
Velocity Tuning in Currents Using Constraint Logic Programming

Michaël Soulignac∗,∗∗ Patrick Taillibert ∗ Michel Rueher∗∗

* THALES Aerospace
2 Avenue Gay Lussac

78852 Elancourt, FRANCE
{firstname.lastname}@fr.thalesgroup.com

** Nice Sophia Antipolis University
I3S/CNRS, BP 145

06903 Sophia Antipolis, FRANCE
rueher@essi.fr

Abstract

Because of its NP-hardness, motion planning among
moving obstacles is commonly divided into two tasks:
path planning and velocity tuning. The corresponding
algorithms are very efficient but ignore weather condi-
tions, in particular the presence of currents. However,
when vehicles are small or slow, the impact of currents
becomes significant and cannot be neglected. Path plan-
ning techniques have been adapted to handle currents,
but it is not the case of velocity tuning. That is why
we propose here a new approach, based on Constraint
Logic Programming (CLP). We show that the use of
CLP is both computationally efficient and flexible. It
allows to easily integrate additional constraints, espe-
cially time-varying currents.

Introduction

Mobile robots are more and more used to collect data in
hostile or hardly accessible areas. For physical or strate-
gic reasons, these robots may not be able to receive directly
orders from a headquarter in real-time. Thus, they have to
embed their own motion planner. Because the environment
is often changing or unknown, this planner has to be very
reactive.

Motion planning is yet a complex task, answering to two
questions simultaneously: where should the robot be, and
when? It is known to be a NP-hard problem (Canny 1988).
That is to say, the computation time grows exponentially
with the number of obstacles.

To guarantee a reasonable response time, motion planning
is commonly divided into two simpler tasks: (1) apath plan-
ning task, dealing with the questionwhere, and (2) avelocity
tuningtask, dealing withwhen.

Algorithms associated to these two tasks are generally
based on simple assumptions. For instance, obstacles are
often modeled as polygonal-shaped entities, moving at con-
stant velocity. Data about weather, in particular about (air or
water) currents, are usually ignored.

However, in the case of Unmanned Air Vehicles (UAVs)
or Autonomous Underwater Vehicles (AUVs), which may
be small or slow, the impact of currents is significant. So,

ignoring currents can lead to incorrect or incomplete plan-
ners. Such planners may return a physically infeasible path,
or no path at all, even if a valid path exists.

Some extensions have been developed in the field of path
planning, but currents remain neglected during velocity tun-
ing.

That is why we propose here a new velocity tuning ap-
proach, based on Constraint Logic Programming (CLP). Our
experimental results show that this approach is computation-
ally efficient. Moreover, it offers a flexible framework, al-
lowing to easily integrate other constraints, such as time-
varying currents or temporal constraints.

This paper is organized as follows. Section I recalls the
existing planning methods. Section II formalizes the prob-
lem of velocity tuning in presence of currents. Section III
introduces our modeling of this problem in terms of a Con-
straint Satisfaction Problem (CSP) on finite domains. Sec-
tion IV proposes examples of additional constraints. Finally,
section V provides some experimental results, obtained on
real wind charts.

I. Motion planning in currents

The decomposition of motion planning into path planning
and velocity tuning tasks was first introduced in (Kant &
Zucker 1986). This decomposition is widely used in robotics
because both tasks can be done in a polynomial time.

However, it has to be noticed that it is source of incom-
pleteness: the path planning phase may generate a path
which is unsolvable in the velocity tuning phase.

1. Path planning

Path planning methods consist in finding a curve between
a start pointA and a goal pointB, avoiding static obsta-
clesOi (generally polygonal-shaped). They can be divided
into four categories: (1) decomposition methods, (2) poten-
tial fields methods, (3) probabilistic methods, and (4) meta-
heuristics.

Graph decomposition methods (fig. 1a) are based on a
discretization of the environment into elementary entities
(generally cells or line segments). These entities (plusA
andB) are then modeled as nodes of a graphG. The initial
-i.e. concrete- path planning problem is thus reformulated

into an abstract one: find the shortest path from nodeA to
nodeB in G. To do this, classical search techniques are ap-
plied, such as the well-knownA∗ algorithm (Nilsson 1969)
or one of its numerous variants.

Potential field methods (fig. 1b) (Khatib 1986) consider
the robot as a particle under the influence of a potential field
U , obtained by adding two types of elementary fields: (a) an
attractive fieldUatt, associated toB and (b) repulsive fields
U i

rep, associated to obstaclesOi. The pointB corresponds
to the global minimum of the functionU . The path between
A andB can thus be computed by applying gradient descent
techniques inU values, starting fromA.

Probabilistic methods (fig. 1c) (LaValle 1998) are based
on a random sampling of the environment. These meth-
ods are a particular case of decomposition methods: random
samples are used as elementary entities, linked to their close
neighbors, and modeled by a graph. Probabilistic RoadMap
(PRM) and Rapid Random Trees (RRT) are the most famous
methods in this category.

Metaheuristics refer to a class of algorithms which sim-
ulate natural processes (fig. 1d) (Zhao & Yan 2005). The
three main metaheuristics applied to path planning are: (a)
genetic algorithms, inspired by the theory of evolution pro-
posed by Darwin; (b) particle swarm optimization, inspired
by social relationships of bird flocking or fish schooling; (c)
ant colony optimization, inspired by the behavior of ants in
finding paths from the colony to food.

B

A

B

A

A

B

A B

(b) (a)

(d) (c)

Figure 1: Paths (in light grey) obtained by the following
methods: (a)A∗ algorithm on regular cells; (b) potential
fields; (c) RRT; (d) particle swarm optimization.

All these methods have two common characteristics: (1)
the costτ(M,N) between two pointsM andN represents
the Euclidean distanced(M,N) and (2) the computed path
is made up of successive line segments. This last property is
the base of our modeling, described in section II.

However, in presence of currents, the fastest path is not
necessary the shortest. To illustrate, let us consider a swirl:
the fastest way to linkA andB is more circle-shaped than
linear.

In this context, new cost functions have been proposed,
to make a compromise between following the currents and
minimizing the traveled distance (Garau, Alvarez, & Oliver
2005)(Petreset al. 2007).

2. Velocity tuning

The existing velocity tuning approaches generally work in
a 2-D space-time. The first dimensionl ∈ [0, L] (whereL
is the length of the path) represents the curvilinear abscissa
on the path. The second one,t ∈ [0, T] (whereT is the
maximal arrival time), the elapsed time since departure. In
this space-time:

• Each point of the path is represented by a column. In
particular, start and goal points are represented by the ex-
treme left and right columns.

• Each moving obstacleOi generates a set offorbidden sur-
facesSi (often only one). These surfaces contains all cou-
ples(l, t) leading to a collision between the robot andOi.
For instance, in figure 2b, the abscissal = 10 is forbidden
betweent = 10 andt = 15.

B
B

A l

0 L

T

10

10

15

S1

S2

O1

O2

(a) (b)

x

y

l

t

A

Figure 2: (a) path of fig. 1d, adding two moving obstacles;
(b) the corresponding 2-D space-time.

Once the space-time is built, the initial velocity tuning
problem can be reformulated into a path planning problem in
this space-time. However, this space-time has specific con-
straints, notably due to time monotony or velocity bounds.
Therefore, specific methods have been applied, like: (1)
adapted decomposition methods, (2) B-spline optimization,
and (3) the broken lines algorithm.

As explained before, decomposition methods (figure 3a)
divide the space-time into elementary entities and apply
graph search techniques. Since a lot of paths are temporally
equivalent (they arrive at the same time), an appropriate cost
is necessary. For instance, (Ju, Liu, & Hwang 2002) used
a composite cost function balancing the arrival time and the
velocity variations.

B-spline optimization techniques (figure 3b) consist in
representing the optimal trajectory in the space-time by a B-
spline function (Borrow 1988), parameterized by some con-
trol pointsKi. Graphically, the pointsKi locally attracts
the curve of the B-spline. Their position is computed in or-
der to minimize the mean travel time, using interior point
techniques.

The broken lines algorithm (figure 3c) (Soulignac & Tail-
libert 2006) tries to linkA andB using a unique velocity,
i.e. a unique line segment in the space-time. At each inter-
section of the line with a surfaceSi, a velocity variation is
introduced, by "breaking" this line into two parts. To sum
up, this algorithm tries first to arrive as earlier as possible,
and then to minimize velocity variations.

K1

K2
K3

K4

(c) (a) (b)
l

t

Figure 3: Paths (in light grey) obtained in the space-time of
fig. 2 by the following methods: (a) visibility graph; (b) B-
spline optimization with 4 control points; (c) broken lines
algorithm.

All these methods neglect the influence of currents. This
is acceptable in presence of weak currents, since trajectory
tracking techniques such as (Park, Deyst, & How 2004) re-
main applicable to dynamically adjust the robot’s velocity.

However, when currents become strong, the robot is nei-
ther guaranteed to stay on its path, nor to respect the time
line computed by the velocity tuning algorithm. That is why
we propose a new approach, based on CLP techniques.

II. Problem Statement
1. Informal description
A punctual robot is moving on a pre-computed pathP from
a start siteA to a goal siteB, in a planar environment con-
taining moving obstacles and currents, with a bounded ve-
locity.

It has to minimize its arrival time atB, with respect to the
following constraints: (1) obstacle avoidance and (2) cur-
rents handling. Data about obstacles and currents are known
in advance.

2. Formalization
The environment is modeled by a 2-D Euclidean spaceE,
with a frame of referenceR = (0, x, y). In R, the coor-
dinates of a vector~u are denoted(ux, uy) and its modulus
u.

The pathP is defined by a listV of n viapoints, denoted
V i. Each viapointV i is situated onP at curvilinear abscissa
li. Two successive viapoints(V i andV i+1) are linked by a
line segment. In other terms,P is made up of successive line
segments, which is the result of all path planning methods
presented before.

Note thatP is obtained by using adapted cost functions,
incorporating the influence of currents (otherwise the veloc-
ity tuning would be meaningless).

A

B

O1
r1

P

p1(t)

x

y

O

Figure 4: A velocity tuning problem with currents.

Each moving obstacleOi is a disk of radiusri. This disk
corresponds to a punctual mobile surrounded by a circular
safety zone. The position of the mobile -i.e. the center of
the disk- is given at every timet by pi. Note that contrary to
most approaches, there is no restriction on the functionpi.

Finally, the current can be seen as a 2-D vector field−→c ,
known either by measurement or forecasting. Thus, the
data about−→c are, by nature, discontinuous, i.e. defined on
the nodes of a mesh (not necessary regular), calledcurrent
nodes. The mean distance between current nodes may cor-
respond to the resolution of measures or the precision of the
forecast model.

The robot’s velocity vector relative to the frameR
(ground speed) is denoted−→v , and its velocity vector rela-
tive to the current−→c (current speed) is denoted−→w .

It is important to understand that−→w only depends on the
engine command, whereas−→v is impacted by the current−→c .
Indeed, applying the velocity composition law, the quantities
−→v , −→c and−→w are linked by the following relation:

−→v = −→w + −→c (1)

Our problem consists in finding a timing functionσ:

σ : M ∈ P 7→ t ∈ [0, T] (2)

minimizing the arrival timetB = σ(B), with respect to
the following constraints:

1. maximal velocity: the modulus of the robot’s velocity rel-
ative to the current, denotedw, is smaller thanwmax.
Note that the boundwmax only depends on the robot’s
engine capabilities;

2. obstacles avoidance: the robot has to avoid a set ofm
moving obstacles;

3. currents handling: the robot has to take into account dis-
turbances due to the field~c.

The quantityT is called time horizon. It materializes the
maximal arrival date toB. This upper bound may be due to
the embedded energy or visibility conditions.

III. Velocity tuning using CLP
Velocity tuning using CLP consists in two steps: (1) defin-

ing the constraints describing the velocity tuning problem
and (2) solving the corresponding CSP, with the adequate
search strategies.

1. Data representation

The constraints above are defined on finite domains.
Therefore, the initial data about the environment are refor-
mulated using an appropriate representation.

Time representation

The interval[0, T] is discretized using a constant stepε.
The valueε depends on the context. In our applications,
[0, T] contains less than 1000 time steps. For instance,
T = 2 hours andε = 10 seconds leads to 720 time steps.

Currents representation

As we explained before, the current is known in a finite
number of points, called current nodes, obtained by mea-
surement or forecasting. Since current nodes already include
an error, we think that it is meaningless to finely interpolate
the value of the current between these nodes.

Therefore, we propose the concept ofElementary Current
Area (ECA). An ECA is an polygonal region of the envi-
ronment, in which the current is homogeneous. Each ECA
contains a unique current node. The value of this node is
extended to the whole area.

ECAs are computed by building the Voronoï diagram
(Fortune 1986) around the current nodes. This diagram is
made up of line segments which are equidistant to the nodes.
It is illustrated in figure 5, for uniform and non-uniform dis-
tributions.

(a) (b)
x

y

Figure 5: Illustration of ECAs for two distributions of cur-
rent nodes (grey arrows): (a) uniform and (b) non-uniform.

Artificial viapoints

Artificial viapointsare additional viapoints guaranteeing
that the current is constant between two successive via-
points. They are obtained by intersecting the pathP and
the borders of ECAs. Since bothP and borders are made up
of line segments, these intersections can be computed easily.

The initial list V of viapoints is thus enlarged intoV ′,
containingn′ > n elements. The current between two suc-

cessive viapointsV i andV i+1 is denoted
−→
ci .

2. Constraints definition

In this part, we show how the velocity tuning problem
can be described thanks to two types of constraints: (a) con-
straints related to currents and (b) constraints related tomov-
ing obstacles avoidance.

A

B

P

Figure 6: Artificial viapoints (white dots) obtained for the
Voronoï diagram of fig. 5a. These viapoints are added to the
initial viapoints (black dots).

Note that the currents are constant in time here (time-
varying currents are considered in section IV).

a. Constraints related to currents

Let us consider the straight line move
−→
di , between the

viapointsV i = (xi, yi) andV i+1 = (xi+1, yi+1). For this
move, we define:

•
−→
ci the velocity of the current

•
−→
vi the robot’s velocity relative to the frameR

•
−→
wi the robot’s velocity relative to

−→
ci

As explained in equation 1,
−→
vi and

−→
wi are linked by

−→
vi =

−→
wi +

−→
ci . Moreover, since we want to impose the move

−→
di to

the robot,
−→
vi and

−→
di are collinear.

Thus, if we denoteCi the result of translatingV i by vec-

tor
−→
ci , we can build the vector

−→
vi by intersecting:

• The lineLi, of direction vector
−→
di

• The circleCi, of centerCi and radiuswi

If Ii
1 andIi

2 are the intersections obtained1 (possibly con-

founded),
−→
vi can be either the vector

−→
vi
1 =

−−→
V iIi

1 or
−→
vi
2 =

−−→
V iIi

2. This is illustrated in figure 7.

CiVi

Vi+1

vi1

vi2

ci

wiwi

wmax

I2

I1

di

Figure 7: Different possibilities for
−→
vi , for wi < wmax.

1Note that we are sure that at least one intersection exists, be-
cause the pathP is supposed to be entirely feasible.

The radiuswi = wmax allows to compute the minimal

and maximal modulus for
−→
vi , denotedvi

min andvi
max:

vi
min = min(vi

1, v
i
2)

vi
max = max(vi

1, v
i
2)

(3)

If
−→
vi

j and
−→
di are not in the same direction, the robot is not

moving toward the next viapointV i+1, but at the opposite
(backward move). In this case, to force a forward move, the
modulusvi

j is replaced by 0 in equation 3.

These results allow us to describe the robot’s cinematic in
presence of currents:

∀i ∈ [1, n′] : ti ∈ [0, T] (Dti)

vi ∈ [vi
min, vi

max] (Dvi)

ti = ti−1 + di/vi (Cti,vi)

Note that the quantitiesdi, vi
min andvi

max are known and
constant:

• The distancedi is deduced from position of viapointsV i

andV i+1,

• The velocity boundsvi
min andvi

max are computed using
equation 3.

Therefore, the only variables in the above equations are
ti andvi (both scalar).

b. Constraints related to moving obstacles avoidance

As explained in section I.2, moving obstacles can be rep-
resented in a 2-D space-time(l, t), which l represents the
curvilinear abscissa on the pathP, andt the elapsed time
since departure.

In this space-time, each moving obstacleOj generates a
set of forbidden surfacesSj , containing all forbidden cou-
ples(l, t), leading to a collision between the robot andOj .

0 L

T

S1

S2

(a)

l

t
2

10

14

lj li

Vi Vj

0 L

(b)

Mi

Mi+1

S1

S2

3
4

li li+1

Vi

Vi+1

Figure 8: (a) forbidden times for two viapointsV i andV j :
F i = [0, 3] andF j = [2, 4] ∪ [10, 14]; (b) impossible move
between two successive viapointsM i andM i+1: M i /∈ F i

andM i+1 /∈ F i+1, but [M i,M i+1] intersects the forbidden
surfaceS2.

Therefore, for each viapointV i, we can define the interval
of forbidden times, denotedF i. This interval has the follow-
ing meaning: ifti ∈ F i, then the robot collides a moving
obstacle at viapointV i. F i is computed by intersecting all
surfacesSj with the linel = li.

As shown in figure 8a,F i is an union of subintervals
F i

1 ∪ F i
2 ∪ ... ∪ F i

si , where si denotes the number of
intersected surfaces.

A first idea to model obstacle avoidance would consist in
using the simple constraint:

∀i : ti /∈ F i (4)

However, this constraint is too weak to avoid collisions in
all cases.

To illustrate this point, let us consider two successive
viapoints V i and V i+1. In the space-time, the visit of
these viapoints is symbolized by two pointsM i and
M i+1. Even if both points respect equation 4, it is not
necessary the case for all intermediate points lying on
the line segment[M i,M i+1]. Indeed, this line segment
can intersect some forbidden surfaces, as shown in figure 8b.

This problem appears when a forbidden surface is by-
passed by one side at pointM i and by the other side at point
M i+1. In the example of figure 8b,M i is above the surface
S2, whereasM i+1 is below, which leads to an intersection.

A simple way to avoid this situation is to force all the
points of the space-time to be on the same side of each
forbidden surfaces. This is modeled by the following con-
straints:

∀i ∈ [1, n′] : F i = [t1, t1] ∪ ... ∪ [tsi , tsi]

∀j ∈ [1, si] : bj ∈ {0, 1} (Dbj)
ti ≥ tj − T · (1 − bj) (C1

ti,bj)
ti ≤ tj + T · bj (C2

ti,bj)

The binary variablesbj allow to represent how the forbid-
den surfaceSj is by-passed. Indeed,bj = 1 if the pointM i

is aboveSj , elsebj = 0.

Since these variablesbj are shared by all pointsM i, they
are forced to by-pass forbidden surfaces in the same way.
Combining the variablesbj andT allows to avoid the use of
reification techniques: if one constraint is true, the otheris
naturally disabled (since∀i : ti ≤ T).

2. CSP solving
a. CSP formulation

A CSP is commonly described as a triplet(X,D,C),
where:

• X = ∪{xi} is a set of variables,

• D = Π Di is a set of domains associated toX (Di repre-
sents the domain ofxi),

• C = ∪{Ci} is a set of constraints on elements ofX.

Using these notations, our velocity tuning problem can be
modeled by the following CSP:

• X = ∪{vi, ti, bj}, i ∈ [1, n′], j ∈ [1, si] wheren′ is
the number of viapoints (including artificial ones) andsi

the number of intersected forbidden surfaces by the line
l = li in the space-time,

• D = Dti × Dvi × Dbj ,

• C = Cti,vi ∪ C1
ti,bj ∪ C2

ti,bj .

This CSP has the following properties:

• It contains2n′+maxi{s
i} variables andn′+2maxi{s

i}
constraints. In our applications,n′ < 50 andmaxi{s

i} <
10.

• All constraints are linear2.

• Variables are defined on finite domains, with the follow-
ing sizes:

– |Dti| ≈ 1000 (number of time steps)
– |Dvi| ≈ 100 (number of different velocities)
– |Dbj | = 2 (binary variables)

b. Enumeration strategy

Since many solutions are temporally equivalent, we chose
the following enumeration strategy:

• Variables ordering:bj , thenti, thenvi (in the decreasing
order ofi).

• Values ordering:

– increasing values forbj (to by-pass the forbidden sur-
face by the bottom first)

– increasing values forti (to determine the first valid time
steps)

– decreasing values forvi (becausevi
∼ O(1/ti))

With this strategy, we try to visit the viapoints as earlier
as possible, from the last viapoint to the first viapoint.

The variablesbj allow to roughly identify a first solution,
by determining by which side the forbidden surfaces are by-
passed. Then, the variablesti and vi refine this solution.
Note that the enumeration mainly concern the variablesti,
because a value ofti imposes a value forvi.

IV. Extension to other constraints

Modeling the velocity tuning problem as a CSP allows
to easily integrate other constraints. This section gives two
examples: (1) time-varying currents and (2) temporal con-
straints.

1. Time-varying currents

In a forecast context, values of currents are valid during
a time interval∆T , depending on the application. For in-
stance, in maritime applications,∆T represents a few hours.

As for ECAs, we find that it is useless to interpolate these
data between two intervals. We thus consider that a time-
varying current is defined by successive levels, as shown in
figure 9.

c

t
t=5 t=10

cx

cy
(a)

(b)
x

y

Figure 9: A time-varying current. (a) graph ofcx and cy

functions, defined by levels; (b) the corresponding velocity
vector.

Let us consider a current
−→
ci , between viapointsV i and

V i+1, changingk times in the interval[0, T]. This interval is
thus split intok+1 subintervals:[0, t1], [t1, t2], ...,[tk−1, tk],
[tk, T]. In each subinterval[tj , tj+1], the value of the current

is constant, denoted
−→
ci
j .

The influence of this time-varying current can be mod-
eled in our CSP by using some binary variables. Indeed, the
equation(Dvi) is replaced by the following constraints:

∀j ∈ [1, k − 1] : bj ∈ {0, 1}
ti ≥ tj · bj

ti < (1 − bj) · T + tj+1

(5)

∑k−1

j=1
bj = 1 (6)

vi ≥

k−1∑

j=1

bj · v
i
min,j (7)

vi ≤
k−1∑

j=1

bj · v
i
max,j (8)

The binary variablesbj allow to identify the subinterval
[tj , tj+1] in which lies the variableti. In other terms,bj = 1
if and only if ti ∈ [tj , tj+1]. This is modeled by equations 5
and 6.

Then, equations 7 and 8 allows to impose velocity bounds
onvi according to this subinterval. That is, ifti ∈ [tj , tj+1],
thenvi ∈ [vi

min,j , v
i
max,j]. The values ofvi

min,j andvi
max,j

are computed as explained in part III.1a, substituting
−→
ci by

−→
ci
j .

This model is simple but rough. More precisely, it ignores
current changes between two successive viapoints. There-
fore, an error is potentially made on velocity bounds. This
error remain negligible if the distancedi between viapoints
is small.

2After the change of variablevi
′

= 1/vi.

loitering

(a) t=[0:00,2:40] (b) t=[2:40,6:00] (c) t=[6:00,9:00] (d) t=[9:00,12:00] (e) t=[12:00,20:00]

wind wind wind wind wind

3min

obstacle

robot

x

y

Figure 10: Complete example: (a)(b) moving obstacle avoidance, (c) effect of a current change att = 6min, (d) loitering during
D = 3min (in black square) and (e) effect of a time window, imposing the arrival att = 20min.

If it is not the case,di can be reduced by artificially sub-
dividing ECAs. By this way, the size of ECAs is decreased
and the number of artificial viapoints increased. Therefore,
viapoints will be globally closer from each other.

2. Temporal constraints

In this section, we explain how to temporally constrain a
viapointV i. Especially, we study two temporal constraints
particularly mentioned in literature: (a) time windows and
(b) loitering.

a. Time windows

A time window W i is a couple(wi, wi), specifying the
minimum datewi and the maximum datewi for the robot to
visit the viapointV i.

In a military context, by example, time windows may cor-
respond to strategic data, such as: "the target will be atV i

betweenwi andwi".

Modeling ofW i is quite natural in our CSP, leading to the
single constraint:

ti ∈ [wi, wi]

b. Loitering

The concept of loitering consists in forcing the robot to
wait at viapointV i for a given durationDi. From a practi-
cal point of view,Di may correspond to the minimum time
required to perform a task atV i.

Here, our goal does not consist in choosing the best value
of Di, but choosing the best beginning timeti for the loiter-
ing task.

This choice seems to be hard, because it depends both on
the moving obstacles and the current changes. However, it
can be simply modeled in our CSP, replacing the constraint
(Cti,vi) by :

ti = ti−1 + di/vi + Di (9)

V. Experimental results

This section has two objectives: (1) illustrating our ap-
proach and (2) evaluating its performance.

S1

obstacle
avoidance

wind change

loitering

time window

0
L

T

l

t

Figure 11: The space-time corresponding to fig. 10

1. Illustrative example

We illustrate here all the constraints presented before
through a complete example containing: a moving obsta-
cle, a current change, a loitering task and a time window on
arrival.

In this example, simple instances of the constraints have
been chosen: (1) the current is uniform on the map and (2)
the moving obstacle performs a straight-line move at con-
stant velocity.

The result obtained by our approach is depicted in figures
10 and 11. Figure 10 shows the different phases of velocity
tuning in the initial environment, and figure 11 in the space-
time.

2. Performance evaluation

In this part, we evaluate experimentally the impact of cur-
rent changes and moving obstacles on the computation time,
in the following conditions:

• Hardware: Our approach has been run on a1.7Ghz PC
with 512Mo of RAM, using theclpfd library (Carlsson,
Ottosson, & Carlson 1997), provided by Sicstus.

• Current data : All data are issued from real wind charts,
collected daily during three months on Meteo France
website3 (leading to about 90 different charts). The wind
changes are simulated as follows: to simulatek wind

3http://www.meteofrance.com/FR/mer/carteVents.jsp

changes, the interval[0, T] is divided intok + 1 equal
subintervals. A different wind chart is used for each
subinterval.

• Moving obstacles: As in figure 10, each moving obstacle
goes across the environment by performing a straight-line
moveP1 → P2 at constant velocity. This move is com-
puted in the following way:

1. Two pointsP1 andP2 are randomly chosen on two bor-
ders of the environment, until an intersectionI between
the pathP and the line segment[P1, P2] is detected.

2. The velocity of the obstacle is chosen such that the ob-
stacle and the robot are at the same time at pointI.

The resulting computation times are provided in table 1.
Each cell is the mean time obtained on 100 different envi-
ronments.

Table 1: Average computation time (in ms), form moving
obstacles andk current changes .

H
H

H
H

k
m

0 1 2 3 4 5 6

0 5 9 11 14 17 21 26
1 7 12 13 16 20 24 27
2 10 14 15 18 23 28 29
3 16 21 23 25 34 35 38
4 51 55 56 68 66 67 71
5 80 97 104 106 111 112 114
6 98 127 147 152 159 162 166

From a strictly qualitative point of view, we can observe
that the global computation time remains reasonable (a few
milliseconds) even in complex environments. Therefore, we
think that our approach is potentially usable in on-boards
planners.

A theoretical study of the time complexity could confirm
these results. In particular, it could be interesting to trydif-
ferent enumeration strategies and evaluate their impact on
computational performances.

Conclusion

In this paper, we proposed a velocity tuning approach,
based on Constraint Logic Programming (CLP). At our
knowledge, this approach is the first able to handle cur-
rents. Moreover, this approach is computationally efficient
and flexible.

Indeed, we explained that modeling the velocity tuning
problem into a Constraint Satisfaction Problem (CSP) al-
lows to easily incorporate more complex constraints, in par-
ticular time-varying currents. Moreover, our experiments
showed the velocity tuning task could be performed in a
polynomial time. It means that our approach is potentially
usable in on-board planners.

Further works will investigate the coordination of multi-
ple robots sharing the same environment. In particular, we
will study how additional constraints could allow the coor-
dination of fleets of UAVs (Unmanned Air Vehicles).

Acknowledgments

The authors would like to thank Paul-Edouard Marson,
Maxime Chivet, Nicolas Vidal and Katia Potiron for their
careful reading of this paper.

References
Borrow, J. E. 1988. Optimal robot path planning using the
minimum-time criterion.Journal of Robotics and Automa-
tion 4:443–450.
Canny, J. 1988.The Complexity of Robot Motion Planning.
MIT Press.
Carlsson, M.; Ottosson, G.; and Carlson, B. 1997. An
open-ended finite domain constraint solver. InProceedings
of Programming Languages: Implementations, Logics, and
Programs.
Fortune, S. 1986. A sweepline algorithm for voronoi dia-
grams. InProceedings of the second annual symposium on
Computational geometry, 313–322.
Garau, B.; Alvarez, A.; and Oliver, G. 2005. Path plan-
ning of autonomous underwater vehicles in current fields
with complex spatial variability: ana∗ approach. InPro-
ceedings of the International Conference on Robotics and
Automation, 194–198.
Ju, M.-Y.; Liu, J.-H.; and Hwang, K.-S. 2002. Real-
time velocity alteration strategy for collision-free trajectory
planning of two articulated robots.Journal of Intelligent
and Robotic Systems33:167–186.
Kant, K., and Zucker, S. W. 1986. Toward efficient trajec-
tory planning: the path-velocity decomposition.The Inter-
national Journal of Robotics Research5:72–89.
Khatib, O. 1986. Real-time obstacle avoidance for manip-
ulators and mobile robots. InProceedings of the Interna-
tional Conference on Robotics and Automation, volume 2,
500–5005.
LaValle, S. M. 1998. Rapidly-exploring random trees: A
new tool for path planning.TR 98-11, Computer Science
Dept., Iowa State Univ.
Nilsson, N. J. 1969. A mobile automation: An applica-
tion of artificial intelligence techniques.Proceedings of
the International Joint Conference on Artifical Intelligence
509–520.
Park, S.; Deyst, J.; and How, J. 2004. A new nonlinear
guidance logic for trajectory tracking.Proceedings of the
AIAA Guidance, Navigation and Control Conference.
Petres, C.; Pailhas, Y.; Patron, P.; Petillot, Y.; Evans, J.; and
Lane, D. 2007. Path planning for autonomous underwater
vehicles.Transactions on Robotics23:331–341.
Soulignac, M., and Taillibert, P. 2006. Fast trajectory plan-
ning for multiple site surveillance through moving obsta-
cles and wind. InProceedings of the Workshop of the UK
Planning and Scheduling Special Interest Group, 25–33.
Zhao, Q., and Yan, S. 2005. Collision-free path planning
for mobile robots using chaotic particle swarm optimiza-
tion. In Proceedings of the International Conference on
Advances in Natural Computation, 632–635.

