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Abstract

This paper presents our recent work on OMPS, a new
timeline-based software architecture for planning and
scheduling whose features support software development for
space mission planning applications. The architecture is
based on the notions of domain components and is deeply
grounded on constraint-based reasoning. Components are en-
tities whose properties may vary in time and which model one
or more physical subsystems which are relevant to a given
planning context. Decisions can be taken on components, and
constraints among decisions modify the components’ behav-
iors in time.

Introduction
This paper describes OMPS, the Open Multi-component
Planning and Scheduling architecture. OMPS implements
a timeline-driven solving strategy. The choice of using
timelines lies in their suitability for real-world problem
specifications, particularly those of the space mission plan-
ning context. Furthermore, timelines are very close to the
operational approach adopted by human planners in cur-
rent space mission planning. Previous timeline-based ap-
proaches have been described in (Muscettola et al. 1992;
Muscettola 1994; Cesta & Oddi 1996; Jonsson et al. 2000;
Frank & Jónsson 2003; Smith, Frank, & Jonsson 2000). We
are evolving from our previous work on a planner called
OMP (Fratini & Cesta 2005) in which we have proposed a
uniform view of state variables and resources timelines to in-
tegrate Planning & Scheduling (P&S). While the OMP ex-
perience lead to a proof of concept solver for small scale
demonstration, the current development of OMPS is taking
place within the Advanced Planning and Scheduling Initia-
tive (APSI) of the European Space Agency (ESA). This has
lead to a a substantial effort both in re-engineering and in
extending our previous work.

The general goal in OMPS is to provide a development
environment for enabling the design and implementation
of mission planning decision support systems to be used
by ESA staff. OMPS also inherits our previous experi-
ence in developing planning and scheduling support tools
for ESA, namely with the MEXAR, MEXAR2 and RAXEM
systems (Cesta et al. 2007), currently in active duty at ESA’s
control center. Our aim within APSI is to generalize the ap-
proach to mission planning decision support by creating a

software framework that facilitates product development.
The OMPS architecture is not only influenced by

constraint-based reasoning work, but introduces also the no-
tion of domain components as a primitive entity for knowl-
edge modeling. Components are entities whose properties
may vary in time and which model one or more physical sub-
systems which are relevant to a given planning context. De-
cisions can be taken on components, and constraints among
decisions modify the components’ behaviors in time. Com-
ponents provide the means to achieve modular decision sup-
port tool development. A component can be designed to
incorporate into a constraint-based reasoning framework en-
tire decisional modules which have been developed indepen-
dently. The underlying philosophy of OMPS is to provide a
development environment within which different, indepen-
dently developed reasoning modules can be integrated seam-
lessly. It is useful to see a component as an entity having
both static and dynamic aspects. Static descriptions are used
to describe “what a component is”, e.g., the static property
of a light bulb is that it can be “on” or “off”. Dynamic prop-
erties are instead those features which define how the static
properties of the component may vary over time, e.g., a light
bulb can go from “on” to “off” and vice-versa.

It is tempting to associate components to the concept
of state variable a la HSTS (Muscettola et al. 1992;
Muscettola 1994). The reason for not doing so is that a state
variable models an entity with static properties. The way this
entity can change over time is typically specified through
constraints on the possible transitions and durations of the
states (e.g., through a timed automaton). A component as we
define it here represents a more general concept: its behavior
over time can be determined by non-trivial reasoning which
is internal to the component itself. This distinction is impor-
tant, as it provides a way to seamlessly incorporate into the
OMPS reasoning framework objects which are themselves
capable of modifying their behavior according to non-trivial
processes, such as sophisticated reasoning algorithms.

This paper is organized as follows. First, we define the
basic building block, namely the component, providing ex-
amples which show how such an entity can be instantiated
to represent a “classical” state variable, a resource, or even
a more complex object whose temporal behavior can be de-
scribed according to its own “internal dynamics”. Second,
we describe the notion of decision on a component. Again,



we provide examples to show how this concept is instan-
tiated on different common types of components. Third,
we introduce the concepts of timeline and domain theory,
the former providing the driving feature of the solving ap-
proach, the latter describing how components interact, and
how decisions taken on components affects other compo-
nents. Finally, we briefly illustrate the solving strategy im-
plemented in the current OMPS framework and provide an
example. It is worth saying that this paper describes the gen-
eral approach underlying the OMPS architecture. We do not
dwell on the theoretical aspects underlying the architecture,
for which the interested reader is referred to (Fratini 2006).

Components and Behaviors
An intrinsic property of components is that they evolve over
time, and that decisions can be taken on components which
alter their evolution. In OMPS, a component is an entity
that has a set of possible temporal evolutions over an inter-
val of time H. The component’s evolutions over time are
named behaviors. Behaviors are modeled as temporal func-
tions over H, and can be defined over continuous time or as
stepwise constant functions of time.

In general, a component can have many different behav-
iors. Each behavior describes a different way in which the
component’s properties vary in time during the temporal in-
terval of interest. It is in general possible to provide differ-
ent representations for these behaviors, depending on (1) the
chosen temporal model (continuous vs. discrete, or time
point based vs. interval based), (2) the nature of the func-
tion’s range D (finite vs. infinite, continuous vs. discrete,
symbolic vs. numeric) and (3) the type of function which
describes a behavior (general, piecewise linear, piecewise
constant, impulsive and so on).

Not every function over a given temporal interval can be
taken as a valid behavior for a component. The evolution
of components in time is subject to “physical” constraints
(or approximations thereof). We call consistent behaviors
the ones that actually correspond to a possible evolution in
time according to the real-world characteristics of the entity
we are modeling. A component’s consistent behaviors are
defined by means of consistency features. In essence, a con-
sistency feature is a function fC which determines which
behaviors adhere to physical attributes of the real-world en-
tity modeled by the component.

It is in general possible to have many different representa-
tions of a component’s consistency features: either explicit
(e.g., tables or allowed bounds) or implicit (e.g., constraints,
assertions, and so on). For instance, let us model a light bulb
component. A light bulb’s behaviors can take three values:
“on”, “off” and “burned”. Supposing the light bulb cannot
be fixed, a rule could state that any behavior that takes the
value “burned” at a time t is consistent if and only if such a
value is taken also for any time t′ > t. This is a declarative
approach to describing the consistency feature fC . Different
actual representations for this function can be used, depend-
ing also on the representation of the behavior.

A few more concrete examples of components and their
associated consistency features are the following.

State variable. Behaviors: piecewise constant functions
over a finite, discrete set of symbols which represent the
values that can be taken by the state variable. Each be-
havior represents a different sequence of values taken by
the component. Consistency Features: a set of sequence
constraints, i.e., a set of rules that specify which transi-
tions between allowed values are legal, and a set of lower
and upper bounds on the duration of each allowed value.
The model can be for instance represented as a timed au-
tomaton (Alur & Dill 1994) (e.g., the three state variables
in Figure 2).

Note that a distinguishing feature of a state variable is that
not all the transitions between its values are allowed.

Resource (renewable). Behaviors: integer or real func-
tions of time, piecewise, linear, exponential or even more
complex, depending on the model you want to set up.
Each behavior represents a different profile of resource
consumption. Consistency Feature: minimum and max-
imum availability. Each behavior is consistent if it lies
between the minimum and maximum availability during
the entire planning interval.

Note that a distinguishing feature of a resource is that there
are bounds of availability.

In general, the component-based approach allows to ac-
commodate a pre-existing solving component into a larger
planning problem. For instance, it is possible to incorporate
the MEXAR2 application (Cesta et al. 2007) as a compo-
nent, the consistency property of which is not computed di-
rectly on the values taken by the behaviors, but as a function
of those behaviors1.

Component Decisions
Now that we have defined the concept of component as the
fundamental building block of the OMPS architecture, the
next step is to define how component behaviors can be al-
tered (within the physical constraints imposed by consis-
tency features).

We define a component decision as a pair 〈τ, ν〉, where τ
is a given temporal element, and ν is a value. Specifically, τ
can be:

• A time instant (TI) t representing a moment in time.

• A time interval (TIN), a pair of TIs defining an interval
[ts, te) such that te > ts.

The specific form of the value ν depends on the type of com-
ponent on which the decision is defined. For instance, this
can be an amount of resource usage for a resource compo-
nent, or a disjunction of allowed values for a state variable.

Regardless of the type of component, the value of any
component decision can contain parameters. In OMPS, pa-
rameters can be numeric or enumerations, and can be used
to express complex values, such as “transmit(?bitrate)” for a

1Basically, it is computed as the difference between external
uploads and the downloaded amount stated by the values taken by
the behaviors. See (Cesta et al. 2007) for details on the MEXAR2
application.



state variable which models a communications system. Fur-
ther details on value parameters will be given in the follow-
ing section.

Figure 1: The update function computes the results of a decision
on a component’s set of behaviors. The figure exemplifies this ef-
fect given the two decisions: δ′ imposes a value d′ for the behaviors
of the component in the time instant t1; δ′′ imposes that the values
of all behaviors converge to d′′ after time instant t2.

Overall, a component decision is something that happens
somewhere in time and modifies a component’s behaviors
as described by the value ν. In OMPS, the consequences of
these decisions are computed by the components by means
an update function fU . This is a function which determines
how the component’s behaviors change as a consequence of
a given decision. In other words, a decision changes a com-
ponent’s set of behaviors, and fU describes how. A decision
could state for instance “keep all the behaviors that are equal
to d′ in t1” and another decision could state “all the behav-
iors must be equal to d′′ after t2”. Given a decision on a
component with a given set of behaviors, the update func-
tion computes the resulting set (see Figure 1).

In the following, we instantiate the concept of decision for
the two types of components we have introduced so far.

State variable. Temporal element: a TIN. Value: a subset
of values that can be taken by the state variable (the range
of its behaviors) in the given time frame. Update Func-
tion: this kind of decision for a state variable implies the
choice of values in a given time interval. In this case the
subset of values are meant as a disjunction of allowed val-
ues in the given time interval. Applying a decision on a
set of behaviors entails that all behaviors that do not take
any of the chosen values in the given interval are excluded
from the set.

Resource (renewable). Temporal element: a TIN. Value:
quantity of resource allocated in the given interval — a
decision is basically an activity, an amount of allocated
resource in a time interval. Update Function: the resource
profile is modified by taking into account this allocation.
Outside the specified interval the profile is not affected.

Domain Theory
So far, we have defined components in isolation. When com-
ponents are put together to model a real domain they cannot

be considered as reciprocally decoupled, rather we need to
take into account the fact that they influence each other’s
behavior.

In OMPS, it is possible to specify such inter-component
relations in what we call a domain theory. Specifically,
given a set of components, a domain theory is a function
fDT which defines how decisions taken on one component
affect the behaviors of other components. Just as a con-
sistency feature fC describes which behaviors are allowed
with respect to the features of a single component, the do-
main theory specifies which of the behaviors belonging to
all modeled components are concurrently admissible.

In practice, a domain theory is a collection of synchro-
nizations. A synchronization essentially represents a rule
stating that a certain decision on a given component (called
the reference component) can lead to the application of a
new decision on another component (called target compo-
nent). More specifically, a synchronization has the form
〈Ci, V 〉 −→ 〈Cj , V

′, R〉, where: Ci is the reference com-
ponent; V is the value of a component decision on Ci which
makes the synchronization applicable; Cj is the target com-
ponent on which a new decision with value V ′ will be im-
posed; and R is a set of relations which bind the reference
and target decisions.

In order to clarify how such inter-component relationships
are modeled as a domain theory, let us give an example.

Example 1 The planning problem consists in deciding data
transmission commands from a satellite orbiting Mars to
Earth within given visibility windows. The spacecraft’s or-
bits for the entire mission are given, and are not subject to
planning. The fundamental elements which constitute the
system are: the satellite’s Transmission System (TS), which
can be either in “transmit mode” on a given ground sta-
tion or idle; the satellite’s Pointing System (PS); and the
satellite’s battery (BAT). In addition, an external, uncontrol-
lable set of properties is also given, namely Ground Station
Visibility (GSV) and Solar Flux (SF). Station visibility win-
dows are intervals of time in which given ground stations
are available for transmission, while the solar flux repre-
sents the amount of power generated by the solar panels
given the spacecraft’s orbit. since the orbits are given for
the entire mission, the power provided by the solar flux is a
given function of time sf(t). The satellite’s battery accumu-
lates power through the solar flux and is discharged every
time the satellite is slewing or transmitting data. Finally, it
is required that the spacecraft’s battery is never discharged
beyond a given minimum power level (in order to always
maintain a minimum level of charge in case an emergency
manoeuvre needs to be performed).
Instantiation this example into the OMPS framework thus
equates to defining five components:

PS, TS and GSV. The spacecraft’s pointing and transmis-
sion systems, as well as station visibility are modeled with
three state variables. The consistency features of these
state variables (possible states, bounds on their duration,
and allowed transitions) are depicted in Figure 2. The fig-
ure also shows the synchronizations involving the three
components: one states that the value “locked(?st3)” on
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Figure 2: State variables and domain theory for the running ex-
ample.

component PS requires the value “visible(?st6)” on com-
ponent GSV (where ?st3 = ?st6, i.e., the two values must
refer to the same station); another synchronization asserts
that transmitting on a certain station requires the PS com-
ponent to be locked on that station; lastly, both slewing
and transmission entail the use of a constant amount of
power from the battery.

SF. The solar flux is modeled as a reusable resource. Given
that the flight dynamics of the spacecraft are given (i.e.,
the angle of incidence of the Sun’s radiation with the so-
lar panels is given), the profile of the solar flux resource is
given function time sf(t) which is not subject to changes.
Thus, decisions are never imposed on this component
(i.e., the SF component has only one behavior), rather its
behavior is solely responsible for determining power pro-
duction on the battery (through the synchronization be-
tween the SF and BAT components).

BAT. The spacecraft’s battery component is modeled as fol-
lows. Its consistency features are a maximum and mini-
mum power level (max, min), the former representing the
battery’s maximum capacity, the latter representing the
battery’s minimum depth of discharge. The BAT compo-
nent’s behavior is a temporal function bat(t) representing
the battery’s level of charge. Assuming that power con-
sumption decisions resulting from the TS and PS com-
ponents are described by the function cons(t), the update
function calculates the consequences of power production
(sf(t)) and consumption on bat(t) as follows:

bat(t) =





L0 + α
∫ t

0
(sf(t)− cons(t))dt

if L0 + α
∫ t

0
(sf(t)− cons(t))dt ≤ max;

max
otherwise.

where L0 is the initial charge of the battery at the begin-
ning of the planning horizon and α is a constant parameter
which approximates the charging profile.

In summary, we employ components of three types: state
variables to model the PS, TS and GSV elements, a reusable
resource to maintain the solar flux profile, and an ad-hoc
component to model the spacecraft’s battery. Notice that this
latter component is essentially an extension of a reusable
resource: whereas a reusable resource’s update function is
trivially the sum operator (imposing an activity on a reusable
resource entails that the resource’s availability is decreased
by the value of the activity), the BAT’s update function cal-
culates the consequences of activities as per the above inte-
gration over the planning horizon.

Decision Network
The fundamental tool for defining dependencies among
component decisions are relations, of which OMPS provides
three types; temporal, value and parameter relations.

Given two component decisions, a temporal relation is
a constraint among the temporal elements of the two deci-
sions. A temporal relation among two decisions A and B
can prescribe temporal requirements such as those modeled
by Allen’s interval algebra (Allen 1983), e.g., A EQUALS
B, or A OVERLAPS [l,u] B.

A value relation between two component decisions is a
constraint among the values of the two decisions. A value
relation among two decisions A and B can prescribe require-
ments such as A EQUALS B, or A DIFFERENT B (mean-
ing that the value of decision A must be equal to or different
from the value of decision B). Notice that temporal relations
can involve any two component decisions, e.g., an activity (a
resource decision) should occur BEFORE a value choice (a
state variable decision). Conversely, value relations are de-
fined among decisions pertaining to components of the same
type.

Lastly, a parameter relation among component decisions
is a constraint among the values of the parameters of the
two decisions. Such relations can prescribe linear inequal-
ities between parameter variables. For instance, a param-
eter constraint between two decisions with values “avail-
able(?antenna, ?bandwidth)” and “transmit(?bitrate)” can be
used to express the requirement that transmission should not
use more than half the available bandwidth, i.e., ?bitrate
≤ 0.5·?bandwidth.

Component decisions and relations are maintained in a
decision network: given a set of components C, a decision
network is a graph 〈V, E〉, where each vertex δC ∈ V is a
component decisions defined on a component C ∈ C, and
each edge (δm

Ci , δn
Cj ) is a temporal, value or parameter rela-

tion among component decisions δm
Ci and δn

Cj .
We now define the concepts of initial condition and goal.
An initial condition for our problem consists in a set of

value choices for the GSV state variable. These decisions
reflect the visibility windows given by the Earth’s position
with respect to the (given) orbit of the satellite. Notice that
the allowed values of the GSV component are not references
for a synchronization, thus they cannot lead to the insertion
in the plan of new component decisions.

Conversely, a goal consists in a set of component deci-
sions which are intended to trigger the solving strategy to ex-



ploit the domain theory’s synchronizations to synthesize de-
cisions. In our example, this set consists in value choices on
the TS component which assert a desired number of “trans-
mit(?st5)” values. Notice that these value choices can be
allocated flexibly on the timeline.

In general, the characterizing feature of decisions which
define an initial condition is that these decisions do not lead
to application of the domain theory. Conversely, goals di-
rectly or indirectly entail the need to apply synchronizations
in order to reach domain theory compliance. This mecha-
nism is the core of the solving process described in the fol-
lowing section.

Reasoning About Timelines in OMPS
OMPS implements a solving strategy which is based on the
notion of timeline. A timeline is defined for a component as
an ordered sequence of its values. A component’s timeline is
defined by the set of decisions imposed on that component.
Timelines represent the consequences of the component de-
cisions over the time axis, i.e., a timeline for a component
is the collection of all its behaviors as obtained by applying
the fU function given the component decisions taken on it.

The overall solving process implemented in OMPS is
composed of three main steps, namely domain theory ap-
plication, timeline management and solution extraction.
More in detail, timeline management consists in extraction,
scheduling and completion. Indeed, a fundamental principle
of the OMPS approach is its timeline-driven solving process.

Domain Theory Application
Component decisions possess an attribute which changes
during the solving process, namely whether or not a deci-
sion is justified. OMPS’s domain application step consists
in iteratively tagging decisions as justified according to the
following rules (iterated over all decisions δ in the decision
network):
1. If δ unifies with another decision in the network, then

mark δ as justified;
2. If δ’s value unifies with the reference value of a synchro-

nization in the domain theory, then mark δ as justified and
add the target decision(s) and relations to the decision net-
work;

3. If δ does not unify with any reference value in the domain
theory, mark δ as justified.

The previous definition of initial condition and goal can be
understood in terms of domain theory application as follows:
an initial condition is a set of component decisions whose
justification follows trivially from the domain, i.e., it is the
direct result of the application of step 3; a goal, on the other
hand, is a set of component decisions whose justification
leads to the application of synchronizations in the domain
theory (i.e., step 2).

Timeline Management
Timeline management is a collection of procedures which
are necessary to go from a set of decision network to a com-
pletely instantiated set of behaviors. These behaviors ulti-

mately represent a solution to the planning problem. Time-
line management may introduce new component decisions
as well as new relations to the decision network. For this
reason, the OMPS solving process iterates domain theory ap-
plication and timeline management steps until the decision
network is fully justified and a consistent set of behaviors
can be extracted from all component timelines. The specific
procedures which compose timeline management are time-
line extraction, timeline scheduling and timeline completion.
Before showing how these procedures are composed to form
the core of our planning approach, we describe the three
steps in detail.

Timeline Extraction. The outcome of the domain theory
application step is a decision network where all decisions are
justified. Nevertheless, since every component decision’s
temporal element (which can be a TI or TIN) is maintained
in an underlying flexible temporal network, these decisions
are not fixed in time, rather they are free to move between
the temporal bounds obtained as a consequence of the tem-
poral relations imposed on the temporal elements. For this
reason, a timeline must be extracted from the decision net-
work, i.e., the flexible placement of temporal elements im-
plies the need of synthesizing a total ordering among floating
decisions. Specifically, this process depends on the com-
ponent for which extraction is performed. For a resource,
for instance, the timeline is computed by ordering the allo-
cated activities and summing the requirements of those that
overlap. For a state variable, the effects of temporally over-
lapping decision are computed by intersecting the required
values, to obtain (if possible) in each time interval a value
which complies with all the decisions that overlap during
the time interval.

A(x), B(y) B(y), C(z)

time

time0 10 30 40 60

Timeline (EST)

Component decisions

A(x), B(y)

C(z) B(y), C(z)
[30,∞)

dur ∈ [30, 77]

[10,∞)

dur ∈ [10, 23] dur ∈ [20, 45]

?⊥

Figure 3: Three value choices on a state variable, and the resulting
earliest start time (EST) timeline.

In the current implementation, we follow for every type
of component an earliest start-time (EST) approach, i.e., we
have a timeline where all component decisions are assumed
to occur at their earliest start time and last the shortest time
possible. Figure 3 shows the timeline extraction mechanism
for a state variable. The example illustrates two properties
of timelines, namely flaws and inconsistencies.

The first of these features depends on the fact that deci-



sions imposed on the state variable do not result in a com-
plete coverage of the planning horizon with decisions. This
timeline in the figure contains what we call a flaw in the
interval [30, 40]. A flaw is a segment of time in which no
decision has been taken, thus the state variable within this
segment of time is not constrained to take on certain val-
ues, rather it can, in principle, assume any one of its allowed
values. The process of deciding which value(s) are admis-
sible with respect to the state variable’s internal consistency
features (i.e., the component’s fC function) is clearly a non-
trivial process. Indeed, this is precisely the objective of time-
line completion.

In addition to flaws, inconsistencies can arise in the time-
line. The nature of inconsistencies depends on the spe-
cific component we are dealing with. In the case of state
variables, an inconsistency occurs when two or more value
choices whose intersection is empty overlap in time. In the
example above, this occurs in the interval [0, 10]. As op-
posed to flaws, inconsistencies do not require the generation
of additional component decisions, rather they can be re-
solved by posting further temporal constraints. For instance,
the above inconsistency can be resolved by imposing a BE-
FORE constraint which forces (C(z)) to occur after (A(x),
B(y)). In the case of the BAT component mentioned earlier,
an inconsistency occurs when slewing and/or transmission
decisions have lead to a situation in which bat(t) ≤ min
for some t ∈ H. As in the previous example, BAT incon-
sistencies can be resolved by posting temporal constraints
between the over-consuming activities. In general, we call
the process of resolving inconsistencies timeline scheduling.
Timeline Scheduling. The scheduling process deals with
the problem of resolving inconsistencies. Once again, the
process depends on the component. For a resource, activ-
ity overlapping results in an inconsistency if the combined
usage of the overlapping activities requires more than the
resource’s capacity. For a state variable, any overlapping of
decision that requires a conflicting set of decisions must be
avoided. The timeline scheduling process adds constraints to
the decision network to avoid such inconsistencies through
a constraint posting algorithm (Cesta, Oddi, & Smith 2002).
Timeline Completion. This process is required for com-
ponents such as state variables, where it is required that any
interval of time in a solution is covered by a decision (this is
trivially true for reusable resources as we have defined them
in this paper). If it is not possible to force an ordering among
decisions in such a way that entire planning horizon is de-
cided, then a flaw completion routine is triggered. This step
adds new decisions to the plan.

Solution Extraction

Once domain application and timeline management have
successfully converged on a set of timelines with no incon-
sistencies or flaws, the next step is to extract from the time-
lines one or more consistent behaviors. Recall that a behav-
ior is one particular choice of values for each temporal seg-
ment in a component’s timeline. The previous domain the-
ory application and timeline management steps have filtered

out all behaviors that are not, respectively, consistent with
respect to the domain theory and the components’ consis-
tency features. Behavior extraction deals with the problem
of determining a consistent set of fully instantiated behav-
iors for every component. Since every segment of a time-
line potentially represents a disjunction of values, behavior
extraction must choose specific behaviors consistently. Fur-
thermore, not all values in timeline segments are fully in-
stantiated with respect to parameters, thus behavior extrac-
tion must also take into account the consistent instantiation
of values across all components.

Overall Solving Process
In the current OMPS solver the previously illustrated steps
are interleaved as sketched in Figure 4.

Figure 4: The OMPS solving process.

The first step in the planning process is domain theory ap-
plication, whose aim is to support non-justified decisions. If
there is no way to support all the decisions in the plan, the
algorithm fails.

Once every decision has been supported, the solver tries
to extract a timeline for each component. At this point, it can
happen that some timelines are not consistent, meaning that
there exists a time interval over which conflicting decisions
overlap (an inconsistency). In such a situation, a scheduling
step is triggered. If the scheduler cannot solve all conflicts,
the solver backtracks directly to domain theory application,
and searches for a different way of supporting goals.

If the solver manages to extract a conflict-free set of time-
lines, it then triggers a timeline-completion step on any time-
line which is found to have flaws. It may happen that some
timelines cannot be completed. In this case, the solver back-
tracks again to the previous domain theory application step,
and again searches for a way of justifying all decisions. If
the completion step succeeds for all timelines, the solver re-



turns to domain theory application, as timeline completion
has added decisions which are not justified.

Once all timelines are conflict-free and complete, the
solver is ready to extract behaviors. If behavior extraction
fails, the solver attempts to backtrack to timeline comple-
tion. This is because our currently implemented completion
algorithm attempts to complete all incomplete timelines sep-
arately: thus it may easily happen that a completion over
a timeline compromises behavior extraction on a different
timeline (since values are linked with synchronizations). If
this fails, the solver must return to domain theory application
in order to search for a different plan altogether.

Finally, the whole process ends when the solver succeeds
in extracting at least one behavior for each timeline. This
collection of mutually consistent behaviors represents a fully
instantiated solution to the planning problem.

Figure 5: EST timelines for the TS and GSV state variables.

Going back to our running example, the timelines of the
GSV and TS components resulting from the application of
a set of initial condition and goal decisions are shown in
Figure 5 (no initial decision or goal is specified for the PS
component). Notice that the GSV timeline is fully defined,
reflecting the fact that the GSV component is not control-
lable, rather it represents the evolution in time of station vis-
ibility given the fully defined flight dynamics of the satel-
lite. The TS timeline contains five “transmit” value choices,
through which we represent our goal. These value choices
are allocated within flexible time bounds (the figure shows
an EST timeline for the component, in which these deci-
sions are anchored to their earliest start time and duration).
As opposed to the GSV timeline, the TS timeline contains
flaws, and it is precisely these flaws that will be “filled” by
the solving algorithm. In addition, the application during
the solving process of the synchronization between the GSV
and PS components that will determine the construction of
the PS’s timeline (which is completely void of component
decisions in the initial situation), reflecting the fact that it
is necessary to point the satellite towards the visible target
before initiating transmission.
The behaviors extracted from the TS and PS components’
timelines after applying this solving procedure on our ex-
ample are shown in Figure 6.

Related Work
The synthesis of OMPS is aimed at creating an extensible
problem solving architecture to support development of dif-

Figure 6: EST behaviors for the TS and PS state variables.

ferent applications. It is worth making a comparison with
other systems that, for different reasons, share the same goal
with OMPS.

Similarly to OMPS’s timelines, IxTeT (Ghallab & Laru-
elle 1994) follows a domain representation ontology based
on state attributes which assume values in a given domain.
Unlike OMPS in IxTeT system dynamics are represented
with a STRIPS-like logical formalism. Resource reasoning
is used as a conflict analyzer on top of the plan representa-
tion.

Visopt ShopFloor (Bartak 2002) is grounded on the the
idea of working with dynamic scheduling problems where it
is not possible to describe in advance activity sets that have
to be scheduled. That is the same principle behind the inte-
gration of planning into scheduling done in both OMP and
OMPS: to put a domain theory behind a scheduling problem
to gain flexibility in managing tasks and goal driven prob-
lem solving. Dynamic aspects of the problem are described
using resources with complex behaviors. These resources
are close to our state variable, but they are managed using
global constraints instead of a precedence constraint posting
approach as we are currently doing. Moreover, although we
are working on P&S integration we maintain a clear distinc-
tion between planning and scheduling at the level of model-
ing problem features.

HSTS (Muscettola et al. 1992; Muscettola 1994), has
been the first to propose a modeling language with explicit
representation of timelines, using the concept of state vari-
ables. In fact we are extending an HSTS-like state vari-
ables modeling language with a generic timeline oriented
approach: in OMPS timelines represents not only state vari-
able evolutions, but also multi-capacity and consumable re-
sources, and may arrive to include generic components hav-
ing temporal functions as behaviors. A clear difference w.r.t.
HSTS is that in our approach we see different types of time-
lines as separate modules, while HSTS, and its derivatives
RAX-PS and EUROPA, view resources as specialized state
variables. Their view is certainly appealing but leaves the
problem of integrating in a clean way multi-capacity re-
sources open. In fact, while it is immediate to represent bi-
nary resources as state variables, it is quite difficult to model
and handle cumulative resources. We believe that in these
cases the best way is to exploit state of the art scheduling
technologies hence our direction of seeing resources as an
independent type of components.



Conclusions
In this article we have given a preliminary overview of
OMPS a P&S system which follows a component-based,
timeline-driven approach to planning and scheduling inte-
gration. The approach draws from and attempts to general-
ize our previous experience in mission planning tool devel-
opment for ESA (Cesta et al. 2007) and to extend our pre-
vious work on the OMP planning system (Fratini & Cesta
2005).

A distinctive feature of the OMPS architecture is that it
provides a framework for reasoning about any entity which
can be modeled as a component, i.e., as a set of proper-
ties that vary in time. This includes “classical” concepts
such as state variables (as defined in HSTS (Muscettola
et al. 1992; Muscettola 1994) and studied also in sub-
sequent work (Cesta & Oddi 1996; Jonsson et al. 2000;
Frank & Jónsson 2003)), and renewable/consumable re-
sources (Laborie 2003; Cesta, Oddi, & Smith 2002).

Another feature of the component-based architecture is
the possibility to modularize the reasoning algorithms that
are specific to each type of component within the component
itself, e.g., profile-based scheduling routines for resource in-
consistency resolution are implemented within the resource
component itself. The more important consequence of this is
the possibility to include previously implemented/deployed
ad-hoc components within the framework. We have given
an example of this in this paper with the battery component,
which essentially extends a reusable resource. The ability
to encapsulate potentially complex modules within OMPS
components provides a strong added value in developing
real-world planning systems. Specifically, this capability
can be leveraged to include entire decisional modules which
are already present in the overall decision process within
which OMPS is deployed. An example is the MEXAR2 sys-
tem (Cesta et al. 2007)2, whose ability to solve the Mars
Express memory dumping problem can be encapsulated into
an ad-hoc component.

The ability to employ previously developed subsystems
like MEXAR2 benefits decision support system development
in a number of ways. From the engineering point of view, it
facilitates the task of fast prototyping, providing a means
to incorporate complex functionality by employing previ-
ously developed decision support aids. Also, this feature
contributes to increasing the reliability of development pro-
totypes, as existing components (especially in the context
of ESA mission planning) have typically undergone inten-
sive testing before being deployed. Second, the component-
based architecture allows to leverage the efficiency of prob-
lem de-composition. Again, MEXAR2 provides a meaning-
ful example, as it is a highly optimized decision support sys-
tem for solving the very specific problem of memory dump-
ing. Lastly, the ability to re-use components brings with it
the advantage of preserving potentially crucial user interface
paradigms, the re-engineering of which may be a strong de-
terrent for adopting innovative problem solving strategies.

2The MEXAR2 system is a specific decision support aid devel-
oped by the Planning and Scheduling Team which is currently in
daily use within ESA’s Mars Express mission.
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