
An Enhanced Weighted Graph Model
for Examination/Course Timetabling

Julie R. Carrington*, Nam Pham† , Rong Qu† , Jay Yellen*†

*Department of Mathematics and Computer Science, Rollins College

Winter Park, Florida, USA
{jcarrington, jyellen}@rollins.edu

† Automated Scheduling, Optimisation and Planning Research Group

School of Computer Science, University of Nottingham, Nottingham, UK
{nxp, rxq, jzy} @ cs.nott.ac.uk

Abstract
We introduce an enhanced weighted graph model whose
vertices and edges have several attributes that make it
adaptable to a variety of examination and course time-
tabling scenarios. In addition, some new vertex- and col-
our-selection heuristics arise naturally from this model,
and our implementation allows for the use and manipula-
tion of various combinations of them along with or sepa-
rate from the classical heuristics that have been used for
decades. We include a brief description of some prelimi-
nary results for our current implementation and discuss
the further development and testing of the ideas intro-
duced here.

Introduction

Background
Using graph colouring to model timetabling problems
has a long history (e.g., Broder 1964, Welsh and Powell
1967, Wood 1968, Neufeld and Tartar 1974, Brelaz
1979, Mehta 1981, and Krarup and de Werra 1982). Sev-
eral survey papers have been written on this topic (e.g.,
Schmidt and Strohlein 1980, de Werra 1985, Carter
1986, Schaerf 1999, Burke, Kingston, and deWerra
2004, and Qu et al. 2006).

In a standard graph representation for a timetabling prob-
lem, the events to be scheduled are represented by verti-
ces. A constraint (conflict) between two events indicat-
ing that they should be assigned different time slots is
represented by an edge between the two corresponding
vertices. In our case, the events are exams (or courses)
and the constraints might be that some students are en-
rolled in both exams or the same professor is giving both
courses. Ideally, then, such exams (courses) would be
assigned different time slots. If we associate each possi-
ble time slot with a different colour, then creating a con-
flict-free timetable is equivalent to constructing a feasi-
ble (or proper or valid) colouring of the vertices of the
graph, that is, a vertex colouring such that adjacent ver-
tices (two vertices joined by an edge) are assigned dif-
ferent colours.

Given that vertex colouring is NP-Hard (Papadimitriou
and Steiglitz 1982), the development of heuristics and
corresponding approximate algorithms, which forfeit the
guarantee of optimality, has been a central part of the
research effort.

Two events with a constraint between them are generally
prohibited from being assigned the same time slot, i.e.,
the edge represents a hard constraint. In some university
timetabling scenarios, another objective is to minimize
the number of students that have to take exams close
together (or courses far apart). This proximity restriction
is generally regarded as a soft constraint.

The weighted graph model introduced in 1992 (Kiaer
and Yellen 1992a) was designed to handle timetabling
instances for which the number of available time slots
(colours) is smaller than the minimum needed to con-
struct a feasible colouring. (This minimum number is
called the chromatic number of the graph.) For instance,
in course timetabling, there is likely to be a limited num-
ber of time slots that can be used during the week, and a
conflict-free timetable may not exist. If conflicts are un-
avoidable, then a choice must be made on which ones to
accept.

Distinguishing among conflicts
Clearly, certain conflicts are worse than others. If two
exams (or courses) require the same professor to be pre-
sent or use the same equipment that cannot be shared,
then those two exams must not be scheduled at the same
time. On the other hand, if two exams happen to have
one student in common, then scheduling those two ex-
ams in the same time slot may need to be considered
acceptable. In fact, there may be situations where the
distinction between hard and soft constraints becomes
less clear. For instance, a timetable having a single stu-
dent scheduled to take two exams in the same time slot
(forcing some special accommodation) may actually be
preferred to one that has 50 students taking back-to-back
exams.

mailto:@rollins.edu

Scope of Paper
This paper introduces an extension of the weighted graph
model of Kiaer and Yellen (1992a). This enhanced
model holds and keeps track of more of the information
relevant to the two sometimes opposing objectives –
minimizing total conflict penalty (or keeping it zero) and
minimizing total proximity penalty. A natural byproduct
of this approach is the emergence of some new heuristics
that appear to hold promise for their use, separately or in
combination, in fast, one-pass, approximate algorithms.

Such algorithms can prove useful in a number of ways.
Because solutions are produced quickly, they can be
used within a flexible, interactive decision-support sys-
tem that can be adapted to a variety of timetabling sce-
narios.

These solutions can also be used as initial solutions in
local search and improvement based techniques, (e.g.,
Tabu Search, Simulated Annealing, Large Neighborhood
Search, Case-Based Reasoning), or as upper bounds for a
branch-and-bound algorithm (Kiaer and Yellen 1992b).
Recent research has demonstrated that these algorithms,
when hybridized effectively or integrated with other
techniques such as meta-heuristics, are highly effective
on solving timetabling problems (Qu et al. 2006).

Also, because the model lends itself to using various
combinations of heuristics for vertex and colour selec-
tion, it may prove useful in the context of hyper-
heuristics (Burke et al. 2003) and/or in an evolutionary
computation approach that might involve automatic gen-
eration of combinations and switching from one combi-
nation to another as the colouring progresses (see Burke
et al. 2007).

For an up-to-date survey that includes a broad overview
and extensive bibliography of the research in this area in
the last ten years (see Qu et al. 2006).

Description of the Model
Although we restrict our attention for this paper to ex-
amination timetabling, our model is also applicable to
course timetabling. Moreover, it incorporates more of the
problem information at input and keeps track of more
information pertaining to the partial colouring during the
colouring process than do existing timetabling models.
These features led us to the design of some new vertex-
and colour-selection heuristics, which we introduce in
this paper.

Each vertex in the graph corresponds to an exam to be
scheduled and each colour corresponds to a different
time slot. Accordingly, assigning colour c to vertex v is
taken to mean that the exam corresponding to v is sched-
uled in the time slot corresponding to c.

We represent various components of a typical instance of
an Examination Timetabling problem using a weighted
graph model. Each vertex and each edge are weighted
with several attributes, some that hold information from

the problem instance and others that hold and update
information that helps guide the colouring process.

Associated with each vertex is the set of students who
must take that exam. Two vertices are joined by an edge,
and are said to be adjacent or neighbors, if it is undesir-
able to schedule the corresponding exams in the same
time slot. Each edge carries information that tells us how
undesirable it would be for the corresponding exams to
be scheduled in the same time slot or in time slots near
each other. In particular, each edge has two attributes:
the set of students taking both exams (intersection sub-
set); and a positive integer indicating the conflict sever-
ity if the exams are scheduled in the same time slot. This
second attribute is currently tied to the size of the inter-
section subset. However, it can also reflect factors not
tied to this intersection. For instance, if the same profes-
sor is assigned to both exams, then the severity is likely
to be set at a high level.

To illustrate our model, suppose there are four available
time slots, 0, 1, 2, and 3 for five exams, E1, E2, E3, E4,
and E5. The set of students taking each of the exams is
as follows:

E1: {a, b, … , j}
E2: {k, l, … , z}
E3: {a, e, k}
E4: {b, c, d, x, y, z}
E5: {a, c, e, g, i, j}

Each edge in the graph shown in Figure 1 has the subset
of students enrolled in both exams corresponding to the
endpoints of that edge.

In general it may be undesirable to assign the same time
slot (colour) to a given pair of exams for a variety of
reasons. For this example, however, we consider two
vertices to be adjacent only if there is at least one student
taking both exams.

Figure 1: Student intersections for pairs of exams.

For our example, we set the conflict severity equal to 1,
5, or 25, according to the size of the intersection. In par-
ticular, we set the conflict severity to 1 if the intersection
size is 1 or 2, to 5 if the intersection size is 3 or 4, and to
25 if the intersection size is 5 or greater (see Figure 2).
We emphasize that these thresholds for conflict severity
are arbitrarily chosen here. If a conflict-free timetable is
a requirement, as it is in the University of Toronto prob-
lem instances (Carter, Laporte, and Lee 1996), then all

{a,c,e,g,i,j}{a,e}

{b,c,d}

{x,y,z}

{e}{k}

E2

E5

E4

E1

E3
{a,e}

conflict severities can simply be set to one since all con-
flicts are regarded as equally bad.

Of course, as mentioned, there will be many situations in
which the conflict severity depends on other factors. In
these situations, an edge might exist even when it corre-
sponds to an empty intersection of students.

Figure 2: Additional edge attributes.

The proximity penalty of assigning colours ci and c j to
the endpoints of an edge is a function of how close ci
and c j are and the size of the intersection. For the To-
ronto problem instances, where the time slots are simply
ci = i , i = 0,1,… , the intersection size is multiplied by a
proximity weight that equals 25-|i-j| when 5 || ≤− ji and
0, otherwise. Our implementation uses this same evalua-
tion for comparison purposes with the Toronto bench-
mark results. However, if the time slots are specified by
a day, a start time, and a duration, then our colour attrib-
utes can easily be modified to allow for the appropriate
change in the proximity evaluation function.

Our overall objective is to produce colourings (timeta-
bles) with minimum total conflict (zero may be required)
and minimum total proximity penalty.

Knowing the conflict severity and size of the intersection
for each edge makes it straightforward to keep track of
the two kinds of penalties as the colouring progresses.
When a vertex gets coloured c, that colour becomes less
desirable (or forbidden) to its neighbors, as do colours in
proximity with colour c.

Our model keeps track of these two kinds of colour un-
desirability as follows. Each vertex v has a colour-
penalties vector that indicates the undesirability of as-
signing each colour to that vertex with respect to conflict
penalty and proximity penalty. That is, the component of
the colour penalties vector corresponding to colour c has
two values, one is the conflict penalty incurred if v is
coloured c, and the other is the resulting proximity pen-
alty.

Using our example and a simplified proximity function,
we illustrate how the colour-penalties vectors change as
the graph is coloured. Suppose that any two colours i and
j of the colours 0, 1, 2, and 3 are within proximity if they
differ by 1, then the proximity penalty incurred when the
colours of the endpoints of an edge differ by 1 equals the
intersection size. Suppose further that the colour-

penalties vectors for all of the vertices are initialized
with [0, 0] for all of their colour components. Figure 3
shows the result of colouring vertex E1 with colour 1.

Figure 3: Colour-penalties vectors after E1 is coloured 1.

There may be other factors that make certain time slots
undesirable for an individual exam. For instance, if pro-
fessor X is assigned to exam A and cannot be on campus
before noon. So any colour corresponding to a morning
time slot for exam A would be given a prohibitively
large conflict penalty value before the colouring begins.

As each vertex is coloured, its adjacent vertices’ colour-
penalties vectors are updated. The ease with which we
are able to keep track of both hard and soft constraints as
the colouring progresses creates new opportunities for
the use of more sophisticated heuristics tied to this read-
ily accessible information.

The Basic Approximate Algorithm
Our basic algorithm consists of two steps, select a vertex
and then colour that vertex. We repeat these two steps
until all vertices are coloured. Notice that while our
model will easily accommodate more computation-
intensive algorithms involving backtracking, local im-
provement, etc., we chose for this first phase of our re-
search to concentrate on producing fast, essentially one-
pass colourings.

Summary of the Model Features and Parameters
In preparation for the next section’s discussion of heuris-
tics, we list the key features and parameters on which the
heuristics are based. The two edge attributes, conflict
severity and intersection size, give rise to two different
versions of the traditional concept of weighted degree of
a vertex.

• Conflict severity (of an edge) – a measure of how

undesirable it is to assign the same colour to both
endpoints of the edge. In general, this would depend
on several factors, and it could be set interactively by
the end-user.

• Intersection size (of an edge) – the size of the inter-
section of the two sets corresponding to the endpoints
of the edge. In exam timetabling, this is simply the
number of students taking both exams.

• Conflict degree (of a vertex) – the sum of the conflict
severities of the edges incident on the vertex.

E2

E5

E4

E1

E3
[1, 2]

[1, 2]

[1, 1]

[25, 6]

[5, 3]

[5, 3]

[1, 1]

[conflictSeverity, intersectionSize]

E2

E5

E4

E1

E3 [1, 2]

[1, 2]

[1, 1]

[25, 6]

[5, 3]

[5, 3]

[1, 1]

([0,0], [0,0], [0,0], [0,0])

([0,2], [1,0], [0,2], [0,0])

1

([0,6], [25,0], [0,6], [0,0])

([0,3], [5,0], [0,3], [0,0])

• Intersect degree (of a vertex) – the sum of the inter-
section sizes of the edges incident on the vertex.

• Bad-conflict edge – an edge whose conflict severity
exceeds a specified threshold value. If a conflict-free
timetable (i.e., a feasible colouring) is required, then
this threshold is set to zero, as we do for the Toronto
problem instances.

• Bad-intersect edge – an edge whose intersection size
exceeds a specified threshold. In our current imple-
mentation, this threshold is a function of the average
of the intersection sizes of all edges; specifically, we
use the average intersection size times some constant
multiplier.

• Conflict penalty (for the colour assignment of a ver-
tex) – a measure of how undesirable it is to assign
that colour to the vertex. This will depend on the col-
our assignments of the vertex’s neighbors and the
conflict severities of the relevant edges, but it could
also depend on other factors (e.g., professor, room, or
equipment constraints).

• Proximity (of two colours) – a measure of how close
together (in the case of exam timetabling) or spread
apart (for course timetabling) the two colours are.
This is often a secondary objective to optimize in
school timetabling and is typically referred to as a
soft constraint.

• Proximity penalty (for the colour assignment of a
vertex) – the sum of the proximity penalties resulting
from that colour assignment and the colour assign-
ments of all neighbors of that vertex (determined by
the function described immediately following Figure
2).

• Colour-penalties vector (of a vertex) – indicates for
each colour the conflict penalty and proximity pen-
alty of assigning that colour to the vertex. When a
vertex is coloured, the colour-penalties vector of each
of that vertex’s neighbors must be updated accord-
ingly.

• Bad-conflict colour (for a vertex) – a colour whose
conflict penalty for that vertex exceeds some speci-
fied threshold (also set to zero for the Toronto in-
stances since feasible colourings are required).

• Bad-proximity colour (for a vertex) – a colour whose
proximity penalty for that vertex exceeds some speci-
fied threshold. Similar to the bad-intersect-edge
threshold, we use average intersection size times a
(possibly different) constant multiplier.

The thresholds for badness are easily adaptable to the
requirements of the problem, and, in a decision support
system, they could be specified by the end-user interac-
tively. Part of this ongoing research is to study the effect
that the values of the thresholds have on the quality of
the solution and to identify features of a problem in-
stance that determine that effect.

Heuristics
Vertex selection and color selection are the two key
components of our simple, constructive algorithm, and
our strategies for both are flexible in the varied ways
they use new heuristics and variations of the traditional

ones. Our current implementation uses 10 ‘primitive’
heuristics for selecting the next vertex to be coloured and
four to select a colour for that vertex.

Ten Primitive Vertex-Selection Heuristics
Our colouring strategies are based on the classical and
intuitive idea that the most troublesome vertices should
be coloured first. Some of the commonly used heuristics
based on this idea have been largest saturated degree,
largest degree, and largest weighted degree.

We use variations of these, and we introduce some new
ones that focus more on the number of bad edges and the
number of bad colours. Some of these new heuristics
rely on the information kept in each vertex’s colour-
penalties vector, while others use information tied to the
edges incident on each vertex. The primitive heuristics
on which our vertex selectors are based are:

0. Maximum number of bad-conflict edges to uncol-

oured neighbors – vertices having the most bad-
conflict edges among their incident edges to uncol-
oured neighbors.

1. Maximum number of bad-conflict colours – vertices
having the most bad-conflict colours. For the Toronto
data set, this heuristic reduces to largest saturation
degree.

2. Maximum number of bad-proximity colours – verti-
ces having the most bad-proximity colours.

3. Maximum conflict sum – vertices with the largest sum
of their conflict colour penalties.

4. Maximum proximity sum – vertices with the largest
sum of their proximity colour penalties.

5. Maximum conflict degree to uncoloured neighbors –
vertices whose incident edges to uncoloured
neighbors have the largest sum of the conflict sever-
ities.

6. Maximum number of bad-conflict edges – vertices
having the most bad-conflict edges among their inci-
dent edges. For the Toronto data set, this reduces to
largest degree (since every edge is considered a bad-
conflict edge).

7. Maximum number of bad-intersect edges to uncol-
oured neighbors – vertices having the most bad-
intersect edges among their incident edges to uncol-
oured neighbors.

8. Maximum intersect degree to uncoloured neighbors –
vertices whose incident edges to uncoloured
neighbors have the largest sum of the intersection
sizes.

9. Maximum number of bad colours – a consolidation of
heuristics 1 and 2; a bad colour is one whose conflict
penalty or whose proximity penalty exceeds its re-
spective threshold.

Observe that heuristic 7 may be better at evaluating the
difficulty of a vertex than its sum counterpart, heuristic
8. To illustrate, suppose that the edge weights in Figure 4
represent intersection size and that all neighbors of verti-
ces v1 and v2 are uncoloured. Then heuristic 8 would
select v1, whereas, for any bad-intersect-edge threshold
greater than one, heuristic 7 would select v2, which ap-

pears to be more difficult. A similar observation can be
made for heuristic 2 versus heuristic 4.

Figure 4: Heuristic 8 would select v1 before v2.

Four Primitive Colour-Selection Heuristics
Given a vertex v that has been selected, the primitive
heuristics that we use to choose a colour for v are:

0. Minimum conflict penalty – a colour that has mini-

mum conflict penalty for vertex v.
1. Minimum proximity penalty – a colour that has mini-

mum proximity penalty for vertex v.
2. Least bad for neighbors with respect to conflict pen-

alty – a colour which when assigned to v causes the
fewest good-to-bad conflict penalty switches for the
uncoloured neighbors of v.

3. Least bad for neighbors with respect to proximity
penalty – same as heuristic 2 but with respect to
proximity penalty.

Combining Heuristics
One of the innovations of our model and implementation
is the ability to combine any number of the primitive
heuristics to form compound vertex selectors and com-
pound colour selectors. A compound vertex selector
starts with one of the 10 primitive vertex-selection heu-
ristics listed above. Typically there will be several verti-
ces identified as the most difficult with respect to that
heuristic. This subset of vertices is then narrowed down
by applying a second primitive heuristic, and so on.
Thus, a compound vertex selector consists of a sequence
of primitive heuristics, where all but the first one in the
sequence, is regarded as a tiebreaker for the ones before
it. Once the subset of vertices is pared down by the com-
bination of heuristics, some vertex is chosen from the
subset (typically the first one in the list). Compound col-
our selectors are similarly constructed from the four
primitive colour-selection heuristics listed above.

Switching Selectors in the Middle of a Coloring
Another feature of our model is the ability to switch
from one combination of heuristics to another at various
stages of the colouring. Including this feature was moti-
vated by the general observation that the effectiveness of
a heuristic is likely to change as the colouring pro-
gresses. The primitive vertex-selection heuristic 1 is per-
haps the simplest illustration of this behavior. As we
mentioned earlier, this heuristic is essentially the tradi-
tional saturation degree, which has proven to be among
the most preferred heuristics for classical graph colour-
ing. However, applying heuristic 1 in the very early
stages of a colouring will produce a huge number of ties.

Moreover, early in a colouring, the only vertices with
any bad-conflict colours will tend to be those few that
have neighbors that have already been coloured. Thus,
until several vertices are coloured, the order in which
they are selected will tend toward a simple breadth-first
order and not be an effective predictor of the difficult-to-
colour vertices.

Accordingly, the compound vertex selectors used early
in the colouring process begin with a primitive heuristic
based on the weights of incident edges (e.g., heuristic 0).
Then, after a designated number of vertices have been
selected and colored, we switch to a compound selector
that begins with heuristic 1 when it is more likely to be a
stronger predictor of the difficulty of a vertex.

Vertex Partitioning
A final innovation involves a preprocessing step that
partitions the vertex set and allows us to reduce the
amount of computation without incurring additional con-
flict penalties. The preprocessing is based on the follow-
ing simple observation. If v is a vertex with degree less
than k, and v initially has k colours available, then v can
safely be left until last to colour, since it will always
have at least one non-conflict colour available, inde-
pendent of how its neighbors are coloured and how
heavy the edge-weights are between v and its neighbors.

The preprocessing uses an iterative partitioning algo-
rithm that places all vertices whose colouring can be
done last into the easiest-to-colour subset, say S1. Next,
for each vertex in S1, we calculate a reduced (quasi-)
degree of each of its neighbors and put all vertices whose
reduced degree is less than the number of colours avail-
able into the next-easiest-to-colour subset, S2 . Again, as
long as a vertex in S2 is coloured before any of its
neighbors in S1 , it can safely be left uncoloured until its
other neighbors are coloured. The process continues until
no additional vertices can be removed from
the ‘hardest’ subset and the vertices in that last subset of
the partition must be coloured first using the specified
selection criteria.

As long as the subsets are done in order (last to first),
vertices in all subsets except for the hardest one can be
selected arbitrarily with no possibility of incurring a con-
flict penalty. One simply chooses an available colour,
whose existence is guaranteed by the construction. Thus,
in a fairly sparse graph, computation can be considerably
reduced. Notice that because any penalties that result
from the colouring occur in the process of colouring the
hardest cell, any local improvement algorithms could be
applied only to that set of vertices before moving on to
colour the rest of the graph, again without incurring ad-
ditional penalties at a later stage.

Another potential advantage to this partitioning strategy
is that the vertex-selection process after the hardest sub-
set has been coloured can be based solely on proximity
considerations.

v2

40
40

40

40

40

v1

200

1

1
1

1

Some Preliminary Results
We present the preliminary results of applying our ap-
proach on the Toronto benchmarks, which is available at
ftp://ftp.mie.utoronto.ca/pub/carter/testprob/. This data-
set was first introduced in (Carter, Laporte, and Lee
1996), and since then has been extensively studied using
a wide range of algorithms in the literature. We set the
number of colors equal to the number of time slots in the
Toronto dataset. Due to the fact that two versions of the
datasets have been circulated under the same name in the
last ten years, we have renamed the problems in (Qu et
al. 1996). We used version I of the data in our experi-
ments.

Testing is ongoing and much more needs to be done.
However, we can make some initial observations.

Table 1 presents the best results we have obtained so far.

Although we haven't fully tested it yet, partitioning ap-
pears to improve solution quality most of the time. Ex-
cept for the “sta83 I” problem instance, all results in col-
umn 2 of the table were produced using the partitioning
pre-processing.

We obtained them using the following two groups of
three compound vertex selectors:

 vs1: 0 7 8 1 2 4 | 1 0 2 4 7 8 | 2 4 7 8
 vs2: 0 7 8 9 4 | 9 0 7 8 2 4 | 2 4 7 8

The numbers refer to the primitive vertex-selection heu-
ristics introduced earlier, and the vertical lines separate
the three compound selectors that form each group. The
first compound selector in a group is applied to the hard-
est subset until a designated fraction (the switch fraction)
of the vertices have been selected and coloured. Then the
second compound selector is applied to the rest of the
hardest subset. Finally, the third selector, which consists
of the four proximity-related primitive heuristics, is ap-
plied to the remaining (non-hard) vertices.

We used the following two groups of two compound
color selectors:

 cs0: 0 1 2 3 | 0 1 3
 cs1: 0 2 3 1 | 0 3 1

The first compound selector in each group was applied to
the entire subset of hardest-to-color vertices, and the
second one was applied to the rest of the vertices.

As we described earlier, the thresholds for a bad-
proximity color and a bad-intersect edge were set equal
to the average intersection size times two different con-
stant multipliers. In the table, PC is the multiplier for the
bad-proximity color, and IE is the one for the bad-
intersect edge.

The Settings column gives the values of the switch frac-
tion and the multipliers, PC and IE, and indicates the

vertex and color selectors used to produce the given re-
sult.

Problem Best
results

Settings
 switch | PC | IE | vs | cs

Best
reported

car91 I 5.22 1/23 | 90 | 1 | vs2 | cs0 4.97
car92 I 4.40 1/13 | 126 | 2 | vs2 | cs0 4.32
ear83 I 39.28 1/5.2 | 115.5 | 1,2 | vs2 | cs0 36.16
hec92 I 12.35 1/5 | 16 | 1,2 | vs1 | cs0 10.8
kfu93 I 19.04 1/14 | 134 | 1,2 | vs2 | cs0 14.0
lse91 12.05 1/32 | 192 | 1,2 | vs2 | cs0 10.5
rye92 10.21 1/28 | 133.5 | 2 | vs2 | cs0 7.3
sta83 I 163.05 1/26.5 | 81 | 1 | vs2 | cs1 158.19
tre92 8.62 1/39 | 207 | 20 | vs2 | cs0 8.38

uta92 I 3.62 1/16 | 50 | 1,2 | vs1 | cs0 3.36
ute92 30.60 1/5 | 369 | 1,2 | vs2 | cs1 25.8

yor83 I 42.05 1/17 | 340 | 2 | vs2 | cs0 39.8

Table 1. Best results with the corresponding settings for To-
ronto benchmarks.

Results from Table 1 demonstrate that for vertex selec-
tion, vs2 outperforms vs1; 10 of the 12 best results were
achieved using vs2. Changing threshold values for bad-
ness and changing the switch point between the first and
second compound vertex selector clearly affect the per-
formance of our algorithm.

In Table 1, we also gave the best results reported in the
literature which used different constructive methods.
Although our totals for proximity penalty are, on the
average, 13% worse than the best ones reported, we be-
lieve our approach still holds promise, particularly in
view of the fact that it is, at the moment, a one-pass algo-
rithm without any backtracking or local improvement.
The best results reported in the last column were by dif-
ferent approaches cited in the literature. No single algo-
rithm outperformed others on all problems tested here.

In general, these preliminary results indicate that the
performance of the algorithm is sensitive to the settings
of the switch points and thresholds. Although we have
some initial observations on which settings perform bet-
ter on which Toronto problems, the setting of these pa-
rameters in relation to particular problems is not clear.
More research effort needs to be spent to develop more
intelligent mechanisms to adaptively choose these set-
tings for different problems.

One of our future directions is to use heuristics to choose
how to construct the combinations of heuristics. This
hyper-heuristic approach (see Burke et al. 2003) has
been applied successfully in a range of scheduling and
optimization problems, including timetabling. It is well
known in meta-heuristics research that different heuris-
tics perform better on different problems, or even differ-
ent instances of the same problem. One of the research
challenges is concerned with the automatic design of
heuristics in solving a wider range of problems. Devel-
oping an automatic algorithm that can intelligently oper-
ate on a search space of vertex and colour selectors,

ftp://ftp.mie.ut

switch point selectors and threshold settings will become
one of our primary research efforts in the future.

Features of the Model Not Being Used Yet
There are some features of our model not used in our
current implementation that add to its robustness.

Our model can handle pre-colored vertices, that is, ex-
ams that must be assigned to certain time slots. Further-
more, if certain time slots are forbidden for a particular
exam (for example, the professor is only available on
certain days and times), then this can easily be handled
by setting an initial nonzero penalty for the relevant
color.

As we noted earlier, each color, which represents a time
slot, can have attributes associated with fairly general
information, like start time, duration and/or finish time.
For this paper we used only a single attribute, an integer
value between zero and the maximum number of time
slots in use, since we were testing our implementation on
the Toronto benchmark problems.

Ongoing and Future Work
The robust model presented in this paper can be easily
extended or integrated with other techniques to develop
more advanced and powerful algorithms. We give below
some possible (and ongoing) research directions.

• Study the effects of varying the switch points, the

badness threshold values, and the use of different
heuristic combinations. In the context of hyper-
heuristics, there are a number of different search
spaces to consider:
o The set of all the combinations of one or more of

the primitive vertex selectors and of the color-
selectors.

o For a given group of compound vertex selectors,
the set of all switch points.

o For a given group of compound vertex selectors,
the set of threshold values for badness.

• In the context of case-based reasoning, test heuristic
combinations, thresholds, and switch points with ran-
domly generated problem instances that are in the
Toronto format to see if certain performance patterns
emerge. Previous work on using case-based reason-
ing (see Burke, Petrovic and Qu, 2006) to intelli-
gently select graph colouring heuristics demonstrated
that there are significant, wide-ranging possibilities
for research in knowledge-based heuristic design.

• Adding a backtracking component to the algorithm is
likely to lower the total proximity penalty. For in-
stance, when every colour assignment for a selected
vertex incurs a proximity penalty above some thresh-
old, the algorithm un-colours or re-colours some
other vertex in order to reduce the selected vertex’s
proximity penalty.

• Write an improvement method that takes a given col-
ouring produced by our algorithm and looks for ver-

tices whose colours can be changed to decrease the
total proximity penalty while maintaining feasibility.

• With the current implementation, we have not yet
made full use of the varying conflict severity of
edges, nor have we allowed any trade-off between
conflict penalty and proximity penalty. In timetabling
situations where conflicts must be tolerated, the end-
user might specify that a certain amount of conflict
penalty is equivalent to a certain amount of proximity
penalty, e.g., a proximity violation involving 50 stu-
dents equals a conflict involving one student. This
might lead naturally to a single objective function to
be minimized.

• As we mentioned at the start, the model can be
adapted to a variety of scenarios, in which a number
of parameters would be specified interactively by the
end user through an appropriate interface. Follow-up
work will include building such an interface.

Acknowledgements
The research for this paper was supported by Nottingham
University, UK, the Engineering and Physics Science
Research Council (EPSRC), UK, and an Ashforth Grant
from Rollins College, USA.

References
Broder, S., Final Examination Scheduling, Comm. of the
ACM 7 (1964), 494-498.

Brelaz, D., New methods to color the vertices of a graph.
Comm. of the ACM 22 (1979), 251-256.

Burke, E.K., Hart, E., Kendall, G., Newall, J., Ross, P.
and Schulenburg, S.: Hyperheuristics: an Emerging Di-
rection in Modern Search Technology. In: Glover, F. and
Kochenberger, G.: Handbook of Metaheuristics, 457-
474, 2003.

Burke, E. K., Kingston, J. H., and de Werra, D., Applica-
tions to Timetabling, In: J. L. Gross and J. Yellen (eds.)
The Handbook of Graph Theory, Chapman Hall/CRC
Press, (2004), 445-474.

Burke, E.K., McCollum, B., Meisels, A., Petrovic, S. and
Qu, R.: A Graph-Based Hyper Heuristic for Timetabling
Problems. European Journal of Operational Research,
176 (2007) 177-192.

Burke, E.K., Petrovic, S., and Qu R., Case Based Heuris-
tic Selection for Timetabling Problems. Journal of
Scheduling, 9 (2006) 115-132.

Carter, M. W., A Survey of Practical Applications of
Examination Timetabling Algorithms, Operations Re-
search 34 (1986), 193-201.

Carter, M. W., Laporte, G., and Lee, S., Examination
Timetabling: Algorithmic Strategies and Applications, J.
of the Operations Research Society 47 (1996), 373-383.

de Werra, D., An Introduction to Timetabling, Euro. J.
Oper. Res. 19 (1985), 151-162.

Kiaer, L., and Yellen, J., Weighted Graphs and Univer-
sity Timetabling, Computers and Operations Research
Vol. 19, No. 1 (1992a), 59-67.

Kiaer, L., and Yellen, J., Vertex Coloring for Weighted
Graphs With Application to Timetabling, Technical Re-
port Series – RHIT, MS TR 92-12 (1992b).

Krarup, J., and de Werra, D., Chromatic Optimisation:
Limitations, Objectives, Uses, References, Euro. J. Oper.
Res. 11 (1982), 1-19.

Mehta, N. K., The Application of a Graph Coloring
Method to an Examination Scheduling Problem, Inter-
faces 11 (1981), 57-64.

Neufeld, G. A. and Tartar, J., Graph Coloring Conditions
for the Existence of Solutions to the Timetable Problem,
Comm. of the ACM 17 (1974), 450-453.

Papadimitriou, C. H. and Steiglitz, K., Combinatorial
Optimization: Algorithms and Complexity, Prentice-
Hall, 1982.

Qu, R., Burke, E.K., McCollum, B., Merlot, L. T. G.,
and Lee, S. Y., A survey of Search Methodologies and
Automated Approaches for Examination Timetabling,
Technical Report, NOTT-CS-TR-2006-4 (2006).

Schaerf, A., A Survey of Automated Timetabling, Artifi-
cial Intelligence Review 13 (1999), 87-127.

Schmidt, G., and Strohlein, T., Timetable Construction--
an Annotated Bibliography, The Computer Journal 23
(1980), 307-316.

Welsh, D. J. A., and Powell, M. B., An Upper Bound for
the Chromatic Number of a Graph and its Application to
Timetabling Problems, The Computer Journal 10 (1967),
85-86.

Wood, D. C., A System for Computing University Ex-
amination Timetables, The Computer Journal 11 (1968),
41-47.

