaxp?P�Vck
eWlHVcs�lqk
Vxe�`qk
f<`HSë`qRTkµ[­SWlqk�dWk
bTk
l�e�V{e�lqk
e
S�XZP
lHaxp®axp&]Tlqk
oWk
bK`HacSWb�eWb_f�[­eWb_e�d\k
[­k
bK`�� m RTk
lHk-R_eWp Ì k
k
b
eµdWlqk
e�`-fQk�e�V»S�X{ÍZS\lH�ËSWbåfQk
P
acpHacSWb<pH^T]T]ÐSWlH`-XÇSWl"P�lqacpHaxp�S\l
fQacpqeWp®`Hk
l,["e�bge�dWk
[­k
bK`
w�l�e�bTd\arbTd Ì eWP���[­SWlqk*`qR_e�b á�â Î4} â
sWk
eWlqp
w{eWV¦`qRTSW^_dWRÅSWbTVcs8e<XÇlqe\Pª`qarS\b)SWX#`qRTacp�Í¨SWlq�÷R_e\p�e�`HÎ
`Hk
[­]Q`qk
f�`HS>e�^Q`qSW["e�`qkjd\k
bTk
lqe�`HacSWb*SWX_]TVxe�b_p
�+Æ,b�k
ÕQP
k
]Q`qarS\b
acp»`qRTk�S\bTdWS\arb_d-Í¨SWlq�ieWar[­k�f�e�`{fQaxpqeWp®`Hk
l,[­eWb_e�d\k
[­k
bK`4XÇS\l
k
lq^T]Q`HacSWbgpDSWX_`qRTk�É�SW]ÐSQP
e�`qk
]Ðk�`qVKo\SWVxP
eWbTS{acb­æ�k�ÕQaxP�S_wWÍ4RTk
lqk
`HRTk#`Hk�P�RTbTaxð\^_k
p&^_pHk
fFe�lqk Ì e\p®k�fµSWbFe�b_pHÍ¨k
lHÎ·pHk�`,]_lHS\dWl�e�[-Î
[-acbTdÅÈ¹YZSWlH`Hk�p
w,OQSWVcbTSWb w�� æµe�lH`HbTk
Ú áWâWâ � Ê � m R_acpyÍ¨SWlq�
acp{e�ac[-k�f�e�`,acbK`Hk
dWl�e�`HacbTd?e"]_VceWbTbTacbTd?XÇ^TbgPª`HacSWb�Í4a¦`qRµk�ÕQaxpt`HÎ
arbTdX� Ä O?pHsQpt`qk
["p
� m R_k{Vxe�bTd\^_e�d\k,^_pHk
f?XÇSWl»lqk
]Tlqk
pHk
bK`qe�`HacSWb
arb_P
SWlq]gS\lqe�`Hk�p$pHSW[­kj[­k
e\p®^_lHk�p$SWXg^Tb_P
k
lH`qeWarbK`tsWw�eWb_f�`qRTk4p®sQp®Î
`Hk
[7R_e\p»`HRTk�]gSW`Hk
bK`qaceWVNXÇSWl�d\k
bTk
lqe�`HacbTd"p®ac[­]TVck*k
[­k
lqdWk
b_P�s
k
o�eWP
^_e�`qarS\by]_VceWb_p
��u,S�ÍZk
oWk
l
wU`qRTk#eW]T]TVcacP
e�`HacSWbµeW]T]Ðk
e�l�p�e\p
sWk�`4bTSW`4ar[­]TVck
[­k
bK`qk
fN�

h�o�eWP
^_e�`qarS\bÅ]_VceWbTbTacbTd÷axp�eWbÔeWPª`qaroUar`ts8`qR_e�`FR_eWpFe�Vclqk
eWfTs
Ì k
k
b�^_pHk
fiÍ4a¦`qR�`HRTk*ÉjVceWbTbTacbTd-P
SW[­[�^_bTa¦`ts�Î�a¦`�axp4^_pHk
f�e\p
e�b�k�ÕTe�[­]TVck�Í4ar`HRTacb�`HRTk�lqk
P
k
bK`4`Hk
ÕU` Ì SKS\��ÈG�&R_e�VcVce Ì wgý{e�^ w
� m lqe�o\k
l�p®S á�â\â � Ê �+O Ä Æ{z{hjÖ ÈÙØ�fQk
Ú�Î®Û{Vraco�e�lqk
p Ü
Ý�Þ�ßràjáWâWâ\ã Êacp"eFp®sQp®`Hk
[ `HR_e�`?acp"P
^TlqlHk
b\`qVrsë^_b_fQk
lqdWS\arb_dµ`Hk�pt`�p"acb<lqk
eWV
v_lHk{v_d\R\`qarb_d­pHar`H^_e�`HacSWb_p
� Ä `»]_lHSQfQ^_P
k
p»]TVxe�bgp
wQ[­SWb_a¦`qSWl�pZk
ÕUÎ
k
P�^T`HacSWb w$eWb_fFarbK`qk
l�eWPª`�p>Í4a¦`qRËRK^_[­eWb�k
ÕQ]gk
l®`�p>`HS�pH^T]T]ÐSWlH`
[­eWb_e�d\k
[­k
bK`¨arbiXÇSWlqk
p®`jv_lqk{v_dWRK`HacbTdg� m R_k&acb_pHard\RK`qp¨lHk�p®^_V¦`HÎ
arbTd?XÇlHS\[×`qRTk#O Ä Æ{z{hjÖ ac[-]_Vrk
[-k
bK`qe�`qarS\bµÍ¨SW^TVxf�P�k
l®`�e�acbTVrs
P�SWbK`qlHa Ì ^Q`qk>`HS"`qRTk#pH^_P
P
k
pqp4S�X�e-ò_SUSQf�k
oWk
bK`�["e�bge�dWk
[­k
bK`
e�]T]TVcaxP
e�`qarS\b �

� ï í�ì Ü L EQïHÜ C�í ïFO­Þ�ß ;>= Þ�Ý ; í�î ; î Ý @ Ü � ï í J�ßrÜ5O Þ�ïHÜ�Þ � ß í ? �
O­Ü L ; EPO
Ä b#d\k
bTk
lqeWV�w�]TVxe�b_p.eWb_f#]TlHSQP
k
fQ^Tlqk
pDacb�`qRTk�e�lqk
e{e�lqkZbTSW`�XÇSWlHÎ
[­eWVraxpHk
f�eWb_f#a¦Xg`HRTk
s�k�ÕQaxpt`.e�lqk»pt`�e�`Hk�f�acb­b_e�`q^Tl�e�VUVceWbTdW^ge�dWk\�
u�S�Í¨k
oWk
l
w+`qRTk
lqkyeWlHk�pHSW[­kyz>OTOç`HR_e�`"k�ÕQ]gk�Pª`­k
[­k
lqdWk
b_P�s
lHk�p®]ÐSWb_pHk*]TVxe�bgp&e\p{eWbµacbT]T^Q`�w$e�b_f�k
o�e�Vc^_e�`Hk*`qRTk
[ Ì sµP
e�VrÎ
P�^TVxe�`qarbTd�`HRTk-k
��k
P�`
� m RTaxp&ar[­]TVcack
p{`HRTk-k�ÕQaxpt`qk
b_P
k#SWXZpHSW[­k
]TVceWb�XÇS\lH[#^TVxe�`HacSWbgp
�
� ��� ï í � ï ; Þ�Ý�Ü î Ü =A= C�í ï � 
 � ßrÞ îgî ; îW? = í ß EQÝ ; í�î � O­Ü L ; EPO
æµe�bUsÔSWXi`qRTkÒarb_]T^Q`qpçlHk�ð\^_arlqk
f9arbþe�]TVxe�b_bTarb_d�fTSW["e�acb
[-SQfQk
V,R_e�o\k Ì k
k
bÒXÇS\lH["eWVraxp®k�f0arbÒ]geWp®`ifQk
P
acpHacSWb÷pH^T]T]ÐSWlH`
p®sQp®`Hk
["p
û$eWP�`HacSWb_p�eWb_f�[­k
`HRTSQfTp.lqk
]_lHk�p®k
b\`qarb_d,lqk
pHSW^Tl�P�k�p `qS
Ì k4^_pHk
f�XÇSWljk
o�eWP
^_e�`qarS\b wWe�bgf�S Ì ätk
P�`qp.pH^_P�R"eWp.P
eWlHlqack
l�pDeWb_f

97



lqSW^Q`qk
p�ÈÙk
d�lHSKeWfËbTk
`tÍZS\lH�Qp Ê � m RTki]TVceWbTbTacbTd�p®`qe�`HkiÍZS\^TVcf
Vcar�\k
Vcs-P
SWb_pHacp®`jSWXNò_SUSUf?Vrk
oWk
Vxp
w\pqe�XÇk,k
o�eWP�^ge�`HacSWb"Ú
SWbTk�p
wKp®]ge�Î
`Haxe�VgfQacp®`Hlqa Ì ^Q`HacSWb"SWXNarbTRge Ì ar`qeWb\`�p
wW`tsU]gk�p.S�XNacbTR_e Ì a¦`�e�bK`qp�ÈÙk
d
e Ì Vrk
Î Ì SQfQark�f0SWlibTS�` Ê �ÓÑÒRTacVrk�`HRTaxpye�]T]Ðk
eWlqp?eW]T]TlqSW]Tlqaxe�`Hk
XÇSWl"Æ Ä ]TVxe�bTb_arbTd�`Hk�P�RTbTS\VrS\dWsÒÈÙeWb_fç`qRTk�P�VcS\pHk
bTk�pHp#S�X,`HRTaxp
fQS\[­eWarb�`HS-dWk
bTk
l�e�V�fQaxpHe\pt`qk
l¨[­eWb_e�d\k
[­k
bK`¨acp»k
oKaxfQk
b\` Ê `qRTk
P�S\bK`HacbK^_SW^_p�b_e�`q^TlHk�S�X*`qRTkËfQSW["e�acb w�acb8]ge�lH`HaxP�^TVxe�l�ò_SUSUf
fQaxpt`qlHa Ì ^Q`qarS\b w_["e�s Ì k�fQarú?P�^TVr`�`qS"lHk
]TlHk�p®k
bK`»Í4ar`HR�P
^TlHlqk
bK`
fQS\[­eWarby[­SQfQk
V Vxe�b_dW^_eWdWk
p
�

�÷Ã IUANG,IUI ÃtÁZ¾

ØTS\l>`HRTk?è,ý,æøe�]T]_VraxP
e�`HacSWb w$p®`Hlqk
b_d�`HRgp{Vcack"arb�`HRTk­`qk
P�RTb_S�Î
VcSWdWaxP
eWVgacbQXÇl�eWp®`Hlq^_Pª`q^TlqkWwK`HRTk&[­S�`qaro�e�`qarS\b?XÇS\lZ`qRTk>ÍZS\lH��wUe�b_f
ÈÇacbÒ`qRTk�n{~ e�`iVck
e\pt` Ê `HRTkFe�o�e�acVce Ì arVcar`ts�S�X*acbK`Hk
lHS\]gk
lqe Ì Vrk
pHk
lqoKaxP�k�p#fT^Tk�arb0]_eWl®`-`HSF`HR_k�p®`qeWb_fTeWlqfç`Hk
P�R_bTSWVcSWd\sF]_Vce�`®Î
XÇSWlq[ ÈÙn m æFY Ê � m RTk*k�ÕQaxpt`qk
b_P
k*S�X�pHS�Xê`tÍ»e�lqk>arb�`qRTk�acb_fQ^_p®Î
`HlqsFÍ4a¦`qR�Æ Ä P�R_eWlqe\Pª`qk
lqacp®`qp?È¹O_Y4Û�Û m e�b_f�æ�Û&ü$Æ Ê acp-e�b
ac[-]ÐSWlH`qeWbK`�XÙeWPª`qSWl�� m RTk"["eWarbË]TlqS Ì Vck
["p*pHk
k
[6`qS Ì k"`qRTk
VxeWP��yS�XjRTacdWR�Vrk
oWk
V+acbQXÇSWlq["e�`HacSWbµe Ì S\^Q`{lqS\e\f�bTk�`tÍ¨SWlq��pt`�e�Î
`H^gpZÈÙÍ4RTacP�R�k
ðK^_e�`qk
p `HS�`qRTk,Ï Í¨SWlqVcf�p®`qe�`HkWÏ
arb�]TVceWbTbTacbTd Ê w�e�b_f
`HR_k�Vce\P��"S�X�]TlHk�P�axp®k
Vrs?fTk�v_bTk�fy]TVceWbyf_e�`qe Ì eWpHk
p
�.ØTS\l�Ø+ÉZæëw
e�dKe�acb w_[­SW`Haco�e�`HacSWbµeWb_fy`Hk�P�RTbTSWVcSWd\acP
e�V acbQXÇl�eWp®`Hlq^_Pª`q^Tlqk�e�b_f
acbTbTS�o�e�`qarS\b#axp.dWk
bTk
l�e�VcVcs�RTard\R � m RTk4["e�acb-eWlHk�eWp�SWX�P
SWb_P
k
lqb
e�lqk�Í4ar`HRTacb�`HR_k*�UbTS�Í4Vrk�fQdWk�k
bTdWacbTk
k
lqarbTd?e\p®]Ðk
P�`qp
w_]_eWl®`qacP
^QÎ
Vxe�lqVrs{]TVceWb>lHk�eWpHSWbTacbTd4e�b_f>lqk
]_lHk�p®k
b\`�e�`qarS\b&e\p®]Ðk
P�`qp
� Ä b Ì SW`HR
e�lqk
e\pÐ`HRTk
b w�a¦`+ÍZS\^TVxf&pHk
k
[8`qR_e�`$`HRTkjeW]T]TVcacP
e�`qarS\b_p e�lqk�XÇk
e\p®arÎ
Ì VckWw Ì ^Q`�[­SWlqk»ÍZS\lH�*axp�lqk
ðK^TaclHk�f*`qS*ð\^ge�bK`HarXÇs�`HR_k�lHk�p®S\^Tl�P�k
p
lqk
ðK^TaclHk�f?`qS­P
SW[­]TVck�`qk>`HRTk��UbTS�Í4Vck
fQd\k{k
bTdWacbTk
k
lqarbTd#`qe\p®���

Æ�b_S�`HR_k
l4e�]T]_VraxP
e�`HacSWbieWlHk�e*Í¨k{Rge�oWk&arbUoWk�pt`qardKe�`qk
f"lqk
pH^TVr`Hk
f
acb�e?lqk
["eWlH��e Ì Vrs�fQa��Ðk
lHk
b\`&lHk�p®^_V¦`&arb�`HRTk#XÇk
e\p®a Ì acVrar`ts�P�lqa¦`qk�Î
lqace_wZVck
e\fQarb_d�`qSë^_p?b_S�`?]T^Tl�pH^Tarb_d�`qRTk�eW]T]TVcacP
e�`HacSWbåS�X�Æ Ä
]TVxe�bTb_arbTdg� m RTacp»axp4e�byRTaxpt`qSWlqacP
e�V�k�ÕTeW[-]_Vrk"ÈÇacbi`HR_e�`�a¦`4["e�s
bTSW`Dpt`qarVcVKRTSWVxf>`HSQfTe�s{dWacoWk.`qRTkZP�Rge�bTd\k
pNacb�`Hk�P�RTbTS\VrS\dWs Ê XÇlHS\[
`HR_k&eWlHk�e*S�X+Æ�acl m l�e�ú?P&YZS\b\`qlHS\V�� Ä `»acp Ì e\p®k�f?SWb�SW^Tl»k
eWlHVcs
Í¨SWlq�yacb�XÇSWlq[­eWVraxpqe�`HacSWb�S�XZÆ m YÔp®k
]_e�l�e�`qarS\b�P�lqa¦`qk
lqaceFÈÙæ�PªÎ
YZVc^_p®�\k
s Ü�Ý+Þ�ßrà |�ôWô�� Ê � m R_kZe�]_]TVraxP
e�`HacSWb�eWlHk�e»acp$`HS{]TlqSUfT^_P�ke#]TVceWbTbTacbTd#eWacf?XÇSWl¨RTk
Vc]TacbTd­P�SWbTò_acP�`¨lqk
pHSWVc^Q`qarS\b?S�XDeWarl�P�l�e�Xê`
fQ^TlqacbTdëk
bQÎ·lqSW^Q`qk�P
SWbK`HlqSWV»S�o\k
l"ý�S\l®`qR0Æ¨`qVceWbK`HaxP�e�aclqpH]_eWP
kW�
m RU^_py`HR_kë]TVceWbTbTk
l�ÍZS\^TVcfÅbTk
k
f8`HS0`�e��WkËk
ÕUaxp®`HacbTd0lHS\^Q`Hk
]TVxe�b_p
w�eWf�ät^_pt`-`HR_k
[ `HSFP�Vck
eWl#e�bUsëe�acl�p®]_e\P�k�P
SWbQògacP�`�`HRge�`
R_e\f Ì k
k
b�fQk
`Hk�Pª`Hk�f Ì s�e?P�S\bQò_axPª`,]TlqS Ì kWw�e�bgf�SW^Q`q]T^Q`,`qRTk
bTk
Í�]_VceWb_p�`qS�e�bçeWarl*`Hl�e�ú?P?P�S\bK`HlqSWV�SWú"P
k
l�� Ä bë`HRTaxp�fTS�Î
["e�acby`HRTk*Vck
o\k
VNSWX.P
^TlqlHk
b\`»`qk
P�RTbTS\VrS\dWs?Í»eWp»R_ard\R w_fTe�`qe­SWb
e�acl�P�l�e�Xê`,]ÐS\pHa¦`qarS\b_p,eWb_f�]TVxe�bgp,Í»eWp,oWk
lqsydWSUSQfNwÐeWb_f�S��­acbTk
k
o�eWVr^_e�`HacSWbåÍ¨e\p-]gSKpHpHa Ì Vrk\�÷Æ,fTfQar`HacSWbge�VcVrs\wj`qRTk��UbTS�Í4Vrk�fQdWk
k
b_dWacbTk
k
lHacbTdie\p®]Ðk
P�`qp&Í¨k
lqk�dWSUSQfNû,`HRTk
lHk-ÍZk
lHk#lH^_Vrk Ì SUS\�Up
w
XÇSWlq["e�VcacpHk
f�]TVxe�b_p
w$]_lHS\]gSKp®ar`HacSWb_eWV.pt`�e�`Hk"fQk�pHP
lHac]Q`qarS\b_p
w+e�b_f
[�^gP�R)SWX�`HR_kçP�SWbK`qk�ÕU`��Kb_S�Í4Vrk�fQdWkFR_eWf Ì k
k
bÅXÇS\lH["e�Vcaxp®k�f
`HR_lHS\^TdWR<SW^Tl-]Tlqk
oUarS\^_p#ÍZS\lH�ËSWbåe�aclqP
lqe�Xê`­pHk
]ge�l�e�`HacSWbçP
lHarÎ
`Hk
lHaxeT� m RTk&P�lqa¦`qk
lqace&`qR_e�`»pHP
SWlqk
f-VrS�Í0Í¨k
lqk4[­S�`Haco�e�`qarS\b�e�b_f
RU^T["e�biXÙeWP�`HSWl�p
ûDacbUoWk
p®`Hacd\e�`HacSWb�pHRTS�Í¨k
f?`HR_e�`4eWV¦`qRTSW^_dWRieW^QÎ
`HS\["e�`Hk�f#eWacf_p�ÍZk
lHk»fQk
pHaclHk�f Ì s�pHSW[­k»pt`�e�`Hk»RTS\VcfTk
l�p
w�`qRTk»k
b
lqSW^Q`qk­eWarl&`qlqe�ú"P­P
SWbK`HlqSWV�S�ú?P
k
l�p{Í¨k
lqk­ð\^_a¦`qk-Rge�]T]UsµÍ4ar`HR
`HR_k
acl*P�^TlqlHk
bK`&[­k�`qRTSQfNw$Í4R_acP�RFÍ¨e\p>P
e�]ge Ì Vck­S�X¨fTk
Vcaro\k
lqarbTd
`HR_k�]TVceWb_p»Í4ar`HRTS\^Q`4`HRTk�b_k
k
fiXÇS\l4k�ÕU`Hl�e#`Hk
P�R_bTSWVcSWd\sW�

C ÁZ¾ ANE®G{I ÃtÁj¾ I

Ä b�`HRTaxp&]_e�]Ðk
l&Í¨k�acb\`qlHSQfQ^gP�k
f�e�pHk�`>S�XjP
lHar`Hk
lHaxe­XÇSWl>k
o�eWVr^TÎ
e�`HacbTd�`HRTk{XÇk
e\p®a Ì acVrar`ts"S�X$acbK`HlqSQfQ^_P�acbTd#]TVceWbTbTacbTd#`Hk
P�R_bTSWVcSWd\s
arbK`HS�eWbËeW]T]TVcacP
e�`qarS\bËeWlHk�eT�"ÑFk�e�]_]TVrack
f�`qRTk
pHk?P�lqa¦`qk
lqacei`qS
`tÍZSye�]T]TVcaxP
e�`qarS\b�eWlHk�eWp{Í4RTacP�RåÈÙe\p{s\k�` Ê Rge�oWk�b_S�`*p®k
k
bFÆ Ä
]TVceWbTbTacbTdieW]T]TVcacP
e�`qarS\b_p
�&Æ�Vr`HRTS\^TdWR�Í4a¦`qRµ`HR_k-eW]T]TVcacP
e�`HacSWbgp
P�SWbgp®axfQk
lqk
f*`HRTk4acbK`HlqSQfQ^_Pª`qarS\b#SWXÐÆ Ä ]TVxe�b_bTarb_d&Í»eWpD`qRTSW^Td\RK`
`HS Ì k4XÇk
e\p®a Ì Vck�ÈÇÍ4ar`HRip®S\[-k,lHk�p®k
lHo�e�`qarS\b_p Ê w�`qRTk,k
ÕUk
lqP
acpHk�e�]TÎ
]gk�e�l�p+`HS�acVrVc^_p®`Hl�e�`Hk�`HS�^_p�`qRTk,fQarú?P�^TVr`ts-arb­v_bgfQarb_d*p®^Tar`qe Ì Vck
e�]T]TVcaxP
e�`qarS\b?e�lqk
e\p
û+e�bieW]T]TVcacP
e�`qarS\b"[�^_p®`»pqP�S\lHk,ÍZk
VrVÐSWb�eWVrV
`HRTlqk
k­eWpH]gk�Pª`�p
û{[-SW`Haco�e�`HacSWb$w�`Hk
P�R_bTSWVcSWd\acP
e�V+arbQXÇl�eWp®`Hlq^_P�`H^Tlqk
e�b_fi�UbTS�Í4Vrk�fQdWk&k
b_dWacbTk
k
lHacbTd"eWpH]gk�Pª`�p
�

OUSW[­k"eWpH]gk�Pª`�p>S�X¨`HRTk?P
lHar`Hk
lHaxe�Í¨k
lqk Ì eWpHk
f�SWb�`HR_S\pHk­`HR_e�`
ÍZS\^TVcf Ì k�^_pHk
f­Í4RTk
b?eWpqp®k�pHpHacbTd�e�b?e�]_]TVraxP
e�`HacSWb-XÇSWlj`HRTk,arbQÎ
`HlqSUfT^_Pª`qarS\b&SWXUe4~�ù4O�w�eWpÐ`qRTkjpqe�[­k.]TlqS Ì Vck
["pNSWXK�UbTS�Í4Vck
fQd\k
k
VcacP
a¦`�e�`HacSWbie�b_fie�o�eWarVxe Ì arVca¦`ts­SWX$k�ÕQ]Ðk
lH`Haxp®k&["e�s Ì k&k
oUaxfQk
bK`
�
Ä båP
SWbK`HlqSWV�eW]T]TVcacP
e�`HacSWbgp
wZRTS�ÍZk
oWk
l
wje�XÇ^TlH`HR_k
l"ac[-]ÐSWlH`qeWbK`
XÙeWPª`qSWl�pHk
k
[­p�`HS Ì k�`qRTk�Vck
oWk
VTS�X�`qk
P�RTbTS\VrS\dWaxP
eWVQ]TlHS\dWlqk
pqp®acSWb
Í4a¦`qRTarb*`HRTkZarb_fT^_pt`qlHs\� Ä b�S\lqfQk
l `qS�arbK`qk
dWl�e�`qk.]TVxe�bTbTacbTd4`qk
P�RQÎ
bTSWVcSWd\s#acbK`HS#e#P�^Tlqlqk
bK`HVcs­RK^_[­eWb�P�S\bK`HlqSWVcVrk�f"p®sQp®`Hk
[�wK`HR_k
lqk
p®RTS\^TVxf#eWVrlqk
e\fQs�k�ÕQaxpt`�RTacdWR-Vck
oWk
Vcp�SWXg`qk
P�RTb_SWVcSWdWaxP
eWVU^_p®k4eWb_f
k�ÕQ]gk
l®`qacpHk,acb?`qRTk&arb_fT^_pt`qlHs\wQp®^_P�RyeWpZk�ÕTe�[­]TVck
pZS�XD]_eWp®`»pH^_P�Î
P�k
pqp»Í4ar`HRµÆ Ä `qk
P�RTbTS\VrS\dWs\��ÆÓ]_e�l�e�VcVck
V P
eWb Ì k*fQl�e�Í4b�Í4a¦`qR
`HRTk�v_k
VxfËS�X,Æ,^Q`HS\bTSW[­axPyYZSW[­]T^T`HacbTd�ÈÙ~>k
]TR_eWl®` �2YZR_k
pqp
á�âWâ } Ê w\Í4RTaxP�R�axpZ`HS­fQS­Í4a¦`qR�`qRTk&[­eWbU^QXÙeWP�`H^Tlqk{SWX$SW[­]T^T`Hk
lp®sQp®`Hk
["pZÍ4RTaxP�R?`qeW�Wk>P
eWlHk{S�X `qRTk
["pHk
VcoWk
p¨acb?`qR_e�`»`HR_k
s?P
eWb
p®k
V¦XêÎ�P�S\bQv_dW^_lHk\wWp®k
V¦X ["eWarbK`qeWarb$w\pHk
VrXêÎ¹RTk�e�Vgk�`qPW� m RTk�]TlqS�`�e�dWSWÎ
bTacp®`qpZS�X$Æ,Y0]gS\l®`qlqe�s�`HRTk>fQk
]_VrS�sU[­k
bK`ZSWX$e�^Q`qSWbTS\[­acP{ð\^ge�VrÎ
a¦`qark�p*eWp*`HRTk�P
^TVc[-acb_e�`HacSWbëS�X4e�`qk
P�RTbTS\VrS\dWaxP
eWV.]TlHS\dWlqk
pqp®acSWb
e�VcSWbTd-Í4RTaxP�R�`HRTk�]TlqSWd\lHk�pHp¨SWX�eWb�eW]T]TVcacP
e�`qarS\byeWlHk�e-P
e�b Ì k
`Hl�eWP��Wk�fN��u�k
bgP�kWwUXÇS\l4e�bieW]T]TVcacP
e�`qarS\bie�lqk
e*`HS"eWfTSW]Q`4e�b_k
Í
p®sQp®`Hk
[ arb_P
SWlq]gS\lqe�`HacbTdËe�^Q`qSWbTS\[-axP�XÇk
e�`q^Tlqk
p
wj`qRTkµP�^Tlqlqk
bK`
`Hk
P�R_bTSWVcSWd\s�[�^_p®`DeWVrlqk
e\fQs Ì k.XÙe�l$e\fQo�e�b_P
k
f­ÈÇk
d4`HR_kjP�^Tlqlqk
bK`
p®sQp®`Hk
[ ["e�siR_e�o\k*p®SWXê`tÍ¨eWlHk�P
SW[­]gS\bTk
bK`�p�Í4ar`HR�acb\`qk
VcVracdWk
bK`
P�R_e�l�eWP�`Hk
lqaxpt`qacP
p Ê � m RTaxp,pHk
k
[­p4`HRTk�P
eWpHk*Í4ar`HRµÆ Ä ]TVxe�b_bTarb_d
`Hk
P�R_bTSWVcSWd\s&eWVcpHS_û�`qRTk¨eW]T]TVcacP
e�`qarS\b�e�lqk
e4acb�d\k
bTk
lqeWVW[#^_pt` Ì k
`Hk
P�R_bTSWVcSWd\acP
e�VcVrs-p®S\]TRTaxpt`qacP
e�`Hk�f?k
bTSW^Td\R"`HS­pH^T]T]ÐSWlH`Z�UbTS�Í4VrÎ
k
fQd\k,k
b_dWacbTk
k
lHacbTd-S�X `qRTk>lHk�ð\^_arlqk
f?fTsKbge�[­acP&e�bgf?RTk
^TlHaxp®`HaxP
�Kb_S�Í4Vrk�fQdWk{`HS­["e��\k&]_VceWbyd\k
bTk
lqe�`HacSWb�XÇk
eWpHa Ì Vrk\�

� A_J ¾,Á�� EtL Â ��L���L ¾Z¿ I

Ä ÍZS\^TVxfµVcar�\k�`qS�`qR_e�bT��]Ðk
l�pHSWbTbTk
V+XÇlHS\[ `qRTk-XÇSWVcVrS�Í4acbTdiSWlHÎ
d\e�b_acpqe�`qarS\b_p�XÇS\l�`HR_k
acl�arbT]_^Q`
û�`qk
Vck
bK`
w+Æ$ó&ü+Y üN`�fNw+Æ,kD�&axp
w
m OQhjn�w m è,ü�w.ý,Æ&OQÆ*w.ÑËe�VcVracbTdWXÇSWl�f<OUSWXê`tÍ¨eWlHk\w�eWb_f�~>k
bK`
e�b_fyu,eW[-]gp®RTaclqk*YZS\^TbK`tsyYZSW^_b_P�acVcp
�

�0L���L À L ¾ A�L$I

ù¨ar^TbgfQS_wçO��U7)Æ,sKVck�`H`
wçè��U78ù¨k
k
`HÚ\wËæç��7ÅùZS\lHl�e�ätSgw�z#��7
YZk
p®`qe_w Æ���7 �&lqeWb\`�w m ��7BæµP�YZVr^gp®�\k
sWw m �U7Bæ�acVceWbTa�w
Æ*�U77eWb_f ó.k
lHXÙe�acVrVcark\w��-� áWâWâ }_� ÉZü$Æ,ý{h m `qk
P�RQÎ
bTSWVcSWd\acP
e�V÷lqS\e\fQ["e�]øSWb�Æ Ä ]TVxe�bTb_arbTd e�b_f pqP�RTk�fQ^TVrÎ
arb_d_�6h�Vck
P�`HlqSWbTaxP
eWVrVcs÷e�o�e�Vcace Ì VckFe�`µR\`H`H] û�ñWñ�Í4Í4Í�� ]_VceWbTk�`HÎ
bTSUkW� SWlqdUñ�p®k
lHoUaxP�k�ñ�è4k
pHSW^_lqP
k
pªñ�è4SKe�fQ["e�]Ðñ�è4SWe\fQ["e�] á � ]�fUXt�

98



YZS\l®`qk
p
w+Y{���+�U7�OUSWVcbTS\b w.Y{�U7.e�b_fËæµeWl®`qbTk
Ú\wDz#�+O�� á�âWâ �_�ÉjVceWbTbTacbTdFSW]Ðk
l�e�`HacSWb$ûµÆ�b0k�ÕU`Hk
b_pHarS\b<SWX>eFdWk
SWd\lqeW]TRTaxP
e�V
acbQXÇS\lH["e�`qarS\b�pHsUp®`Hk
[���É�lqSQP�k
k�fQacbTd\p{S�X�`qRTk�|
p®` Ä bK`qV�� üDÆ4Î
ý{æµè â ��ÑFSWlq�UpHRTS\] wKÆ,bK`HacdW^TS?YZSWVck
d\arS�fTk>OQeWb Ä VxfQk�XÇS\b_pHS_w
æµk�ÕQacP
S"YZar`tsWwgz�� Ø÷w_æµk�ÕQacP
S_�
Ø�fQk
Ú�Î®Û{Vraco�e�lqk
p
w �_�U7�Y¨eWp®`HacVrVcS_w$üj��7:�>e�l�P�axe�Î�É�k
lqk
Ú\w$Û#��7�e�b_f
è�k
acb_p
w�Ø¨�ÐÉ�� á�âWâ\ã �4ù¨lHacbTd\arbTd"^gp®k
lqp{e�b_f�]_VceWbTbTacbTd"`Hk�P�RQÎb_SWVcSWdWs­`qSWd\k�`HR_k
l�û+k
ÕQ]gk
lHack
b_P
k
p»acbµO Ä Æ,z&h�Ö#� Ä b � ï í�ì Ü�Ü L �
; îW? = í�C Ý @ Ü�� ; 9 Ý·Ü�Ü î Ý @ 
 î Ý·Ü
ï î Þ�Ý ; í�î Þ�ß ��í�î�C Ü
ïHÜ î�ì Ü í�î � E �
Ý í O"Þ�Ý�Ü L � ßrÞ îgî ; îW? Þ î L � ìB@ Ü L EQß ; îW?�� 
 � � � ���	�
����
 wN|W|��
áWâ �
�&Rge�VcVce Ì w æë�U7+ý{e�^ w$z#�U7De�bgf m lqe�o\k
l�p®SgwÐÉ�� á�â\â �g� � EQÝ í �
O"Þ�Ý�Ü L � ßcÞ î_î ; î-? � = @ Ü í ïFK�Þ î�L � ïHÞ ì Ý ; ì Ü �»æ�S\lHdKe�bi~�eW^QXêÎ["eWbTb Ä OTù¨ý |
Î ��� � ãWâ Î ��� ã Î é �
~>k
]TR_eWl®`�w �g�_Û#�rwTeWb_f�YZRTk
pqp
wQz#�Tæë� á�â\â }T� m RTk&oKaxpHarS\biSWXeW^Q`HS\bTSW[­axP{P
SW[­]T^Q`qarb_d_� ��í O � EQÝ�Ü�ï } ã Èt| Ê û �_|�� � â �
æ�P�YZVc^_p®�\k
s\w m � ü��U7DÉ�SWlH`Hk
SW^_p
w �_� æë�U7Dý{e�ac��w��#�U7 m e�sUVrS\l
w
Y{�Ný���7$eWb_f �WS\bTk
p
w O��?|
ô\ô��T�>Æ�è4k�ð\^_arlqk
[­k
bK`�p�Y¨eW]Q`H^_lHk
æµk�`HR_SUfie�b_f�a¦`�p»^_pHk{acbyeWbiÆ,arl m lqe�ú"P�YZSWbK`qlHS\VÐÆ,]T]TVcacP
e�Î
`qarS\b � � í C Ý ? Þ�ïHÜ�� � ïHÞ ì Ý ; ì Ü"Þ î�L 8:9 � Ü
ï ; Ü îÐì Ü,á �Qû � é � �_|\�
æµsWk
l�p
w
~­�U7�ØTl�e�bT��w �_�U7�æµP�YZVr^_pH�Wk
sWw�ü��U7�e�b_f���S\lH�\k�ÎtOU[­a¦`qR w
ý�� á�â\âKé �ÐÑFSWlq�UpHRTS\]-S\b?æ�S�oUarb_d�É�Vxe�bTb_arbTd*eWb_f�OQP�R_k
fQ^TVrÎ
acbTd{OQsUp®`Hk
["p$acbK`HS4`qRTkZè4k�e�VKÑ�S\lHVxfN��RK`H`H] û�ñWñ�acP
e�]_p âKé � axP
eW]_ptÎP
SWbQXÇk
lHk
b_P�k\� S\lHdQñU�
è�S Ì wUæë� áWâWâKé �Ðè�k
oUark
ÍÒS�XNò_SUSQf"k
oWk
bK`¨[­eWb_e�d\k
[­k
bK`ZfTk�Î
P
acpHacSWbipH^T]T]ÐSWlH`4p®sQp®`Hk
["p
� m k
P�R_bTacP
e�V�è4k
]ÐSWlH`�Ø�ü+Û�Û&z&p®ar`Hk
fTk
Vcaro\k
l�e Ì Vck m |�ô�Î âKé Î â |Ww\z{k
VrXê`{u,sUfTlqeW^TVraxP
p
�
OU`HacVrV¹w_É�� ù8e�bgfyu{e�l Ì S\lqf wTù{� �g��|
ô\ô �T�jOU`Hl�e�`Hk
dWaxP&[­eWb_e�d\k�Î
[­k
b\`&S�X�`Hl�e�ú?P�acb�~>k
b\`&^_pHarbTdiæ�Û&ü$Æ�� Ä b�� Ý @ 
 î Ý·Ü
ï î Þ �
Ý ; í�î Þ�ß �.í�î�C Ü
ïHÜ îÐì Ü í�î��,í Þ L = ïHÞ î = �_í ïªÝ 
 î�C�í ïFO"Þ�Ý ; í�î Þ î�L
��í�î Ý¹ï í ß �
ó�eWlHacSW^gp
�ø|
ô\ôWô_� n{æ m Y â �gû)è4k�p®k�e�l�P�R�è�k
oUark
ÍBe�b_f
è�k
ðK^TaclHk
[-k
bK`qpÅè4k
]ÐSWlH`
� ù¨aclH[­acbTdWR_eW[ YZa¦`ts YZS\^Tb_P�acV
eWb_f�ü$k
axP�k�pt`qk
l�YZa¦`ts0YZSW^Tb_P
arV�eWb_f�n,bTacoWk
l�pHa¦`tsëSWX&ü k
k
fTp
w
RK`H`H] û�ñWñ�Í4Í4Í�� ^Q`q["P�� dWS�o�� ^_�Tñ�lHk�p®k�e�l�P�RÐñU�

99



Planning in Supply Chain Optimization Problem

N.H. Mohamed Radzi, Maria Fox and Derek Long
Department of Computer and Information Sciences

University of Strathclyde, UK

Abstract

The SCO planning problem is a tightly coupled plan-
ning and scheduling problem. We have identified some
important features underlying this problem including
the coordination between actions, maintaining tem-
poral and numerical constraints and the optimization
metric. These features have been modeled separately
and experimented with the state-of-the-art planners,
Crikey, Lpg-td and SgPlan5. However, none of these
planners are able to handle all features successfully.
This indicates a new planning technology is required to
solve the SCO planning problem. We intend to adopt
Crikey as a basis of the new technology due to the
capability of solving the tightly coupled planning and
scheduling problem.

Introduction
The Supply Chain Optimization (SCO) covers decision
making at every level and stage of a system that pro-
duces products for a customer. The foremost impor-
tant issues include the decisions about the quantities of
products to be produced, scheduling the production and
delivery whilst minimizing utilization of resources by
the system within a certain planning period. All these
decisions require reasoning and planning: understand-
ing the factors that are relevant to the decisions and
evaluation of the combinatorial of the problem. This
means the planning process in SCO is not only decid-
ing which action should be chosen to reach the goal
state based on the logical constraints but also what is
the consequence of selecting the action to the given op-
timization function. Due to these features the planning
problems in SCO are different from the standard plan-
ning problem. The SCO planning domains are richer
in temporal structure than most temporal domains in
standard planning.

Temporal domains were introduced in the third In-
ternational Planning Competition (IPC3) along with
the temporal planning language PDDL2.1 (Long & Fox
2003)(Fox & Long 2003). The durative action is in-
troduced as a new feature in the language. This fea-
ture allows actions in domains to be allocated a unit
of time specifying time taken to complete said action.
(Weld 1994). Furthermore, the quality of the plan is

also measured by the overall length or duration of the
plan generated. The temporal features in the language
were later extended by the introduction of timed ini-
tial literals in PDDL2.2 (Edelkamp & Hoffman 2003).
This is the language used in IPC4. Timed initial liter-
als provide a syntactically simple way of expressing the
exogenous events that are both deterministic and un-
conditional (Cresswell & Coddington 2003). Another
way to express exogenous events was then introduced in
PDDL3.0 by using hard and soft constraints (Gerevini
& Long 2006). Hard and soft constraints express that
certain facts must be, or are preferred to be, true at a
certain time point as benchmarked in IPC5 (Dimopou-
los et al. 2006).

Temporal domains in IPC3 require certain facts to be
true at the end of the planning period. Although do-
mains with deadlines or exogenous events are modeled
in IPC4 and 5, none of these domains require actions
overlap in time. In contrast, SCO domains require some
collections of facts to be true not only at a particular
final state but also throughout the trajectory. For ex-
ample, some quantities of a product may be required to
be in production throughout the planning period. Add
to that, the SCO problems also require that actions to
be executed concurrently during the planning process.
For instance, there are exogenous events such as order
deadlines that have to be met. We have to maintain
these deadlines and concurrently execute other produc-
tion activities. Moreover, there might be some thresh-
old values that have to be maintained over the planning
period.

As well as temporal structure, SCO domains are also
rich with numerical structure. The domains with nu-
merical structure were also introduced in IPC3. But
most of the competition domains in the IPCs mainly
deal with the consumption of resources and cost. In
the SCO problems, numerical facts and constraints are
used to model beyond the consumption of resources and
cost. The numerical facts and constraints are also used
to model the multiple actions: actions that have equiv-
alent chances of being selected but the difference be-
tween them lies in the cost associated with perform-
ing them. In sum, SCO problems are very complex
planning problems where temporal and numerical con-
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straints enforced over time must be met as well as the
logical constraints.

From another point of view, SCO planning problem
is different from standard planning problems in terms
of the way plans are constructed. The standard or clas-
sical planning problems concentrates on a process to
find what actions should be carried out in a constructed
plan by reasoning about the consequence of acting in or-
der to choose among a set of possible courses of action
(Dean & Kambhampati 1997). The number of actions
required in a plan is usually unknown. The temporal
planning problem is basically a combination of classical
planning and scheduling. In the pure scheduling pro-
cess, the actions are usually known and the choice of
actions is limited compared to planning (Smith, Frank,
& Jonsson 2000). The scheduling process concentrates
on figuring out when and with what resources to carry
out so as satisfy various types of constraint on the or-
der in which the actions need to be performed (Dean
& Kambhampati 1997). Therefore in temporal plan-
ning, the process of constructing a plan combines the
decisions on what actions should be applied, with when
it should be applied and with what resources (Halsey
2004).

The SCO problem however, is an example of a com-
binatorial problem that has string planning, schedul-
ing and constraint reasoning components. Besides what
and when choices it also contain choices about how to
act. One way to introduce a how choice is to differen-
tiate actions for achieving the same effect by numerical
values such as duration or resource consumption. The
what choices concern what resources are required for an
action to be applied and the when choices concern how
the action should be scheduled in to the rest of the plan.
A very good example of the problem is the following:
a manufacturer receives several orders from customers
that consist of producing various quantities of several
different items. These orders should be delivered within
specified deadlines. The manufacturer has to schedule
the production of each item. Due to the capacity limi-
tations of the producer, the manufacturer has to decide
which items should be produced using his own facili-
ties and which items should be produced using other
production options that are available. No matter how,
the deadlines have to be met and the overall production
cost should be minimized. In this case, the solution is
not as simple as performing a sequence of actions but
could involve executing many actions concurrently.

We have discovered that, although there are a num-
ber of planners in the literature that are capable of han-
dling the individual features of PDDL2.1 and PDDL3,
there are no planners currently available that can reli-
ably solve non-trivial problems.

The reminder of this paper is structured as follows.
First we present a description of a simple domain within
the class of problems. We have encoded the domain and
applied several state-of-the-art planners to it. The out-
comes of the experiment are discussed in the following
section but, in brief, the best performing planners in

IPC4 and IPC5 are unable to solve the problems we
set. Clearly, SCO problems encompass a huge variety
and would in general be beyond the reach of any auto-
mated planner. Therefore, this discussion is followed by
the definition of a subclass of problems that we intend
to focus on in our work. We will develop a planner (by
enhancing an existing planning system) that is capable
of solving this subclass of problems. Later, we briefly
describe our future work including the planner that we
intend to enhance.

Domain Definition
A simple example of production planning problem in
the supply chain is illustrated in Figure 1. The process
starts with receiving the customers orders. Each order
has a different combination of products and also dif-
ferent delivery deadlines. The process is then followed
by selecting the production types of each product. In
our example, each production type has a different pro-
cessing time and cost: normal-time, over-time and out-
source. The outsource action furthermore can be per-
formed by several suppliers where each supplier is asso-
ciated with a different lead time and cost. The domain
demonstrates the properties discussed in the above sec-
tion. The choices of production action represent the
multiple choice of actions for achieving the same task.
These actions can be executed simultaneously as well
in parallel with other activities. The probability of the
action being selected is dependent on the objective func-
tion. Any plan produced by the planner should mini-
mize the overall cost and time taken to produce all items
as well as meeting the specified deadlines. For example,
item1 can be produced either by the normal-time action
or the outsource action but, choosing the normal-time
action might cause a delay in the product delivery so
that it is better to choose the outsource action. In an
efficient plan we might be producing item2 while we are
also producing item1. This domain has been encoded
and presented to some of state-of-the-art planners.

 

   normal  
   time

     outsource 

   finished     
  product     overtime     select 

production receives 
 order 

Figure 1: A Simple production process

State-of-the-Art Planners
We chose three different types of temporal planners for
our experiments. All of these planners are claimed to be
able to handle the temporal features of PDDL2.1 and
also features to express deadline such as time windows
and hard constraint. The planners are as follows:
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SGPlan5 is a temporal planner that received a prize
for overall best performance in IPC5. The planner
works with PDDL3.0, which features timed initial lit-
erals, hard constraints and preferences. It generates
a plan by partitioning the planning problem into sub-
problems and finds a feasible plan for each sub-goal.
The multi-value domain formulation (MDF) is used as
a heuristic technique in the planner for resolving goal
preferences and trajectory and temporal constraints
(Chih-Wei et al. 2006).

The LPG-td planner is an extension of LPG
(Gerevini & Serina 2002) that can handle features in
PDDL2.1 and most features in PDDL2.2, including
timed initial literals and derived predicates. The timed
initial literals represent facts that become true or false
at certain time points, independently of the actions in
the plan. This feature can be used to model a range
of temporal constraints including deadlines. LPG-td is
an incremental planner that generates a plan in the do-
main involving maximization or minimization of com-
plex plan metrics. An incremental process improves
the plan by using the first generated plan to initialize
a new search for a second plan of better quality and so
on. It can be stopped at any time to give the best plan
computed so far (Gerevini, Saetti, & Serina 2004).

CRIKEY is a temporal planner that solves a tightly
coupled type of planning and scheduling problem. This
planner supports PDDL2.1. It has implemented the
envelope and content concept in order to handle the
communication between the planning and scheduling.
Content actions are executed within envelope actions.
Therefore the minimum length of time for the content
actions must be less than or equal to the maximum total
length of time for the envelope actions (Halsey, Long,
& Fox 2004). The envelope and content concepts were
introduced to allow Crikey to solve problems in which
actions must be executed in parallel in order to meet
temporal and resource constraints.

Experimental Results
The aim of the experiments is to investigate the capabil-
ity of each planner to cope with the following features:

(1) temporal constraints that require facts to be
maintained over time; (2) optimization metrics includ-
ing temporal and numerical optimization; (3) coordina-
tion and concurrent actions.

The domain described in the previous section
was encoded using PDDL. There were six actions
modelled in the domain including STACK ORDER,
CHOOSE BRAND, OVERTIME, NORMAL TIME,
OUTSOURCE and SHIP ON TIME. Since different
planners can work with different versions of PDDL,
we have exploited PDDL2.1 features to represent do-
mains presented to Crikey, PDDL2.2 for domains pre-
sented to Lpg-td and PDDL3.0 for domains presented
to SgPlan5. We have had to use different syntax to
express the deadlines: timed initial literals for Lpg-td
and hard constraints for SgPlan5. No specific syntax
is given in PDDL2.1 for expressing deadlines, but it

is possible to encode them using envelope actions and
clips (Fox, Long, & Halsey 2004; Cresswell & Codding-
ton 2003). In the first experiment we have encoded only
a single deadline. The encoded problem has been pre-
sented three times to each planner, each time with a
different set-up. The problem instances are described
in Table 1. For example in the first instance, the dura-
tion for actions NORMAL TIME and OVERTIME are
7 and 8 unit time respectively. The OUTSOURCE ac-
tion can be performed through either by supplier1 or
supplier2 with the duration are 5 and 6 unit time re-
spectively. The planners are expected to perform one
of these actions in order to accommodate the deadlines.
The duration of other actions defined in the domain is
1 unit time. Table 2 describes the deadlines and the
plan duration given by each planner (if any) together
with the action selected in the plan.

prob normal-time overtime supplier1 supplier2
1 7 8 5 6
2 7 5 7 6
3 5 8 7 9

Table 1: problem instances set-up

prob d Crikey SgPlan Lpg-td
1 8.05 7.05 8.004 8.000

supplier1 supplier1 supplier1
2 8.05 8.05 no 8.00

supplier2 solution overtime
3 8.05 7.05 no 8.00

normal-time solution normal-time
d: deadline

Table 2: maintaining time constraints by each planners

As we can see in Table 2, Crikey and Lpg-td plan-
ners perform very well in maintaining the temporal con-
straint. Both planners managed to obtain a plan with
the most appropriate actions so that the completion
time is within the deadline. But, SgPlan5 only gener-
ates a plan for the first instance. There are no solutions
for the second and third instances.

Later, the second experiments were carried out to see
whether these planners can reason about the optimiza-
tion metric, for example, minimize the makespan. For
this purpose, the deadlines were excluded from the do-
mains and then replaced with the minimization metric
of total-time. The same encoded problems were ap-
plied to all planners. The description of the problem
instances were remained the same as in the Table 1.
Table 3 exhibits the completion time of the plan gen-
erated by each planner. We can see from this Table,
Lpg-td was capable of minimizing the makespan com-
pared to both SgPlan5 and Crikey. SgPlan5 as de-
scribed in the Table 3 always choose the same action no
matter the changes made in the duration of the actions
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in the domain. Therefore in experiment 1, SgPlan5 un-
able to produce any plan for instance2 and instance3

since the set up time for the particular action has vi-
olated the deadlines. Crikey also performs similar to
SgPlan5 in this experiment. As depicted in Table 3,
NORMAL TIME action is chosen regardless the dura-
tion set up for the action in each instance. The result
from experiment 1 also indicates that Crikey will only
maintain the temporal constraint by finding a feasible
solution but not an optimal solution. Refer to Table 2
for instance2. Although plan duration given by Crikey
meeting the deadlines, but the duration is slightly big-
ger than plan duration generated by Lpg-td.

prob Crikey SgPlan Lpg-td
1 9.004 8.004 8.000

normal-time supplier1 supplier1
2 9.004 10.004 8.000

normal-time supplier1 overtime
3 7.004 10.004 8.000

normal-time supplier1 normal-time

Table 3: optimization metric: minimizing makespan

Besides minimizing the makespan, some experiments
to investigate whether these planners can reason about
numerical values by giving a plan that minimizes the
total cost incurred due to action selection were carried
out. The problems used in experiment 2 were applied
in this experiment. But, the optimization metric was
changed to minimize total-cost and the same durations
were set to each action. The number of instances were
also increased to ten, each instance has been set up
with a different cost. The metric value of the plan is
given in the generated plan for the plan produced by
SgPlan5 or Lpg-td. But for Crikey the metric value can
be identified through the action selected in the plan.
Table 4 shows the metric values or total cost obtained
from the plan generated by each planner. Lpg-td pro-
duced plans that minimized the total cost for every in-
stances. In some instances, either SgPlan5 or Crikey
also able to produce the optimized plans. The opti-
mized plans were obtained due to the cost of the ac-
tions that are considered to be selected have the small-
est cost compared to other actions in the problem. This
is definitely not because of the capability of the plan-
ner to reason on the numerical values. The domains and
problems involved in the experiment can be accessed at
http://www.cis.strath.ac.uk/∼nor.

As mentioned in the previous section, the SCO con-
tains choices about how to act. The choices of how to
act affect the quality of solution as well as satisfiabil-
ity of the schedule. We cannot simply perform the ac-
tion selection first and later schedule the actions accord-
ing to their temporal and numerical information. This
means the planning and scheduling tasks are tightly
coupled and cannot be performed separately. This sit-
uation requires coordination between actions and exe-

problem Crikey SgPlan Lpg-td
1 9.00 11.00 3.20
2 7.00 4.00 3.20
3 9.00 11.00 4.20
4 12.00 11.00 7.20
5 12.00 5.00 5.20
6 4.00 5.00 4.20
7 7.00 12.00 7.20
8 20.00 15.00 13.20
9 20.00 9.00 9.20
10 4.00 9.00 4.20

Table 4: optimization metric: minimizing total-cost

cution of the concurrent actions. Coordination is where
the actions can happen together and interact with an-
other. Meanwhile concurrency means more than one
action happen simultaneously but they are not to in-
terfere with each other (Halsey 2004). For example see
Figure 2. There are three deadlines, denoted by x1,
x2 and x3. The x2 and x3 happen at the same time
point. These deadlines x1, x2 and x3 require actions
(a1,a2,a3), (a1,a4,a5) and (a1,a4,a6) respectively. Ei-
ther some parts or all parts of the actions’ durations
are overlapped in time or executed in parallel. The ac-
tions a2 and a3 must interact with action a1. These
actions must execute during the life time of action a1.
But there is no interaction between a2 and a3. The
actions are required to execute simultaneously in order
to achieve the deadline. The actions a4, a5 and a6 are
also examples of coordination where action a5 and a6

are executed in some portion of the life time of a4. Fur-
thermore, the a5 and a6 actions demonstrate the choice
of how to act. In achieving deadlines x2 and x3, ei-
ther a5 or a6 has to be executed following a4. Another
clear example of a domain in which some actions must
happen in parallel, which has been investigated in the
previous literature, is the Match Domain (Halsey, Long,
& Fox 2004). However, the choices on how to act is not
demonstrated in this domain.

Planning  duration 

x1 x2 
x3a1

a4a2

a5a3

a6

 Figure 2: concurrent actions

Due to the importance of the above features in the
SCO domain, we also investigate the capability of these
planners to support these requirements. The coordina-
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tion and concurrent features were indirectly performed
in the temporal constraint problem to which Crikey was
applied in experiment 1. In Crikey, actions are either
wrappers or contents with wrappers containing contents
and contents being completely contained within wrap-
pers. Some content actions are also wrappers for other
actions. In experiment 1, we have encoded deadlines
as the wrapper actions. The other six actions decribed
in the beginning of this section were the content ac-
tions. These content actions have to start after the
wrapper start and end before the wrapper end. In
other words, the wrapper and the content actions are
performed in parallel. The wrapper and the content ac-
tions can be illustrated as actions (a1,a2,a3) in Figure
2. Lpg-td and SgPlan5 were then applied to the same
domain, since both planners are capable of handing all
PDDL2.1 features. Unfortunately, neither planner can
solve the problem. As in Table 5, besides SCO domain,
two other domains including the match domain were
also tried. The driverlog-shift domain (Halsey 2004) is
an extension of the driverlog domain used in IPC3. In
this extended domain, the driver can only work for a
certain amount of time or in a shift. The shift action
is modelled as an envelope action. Therefore, driving
and walking actions must be fitted into the shift ac-
tion. SgPlan5 produced a plan for this domain. But,
in the plan, the walking and driving actions are per-
formed after the shift action finished. In other words,
they are performed in a sequence. SgPlan5 and Lpg-td
are able to perform concurrent actions, provided that
the actions do not interfere with each other. This is as
a result of both planners generating the temporal plan-
ning problem by finding out the sequential solution first
and rescheduling them using temporal information.

domain Crikey SgPlan Lpg-td
SCO plan no no

obtained solution solution
match plan no no

obtained solution solution
driverlog-shift plan plan no

obtained obtained solution

Table 5: domain with concurrent actions

Moreover, domains that are encoded with coordina-
tion or concurrent actions will have plans that shorten
the makespan. Refer to Table 2. Although Crikey and
Lpg-td choose the same action, the plan duration gen-
erated by each of the planner is different. The plan
produced by Crikey has a shorter duration than the
plan generated by Lpg-td.

The overall performance based on the criteria out-
lined or properties underlying in the SCO problems in
the experiment are summarized in Table 6. Crikey is
very good at maintaining constraints and coordination
of tasks but very poor at metric optimization. Nev-
ertheless for this problem, Crikey is still able to pro-
duce a feasible plan. Lpg-td, although it has a very

good performance both in maintaining constraints and
optimization, cannot perform coordination of actions.
When this is required no plan can be produced at all.
Although, SgPlan5 can handle temporal constraints as
benchmarked in IPC5, the domains involved do not in-
clude choices about how to act. An example arises in
the truck domain. This domain only encodes what ac-
tion should be carried out in order to meet the tempo-
ral constraints. SgPlan5 seems unable to reason with
choices about how to act. Therefore for some instances
in experiment conducted, SgPlan5 did not produce any
plan. Unlike Lpg-td, SgPlan5 is sometimes able to pro-
duce a plan for a concurrent domain but the execution
of actions in the plan are performed in a sequenced
manner.

planner time optimization coor-
constraint metric dination

Crikey very poor very
good good

Lpg-td very good very good cannot
performed

SgPlan poor poor cannot
performed

Table 6: overall performance of planners

Subclass of SCO problem

As discussed in the beginning of the paper, SCO is a
hard combinatorial problem that requires not only rea-
soning about the logical relations between actions but
also has to examine the temporal and numeric rela-
tions between actions. Since it is very hard to solve
the overall problem features, only the subclass of this
problem will be focused on in this research. The prop-
erties of the subclass problem are identified as follows.
The very important properties are maintaining tempo-
ral and numerical constraints. The second feature is
the optimization metric in term of numerical values.
All these properties require coordination between ac-
tions as well as actions to be performed concurrently
in the generated plan. Since planning problems have a
strong scheduling element, we will have a selection of
alternative actions (planning) within the large selection
of actions described in the domain. This situation ex-
hibits the how choices action in the domain. Within
the alternative actions, there is also a selection of pos-
sible resources, giving rise to a scheduling problem. All
these actions are weighted by numerical values repre-
senting their costs. At this stage we are not interested
in optimization in term of temporal metrics.

Conclusion

This paper discusses the features of SCO planning prob-
lems and investigates the performance of state-of-the-
art planners on domains with these features. We have

104



run the experiments on the individual features sepa-
rately. The planners are expected to handle some of
the features, such as minimization of total-cost or total-
time metric as well as satisfying the hard constraints.
However, as we can see, none of the state of the art
planners we tried were able to successfully handle all
the features. Therefore, experiments conducted to date
have identified several improvements in the planning
technology that are required in order to solve the SCO
type of domain.

Future Work

In the near future we will develop a subclass of the SCO
problem that combines all the features together. The
more complex optimization metric will be included in
the problem since the numerical features considered in
the experiment so far are very simple. As numerical
constraints are identified as one of the properties of the
SCO subclass, the numerical constraints will also be
included in the domain. The domain will be used to test
a variety of planners. We plan to adopt Crikey as the
basis of the new technology that we intend to develop.
Crikey is chosen due to its ability to cleanly manage
the tightly coupled interaction between planning and
scheduling as well as other features such as duration
inequalities and interesting metric optimisation.
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Abstract

Because of its NP-hardness, motion planning among
moving obstacles is commonly divided into two tasks:
path planning and velocity tuning. The corresponding
algorithms are very efficient but ignore weather condi-
tions, in particular the presence of currents. However,
when vehicles are small or slow, the impact of currents
becomes significant and cannot be neglected. Path plan-
ning techniques have been adapted to handle currents,
but it is not the case of velocity tuning. That is why
we propose here a new approach, based on Constraint
Logic Programming (CLP). We show that the use of
CLP is both computationally efficient and flexible. It
allows to easily integrate additional constraints, espe-
cially time-varying currents.

Introduction

Mobile robots are more and more used to collect data in
hostile or hardly accessible areas. For physical or strate-
gic reasons, these robots may not be able to receive directly
orders from a headquarter in real-time. Thus, they have to
embed their own motion planner. Because the environment
is often changing or unknown, this planner has to be very
reactive.

Motion planning is yet a complex task, answering to two
questions simultaneously: where should the robot be, and
when? It is known to be a NP-hard problem (Canny 1988).
That is to say, the computation time grows exponentially
with the number of obstacles.

To guarantee a reasonable response time, motion planning
is commonly divided into two simpler tasks: (1) apath plan-
ning task, dealing with the questionwhere, and (2) avelocity
tuningtask, dealing withwhen.

Algorithms associated to these two tasks are generally
based on simple assumptions. For instance, obstacles are
often modeled as polygonal-shaped entities, moving at con-
stant velocity. Data about weather, in particular about (air or
water) currents, are usually ignored.

However, in the case of Unmanned Air Vehicles (UAVs)
or Autonomous Underwater Vehicles (AUVs), which may
be small or slow, the impact of currents is significant. So,

ignoring currents can lead to incorrect or incomplete plan-
ners. Such planners may return a physically infeasible path,
or no path at all, even if a valid path exists.

Some extensions have been developed in the field of path
planning, but currents remain neglected during velocity tun-
ing.

That is why we propose here a new velocity tuning ap-
proach, based on Constraint Logic Programming (CLP). Our
experimental results show that this approach is computation-
ally efficient. Moreover, it offers a flexible framework, al-
lowing to easily integrate other constraints, such as time-
varying currents or temporal constraints.

This paper is organized as follows. Section I recalls the
existing planning methods. Section II formalizes the prob-
lem of velocity tuning in presence of currents. Section III
introduces our modeling of this problem in terms of a Con-
straint Satisfaction Problem (CSP) on finite domains. Sec-
tion IV proposes examples of additional constraints. Finally,
section V provides some experimental results, obtained on
real wind charts.

I. Motion planning in currents

The decomposition of motion planning into path planning
and velocity tuning tasks was first introduced in (Kant &
Zucker 1986). This decomposition is widely used in robotics
because both tasks can be done in a polynomial time.

However, it has to be noticed that it is source of incom-
pleteness: the path planning phase may generate a path
which is unsolvable in the velocity tuning phase.

1. Path planning

Path planning methods consist in finding a curve between
a start pointA and a goal pointB, avoiding static obsta-
clesOi (generally polygonal-shaped). They can be divided
into four categories: (1) decomposition methods, (2) poten-
tial fields methods, (3) probabilistic methods, and (4) meta-
heuristics.

Graph decomposition methods (fig. 1a) are based on a
discretization of the environment into elementary entities
(generally cells or line segments). These entities (plusA
andB) are then modeled as nodes of a graphG. The initial
-i.e. concrete- path planning problem is thus reformulated
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into an abstract one: find the shortest path from nodeA to
nodeB in G. To do this, classical search techniques are ap-
plied, such as the well-knownA∗ algorithm (Nilsson 1969)
or one of its numerous variants.

Potential field methods (fig. 1b) (Khatib 1986) consider
the robot as a particle under the influence of a potential field
U , obtained by adding two types of elementary fields: (a) an
attractive fieldUatt, associated toB and (b) repulsive fields
U i

rep, associated to obstaclesOi. The pointB corresponds
to the global minimum of the functionU . The path between
A andB can thus be computed by applying gradient descent
techniques inU values, starting fromA.

Probabilistic methods (fig. 1c) (LaValle 1998) are based
on a random sampling of the environment. These meth-
ods are a particular case of decomposition methods: random
samples are used as elementary entities, linked to their close
neighbors, and modeled by a graph. Probabilistic RoadMap
(PRM) and Rapid Random Trees (RRT) are the most famous
methods in this category.

Metaheuristics refer to a class of algorithms which sim-
ulate natural processes (fig. 1d) (Zhao & Yan 2005). The
three main metaheuristics applied to path planning are: (a)
genetic algorithms, inspired by the theory of evolution pro-
posed by Darwin; (b) particle swarm optimization, inspired
by social relationships of bird flocking or fish schooling; (c)
ant colony optimization, inspired by the behavior of ants in
finding paths from the colony to food.

B

A

B

A

A   

B   

A B 

(b) (a) 

(d)  (c) 

Figure 1: Paths (in light grey) obtained by the following
methods: (a)A∗ algorithm on regular cells; (b) potential
fields; (c) RRT; (d) particle swarm optimization.

All these methods have two common characteristics: (1)
the costτ(M,N) between two pointsM andN represents
the Euclidean distanced(M,N) and (2) the computed path
is made up of successive line segments. This last property is
the base of our modeling, described in section II.

However, in presence of currents, the fastest path is not
necessary the shortest. To illustrate, let us consider a swirl:
the fastest way to linkA andB is more circle-shaped than
linear.

In this context, new cost functions have been proposed,
to make a compromise between following the currents and
minimizing the traveled distance (Garau, Alvarez, & Oliver
2005)(Petreset al. 2007).

2. Velocity tuning

The existing velocity tuning approaches generally work in
a 2-D space-time. The first dimensionl ∈ [0, L] (whereL
is the length of the path) represents the curvilinear abscissa
on the path. The second one,t ∈ [0, T ] (whereT is the
maximal arrival time), the elapsed time since departure. In
this space-time:

• Each point of the path is represented by a column. In
particular, start and goal points are represented by the ex-
treme left and right columns.

• Each moving obstacleOi generates a set offorbidden sur-
facesSi (often only one). These surfaces contains all cou-
ples(l, t) leading to a collision between the robot andOi.
For instance, in figure 2b, the abscissal = 10 is forbidden
betweent = 10 andt = 15.

B
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A l

0 L

T
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S1

S2
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O2

(a) (b) 

x

y 

l 

t 

A

Figure 2: (a) path of fig. 1d, adding two moving obstacles;
(b) the corresponding 2-D space-time.

Once the space-time is built, the initial velocity tuning
problem can be reformulated into a path planning problem in
this space-time. However, this space-time has specific con-
straints, notably due to time monotony or velocity bounds.
Therefore, specific methods have been applied, like: (1)
adapted decomposition methods, (2) B-spline optimization,
and (3) the broken lines algorithm.

As explained before, decomposition methods (figure 3a)
divide the space-time into elementary entities and apply
graph search techniques. Since a lot of paths are temporally
equivalent (they arrive at the same time), an appropriate cost
is necessary. For instance, (Ju, Liu, & Hwang 2002) used
a composite cost function balancing the arrival time and the
velocity variations.

B-spline optimization techniques (figure 3b) consist in
representing the optimal trajectory in the space-time by a B-
spline function (Borrow 1988), parameterized by some con-
trol pointsKi. Graphically, the pointsKi locally attracts
the curve of the B-spline. Their position is computed in or-
der to minimize the mean travel time, using interior point
techniques.
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The broken lines algorithm (figure 3c) (Soulignac & Tail-
libert 2006) tries to linkA andB using a unique velocity,
i.e. a unique line segment in the space-time. At each inter-
section of the line with a surfaceSi, a velocity variation is
introduced, by "breaking" this line into two parts. To sum
up, this algorithm tries first to arrive as earlier as possible,
and then to minimize velocity variations.

K1 

K2 
K3 

K4 

(c) (a)  (b) 
l 

t 

Figure 3: Paths (in light grey) obtained in the space-time of
fig. 2 by the following methods: (a) visibility graph; (b) B-
spline optimization with 4 control points; (c) broken lines
algorithm.

All these methods neglect the influence of currents. This
is acceptable in presence of weak currents, since trajectory
tracking techniques such as (Park, Deyst, & How 2004) re-
main applicable to dynamically adjust the robot’s velocity.

However, when currents become strong, the robot is nei-
ther guaranteed to stay on its path, nor to respect the time
line computed by the velocity tuning algorithm. That is why
we propose a new approach, based on CLP techniques.

II. Problem Statement
1. Informal description
A punctual robot is moving on a pre-computed pathP from
a start siteA to a goal siteB, in a planar environment con-
taining moving obstacles and currents, with a bounded ve-
locity.

It has to minimize its arrival time atB, with respect to the
following constraints: (1) obstacle avoidance and (2) cur-
rents handling. Data about obstacles and currents are known
in advance.

2. Formalization
The environment is modeled by a 2-D Euclidean spaceE,
with a frame of referenceR = (0, x, y). In R, the coor-
dinates of a vector~u are denoted(ux, uy) and its modulus
u.

The pathP is defined by a listV of n viapoints, denoted
V i. Each viapointV i is situated onP at curvilinear abscissa
li. Two successive viapoints(V i andV i+1) are linked by a
line segment. In other terms,P is made up of successive line
segments, which is the result of all path planning methods
presented before.

Note thatP is obtained by using adapted cost functions,
incorporating the influence of currents (otherwise the veloc-
ity tuning would be meaningless).

A

B

O1 
r1

P

p1(t)

x

y 

O

Figure 4: A velocity tuning problem with currents.

Each moving obstacleOi is a disk of radiusri. This disk
corresponds to a punctual mobile surrounded by a circular
safety zone. The position of the mobile -i.e. the center of
the disk- is given at every timet by pi. Note that contrary to
most approaches, there is no restriction on the functionpi.

Finally, the current can be seen as a 2-D vector field−→c ,
known either by measurement or forecasting. Thus, the
data about−→c are, by nature, discontinuous, i.e. defined on
the nodes of a mesh (not necessary regular), calledcurrent
nodes. The mean distance between current nodes may cor-
respond to the resolution of measures or the precision of the
forecast model.

The robot’s velocity vector relative to the frameR
(ground speed) is denoted−→v , and its velocity vector rela-
tive to the current−→c (current speed) is denoted−→w .

It is important to understand that−→w only depends on the
engine command, whereas−→v is impacted by the current−→c .
Indeed, applying the velocity composition law, the quantities
−→v , −→c and−→w are linked by the following relation:

−→v = −→w + −→c (1)

Our problem consists in finding a timing functionσ:

σ : M ∈ P 7→ t ∈ [0, T ] (2)

minimizing the arrival timetB = σ(B), with respect to
the following constraints:

1. maximal velocity: the modulus of the robot’s velocity rel-
ative to the current, denotedw, is smaller thanwmax.
Note that the boundwmax only depends on the robot’s
engine capabilities;

2. obstacles avoidance: the robot has to avoid a set ofm
moving obstacles;

3. currents handling: the robot has to take into account dis-
turbances due to the field~c.

The quantityT is called time horizon. It materializes the
maximal arrival date toB. This upper bound may be due to
the embedded energy or visibility conditions.

III. Velocity tuning using CLP
Velocity tuning using CLP consists in two steps: (1) defin-

ing the constraints describing the velocity tuning problem
and (2) solving the corresponding CSP, with the adequate
search strategies.
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1. Data representation

The constraints above are defined on finite domains.
Therefore, the initial data about the environment are refor-
mulated using an appropriate representation.

Time representation

The interval[0, T ] is discretized using a constant stepε.
The valueε depends on the context. In our applications,
[0, T ] contains less than 1000 time steps. For instance,
T = 2 hours andε = 10 seconds leads to 720 time steps.

Currents representation

As we explained before, the current is known in a finite
number of points, called current nodes, obtained by mea-
surement or forecasting. Since current nodes already include
an error, we think that it is meaningless to finely interpolate
the value of the current between these nodes.

Therefore, we propose the concept ofElementary Current
Area (ECA). An ECA is an polygonal region of the envi-
ronment, in which the current is homogeneous. Each ECA
contains a unique current node. The value of this node is
extended to the whole area.

ECAs are computed by building the Voronoï diagram
(Fortune 1986) around the current nodes. This diagram is
made up of line segments which are equidistant to the nodes.
It is illustrated in figure 5, for uniform and non-uniform dis-
tributions.

(a) (b)
x

y 

Figure 5: Illustration of ECAs for two distributions of cur-
rent nodes (grey arrows): (a) uniform and (b) non-uniform.

Artificial viapoints

Artificial viapointsare additional viapoints guaranteeing
that the current is constant between two successive via-
points. They are obtained by intersecting the pathP and
the borders of ECAs. Since bothP and borders are made up
of line segments, these intersections can be computed easily.

The initial list V of viapoints is thus enlarged intoV ′,
containingn′ > n elements. The current between two suc-

cessive viapointsV i andV i+1 is denoted
−→

ci .

2. Constraints definition

In this part, we show how the velocity tuning problem
can be described thanks to two types of constraints: (a) con-
straints related to currents and (b) constraints related tomov-
ing obstacles avoidance.

A

B

P

Figure 6: Artificial viapoints (white dots) obtained for the
Voronoï diagram of fig. 5a. These viapoints are added to the
initial viapoints (black dots).

Note that the currents are constant in time here (time-
varying currents are considered in section IV).

a. Constraints related to currents

Let us consider the straight line move
−→

di , between the
viapointsV i = (xi, yi) andV i+1 = (xi+1, yi+1). For this
move, we define:

•

−→

ci the velocity of the current

•

−→

vi the robot’s velocity relative to the frameR

•

−→

wi the robot’s velocity relative to
−→

ci

As explained in equation 1,
−→

vi and
−→

wi are linked by
−→

vi =
−→

wi +
−→

ci . Moreover, since we want to impose the move
−→

di to

the robot,
−→

vi and
−→

di are collinear.

Thus, if we denoteCi the result of translatingV i by vec-

tor
−→

ci , we can build the vector
−→

vi by intersecting:

• The lineLi, of direction vector
−→

di

• The circleCi, of centerCi and radiuswi

If Ii
1

andIi
2

are the intersections obtained1 (possibly con-

founded),
−→

vi can be either the vector
−→

vi
1

=
−−→

V iIi
1

or
−→

vi
2

=
−−→

V iIi
2
. This is illustrated in figure 7.

CiVi

Vi+1

vi1

vi2

ci

wiwi

wmax 

I2

I1

di

Figure 7: Different possibilities for
−→

vi , for wi < wmax.

1Note that we are sure that at least one intersection exists, be-
cause the pathP is supposed to be entirely feasible.
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The radiuswi = wmax allows to compute the minimal

and maximal modulus for
−→

vi , denotedvi
min

andvi
max:

vi
min

= min(vi
1
, vi

2
)

vi
max = max(vi

1
, vi

2
)

(3)

If
−→

vi
j

and
−→

di are not in the same direction, the robot is not
moving toward the next viapointV i+1, but at the opposite
(backward move). In this case, to force a forward move, the
modulusvi

j
is replaced by 0 in equation 3.

These results allow us to describe the robot’s cinematic in
presence of currents:

∀i ∈ [1, n′] : ti ∈ [0, T ] (Dti)

vi
∈ [vi

min
, vi

max] (Dvi)

ti = ti−1 + di/vi (Cti,vi)

Note that the quantitiesdi, vi
min

andvi
max are known and

constant:

• The distancedi is deduced from position of viapointsV i

andV i+1,

• The velocity boundsvi
min

andvi
max are computed using

equation 3.

Therefore, the only variables in the above equations are
ti andvi (both scalar).

b. Constraints related to moving obstacles avoidance

As explained in section I.2, moving obstacles can be rep-
resented in a 2-D space-time(l, t), which l represents the
curvilinear abscissa on the pathP, andt the elapsed time
since departure.

In this space-time, each moving obstacleOj generates a
set of forbidden surfacesSj , containing all forbidden cou-
ples(l, t), leading to a collision between the robot andOj .

0 L

T

S1

S2

(a)  

l 

t 
2  

10

14  

lj li 

Vi Vj

0 L

(b)  

Mi

Mi+1

S1

S2

3
4

li li+1 

Vi

Vi+1

Figure 8: (a) forbidden times for two viapointsV i andV j :
F i = [0, 3] andF j = [2, 4] ∪ [10, 14]; (b) impossible move
between two successive viapointsM i andM i+1: M i /∈ F i

andM i+1 /∈ F i+1, but [M i,M i+1] intersects the forbidden
surfaceS2.

Therefore, for each viapointV i, we can define the interval
of forbidden times, denotedF i. This interval has the follow-
ing meaning: ifti ∈ F i, then the robot collides a moving
obstacle at viapointV i. F i is computed by intersecting all
surfacesSj with the linel = li.

As shown in figure 8a,F i is an union of subintervals
F i

1
∪ F i

2
∪ ... ∪ F i

si , where si denotes the number of
intersected surfaces.

A first idea to model obstacle avoidance would consist in
using the simple constraint:

∀i : ti /∈ F i (4)

However, this constraint is too weak to avoid collisions in
all cases.

To illustrate this point, let us consider two successive
viapoints V i and V i+1. In the space-time, the visit of
these viapoints is symbolized by two pointsM i and
M i+1. Even if both points respect equation 4, it is not
necessary the case for all intermediate points lying on
the line segment[M i,M i+1]. Indeed, this line segment
can intersect some forbidden surfaces, as shown in figure 8b.

This problem appears when a forbidden surface is by-
passed by one side at pointM i and by the other side at point
M i+1. In the example of figure 8b,M i is above the surface
S2, whereasM i+1 is below, which leads to an intersection.

A simple way to avoid this situation is to force all the
points of the space-time to be on the same side of each
forbidden surfaces. This is modeled by the following con-
straints:

∀i ∈ [1, n′] : F i = [t1, t1] ∪ ... ∪ [tsi , tsi ]

∀j ∈ [1, si] : bj ∈ {0, 1} (Dbj)
ti ≥ tj − T · (1 − bj) (C1

ti,bj
)

ti ≤ tj + T · bj (C2

ti,bj
)

The binary variablesbj allow to represent how the forbid-
den surfaceSj is by-passed. Indeed,bj = 1 if the pointM i

is aboveSj , elsebj = 0.

Since these variablesbj are shared by all pointsM i, they
are forced to by-pass forbidden surfaces in the same way.
Combining the variablesbj andT allows to avoid the use of
reification techniques: if one constraint is true, the otheris
naturally disabled (since∀i : ti ≤ T ).

2. CSP solving
a. CSP formulation

A CSP is commonly described as a triplet(X,D,C),
where:

• X = ∪{xi
} is a set of variables,

• D = Π Di is a set of domains associated toX (Di repre-
sents the domain ofxi),

• C = ∪{Ci
} is a set of constraints on elements ofX.
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Using these notations, our velocity tuning problem can be
modeled by the following CSP:

• X = ∪{vi, ti, bj}, i ∈ [1, n′], j ∈ [1, si] wheren′ is
the number of viapoints (including artificial ones) andsi

the number of intersected forbidden surfaces by the line
l = li in the space-time,

• D = Dti × Dvi × Dbj ,

• C = Cti,vi ∪ C1

ti,bj
∪ C2

ti,bj
.

This CSP has the following properties:

• It contains2n′+maxi{s
i
} variables andn′+2maxi{s

i
}

constraints. In our applications,n′ < 50 andmaxi{s
i
} <

10.

• All constraints are linear2.

• Variables are defined on finite domains, with the follow-
ing sizes:

– |Dti| ≈ 1000 (number of time steps)
– |Dvi| ≈ 100 (number of different velocities)
– |Dbj | = 2 (binary variables)

b. Enumeration strategy

Since many solutions are temporally equivalent, we chose
the following enumeration strategy:

• Variables ordering:bj , thenti, thenvi (in the decreasing
order ofi).

• Values ordering:

– increasing values forbj (to by-pass the forbidden sur-
face by the bottom first)

– increasing values forti (to determine the first valid time
steps)

– decreasing values forvi (becausevi
∼ O(1/ti))

With this strategy, we try to visit the viapoints as earlier
as possible, from the last viapoint to the first viapoint.

The variablesbj allow to roughly identify a first solution,
by determining by which side the forbidden surfaces are by-
passed. Then, the variablesti and vi refine this solution.
Note that the enumeration mainly concern the variablesti,
because a value ofti imposes a value forvi.

IV. Extension to other constraints

Modeling the velocity tuning problem as a CSP allows
to easily integrate other constraints. This section gives two
examples: (1) time-varying currents and (2) temporal con-
straints.

1. Time-varying currents

In a forecast context, values of currents are valid during
a time interval∆T , depending on the application. For in-
stance, in maritime applications,∆T represents a few hours.

As for ECAs, we find that it is useless to interpolate these
data between two intervals. We thus consider that a time-
varying current is defined by successive levels, as shown in
figure 9.

c

t
t=5 t=10

cx

cy
(a)

(b)
x

y 

Figure 9: A time-varying current. (a) graph ofcx and cy

functions, defined by levels; (b) the corresponding velocity
vector.

Let us consider a current
−→

ci , between viapointsV i and
V i+1, changingk times in the interval[0, T ]. This interval is
thus split intok+1 subintervals:[0, t1], [t1, t2], ...,[tk−1, tk],
[tk, T ]. In each subinterval[tj , tj+1], the value of the current

is constant, denoted
−→

ci
j
.

The influence of this time-varying current can be mod-
eled in our CSP by using some binary variables. Indeed, the
equation(Dvi) is replaced by the following constraints:

∀j ∈ [1, k − 1] : bj ∈ {0, 1}
ti ≥ tj · bj

ti < (1 − bj) · T + tj+1

(5)

∑k−1

j=1
bj = 1 (6)

vi
≥

k−1∑

j=1

bj · v
i

min,j (7)

vi
≤

k−1∑

j=1

bj · v
i

max,j (8)

The binary variablesbj allow to identify the subinterval
[tj , tj+1] in which lies the variableti. In other terms,bj = 1
if and only if ti ∈ [tj , tj+1]. This is modeled by equations 5
and 6.

Then, equations 7 and 8 allows to impose velocity bounds
onvi according to this subinterval. That is, ifti ∈ [tj , tj+1],
thenvi

∈ [vi
min,j

, vi
max,j

]. The values ofvi
min,j

andvi
max,j

are computed as explained in part III.1a, substituting
−→

ci by
−→

ci
j
.

This model is simple but rough. More precisely, it ignores
current changes between two successive viapoints. There-
fore, an error is potentially made on velocity bounds. This
error remain negligible if the distancedi between viapoints
is small.

2After the change of variablevi
′

= 1/vi.
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loitering

(a) t=[0:00,2:40] (b) t=[2:40,6:00] (c) t=[6:00,9:00] (d) t=[9:00,12:00] (e) t=[12:00,20:00]

wind wind wind wind wind

3min

obstacle

robot

x

y 

Figure 10: Complete example: (a)(b) moving obstacle avoidance, (c) effect of a current change att = 6min, (d) loitering during
D = 3min (in black square) and (e) effect of a time window, imposing the arrival att = 20min.

If it is not the case,di can be reduced by artificially sub-
dividing ECAs. By this way, the size of ECAs is decreased
and the number of artificial viapoints increased. Therefore,
viapoints will be globally closer from each other.

2. Temporal constraints

In this section, we explain how to temporally constrain a
viapointV i. Especially, we study two temporal constraints
particularly mentioned in literature: (a) time windows and
(b) loitering.

a. Time windows

A time window W i is a couple(wi, wi), specifying the
minimum datewi and the maximum datewi for the robot to
visit the viapointV i.

In a military context, by example, time windows may cor-
respond to strategic data, such as: "the target will be atV i

betweenwi andwi".

Modeling ofW i is quite natural in our CSP, leading to the
single constraint:

ti ∈ [wi, wi]

b. Loitering

The concept of loitering consists in forcing the robot to
wait at viapointV i for a given durationDi. From a practi-
cal point of view,Di may correspond to the minimum time
required to perform a task atV i.

Here, our goal does not consist in choosing the best value
of Di, but choosing the best beginning timeti for the loiter-
ing task.

This choice seems to be hard, because it depends both on
the moving obstacles and the current changes. However, it
can be simply modeled in our CSP, replacing the constraint
(Cti,vi) by :

ti = ti−1 + di/vi + Di (9)

V. Experimental results

This section has two objectives: (1) illustrating our ap-
proach and (2) evaluating its performance.

S1

obstacle
avoidance

wind change

loitering

time window

0 
L

T

l 

t 

Figure 11: The space-time corresponding to fig. 10

1. Illustrative example

We illustrate here all the constraints presented before
through a complete example containing: a moving obsta-
cle, a current change, a loitering task and a time window on
arrival.

In this example, simple instances of the constraints have
been chosen: (1) the current is uniform on the map and (2)
the moving obstacle performs a straight-line move at con-
stant velocity.

The result obtained by our approach is depicted in figures
10 and 11. Figure 10 shows the different phases of velocity
tuning in the initial environment, and figure 11 in the space-
time.

2. Performance evaluation

In this part, we evaluate experimentally the impact of cur-
rent changes and moving obstacles on the computation time,
in the following conditions:

• Hardware: Our approach has been run on a1.7Ghz PC
with 512Mo of RAM, using theclpfd library (Carlsson,
Ottosson, & Carlson 1997), provided by Sicstus.

• Current data : All data are issued from real wind charts,
collected daily during three months on Meteo France
website3 (leading to about 90 different charts). The wind
changes are simulated as follows: to simulatek wind

3http://www.meteofrance.com/FR/mer/carteVents.jsp
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changes, the interval[0, T ] is divided intok + 1 equal
subintervals. A different wind chart is used for each
subinterval.

• Moving obstacles: As in figure 10, each moving obstacle
goes across the environment by performing a straight-line
moveP1 → P2 at constant velocity. This move is com-
puted in the following way:

1. Two pointsP1 andP2 are randomly chosen on two bor-
ders of the environment, until an intersectionI between
the pathP and the line segment[P1, P2] is detected.

2. The velocity of the obstacle is chosen such that the ob-
stacle and the robot are at the same time at pointI.

The resulting computation times are provided in table 1.
Each cell is the mean time obtained on 100 different envi-
ronments.

Table 1: Average computation time (in ms), form moving
obstacles andk current changes .

H
H

H
H

k
m

0 1 2 3 4 5 6

0 5 9 11 14 17 21 26
1 7 12 13 16 20 24 27
2 10 14 15 18 23 28 29
3 16 21 23 25 34 35 38
4 51 55 56 68 66 67 71
5 80 97 104 106 111 112 114
6 98 127 147 152 159 162 166

From a strictly qualitative point of view, we can observe
that the global computation time remains reasonable (a few
milliseconds) even in complex environments. Therefore, we
think that our approach is potentially usable in on-boards
planners.

A theoretical study of the time complexity could confirm
these results. In particular, it could be interesting to trydif-
ferent enumeration strategies and evaluate their impact on
computational performances.

Conclusion

In this paper, we proposed a velocity tuning approach,
based on Constraint Logic Programming (CLP). At our
knowledge, this approach is the first able to handle cur-
rents. Moreover, this approach is computationally efficient
and flexible.

Indeed, we explained that modeling the velocity tuning
problem into a Constraint Satisfaction Problem (CSP) al-
lows to easily incorporate more complex constraints, in par-
ticular time-varying currents. Moreover, our experiments
showed the velocity tuning task could be performed in a
polynomial time. It means that our approach is potentially
usable in on-board planners.

Further works will investigate the coordination of multi-
ple robots sharing the same environment. In particular, we
will study how additional constraints could allow the coor-
dination of fleets of UAVs (Unmanned Air Vehicles).
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An awarded claim While the Pengi paper (AGRE &
CHAPMAN 1987) received a Classic Paper award at
AAAI’2006 (News 2006), to our knowledge we have yet
to see whether its main claim on classical planning is
true (AGRE & CHAPMAN 1987, page 269): that “a tra-
ditional problem solver for the Pengo domain [could not
cope] with the hundreds or thousands of such represen-
tations as (AT BLOCKS-213 427 991), (IS-A BLOCK-213
BLOCK), and (NEXT-TO BLOCK-213 BEE-23)”. Or, stated
differently (AGRE & CHAPMAN 1987, page 272): “[The
Pengo domain] is one in which events move so quickly that
little or no planning is possible, and yet in which human ex-
perts can do very well."

The Pengo domain is that of a video-game of the eighties
where a player navigates a penguin around a two dimen-
sional maze of pushable ice blocks. The player must collect
diamonds distributed across the maze while avoiding to get
killed by bees; but the player can push an ice block which
kills a bee if it slides into it.

The Pengi system described in the Pengi paper (AGRE &
CHAPMAN 1987) is a video-game playing system which just
happens to fight bees in the Pengo game. Pengi first searches
for the penguin on the screen to register its initial position.
Then searches for the most dangerous bee, an appropriate
weapon to kill that bee (that is, an ice block) and then navi-
gate the penguin towards that weapon to kick it. Both written
in Lisp, the Pengo game and the Pengi system are in fact the
same Lisp program: the search for the penguin and the most
dangerous bee can be made directly by looking at the Lisp
data structures. According to the on-going conditions of the
game, various pieces of code are activated (for instance, you
may wish to push an ice block several times before it be-
comes a weapon). We refer the reader to the Pengi paper for
further information on the Pengi system. Finally, “[Pengi]
plays Pengo badly, in near real time. It can maneuver be-
hind blocks to use as projectiles and kick them at bees and
can run from bees which are chasing it” (A GRE & CHAP-
MAN 1987, page 272).

Interpreted as a finite state machine, the Pengi system can
easily be re-implemented and not only fight bees not badly
but also collect diamonds even in non trivial mazes (DRO-
GOUL, FERBER, & JACOPIN 1991).

∗Special thanks to Maria FOX, Jörg HOFFMANN, Jana
KOEHLERand Derek LONG about the gripper domain.

The awarded claim eventually is about space and time
complexity in the Pengo domain and of classical planning
algorithms around 1987. But since 1987, processors are sev-
eral hundred times faster and fastest classical planners are
able to produce plans with hundreds of actions in a matter
of seconds for certain problems. Consequently, we thought
it would be interesting and, most surely, fun, to see how the
current technology could cope with an 1980s video-game.

We here report on our very first steps towards the evalua-
tion of the claim about classical planning.

Classical planning, really? As a testbed, we chose Ice-
blox (BARTLETT, SIMKIN , & STRANC 1996, pages 264–
268), a slightly different version of the Pengo game for
which there exists an open and widely available java imple-
mentation (HORNELL 1996). For instance (cosmetic differ-
ences): flames, and not bees, are chasing the penguin-player
who must now collect coins, and not diamonds. Moreover
(different actions), coins must be extracted from ice blocks.
Extraction means kicking seven time at an ice block to de-
stroy the ice and thus making the coin ready for collection.
Such an ice block with a coin inside slides as well as any
other ice block. So the player must kick in a direction where
the ice block cannot slide (e.g. against the edge of the game)
in order to extract an iced coin.

Instead of designing a new planning system, we decided
to pick up an existing one, and eventually several, in order to
compare their relative performance if they had any ability at
playing Iceblox. We consequently decided to re-implement
Iceblox in Flash (Adobe 2007). Not only would we provide
a new implementation of the game, but also could we use the
plug-in architecture of the Flash runtime: a call and return
mechanism can run (and pass in and out parameters to) any
external piece of executable code when put in the appropri-
ate directory.

This deviates from the original Pengi system which was
the same Lisp program as the Pengo game (and also deviates
from (DROGOUL, FERBER, & JACOPIN 1991) where every-
thing was implemented in the same SmallTalk program), but
would eventually ease the comparison as classical planners
are not necessarily written in Flash.

However, this dramatically changes the setting of the
problem.
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On one side, a classical planner becomes an external com-
ponent which happens to provide a planning functionality:
fine, that’s how we want it to work.

On the other side, the world view of the Pengi pa-
per (AGRE 1993) is that of the dynamics of everyday
life (AGRE 1988) (plans do exist, but are better commu-
nicated1 to people than built from scratch) and thus is op-
posed to the heavily intentional (BRATMAN 1987; MILLER,
GALANTER, & PRIBRAM 1986) world view of planning.

In other words: the Pengi system is always in charge
of the actions (moving the penguin, kicking ice blocks)
whereas an external component is in charge only when ac-
tivated and is harmless otherwise: a player must be able to
play Iceblox when the planning component is not activated
or no component is plugged-in. This generates supplemen-
tary questions: when is classical planning activated and for
how long? One more constraint. To respect the dynamics
of the domain of video-games, Iceblox must never stop and
must run while the classical planning component is plan-
ning: flames keep on chasing the penguin and sliding ice
blocks keep on sliding.

Consequently, the classical planning component is acti-
vated when the player presses the “p” key. This activation
is ended as soon as the player presses the keyboard again:
the arrow keys to move the penguin up, right, down and left;
and the space key to kick an ice block.

Hopefully, an anonymous classical planner shall build a
plan and return it to Iceblox. What shall Iceblox do with
this plan? Please, note that this question does not immedi-
ately entail further questions of interleaving classical plan-
ning and execution (AMBROS-INGERSON& STEEL 1988).
To begin with, there is a matter of level of detail: actions
in Iceblox corresponds to keys pressed by the player. Is the
classical planning component really expected to build plans
with such actions?

Hints from a gripper video game On one hand, the clas-
sical planning component is expected to build plans with
keys pressed. First because it seems part of the claim: if the
classical planning component (that is, the “traditional prob-
lem solver” of the claim) has to cope “with hundreds or thou-
sands” of detailed representations describing the initialand
final situations, then we can expect action representations
to be as detailed as the initial and final situations. However,
the Pengi literature (AGRE& CHAPMAN 1987; AGRE1988;
1993; 1997; CHAPMAN 1990) says nothing about this.

On the other hand, classical planners are used to cope
with high-level action description. For instance, here is the
classical planning Move operator from the well-known grip-
per (FOX & L ONG 1999) domain:

Move(X,Y) =

{
Preconditions : {at-robby(X)}
Additions : {at-robby(Y)}
Deletions : {at-robby(X)}

1Official player’s guides are good sources of plans communi-
cated to video-game players that would otherwise take some time
to build.

Figure 1: An anonymous classical planning system has built
(actually, it’s FF, plugged-in our Flash application as de-
scribed earlier; but let’s say we didn’t tell you) a plan for the
following the gripper video game problem: 4 balls must be
moved from roomB to roomD. The on-going action (from
the plan) is printed in the green area at the bottom of the
window: robby is moving from roomD to roomB; details
of the navigation (and of the picking up and down of balls)
are left to the Flash application.

In the gripper domainrobby-the-robot uses its arms to
move balls from one room, along a corridor, to another. Nei-
ther bees nor flames preventrobby-the-robot from succeed-
ing in transporting balls from one room to another. It is nev-
ertheless easy to come up with a simplistic two dimensional
gripper video-game: your task is to move as fast as possible
a set of balls from their initial location to their final location
(see Figure 1).

As stupid as this may sound, this gripper video-game isn’t
too far from, say, the popular Sokoban video-game (in a
maze, blocks must be slided from one place to another, with
no time limit) (CHARRIER 2007). In such a puzzle, the
details of the block pushing activity are important: e.g. a
wrong push at a corner can make the problem unsolvable.
But more important is the block you push next, which se-
quences the player’s next Move. Similar Iceblox situations
where the player only needs to navigate towards iced coins
and then extract them do exist (See Figure 2).

Here are two operators which can combine into a plan and
solve the simple situation of Figure 2: firstMoveToCoin(6,4),
thenExtract(6,4).
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Figure 2: A simplistic level in the Iceblox domain: move to
the ice block containing a coin and then extract it. Details
of the navigation, as far as possible from the flames, and of
the extraction of the coin (seven kicks to the ice block) are
again left to the Flash application.

MoveToCoin(X,Y) =

{
Preconditions : {at(X,Z)}
Additions : {at-coin(X,Y)}
Deletions : {at(X,Z)}

Extract(X,Y) =






Preconditions : {at-coin(X,Y),
iced-coin(X,Y)}

Additions : {at(X,Y),
extracted(X,Y)}

Deletions :{at-coin(X,Y),
iced-coin(X,Y)}

Since we have neither implemented flame-fighting nor
fleeing operators, flames must be un-aggressive so that the
coin of Figure 2 can be extracted. And because of the sim-
ple path from the Penguin to the coin, the initial and final
situations are simply described:{at(1,1), iced-coin(6,4)} and
{extracted(6,4)}, respectively.

We won’t discuss this extremely low number of formulas
needed to describe what could be called aminimal Iceblox
problem: up to now, the biggest part of our work has been
devoted to stay as close as possible to the spirit of classi-
cal planning and video-games, while designing a satisfying
testbed. In the future, we hope to concentrate more on de-
signing classical planning predicates and operators in order
to cope with more complex Iceblox situations.
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Abstract

The focus of this paper is on the development of a web
application for solving Nurse Scheduling Problem. This
problem belongs to scheduling problems domain, ex-
actly timetabling problems domain. It is necessary to
consider large amount of constraints and interactions
among nurses, that can be simplified through web ac-
cess.

Introduction
Preparation of multishift schedule is rather difficult process
which incorporates couple of constraints (e.g. minimum
number of nurses for each type of shift, nurses’ workload,
balanced shift assignment) and interaction of several users
(nurses’ requests consideration). Even though single-user
nurse scheduling applications avoid rather painful manual
process, they do not allow easy access of all nurses to inter-
act with each other. This problem can be efficiently solved
using modern web technologies, while carefully considering
all specific features of such application; e.g. large amount of
human interactions, dramatic impact on satisfaction of indi-
vidual nurse as well as good mood in nurse team.

Definition of Nurse Scheduling Problem
Nurse Scheduling Problem (NSP) is NP-hard problem, that
belongs to timetabling or personnel scheduling domain. The
solution of this problem should satisfy all constraints, that
are set on the input. With larger instances (growing with
number of nurses, number of days in schedule, set of con-
straints) NSP comes to the combinatorial explosion and it is
harder to find an optimal solution.

Related Works
There are several views for solving NSP. In background pa-
per (Hung 1995) there is a history of NSP research from the
60’s to 1994. Other bibliographic survey with one described
approach is in (Cheang et al. 2002). More actual survey is
presented in (Burke et al. 2004).

On one hand, there is the branch of optimal solution ap-
proaches. It includes linear programming (LP) and inte-
ger linear programming (ILP) (Eiselt & Sandblom 2000).
On the other hand, there are some heuristic approaches.

One way to find some solution is to use artificial intelli-
gence methods (e.g. declarative and constraint program-
ming (Okada 1992) or expert systems (Chen & Yeung
1993)). The second way is to use some metaheuristics (sim-
ulated annealing, tabu search (Berghe 2002) or evolutionary
algorithms (Aickelin 1999)).

Contributions
This paper uses Tabu Search approach and the main contri-
bution of this work lies in application structure designed for
access via web.

Application Structure
The structure of Nurse Scheduling Web Application
(NSWA) is shown in Figure 1. Users can work with the ap-
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Figure 1: NSWA structure - block design.

plication via common web browsers. All application blocks
are on the server side, which brings many other advan-
tages (operating system independence, no installation and
upgrades on client side). The scheduling algorithm runs in-
dependently as a web service and exchanges data with ap-
plication and database through communication interface.

Scheduling Algorithm
We decided to use a scheduling algorithm that is based
on multicriterial programming implemented as Tabu Search
metaheuristic.

Mathematical Model
Our mathematical model is designed as three-shift model –
early (E), late (L) and night shift (N) (in Figure 2 early (R),
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Figure 2: Screenshot from our Nurse Scheduling Web Application (july 2007).

late (O), night shift (N), holiday (D) – shifts with star are
requested shifts by nurses). Coverage is per shift, under and
over coverage is not allowed. We decided for one month
scheduling period, because of data export to salary admin-
istration. There are no qualification groups (all nurses have
the same qualification) and we considered full-time work-
load in this version of mathematical model.

We optimize objective function Z

min
x∈X

(Z(x)) (1)

where x is one schedule from X state space of sched-
ules. There are two types of constraints in our mathematical
model.

• hard constraints have to be fulfilled always

• soft constraints with penalization fj(x) that are the sub-
ject of objective function Z(x), which is defined as

Z(x) = w · f(x) =
∑d

j=1 wjfj(x),

wj ≥ 0, d = dim(f(x))
(2)

where w is a vector of weights given by user, f(x) is a vector
function of constraints penalization and d is a number of soft
constraints. In our algorithm we considered the following
constraints:
Hard Constraints
• required number of nurses for each shift type

(#RE, #RL, #RN)
• to consider days from previous month (#H)

• nurses’ requests consideration (#R)

• one shift assignment per day (hc1a)

• no early shift after night shift assignment (hc1b)

• no more than five consecutive working days (hc2)

• forbidden shift combinations (FC)
Soft Constraints
• nurses’ work-load balance (sc1)
• nurses’ day/night shift balance (sc2)

• nurses’ weekend work-load balance (sc3)
• avoiding isolated working days (sc4)

• avoiding isolated days-off (sc5)

Head nurses can choose which of hard constraints will
be used in our algorithm. Soft constraints are weighted by
the head nurses as well. Some hard constraints (hc2, FC)
have been converted to the soft constraints with very large
weights compared to weights of soft constraints sc1, sc2,
sc3, sc4, sc5.

The outline of full Nurse Scheduling Algorithm is de-
scribed in Algorithm 1 below.

Algorithm 1 – Nurse Scheduling Algorithm

1. read the scheduling parameters and the nurses requests;

2. find a feasible solution xinit satisfying hard constraints;

3. optimization (Algorithm 2);

4. user choice

• schedule is acceptable, goto 7;
• schedule is acceptable with manual corrections, goto 6;
• schedule is not acceptable, user can reconfigure scheduling

parameters, goto 5;

5. reconfiguration of scheduling parameters, goto 1, 3 or 6;

6. manual corrections, goto 3, 5 or 7;

7. end of optimization, save the schedule.

Tabu Search Algorithm
Tabu Search algorithm shown in detail in Algorithm 2 is
used to reduce the state space of schedules.

In our implemenentation, TabuList represents the list of
forbidden shift exchanges and has three attributes. The in-
dexes i1 and i2 represent origin and target row (nurse) of
shift exchange. The third index j is day index. Length of
TabuList, so called TabuList tenure, was set to 8.
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Figure 3: The candidate search, non-permissible shift ex-
changes.
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Table 1: NSWA experiments.
n m #RE #RL #RN #H #R hc1 hc2 FC w(sc1) w(sc2) w(sc3) w(sc4) w(sc5) ts[s]

28 12 4 3 2 0 0 1 1 0 0 0 0 0 0 1.336
28 12 4 3 2 5 0 1 1 0 0 0 0 0 0 2.396
28 12 4 3 2 5 1 1 1 0 0 0 0 0 0 1.038
28 12 4 3 2 5 0 1 1 0 100 100 0 0 0 2.860
28 12 4 3 2 5 0 1 1 0 100 100 100 100 100 4.342
28 12 4 3 2 5 0 1 1 ’NNLL’ 100 100 100 100 100 6.460

28 12 4 3 2 5 0 1 1
’NNLL’

100 100 100 100 100 7.327
’LNLE’

28 20 7 5 3 5 0 1 1
’NNLL’

100 100 100 100 100 88.588
’LNLE’

28 20 3 2 2 5 0 1 1
’NNLL’

100 100 100 100 100 35.607
’LNLE’

Let the candidate be a possible shift exchange in one
day that satisfies hard constraints (see Figure 3 – two can-
didates are forbidden due to hard constraints hc1b, hc2). Let
xcand be the schedule x within updated candidate shift ex-
change and Z(xcand) be the value of objective function of
this schedule.

Algorithm 2 – Tabu Search Algorithm

1. compute Z(xinit);

2. x := xinit; xnext := xinit;
Z(x) := Z(xinit); Z(xnext) := Z(xinit);

3. while ((Z(x) > 0) & (∃ not forbidden fj(x))) (Figure 4)

choose max(wjfj(x)), j ∈ not forbidden constraints;
for ∀candidate

if (candidate /∈ TabuList)
compute Z(xcand);
if (Z(xcand) < Z(xnext))
xnext := xcand;
Z(xnext) := Z(xcand);

endif
endif

endfor
if (Z(xnext) < Z(x))
x := xnext;
Z(x) := Z(xnext);
add opposite exchange to the top of TabuList;
clear all forbidden constraints (Figure 4, step 2);

else
add an empty record to the top of TabuList;
forbid the chosen constraint (Figure 4, steps 1, 3, 4, 5, 6);

endif
endwhile

4. return x, Z(x).

Let next be the best candidate (with respect to the ob-
jective function) at each optimization step. When we have
gone through all possible candidates, we compare values
of Z(x) and Z(xnext) and choose the better one for the
next step of optimization. The idea of soft constraint choice
and algorithm termination is demonstrated in Figure 4 for
the case of four soft constraints.

new x, Z(x)

without change

without change

without change

without change

without change

j
Z(x) =

∑
wjfj(x)

final x, Z(x)

algorithm termination

step

1

2

3

4

5

6

optimization

optimization

optimization

optimization

optimization

optimization

Z(xinit)

wjfj(x)

soft constraint j

max (wjfj(x))

chosen soft constraint j

forbidden wjfj(x)

forbidden soft constraint j

Figure 4: Choice of soft constraints for the next step of op-
timization and algorithm termination.

Experiments
We used our NSWA called iMEDICA1 for the instances,
that are presented Table 1. Columns from n to w(sc5) are
input parameters (n stand for the number of nurses and m
for number of days in schedule, other columns are hard and
soft constraints). Column FC shows considered forbidden
shift combinations (e.g. ’LNLE’ - late, night, late and early
shift). Output parameter ts is scheduling time in seconds
including steps 1-4 from Algorithm 1 and web communica-
tion. The instances were computed on server Intel Pentium
3.4 GHz@4 GB DDR.

In order to evaluate our NSWA, we implemented optimal
solution via ILP for simplified two-shift type (day and night)
mathematical model (Azaiez & Sharif 2005). We used free
solver GLPK2. Scheduling times for instances with n ∼ 10
nurses and m = 28 days were hundreds of seconds (more
results are in (Baumelt 2007)).

1iMEDICA, http://imedica.merica.cz/, the product
of Merica s. r. o.

2GPLK, http://www.gnu.org/software/glpk/
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Conclusions
In this paper we briefly presented our Nurse Scheduling Web
Application. We have got the feedback from several hospi-
tals in the Czech Republic. In cooperation with these hospi-
tals we are working on the improvement of the mathematical
model and application interface.
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Abstract 

The Resource-Constrained Project Scheduling Problem 
(RCPSP) is a classical problem in project scheduling. The 
most common and successful approaches to solve the 
RCPSP are those applying heuristics, metaheuristics and 
sampling schemas, given their practicability and 
effectiveness. In most of the cases these approaches apply a 
Schedule Generation Schema (SGS) combined with a 
suitable solution representation and priority rules. Although 
there is a considerable research in these RCPSP solving 
methods and its theory there is a lack of software for 
supporting the research of new solving methods. In many 
cases, the RCPSP research requires the implementation of 
algorithms in order to validate or evaluate a solving method. 
We introduce PSPSolver (Project Scheduling Problem 
Solver), an extensible and practical heuristic-based library 
for supporting the research on solvers for the RCPSP.  

1.The RCPSP Model 

Informally, the single mode RCPSP model, simply referred 
as RCPSP, is a well known project scheduling problem 
(PSP) that seeks the answer to the following question: 
“Given the limited availability of resources, what is the 
best way to schedule the activities in order to complete the 
project in the shortest possible time?”. The RCPSP is of 
special interest in fields like construction and production 
scheduling. Conceptually, the RCPSP is a PSP with single 
mode activities, renewable constrained resources, finish-to-
start precedence relationships with zero time lags, no pre-
emption, and has the makespan minimization as the 
performance measure. According to Bucker et al. [1], this 
problem is denoted as PS | prec | Cmax (machine 
scheduling domain). Herroelen et al. [2] denotes this model 
as  m,1 | cpm | Cmax.  
 
Due to the fact that the RCPSP forms the core problem 
among the class of resource-constrained project scheduling 
problems [1], every improvement in its resolution can 
produce new advances in the resolution of the other 
models. The RCPSP instances are usually represented as 
A-O-N digraphs (Figure 1), while the RCPSP solutions 
(schedules)  are represented as Gantt charts (Figure 2).   

 

 
K = 1 
R1 = 5 
 
 

j 

pj / [rj,1] 
  

Figure 1: A RCPSP Instance  
 

 

Figure 2: An optimal schedule for the instance in Figure 1. 

2. Solving the RCPSP 

The main approaches to solve the RCPSP are the optimal 
(exact) methods, heuristics, and the metaheuristics-based 
solution procedures. It has been shown by Blazewicz et al. 
[3] that the RCPSP, as a generalization of the classical job 
shop scheduling problem, belongs to the class of NP-hard 
optimization problems. Therefore, heuristic solution 
procedures are indispensable when solving large problem 
instances as they usually appear in practical cases [4].  

2.1. Schedule Generation Schemes 

Schedule generation schemes are the core of most of the 
heuristic/metaheuristic solution procedures for the RCPSP 
[4]. A SGS is a constructive technique that builds a 
feasible schedule by stepwise extension of a partial 
schedule (i.e. a schedule where only a subset of the 
activities have been scheduled). There are two different 
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types of SGS: serial SGS (S-SGS) and parallel SGS (P-
SGS). The S-SGS is an activity oriented SGS that performs 
activity incrementation while building the schedule. The P-
SGS, is a time oriented SGS that performs time 
incrementation in the schedule build.  For a formal and 
detailed definition of the SGS the reader is referred to [4]. 

3. The PSPSolver Library 

The main motivation for the development of our 
PSPSolver is the lack of freely available software for the 
RCPSP. The main goal is to build an extensible 
environment for abstracting RCPSP instances and solutions 
with the implementation of SGS-based solving methods by 
using modern programming concepts.  PSPSolver provides 
an extensible object-oriented application programming 
interface (API) for the visualization, representation, and 
solving of RCPSP instances. The library is currently 
implemented in C# and can be freely downloaded from 
http://www.planningforce.com/wiki/. The code distribution 
includes detailed documentation and ready-to-use code 
snippets. The reader is referred to this documentation for a 
detailed description of PSPSolver’s features (e.g. easy of 
use, extensibility, performance, limitations, comparison 
with other software, etc.).  

3.1. Problem and Solution Representation 

The library provides classes to represent single mode 
RCPSP instances and schedules, nevertheless, other PSP 
models could be easily extended as well (i.e. multi-mode 
RCPSP). PSPSolver provides mechanisms for handling 
RCPSP logical instances by supporting common file 
formats (i.e. the formats proposed by PSPLIB[5]), and also 
defines a new normalized XML-based representation, best 
suitable for data exchange between applications. The 
library can model and be extended with user defined 
priority rules as well. 

3.2. Visualization 

PSPSolver is able to render RCPSP instances as A-O-N 
digraphs and also instance solutions as Gant Charts. In 
order to implement a clear visual representation of the 
instance, the network rendering relies on features of the 
GraphViz graph rendering engine [6]. This feature is of 
great utility especially when we want to visualize a 
complex topology on large RCPSP instances. The 
diagrams illustrated in Figure 1 and Figure 2 were rendered 
by using the PSPSolver visualization API. 
 

3.3. Solving 

PSPSolver provides an API for solving RCPSP instances 
by implementing the S-SGS and the P-SGS applying user 
defined heuristics (priority rules). Additionally, one of the 
most important features in the Solving API is the 
possibility to easily integrate or be integrated in custom 

scheduling metaheuristics (e.g. ACO, TS, PSO, SA, etc.).  
In brief, PSPSolver is able to solve a PSP using user-
defined heuristics (priority rules and/or metaheuristics) by 
implementing the SGS approach. The library code 
distribution includes a self-contained example (the 
PSPViewer application) that illustrates the main features of 
the PSPSolver API by implementing an instance renderer, 
a solution benchmarker, a solver, an illustrated custom 
priority rule, and a solution renderer. As a reference, 
PSPViewer was able to solve the 480 instances from the 
J30-SM set (PSPLIB) in less than 2s. (an average of 4ms. 
per instance), using a S-SGS and the SPT (Shortest 
Processing Time) heuristic in a Pentium 2.0 GHz with 
1MB of RAM using Visual C# Express 2005 and .Net 
Framework 2.0. 

4. Conclusions 

We consider that PSPSolver is a basic but powerful free 
library for solving the RCPSP model, and we consider it a 
valuable and practical tool for the PSP research 
community. The library can be easily adapted to the 
researcher’s needs, in order to implement new SGS-based 
heuristics. We plan to improve the library with the 
implementation of a lower-bound calculation, double 
justification (schedule optimization)[7] and extending it to 
the multi-mode RCPSP. We are currently working in 
porting the library to the JAVA programming language as 
well. 
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