
Scheduling Monotone Interval Orders
on Typed Task Systems

Benôıt Dupont de Dinechin
STMicroelectronics STS/CEC

12, rue Jules Horowitz - BP 217. F-38019 Grenoble
benoit.dupont-de-dinechin@st.com

Abstract

We present a modification of the Leung-Palem-Pnueli parallel
processors scheduling algorithm and prove its optimality for
scheduling monotone interval orders with release dates and
deadlines on Unit Execution Time (UET) typed task systems
in polynomial time. This problem is motivated by the relax-
ation of Resource-Constrained Project Scheduling Problems
(RCPSP) with precedence delays and UET operations.

Introduction
Scheduling problems ontyped task systems(Jaffe 1980) gen-
eralize the parallel processors scheduling problems by intro-
ducingk types{τr}1≤r≤k and

∑
1≤r≤kmr processors with

mr processors of typeτr. Each operationOi has a type
τi ∈ {τr}1≤r≤k and may only execute on processors of type
τi. We denote typed task systems withΣkP in theα-field of
theα|β|γ scheduling problem denotation (Brucker 2004).

Scheduling typed task systems is motivated by two main
applications: resource-constrained scheduling in high-level
synthesis of digital circuits (Chaudhuri, Walker, & Mitchell
1994), and instruction scheduling in compilers for VLIW
processors (Dupont de Dinechin 2004). In high-level syn-
thesis, execution resources correspond to the synthesized
functional units, which are partitioned by classes such as
adder or multiplier with a particular bit-width. Operations
are typed by these classes and may have non-unit execution
time. In compiler VLIW instruction scheduling, operations
usually have unit execution time (UET), however on most
VLIW processors an operation requires several resources
for execution, like in the Resource-Constrained Project
Scheduling Problems (RCPSP) (Bruckeret al. 1999). In
both cases, the pipelined implementation of functional units
yield scheduling problems with precedence delays, that is,
the time required to produce a value is larger than the mini-
mum delay between two activations of a functional unit.

We are aware of the following work in the area of typed
task systems. Jaffe (Jaffe 1980) introduces them to for-
malize instruction scheduling problems that arise in high-
performance computers and data-flow machines, and stud-
ies the performance bounds of list scheduling. Jansen
(Jansen 1994) gives a polynomial time algorithm for prob-
lem ΣkP |intOrder; pi = 1|Cmax, that is, scheduling

interval-ordered typed UET operations. Verriet (Verriet
1998) solves problemΣkP |intOrder; cji = 1; pi = 1|Cmax
in polynomial time, that is, interval-ordered typed UET op-
erations subject to unit communication delays.

Interval ordersare a class of precedence graphs where
UET scheduling on parallel processors is polynomial-time,
while non-UET scheduling on 2 processors is strongly NP-
hard (Papadimitriou & Yannakakis 1979). In particular,
Papadimitriou and Yannakakis solveP |intOrder; pi =
1|Cmax in polynomial-time. Scheduling interval orders
with communication delays on parallel processors is also
polynomial-time, as the algorithm by Ali and El-Rewini
(Ali & El-Rewini 1992) solvesP |intOrder; cji = 1; pi =
1|Cmax. Verriet (Verriet 1996) further proposes a dead-
line modification algorithm that solvesP |intOrder; cji =
1; ri; pi = 1|Lmax in polynomial-time.

Scheduling interval orders with precedence delays on par-
allel processors was first considered by Palem and Simons
(Palem & Simons 1993), who introduced monotone inter-
val orders and solveP |intOrder(mono lji); pi = 1|Lmax
in polynomial-time. This result is generalized by Leung-
Palem-Pnueli algorithm (Leung, Palem, & Pnueli 2001).

In the present work, we modify the algorithm of Leung,
Palem and Pnueli (Leung, Palem, & Pnueli 2001) in order
to solveΣkP |intOrder(mono lji); ri; di; pi = 1|− feasi-
bility problems in polynomial time. The resulting algorithm
thus operates on typed tasks, allows precedence delays, and
handles release dates and deadlines. Thanks to these proper-
ties, it provides useful relaxations of the RCPSP with UET
operations and precedence delays.

The Leung-Palem-Pnueli algorithm (Leung, Palem, &
Pnueli 2001) is a parallel processors scheduling algorithm
based on deadline modification and the use of lower mod-
ified deadline first priority in a Graham list scheduling al-
gorithm. The Leung-Palem-Pnueli algorithm (LPPA) solves
the following feasibility problems in polynomial time:

• 1|prec(lji ∈ {0, 1}); ri; di; pi = 1|−

• P2|prec(lji ∈ {−1, 0}); ri; di; pi = 1|−

• P |intOrder(mono lji); ri; di; pi = 1|−

• P |inTree(lji = l); di; pi = 1|−

Here, thelji are precedence delays withpi + lji ≥ 0.

Presentation is as follows. In the first section, we extend
theα|β|γ scheduling problem denotation and we discuss the
Graham list scheduling algorithm (GLSA) for typed task
systems. In the second section, we present our modified
Leung-Palem-Pnueli algorithm (LPPA) and prove its opti-
mality for scheduling monotone interval orders with release
dates and deadlines on UET typed task systems in polyno-
mial time. In the third section, we discuss the application of
this algorithm to VLIW instruction scheduling.

Deterministic Scheduling Background
Machine Scheduling Problem Denotation
In parallel processors scheduling problems, an operation set
{Oi}1≤i≤n is processed onm identical processors. Each op-
erationOi requires the exclusive use of one processor forpi
time units, starting at itsschedule dateσi. Scheduling prob-
lems may involverelease datesri anddue datesdi. This
constrains the schedule dateσi of operationOi asσi ≥ ri
and there is a penalty wheneverCi > di, with Ci thecom-

pletion dateof Oi defined asCi
def= σi + pi. For problems

whereCi ≤ di is mandatory, thedi are calleddeadlines.
A precedenceOi ≺ Oj between two operations con-

strains the schedule withσi+pi ≤ σj . In case ofprecedence
delay lji betweenOi andOj , the scheduling constraint be-
comesσi + pi + lji ≤ σj . Theprecedence graphhas one arc
(Oi, Oj) for each precedenceOi ≺ Oj . Given an operation
Oi, we denotesuccOi the set of direct successors ofOi and
predOi the set of direct predecessors ofOi in the precedence
graph. The setindepOi contains the operations that are not
connected toOi in the undirected precedence graph.

Given a scheduling problem over operation set
{Oi}1≤i≤n with release dates{ri}1≤i≤n and dead-
lines {di}1≤i≤n, the precedence-consistent re-
lease dates {r+

i }1≤i≤n are recursively defined as

r+
i

def= max(ri,maxOj∈predOi(r
+
j + pj + lij)). Likewise, the

precedence-consistent deadlines{d+
i }1≤i≤n are recursively

defined asd+
i

def= min(di,minOj∈succOi(d
+
j − pj − l

j
i)).

Machine scheduling problems are denoted by a triplet
α|β|γ (Brucker 2004), whereα describes the processing en-
vironment,β specifies the operation properties andγ defines
the optimality criterion. Values ofα, β, γ include:

α : 1 for a single processor,P for parallel processors,Pm
for the givenm parallel processors. We denote typed task
systems withk types byΣkP .

β : ri for release dates,di for deadlines (ifγ = −) or due
dates,pi = 1 for Unit Execution Time (UET) operations.

γ : − for the feasibility,Cmax or Lmax for the minimiza-
tion of these objectives.

Themakespanis Cmax
def= maxi Ci and themaximum late-

nessis Lmax
def= maxi Li : Li

def= Ci − di. The meaning of
the additionalβ fields is:

prec(lji) Precedence delayslji , assuminglji ≥ −pi.

�������� ��������-

-

��
��
�1

A

B

C

D

A

B

C

D

Figure 1: Set of intervals and the corresponding interval or-
der graph.

prec(lji = l) All the precedence delayslji equall.

inTree The precedence graph is an in-tree.

intOrder(mono lji) The precedence graph weighted by

w(Oi, Oj)
def= pi + lji is a monotone interval order.

An interval orderis the transitive orientation of the com-
plement of an interval graph (Papadimitriou & Yannakakis
1979) (see Figure 1). The important property of interval
orders is that given any two operationsOi andOj , either
predOi ⊆ predOj or predOj ⊆ predOi (similarly for suc-
cessors). This is easily understood by referring to the un-
derlying intervals that define the interval order. Adding or
removing operations without predecessors and successors to
an interval order is still an interval order. Also, interval or-
ders are transitively closed, that is, any transitive successor
(predecessor) must be a direct successor (predecessor).

A monotone interval ordergraph (Palem & Simons 1993)
is an interval order whose precedence graph(V,E) is
weighted with a non-negative functionw on the arcs such
that, given any(Oi, Oj), (Oi, Ok) ∈ E : predOj ⊆
predOk ⇒ w(Oi, Oj) ≤ w(Oi, Ok). Monotone interval
orders are motivated by the application of interval orders
properties to scheduling problems with precedence delays.

Indeed, in scheduling problems with interval orders, the
precedence arc weight considered between any two opera-
tionsOi andOj is w(Oi, Oj)

def= pi with pi the processing
time of Oi. In case of monotone interval orders, the arc
weights arew(Oi, Oj)

def= pi + lji with lji the precedence
delay betweenOi andOj . An interval order graph where
all arcs leaving any given node have the same weight is
obviously monotone, so interval order precedences without
precedence delays imply monotone interval order graphs.

Graham List Scheduling Algorithm Extension
The Graham list scheduling algorithm (GLSA) is a classic
scheduling algorithm where the time steps are considered in
non-decreasing order. For each time step, if a processor is
idle, the highest priority operation available at this time is
scheduled An operation is available if the current time step
is not earlier than the release date and all direct predecessors
have completed their execution early enough to satisfy the
precedence delays. On typed task systems, the operation
type must match the type of an idle processor.

The GLSA is optimal forP |ri; di; pi = 1|− and
P |ri; pi = 1|Lmax when using the earliest deadlines (or due

dates)di first as priority (Brucker 2004) (Jackson’s rule).
This property directly extends to typed task systems:

Theorem 1 The GLSA with Jackson’s rule optimally solves
ΣkP |ri; di; pi = 1|− andΣkP |ri; pi = 1|Lmax.

Proof: In typed task systems, operations are partitioned by
processor type. In problemΣkP |ri; di; pi = 1|− (respec-
tively ΣkP |ri; pi = 1|Lmax), there are no precedences be-
tween operations. Therefore, optimal scheduling can be
achieved by considering operations and processors of each
type independently. For each type, the problem reduces to
P |ri; di; pi = 1|− (respectivelyP |ri; pi = 1|Lmax), which
is optimally solved with Jackson’s rule.

In this work, we allow precedences delayslji = −pi ⇒
σi ≤ σj , that is, precedences with zero start-start time lags.
Thus we extend the GLSA as follows: in cases of available
operations with equal priorities, schedule first the earliest
operations in the precedence topological sort order.

The Modified Leung-Palem-Pnueli Algorithm
Algorithm Description
The Leung-Palem-Pnueli algorithm (LPPA) is similar to
classic UET scheduling algorithms on parallel processors
like Garey & Johnson (Garey & Johnson 1976), in that it
uses a lower modified deadlines first priority in a GLSA.
Given a scheduling problem with deadlines{di}1≤i≤n,
modified deadlines{d′i}1≤i≤n are such that∀i ∈ [1, n] :
σi + pi ≤ d′i ≤ di for any schedule{σi}1≤i≤n. The distin-
guishing feature of the LPPA is the computation of its mod-
ified deadlines, which we callfixpoint modified deadlines1.

Precisely, the LPPA defines abackward scheduling prob-
lem denotedB(Oi, Si) for each operationOi. An optimal
backward schedulingprocedure computes the latest possi-
ble schedule dateσ′i of operationOi in eachB(Oi, Si). Op-
timal backward scheduling ofB(Oi, Si) is used to update
the current modified deadline ofOi asd′i ← σ′i + pi. This
process of deadline modification is iterated over all prob-
lemsB(Oi, Si) until a fixpoint of the modified deadlines
{d∗i }1≤i≤n is reached (Leung, Palem, & Pnueli 2001).

We modify the Leung-Palem-Pnueli algorithm (LPPA) to
compute the fixpoint modified deadlines{d∗i }1≤i≤n by exe-
cuting the following procedure:

(i) Compute the precedence-consistent release dates
{r+
i }1≤i≤n, the precedence-consistent deadlines
{d+
i }1≤i≤n and initialize the modified deadlines

{d′i}1≤i≤n with the precedence-consistent deadlines.

(ii) For each operationOi, define the backward scheduling
problemB(Oi, Si) with Si

def= succOi ∪ indepOi.

(1) Let Oi be the current operation in some iteration over
{Oi}1≤i≤n.

(2) Compute the optimal backward schedule dateσ′i of Oi by
optimal backward scheduling ofB(Oi, Si).
1Leung, Palem and Pnueli call them “consistent and stable mod-

ified deadlines”.

(3) Update the modified deadline ofOi asd′i ← σ′i + 1.

(4) Update the modified deadlines of eachOk ∈ predOi with
d′k ← min(d′k, d

′
i − 1− lik).

(5) Go to (1) until a fixpoint of the modified deadlines
{d′i}1≤i≤n is reached.

In our modified LPPA, we define thebackward schedul-
ing problemB(Oi, Si) as the search for a set of dates
{σ′j}Oj∈{Oi}∪Si that satisfy:

(a) ∀Oj ∈ Si : Oi ≺ Oj ⇒ σ′i + 1 + lji ≤ σ′j
(b) ∀t ∈ lN,∀r ∈ [1, k] : |{Oj ∈ {Oi} ∪ Si ∧ τj = r ∧ σ′j =

t}| ≤ mr

(c) ∀Oj ∈ {Oi} ∪ Si : r+
j ≤ σ′j < d′j

Constraints (a) state that only the precedences betweenOi
and its direct successors are kept in the backward scheduling
problemB(Oi, Si). Constraints (b) are the resources limi-
tations of typed task systems with UET operations. Con-
straints (c) ensure that operations are backward scheduled
within the precedence-consistent release dates and the cur-
rent modified deadlines. Anoptimal backward schedulefor
Oi maximizesσ′i in B(Oi, Si).

Let{r+
j }1≤i≤n be the precedence-consistent release dates

and{d′j}1≤i≤n be the current modified deadlines. The sim-
plest way to find the optimum backward schedule date ofOi
in B(Oi, Si) is to search for the latests ∈ [r+

i , d
′
i − 1] such

that the constrained backward scheduling problem(σ′i =
s) ∧ B(Oi, Si) is feasible. Even though each such con-
strained problem can be solved in polynomial time by reduc-
ing to someΣkP |rj ; dj ; pj = 1|− over{Oi} ∪ Si, optimal
backward scheduling ofB(Oi, Si) would require pseudo-
polynomial time, as there are up tod′i−r

+
i constrained back-

ward scheduling problems to solve. Please note that a sim-
ple dichotomy search for the latest feasibles ∈ [r+

i , d
′
i − 1]

does not work, as(σ′i = s) ∧ B(Oi, Si) is infeasible does
not imply that(σ′i = s+ 1) ∧B(Oi, Si) is infeasible.

In order to avoid the pseudo-polynomial time complexity
of optimal backward scheduling, we rely instead on a pro-
cedure with two successive dichotomy searches for feasible
relaxations of constrained backward scheduling problems,
like in the original LPPA. Describing this procedure requires
further definitions. Assumelji = −∞ if Oi 6≺ Oj . Given a
constrained backward scheduling problem(σ′i ∈ [p, q]) ∧
B(Oi, Si), we define a relaxationΣkP |r̂j ; d̂j ; pj = 1|−
over the operation set{Oi} ∪ Si such that:

r̂i
def= p

d̂i
def= q + 1

Oj ∈ Si =⇒ r̂j
def= max(r+

j , q + 1 + lji)
Oj ∈ Si =⇒ d̂j

def= d′j

In other words, the precedences fromOi to each direct
successorOj ∈ Si are converted into release dates assuming
the release date and deadline ofOi respectively equalp and
q + 1. We call type 2 relaxationthe resulting scheduling
problemΣkP |r̂j ; d̂j ; pj = 1|− and type 1 relaxationthis

6 66

-

-
����

-

-

-�� ���� ���� ���� ��
-

�
�
�
�

@@ ��
p p+ 1 q + 1

OjOi

Ol

Ok

typeτl
typeτi

Σ

Figure 2: Optimal backward scheduling proof.

problem when disregarding the resource constraints ofOi.
Both type 1 and type 2 relaxations are optimally solved by
the GLSA with the earliest̂dj first priority (Theorem 1). If
any relaxation is infeasible, so is the constrained backward
scheduling problem(σ′i ∈ [p, q]) ∧B(Oi, Si).

Observe that the type 1 relaxation is increasingly con-
strained asq increases, independently of the value ofp. And
for any fixedq, the type 2 relaxation is increasingly con-
strained asp increases. Therefore, it is correct to explore
the feasibility of any of these relaxations using dichotomy
search. So the optimal backward scheduling procedure is
based on two dichotomy searches as follows.

The first dichotomy search initializesp = r+
i and q =

d′i − 1. Then it proceeds to find the latestq such that the
type 1 relaxation is feasible. The second dichotomy search
keepsq constant and finds the latestp such that the type 2
relaxation is feasible. Whenever both searches succeed, the
optimum backward schedule date ofOi is taken asσ′i = p so
the new modified deadline isd′i = p + 1. If any dichotomy
search fails,B(Oi, Si) is assumed infeasible.

Algorithm Proofs
Theorem 2 The optimal backward scheduling procedure
computes the latest schedule dateσ′i ofOi among the sched-
ules that satisfy conditions (a), (b), (c) ofB(Oi, Si).

Proof: The two dichotomy searches are equivalent to linear
searches, respectively by increasingq and by increasingp.
If no feasible relaxationΣkP |r̂j ; d̂j ; pj = 1|− exist in any
of these linear searches, the backward scheduling problem
B(Oi, Si) is obviously infeasible.

If a feasible relaxation exists in the second linear search,
this search yields a backward schedule withσ′i = p. Indeed,
let {σ̂j}Oj∈{Oi}∪Si be schedule dates for the type 2 relax-
ation of(σ′i ∈ [p, q]) ∧ B(Oi, Si). We havêσi = p because
the type 2 relaxation of problem(σ′i ∈ [p+1, q])∧B(Oi, Si)
is infeasible and the only difference between these two re-
laxations is the release date ofOi. Moreover, the dates
{σ̂j}Oj∈{Oi}∪Si satisfy (a), (b), (c). Condition (a) is sat-
isfied from the definition of̂rj and becausêσi = p ≤ q.
Conditions (b) and (c) are satisfied by the GLSA.

Let us prove that the backward schedule found by the sec-
ond search is in fact optimal, that is, there is nos ∈ [p+1, q]
such that problem(σ′i ∈ [s, s]) ∧ B(Oi, Si) is feasible.
This is obvious ifp = q, so consider cases wherep < q.
The type 2 relaxation of problem(σ′i ∈ [p, q]) ∧ B(Oi, Si)
is feasible while the type 2 relaxation of problem(σ′i ∈

tu + 1 d∗i

� �� ��
� ���
� ���
� ��

�� �� -
�����)
�
�
�
��=

6 66

�� ��
�

6
tu σi

Ok

Oj

Oj′

Oj′′ Oi

Σ′

Σ

Figure 3: Modified Leung-Palem-Pnueli algorithm proof.

[p + 1, q]) ∧ B(Oi, Si) is infeasible imply there is a setΣ
of operations that fill all slots of typeτi in range[p + 1, q]
and prevents the GLSA from scheduling ofOi in that range
(Figure 2). SoOj ∈ Σ⇒ d̂j ≤ d̂i = q + 1 ∧ r̂j ≥ p+ 1.

Now assume exists somes ∈ [p+ 1, q] such that problem
(σ′i ∈ [s, s])∧B(Oi, Si) is feasible. This imply that problem
(σ′i ∈ [p + 1, s]) ∧ B(Oi, Si) is also feasible. The type 2
relaxation of(σ′i ∈ [p + 1, s]) ∧ B(Oi, Si) differs from the
type 2 relaxation of(σ′i ∈ [p+1, q])∧B(Oi, Si) only by the
decrease of the release datesr̂j of some operationsOj ∈ Si,
yet r̂j ≥ p + 1 as r̂j

def= max(r+
j , s + 1 + lji) ≥ p + 1 +

1 + lji . As all the operations ofΣ must still be scheduled
in range[p + 1, q] in the type 2 relaxation of(σ′i ∈ [p +
1, s]) ∧ B(Oi, Si), there is still no scheduling slot forOi in
that range. So problem(σ′i ∈ [p + 1, s]) ∧ B(Oi, Si) and
problem(σ′i ∈ [s, s]) ∧B(Oi, Si) are infeasible.

Theorem 3 The modified algorithm of Leung,
Palem and Pnueli solves any feasible problem
ΣkP |intOrder(mono lji); ri; di; pi = 1|−.

Proof: The correctness of this modified Leung-Palem-
Pnueli algorithm (LPPA), like the correctness of the origi-
nal LPPA, is based on two arguments. The first argument
is that the fixpoint modified deadlines are indeed deadlines
of the original problem. This is apparent, as each backward
scheduling problemB(Oi, Si) is a relaxation of the orig-
inal scheduling problem and optimal backward scheduling
computes the latest schedule date ofOi withinB(Oi, Si) by
Theorem 2. Let us callcore the GLSA that uses the earli-
est fixpoint modified deadlines first as priorities. The second
correctness argument is a proof that the core GLSA does not
miss any fixpoint modified deadlines.

Precisely, assume that someOi is the earliest operation
that misses its fixpoint modified deadlined∗i in the core
GLSA schedule. In a similar way to (Leung, Palem, &
Pnueli 2001), we will prove that an earlier operationOk nec-
essarily misses its fixpoint modified deadlined∗k in the same
schedule. This contradiction ensures that the core GLSA
schedule does not miss any fixpoint modified deadline. The
details of this proof rely on a few definitions and observa-
tions illustrated in Figure 3.

Let r = τi be the type of operationOi. An operationOj
is saidsaturatedif τj = r andd∗j ≤ d∗i . Definetu < d∗i
as the latest time step that is not filled with saturated opera-
tions on the processors of typer. If tu < 0, the problem is
infeasible, as there are not enough slots to schedule opera-

tions of typer onmr processors within the deadlines. Else,
some scheduling slots of typer at tu are either empty or
filled with operationsOu : d∗u > d∗i of lower priority than
saturated operations in the core GLSA. Define the operation
setΣ def= {Oj saturated: tu < σj < d∗i } ∪ {Oi}. Define the

operation subsetΣ′ def= {Oj ∈ Σ : r+
j ≤ tu}.

Consider problemP k|intOrder(mono lji); ri; di; pi =
1|−. In an interval order, given two operationsOi andOj ,
eitherpredOi ⊆ predOj or predOj ⊆ predOi. SelectOj′
amongOj ∈ Σ′ such that|predOj | is minimal. AsOj′ ∈ Σ′
is not scheduled at datetu or earlier by the core GLSA, there
must be a constraining operationOk that is a direct prede-
cessor of operationOj′ with σk + 1 + lj

′

k = σj′ > tu ⇒
σk + 1 > tu − lj

′

k . Note thatOk can have any type. Opera-
tions inpredOj′ are the direct predecessors of all operations
Oj ∈ Σ′ and no predecessor ofOj′ is in Σ′. ThusOk 6∈ Σ′
andOk is a direct predecessor of all operationsOj ∈ Σ′.

We callstable backward scheduleany optimal backward
schedule ofB(Ok, Sk) where the modified deadlines equal

the fixpoint modified deadlines. SinceSk
def= succOk ∪

indepOk, we haveΣ ⊆ Sk. By the fixpoint property, we
may assume that a stable backward schedule ofB(Ok, Sk)
exists. Such stable backward schedule must slot themr(d∗i−
1−tu)+1 operations ofΣ befored∗i onmr processors, so at
least one operationOj ∈ Σ′ is scheduled at datetu or earlier
by any stable backward schedule ofB(Ok, Sk).

Theorem 2 ensures that optimal backward scheduling of
B(Ok, Sk) satisfies the precedence delays betweenOk and
Oj . Thusσ′k + 1 + ljk ≤ tu sod∗k − 1 + 1 + ljk ≤ tu. By
the monotone interval order property,predOj′ ⊆ predOj ⇒
w(Ok, Oj′) ≤ w(Ok, Oj)⇒ 1+lj

′

k ≤ 1+ljk ⇒ lj
′

k ≤ l
j
k for

Oj′ selected above andOj ∈ Σ′, sod∗k ≤ tu− l
j′

k . However

in the core GLSA scheduleσk + 1 > tu − lj
′

k , soOk misses
its fixpoint modified deadlined∗k.

The overall time complexity of this modified LPPA is
the sum of the complexity of initialization steps (i-ii), of
the number of iterations times the complexity of steps (1-5)
and of the complexity of the core GLSA. Leung, Palem and
Pnueli (Leung, Palem, & Pnueli 2001) observe that the num-
ber of iterations to reach a fixpoint is upper bounded byn2,
a fact that still holds for our modified algorithm. As the time
complexity of the GLSA on typed task systems withk types
is within a factork of the time complexity of the GLSA on
parallel processors, our modified LPPA has polynomial time
complexity.

In their work, Leung, Palem and Pnueli (Leung, Palem,
& Pnueli 2001) describe further techniques that enable to
lower the overall complexity of their algorithm. The first
is a proof that applying optimal backward scheduling in re-
verse topological order of the operations directly yields the
fixpoint modified deadlines. The second is a fast implemen-
tation of list scheduling for problemsP |ri; di; pi = 1|−.
These techniques apply to typed task systems as well.

Table 1: ST200 VLIW processor resource availabilities and
operation class resource requirements

Resource Issue Memory Control Align
Availability 4 1 1 2

ALU 1 0 0 0
ALUX 2 0 0 1
MUL 1 0 0 1

MULX 2 0 0 1
MEM 1 1 0 0

MEMX 2 1 0 1
CTL 1 0 1 1

Application to VLIW Instruction Scheduling
ST200 VLIW Instruction Scheduling Problem
We illustrate VLIW instruction scheduling problems on the
ST200 VLIW processor manufactured by STMicroelectron-
ics. The ST200 VLIW processor executes up to 4 oper-
ations per time unit with a maximum of one control op-
eration (goto, jump, call, return), one memory operation
(load, store, prefetch), and two multiply operations per time
unit. All arithmetic operations operate on integer values with
operands belonging either to the General Register file (64×
32-bit) or to the Branch Register file (8× 1-bit). In order
to eliminate some conditional branches, the ST200 VLIW
architecture also provides conditional selection instructions.
The processing time of any operation is a single time unit
(pi = 1), while the precedence delayslji between operations
range from -1 to 2 time units.

The resource availabilities of the ST200 VLIW proces-
sor and the resource requirements of each operation are dis-
played in Table 1. The resources are:Issue for the in-
struction issue width;Memory for the memory access unit;
Control for the control unit. An artificial resourceAlign is
also introduced to satisfy some encoding constraints. Oper-
ations with identical resource requirements are factored into
classes: ALU, MUL, MEM and CTL correspond respec-
tively to the arithmetic, multiply, memory and control op-
erations. The classes ALUX, MULX and MEMX represent
the operations that require an extended immediate operand.
Operations namedLDH, MULL, ADD, CMPNE, BRFbelong
respectively to classes MEM, MUL, ALU, ALU, CTL.

A sample C program and the corresponding ST200 VLIW
processor operations for the inner loop are given in Fig-
ure 4. The operations are numbered in their appearance
order. In Figure 5, we display the precedence graph be-
tween operations of the inner loop of Figure 4 after remov-
ing the redundant transitive arcs. As usual in RCPSP, the
precedence graph is augmented with dummy nodesO0 and
On+1 : n = 7 with null resource requirements. Also, the
precedence arcs are labeled with the corresponding start-
start time-lag, that is, the values ofpi + lij . The critical path
of this graph isO0 → O1 → O2 → O3 → O7 → O8 so the
makespan is lower bounded by 7.

This example illustrates that null start-start time-lags, or
precedence delayslij = −pi, occur frequently in actual
VLIW instruction scheduling problems. Moreover, the start-

int
prod(int n, short a[], short b) {

int s=0, i;
for (i=0;i<n;i++) {

s += a[i]*b;
}
return s;

}

L?__0_8:
LDH_1 g131 = 0, G127
MULL_2 g132 = G126, g131
ADD_3 G129 = G129, g132
ADD_4 G128 = G128, 1
ADD_5 G127 = G127, 2
CMPNE_6 b135 = G118, G128
BRF_7 b135, L?__0_8

Figure 4: A sample C program and the corresponding ST200 operations

1

0

0

0

0

3
3

0

0

0

1

4 6

5

2 3

7 8
1

Figure 5: Precedence graph of the inner loop instruction scheduling problem

start time-lags are non-negative, so classic RCPSP sched-
ule generation schemes (Kolisch & Hartmann 1999) (list
scheduling) are guaranteed to build feasible (sub-optimal)
solutions for these VLIW instruction scheduling problems.
In this setting, the main value of VLIW instruction schedul-
ing problem relaxations such as typed task systems is to
strengthen the bounds on operation schedule dates includ-
ing the makespan. Improving bounds benefits scheduling
techniques such as solving time-indexed integer linear pro-
gramming formulations (Dupont de Dinechin 2007).

ST200 VLIW Compiler Experimental Results
We implemented our modified Leung-Palem-Pnueli algo-
rithm in the instruction scheduler of the production compiler
for the ST200 VLIW processor family. In order to apply this
algorithm, we first relax instances of RCPSP with UET op-
erations and non-negative start-start time-lags to instances of
scheduling problems on typed task systems with precedence
delays, release dates and deadlines:

• Expand each operation that requires several resources to
a chain of sub-operations that use only one resource type
per sub-operation. Set the chain precedence delays to -1
(zero start-start time-lags).

• Assign to each sub-operation the release date and deadline
of its parent operation.

The result is a UET typed task system with release dates and
deadlines, whose precedence graph is arbitrary.

Applying our modified Leung-Palem-Pnueli algorithm to
an arbitrary precedence graph implies that optimal schedul-
ing is no longer guaranteed. However, the fixpoint modified
deadlines are still deadlines of the UET typed task system
considered, as the proof of Theorem 2 does not involve the

precedence graph properties. From the way we defined the
relaxation to typed task systems, it is apparent that these fix-
point modified deadlines are also deadlines of the original
problem (UET RCPSP with non-negative time-lags).

In Table 2, we collect the results of lower bounding the
makespan of ST200 VLIW instruction scheduling problems
with our modified LPPA for typed task systems. These
results are obtained by first computing the fixpoint mod-
ified deadlines on the reverse precedence graph, yielding
strengthened release dates. The modified LPPA is then
applied to the precedence graph with strengthened release
dates, and this computes fixpoint modified deadlines includ-
ing a makespan lower bound. The benchmarks used to ex-
tract these results include an image processing program, and
thec-lex SpecInt program.

The first column of Table 2 identifies the code block that
defined the VLIW instruction scheduling problem. Column
n gives the number of operations to schedule. Columns
Resource, Critical, MLPPA respectively give the makespan
lower bound in time units computed with resource use,
critical path, and the modified LPPA. The last column
ILP gives the optimal makespan as computed by solving a
time-indexed linear programming formulation (Dupont de
Dinechin 2007). According to this experimental data, there
exists cases where using the modified LPPA yields a signifi-
cantly stronger relaxation than critical path computation.

Summary and Conclusions
We present a modification of the algorithm of Leung, Palem
and Pnueli (LPPA) (Leung, Palem, & Pnueli 2001) that
schedules monotone interval orders with release dates and
deadlines on UET typed task systems (Jaffe 1980) in poly-

Table 2: ST200 VLIW compiler results of the modified
Leung-Palem-Pnueli algorithm

Label n Resource Critical MLPPA ILP
BB26 41 11 15 19 19
BB23 34 10 14 18 18
BB30 10 3 5 5 5
BB29 16 5 10 10 10
1 31 34 9 14 18 18

BB9 Short 16 4 10 10 10
BB22 16 4 10 10 10
LAO021 22 6 6 7 7
LAO011 20 6 18 18 18
BB80 14 6 17 17 17
LAO033 41 11 31 32 32
4 1362 23 9 38 38 38
BB916 34 14 30 31 31
4 1181 15 8 18 19 19
4 1180 7 2 9 10 10
4 998 14 4 10 11 11
4 1211 9 2 9 9 9
4 1209 14 7 18 18 18
4 1388 6 2 8 9 9
4 949 13 5 12 13 13
BB740 11 4 13 14 14
LAO0160 17 7 7 11 11

nomial time. In an extendedα|β|γ denotation, this is prob-
lemΣkP |intOrder(mono lji); ri; di; pi = 1|−.

Compared to the original LPPA (Leung, Palem, & Pnueli
2001), our main modifications are: use of the Graham list
scheduling algorithm (GLSA) adapted to typed task systems
and to zero start-start time-lags; new definition of the back-
ward scheduling problemB(Oi, Si) that does not involve
the transitive successors of operationOi; core LPPA proof
adapted to typed task systems and simplified thanks to the
properties of monotone interval orders.

Like the original LPPA, our modified algorithm opti-
mally solves a feasibility problem: after scheduling with
the core GLSA, one needs to check if the schedule meets
the deadlines. By embedding this algorithm in a dichotomy
search for the smallestLmax such that the scheduling prob-
lem with deadlinesdi + Lmax is feasible, one also solves
ΣkP |intOrder(mono lji); ri; pi = 1|Lmax in polyno-
mial time. This is a significant generalization over the
ΣkP |intOrder; pi = 1|Cmax problem solved by Jansen
(Jansen 1994) in polynomial time.

Our motivation for the study of typed task systems with
precedence delays is their use as relaxations of the Resource-
Constrained Scheduling Problems (RCPSP) with Unit Exe-
cution Time (UET) operations and non-negative start-start
time-lags. In this setting, precedence delays are important,
yet no previous polynomial-time scheduling algorithms for
typed task systems consider them. The facts that interval
orders include operations without predecessors and succes-
sors, and that the LPPA enforces releases dates and dead-
lines, are also valuable for these relaxations.

References
Ali, H. H., and El-Rewini, H. 1992. Scheduling Inter-
val Ordered Tasks on Multiprocessor Architecture. InSAC
’92: Proceedings of the 1992 ACM/SIGAPP Symposium on
Applied computing, 792–797. New York, NY, USA: ACM.
Brucker, P.; Drexl, A.; M̈ohring, R.; Neumann, K.; and
Pesch, E. 1999. Resource-Constrained Project Scheduling:
Notation, Classification, Models and Methods.European
Journal of Operational Research112:3–41.
Brucker, P. 2004. Scheduling Algorithms, 4th edition.
SpringerVerlag.
Chaudhuri, S.; Walker, R. A.; and Mitchell, J. E. 1994. An-
alyzing and Exploiting the Structure of the Constraints in
the ILP Approach to the Scheduling Problem.IEEE Trans-
actions on VLSI2(4).
Dupont de Dinechin, B. 2004. From
Machine Scheduling to VLIW Instruction
Scheduling. ST Journal of Research 1(2).
http://www.st.com/stonline/press/magazine/stjournal/vol0102/.
Dupont de Dinechin, B. 2007. Time-Indexed
Formulations and a Large Neighborhood Search for
the Resource-Constrained Modulo Scheduling Prob-
lem. In 3rd Multidisciplinary International Schedul-
ing conference: Theory and Applications (MISTA).
http://www.cri.ensmp.fr/classement/2007.html.
Garey, M. R., and Johnson, D. S. 1976. Scheduling Tasks
with Nonuniform Deadlines on Two Processors.J. ACM
23(3):461–467.
Jaffe, J. M. 1980. Bounds on the Scheduling of Typed Task
Systems.SIAM J. Comput.9(3):541–551.
Jansen, K. 1994. Analysis of Scheduling Problems
with Typed Task Systems.Discrete Applied Mathematics
52(3):223–232.
Kolisch, R., and Hartmann, S. 1999. Algorithms for Solv-
ing the Resource-Constrained Project Scheduling Prob-
lem: Classification and Computational Analysis. In J., W.,
ed.,Handbook on Recent Advances in Project Scheduling.
Kluwer Academic. chapter 7.
Leung, A.; Palem, K. V.; and Pnueli, A. 2001. Schedul-
ing Time-Constrained Instructions on Pipelined Proces-
sors.ACM Trans. Program. Lang. Syst.23(1):73–103.
Palem, K. V., and Simons, B. B. 1993. Scheduling Time-
Critical Instructions on RISC Machines.ACM Trans. Pro-
gram. Lang. Syst.15(4):632–658.
Papadimitriou, C. H., and Yannakakis, M. 1979. Schedul-
ing Interval-Ordered Tasks.SIAM J. Comput.8(3):405–
409.
Verriet, J. 1996. Scheduling Interval Orders with Re-
lease Dates and Deadlines. Technical Report UU-CS-1996-
12, Department of Information and Computing Sciences,
Utrecht University.
Verriet, J. 1998. The Complexity of Scheduling Typed Task
Systems with and without Communication Delays. Tech-
nical Report UU-CS-1998-26, Department of Information
and Computing Sciences, Utrecht University.

