
Constraint Programming Search Procedure for Earliness/Tardiness Job Shop
Scheduling Problem

Jan Kelbel and Zdeněk Hanzálek
Centre for Applied Cybernetics, Department of Control Engineering

Czech Technical University in Prague, Czech Republic
{kelbelj,hanzalek}@fel.cvut.cz

Abstract
This paper describes a constraint programming ap-
proach to solving a scheduling problem with earliness
and tardiness cost using a problem specific search pro-
cedure. The presented algorithm is tested on a set of
randomly generated instances of the job shop schedul-
ing problem with earliness and tardiness costs. The ex-
periments are executed also for three other algorithms,
and the results are then compared.

Introduction
Scheduling problems with storage costs for early finished
jobs and delay penalties for late jobs are common in indus-
try. This paper describes a constraint programming (CP) ap-
proach (Barták 1999) to solve a scheduling problem with
earliness and tardiness costs, which is for distinct due dates
NP-complete already on one resource (Baker & Scudder
1990).

This paper focuses on the job shop scheduling prob-
lem with earliness and tardiness costs. This problem—
introduced in (Beck & Refalo 2001; 2003)—is solved there
using hybrid approach based on probe backtrack search
(El Sakkout & Wallace 2000) with integration of constraint
programming and linear programing. This hybrid approach
performed significantly better than the generic (naive) CP
and MIP algorithms. With another hybrid approach, com-
bining local search and linear programming (Beck & Refalo
2002), results slightly worse than in (Beck & Refalo 2001)
were obtained. The large neighborhood search (Danna &
Perron 2003) applied to the same earliness tardiness job shop
problem outperformed both hybrid approaches of Beck &
Refalo.

This paper describes a search procedure for scheduling
problems with earliness and tardiness costs which initially
tries to assign to variables those values that lead to a solu-
tion with minimal cost. It is developed by improving of the
search procedure used in (Kelbel & Hanzálek 2006) where
constraint programming is applied to an industrial case study
on a lacquer production scheduling. While in (Kelbel &
Hanzálek 2006) tardy jobs were not allowed, the procedure
described in this paper allows both early and tardy jobs, i.e.
optimal solutions are not discarded.

The proposed search procedure is tested on a set of ran-
domly generated instances of the job shop scheduling prob-

lem with earliness and tardiness costs. It significantly out-
performs simple (default) models introduced in (Beck & Re-
falo 2003), and in average it gives results better than the
Unstructured Large Neighborhood Search (Danna & Perron
2003).

Earliness Tardiness Job Shop Scheduling
Problem

The definition of the earliness tardiness job shop scheduling
problem (ETJSSP) is based on (Beck & Refalo 2003). We
assume a set of jobs J = {J1, . . . , Jn} where job Jj con-
sists of a set of tasks Tj = {Tj,1, . . . , Tj,nj}. Each task has
given processing time pj,i, and required dedicated unary re-
source from a set R = {R1, . . . , Rm}. Starting time Sj,i

of a task, and completion time defined as Cj,i = Sj,i + pj,i,
determine the result of the scheduling problem. For each job
Jj there are precedence relations between tasks Ti and Ti+1

such that Cj,i ≤ Sj,i+1 for all i = 1, . . . , nj − 1, i.e. Tj , the
set of tasks, is ordered.

Concerning earliness and tardiness costs, each job has as-
signed a due date dj , i.e. the time when the last task of the
job should be finished. In general, the due dates are distinct.
The cost function of the job Jj is defined as αj(dj − Cj,nj)
for early job and βj(Cj,nj − dj) for tardy job, where αj and
βj are earliness and tardiness costs of the job per time unit.
Taking into account both alternatives, the cost function of
the job can be expressed as

fj = max(αj(dj − Cj,nj), βj(Cj,nj − dj)). (1)

An optimal solution of the ETJSSP is the one with minimal
possible sum of costs over all jobs

min
∑

Jj∈J
fj .

In this article, a specific ETJSSP will be considered in
order to be consistent with the original problem instances
(Beck & Refalo 2003). All jobs have the sets of tasks with
the same cardinality, which is equal to the number of re-
sources, i.e. nj = m for all j. Each of the nj tasks of the job
is processed on a different resource. Next, the problem has
a work flow structure: the set of resources R is partitioned
into two disjunctive setsR1 andR2 of about the same cardi-
nality, and the tasks of each job must use all resources from

the first set before any resource from the second set, i.e. task
Tj,i for all i = 1, . . . , |R1| requires resource from set R1,
and task Tj,i for all i = |R1| + 1, . . . , nj requires resource
from set R2.

The Model With Search Procedure for
ETJSSP

When solving constraint satisfaction problems (Barták
1999), constraint programming systems employ two
techniques—constraint propagation and search. The search
consists of a search tree construction by a search proce-
dure (called also a labeling procedure) and applying a search
strategy (e.g. depth-first search) to explore the tree. The
search procedure typically makes decisions about variable
selection (i.e. which variable to choose) and about value
assignment (i.e. which value from domain to assign to the
selected variable).

Our approach to solving ETJSSP is based on usual con-
straint programming model with a problem specific search
procedure. The scheduling problem is modeled directly by
using a formulation from the previous section, yet by using
higher abstraction objects for scheduling (e.g. tasks and re-
sources) available in ILOG OPL Studio (ILO 2002). The
model uses scheduling-specific edge-finding propagation al-
gorithm for disjunctive resource constraints (Carlier & Pin-
son 1990). In the used CP system we obtained better perfor-
mance of the computations when the cost function (1) was
expressed as fj ≥ αj(dj − Cj,nj) ∧ fj ≥ βj(Cj,nj − dj).

Most of the constraint programming systems have a de-
fault search procedure that builds the search tree by assign-
ing the values from domains to variables in increasing order.
The idea of our search procedure is based on the fact that
only Cj,nj , the completion time of the last task of the job,
influences the value of the cost function, and that the val-
ues of Cj,nj inducing the lowest values of cost functions fj

should be examined first.
The search procedure, inspired by time-directed labeling

(Van Hentenryck, Perron, & Puget 2000), is directed by the
cost, only once at the beginning of the search (as an initial-
ization of the search tree), however. It is denoted as cost-
directed initialization (CDI) and performs as described in
Algorithm 1: variables representing completion time Cj,nj

are selected in increasing order of the size of their domains,
then the value selection is made according to the lowest
value possible of the cost function. In the second branch
of the search tree, this value is disabled. This is done only
once for each task Tj,nj , then the search continues with the
default search procedure.

Slice Based Search available in (ILO 2002), based on
(Beck & Perron 2000), and similar to Limited Discrepancy
Search (Harvey & Ginsberg 1995) is used as a search strat-
egy to explore the search tree constructed by the CDI pro-
cedure. This is necessary for obtaining good performance,
since using depth first search instead, the algorithm was not
able to find any solution for about 50% of larger size in-
stances of the ETJSSP.

Algorithm 1 – CDI search procedure

1. sort the last tasks of all jobs, Tj,nj
for all j, according to

the nondecreasing domain size of Cj,nj

2. for each task from the sorted list from domain of Cj,nj

select a value vj leading to minimal fj and create two alter-
natives in the search tree:
• Cj,nj

= vj

• Cj,nj
6= vj

3. Continue with the default search procedure for all vari-
ables

Experimental Results
The proposed algorithm CDI was tested against two sim-
ple generic models introduced in (Beck & Refalo 2003),
a mixed integer programming model with disjunctive for-
mulation of the problem (MIP), and a constraint program-
ming model with SetTimes heuristic as a search proce-
dure and depth-first search as a search strategy (ST). The
third model used for performance comparison is the Un-
structured Large Neighborhood Search (uLNS) (Danna &
Perron 2003) by enabling Relaxation Induced Neighbor-
hood Search (RINS) via IloCplex::MIPEmphasis=4
switch in Cplex 9.1 (Danna, Rothberg, & Le Pape 2005;
ILO 2005), while using the same MIP model as in (Beck
& Refalo 2003). The hybrid algorithm from (Beck & Refalo
2003) was not used due to its implementation complicacy.

Benchmarks are randomly generated instances of the
ETJSSP according to Section 6.1 in (Beck & Refalo
2003). The problem instances have a work flow struc-
ture. Processing times of tasks are uniformly drawn from
the interval [1, 99]. Considering the lower bound tlb
of the makespan of the job shop according to (Taillard
1993), and a parameter called looseness factor lf , the due
date of the job was uniformly drawn from the interval
[0.75 · tlb · lf, 1.25 · tlb · lf]. The job shops were generated
for three n×m sizes, 10×10, 15×10, and 20×10, and for
lf ∈ {1.0, 1.3, 1.5}. Twenty instances were generated for
each lf—size combination.

The tests were executed using ILOG OPL Studio 3.6 with
ILOG Solver and Scheduler for the CP models, and ILOG
Cplex 9.1 for the MIP models, all running on a PC with CPU
AMD Opteron 248 at 2.2 GHz with 4 GB of RAM. The time
limit for each test was 600 s, after which the execution of
the test computation was stopped, and the best solution so
far was returned.

Table 1 shows the average ratio of the costs of the best
solutions obtained by the MIP, uLNS, and ST to the best
solutions obtained by CDI, for all types of instances.

In Tables 2 and 3 the ST algorithm will not be included
due to its poor performance. Table 2 shows the number of
instances solved to optimality within 600 s time limit, and
also the number of instances, for which the algorithm proved
the optimality of the solution. The CDI usually needed less
time than the MIP or uLNS to find a solution with optimal
cost, but in many cases it was not proven as an optimum in
given time or memory limit. In Table 2 a solution found by
the CDI model was considered as the optimal solution when

size 10× 10 15× 10 20× 10

lf MIP/CDI uLNS/CDI ST/CDI MIP/CDI uLNS/CDI ST/CDI MIP/CDI uLNS/CDI ST/CDI

1.0 1.8 1.2 2.6 4.7 3.1 6.2 5.3 4.9 6.7
1.3 4.8 1.8 9.2 18.4 5.3 28.3 14.0 14.3 25.8
1.5 3.8 2.1 8.1 7.9 1.9 37.9 5.5 5.7 50.6

Table 1: Average ratio for the best values of cost functions of solutions found within 600 s

the value of the objective function was equal to the one of
the proven optimal solution found by the MIP models or to
a lower bound found by the MIP.

Table 3 is inspired by (Beck & Refalo 2002). For each
problem instance, the lowest cost obtained by any of the
used algorithms is selected. Then, Table 3 contains the num-
ber of instances for which the algorithm found the solution
with the best cost, i.e. equal to the lowest cost, and the num-
ber of solutions with uniquely best cost, i.e. if no other al-
gorithm has found solution with the same or lower cost.

Conclusion and Future Work
We have shown an algorithm called cost-directed initializa-
tion (CDI) designed to solve the earliness-tardiness schedul-
ing problem. The algorithm was compared to other algo-
rithms MIP, uLNS, and ST, on randomly generated earli-
ness tardiness job shop benchmarks. The CDI was able to
find within 600 s a solution that is usually better than the
one found by any of the MIP, uLNS, or ST. With respect to
the best obtained value of the cost function, the CDI algo-
rithm performed better than the other algorithms. However,
the weak point of the CDI is that the optimum, even if it is
found, is usually not proved.

Since the CDI search procedure does not exploit the struc-
ture of the job shop problem, it is possible to apply it on
other earliness/tardiness problems but the results may vary.
Revisiting the lacquer production scheduling problem (Kel-
bel & Hanzálek 2006) with the CDI, the solution of the
case study was further improved from the cost 886,535 to
777,249 due to the allowance of tardy jobs.

The earliness tardiness job shop scheduling problem, as
considered in this paper, does not fully correspond to real
production, since only the last tasks of jobs have direct im-
pact on the cost of the schedule. If there is enough time,
i.e. the looseness factor is big, there can be quite a big delay
between the tasks of the same job, and so a storage would
be needed also during the production, but at no cost (since
no such cost is defined). So the payed storage of the final
product can be replaced by the free storage during the pro-
duction.

There are some approaches to making formulation of this
problem closer to real life. Either by assignment of the due
date, earliness cost, and tardiness cost to all task (Baptiste,
Flamini, & Sourd To appear in 2008), or by introduction of
buffers with limited capacity that are used during the pro-
duction (Brucker et al. 2006).

The approach with limited buffers is also used in the for-
mulation of the lacquer production scheduling (Kelbel &
Hanzálek 2006) where each job needs a limited buffer (mix-
ing vessel) during the whole time of its execution.

In future, we would like to focus on the formulation and
solution of the job shop problems with earliness and tardi-
ness costs and with generic limited buffers.

Acknowledgement
The work described in this paper was supported by the
Czech Ministry of Education under Project 1M0567. Also,
we would like to thank the anonymous reviewers for useful
comments.

References
Baker, K. R., and Scudder, G. D. 1990. Sequencing with
earliness and tardiness penalties: A review. Operations
Research 38(1):22–36.
Baptiste, P.; Flamini, M.; and Sourd, F. To appear in 2008.
Lagrangian bounds for just-in-time job-shop scheduling.
Computers & Operations Research 35(3):906–915.
Barták, R. 1999. Constraint programming – what is be-
hind? In Proc. of CPDC99 Workshop.
Beck, J. C., and Perron, L. 2000. Discrepancy-bounded
depth first search. In Second International Workshop on
Integration of AI and OR Technologies for Combinatorial
Optimization Problems (CP-AI-OR’00).
Beck, J. C., and Refalo, P. 2001. A hybrid approach to
scheduling with earliness and tardiness costs. In Third In-
ternational Workshop on Integration of AI and OR Tech-
niques (CP-AI-OR’01).
Beck, J. C., and Refalo, P. 2002. Combining local
search and linear programming to solve earliness/tardiness
scheduling problems. In Fourth International Workshop on
Integration of AI and OR Techniques (CP-AI-OR’02).
Beck, J. C., and Refalo, P. 2003. A hybrid approach to
scheduling with earliness and tardiness costs. Annals of
Operations Research 118(1–4):49–71.
Brucker, P.; Heitmann, S.; Hurink, J.; and Nieberg, T.
2006. Job-shop scheduling with limited capacity buffers.
OR Spectrum 28(2):151–176.
Carlier, J., and Pinson, E. 1990. A practical use of jack-
son’s pre-emptive schedule for solving the job-shop prob-
lem. Annals of Operations Research 26:269–287.
Danna, E., and Perron, L. 2003. Structured vs. unstruc-
tured large neighborhood search: A case study on job-shop

size 10× 10 15× 10 20× 10

lf MIP uLNS CDI MIP uLNS CDI MIP uLNS CDI

F P F P F P F P F P F P F P F P F P

1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.3 0 0 0 0 0 0 1 1 2 2 5 0 0 0 0 0 0 0
1.5 7 7 9 9 10 4 5 5 9 9 12 3 3 3 4 4 5 3

Table 2: Number of optimal solutions (F)ound and (P)roven within 600 s

size 10× 10 15× 10 20× 10

lf MIP uLNS CDI MIP uLNS CDI MIP uLNS CDI

B U B U B U B U B U B U B U B U B U

1.0 0 0 5 5 15 15 0 0 0 0 20 20 0 0 0 0 20 20
1.3 0 0 2 2 18 18 1 0 2 0 20 18 1 1 1 1 18 18
1.5 8 0 12 0 20 8 5 0 14 3 16 6 3 0 7 4 16 12

Table 3: Number of (B)est and (U)niquely best solutions found within 600 s

scheduling problems with earliness and tardiness costs. In
Ninth International Conference on Principles and Practice
of Constraint Programming, 817–821.
Danna, E.; Rothberg, E.; and Le Pape, C. 2005. Explor-
ing relaxation induced neighborhoods to improve MIP so-
lution. Mathematical Programming 102(1):71–90.
El Sakkout, H., and Wallace, M. 2000. Probe backtrack
search for minimal perturbation in dynamic scheduling.
Constraints 5(4):359–388.
Harvey, W. D., and Ginsberg, M. L. 1995. Limited dis-
crepancy search. In Proceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
95), 607–615.
ILOG S.A. 2002. ILOG OPL Studio 3.6 Language Manual.
ILOG S.A. 2005. ILOG Cplex 9.1 User’s Manual.
Kelbel, J., and Hanzálek, Z. 2006. A case study on ear-
liness/tardiness scheduling by constraint programming. In
Proceedings of the CP 2006 Doctoral Programme, 108–
113.
Taillard, E. 1993. Benchmarks for basic scheduling prob-
lems. European Journal of Operational Research 64:278–
285.
Van Hentenryck, P.; Perron, L.; and Puget, J.-F. 2000.
Search and strategies in OPL. ACM Transactions on Com-
putational Logic 1(2):285–320.

