
Assimilating Planning Domain Knowledge from Other Agents

Tim Grant

Netherlands Defence Academy
P.O. Box 90.002

4800 PA Breda, Netherlands
tj.grant@nlda.nl / tgrant@cs.up.ac.za

Abstract
Mainstream research in planning assumes that input
information is complete and correct. There are branches
of research into plan generation with incomplete planning
problems and with incomplete domain models.
Approaches include gaining knowledge aimed at making
the input information complete or building robust
planners that can generate plans despite the
incompleteness of the input. This paper addresses
planning with complete and correct input information, but
where the domain models are distributed over multiple
agents. The emphasis is on domain model acquisition, i.e.
the first approach. The research reported here adopts the
view that the agents must share knowledge if planning is
to succeed. This implies that a recipient must be able to
assimilate the shared knowledge with its own. An
algorithm for inducing domain models from example
domain states is presented. The paper shows how the
algorithm can be applied to knowledge assimilation and
discusses the choice of representation for knowledge
sharing. The algorithm has been implemented and applied
successfully to eight domains. For knowledge
assimilation it has been applied to date just to the blocks
world.

Introduction
The plan generation process takes as its input a planning
problem consisting of initial and goal states and a
domain model typically consisting of planning operators.
Its output is a sequence of actions – a plan - that will, on
execution, transform the initial state to the goal state.
To locate the research reported here, we place the
planning process into its wider context. In Figure 1 the
Planning process is central. Its output – a plan – is
ingested by the Controlling process. In executing the
plan, the Controlling process issues commands to the
Process Under Control (PUC), and receives sensory
information back.
The Planning process itself has inputs: the domain model
and the initial and goal states. The usual assumption is
that these inputs come directly from the Controlling
process. However, we take the view that each input is
developed by an intervening process: initial states result
from State Estimation1, goal states from Goal Setting,
and domain models from Modelling. It is these three

Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1 The term is borrowed from the process control literature.

processes that receive feedback from the Controlling
process in the form of the observed sensory information.
State Estimation uses the feedback to identify the PUC’s
current state. Goal Setting determines whether the
current goal state has been achieved, can be maintained,
or must be replaced by another goal state. Modelling
assesses whether the domain model remains a complete
and correct description. If not, it uses the feedback to
modify or extend the domain model. This paper centres
on the Modelling process.

plan
Planning

planner

Controlling

Modelling

State Estimation

Goal Setting

currentstate

dom
ain

mode
l

goal
state

PUC

Figure 1. Planning in context.

Mainstream research in planning assumes that the input
information is complete and correct2. In practical
applications, however, information about the domain
model, the planning problem, or both may be incomplete
and/or incorrect. In the literature there are two
approaches to planning with incomplete and/or incorrect
input information (Garland & Lesh, 2002):
• Gain better information, either during plan generation

or during plan execution. This may be done by using
sensors embedded in the PUC to acquire information,
by consulting an oracle (e.g. an expert), or by trial-
and-error learning from performing experiments in the
domain. The acquired information may be used in
state estimation, in goal setting, and/or in modelling.

• Build robust planners that can generate plans that
succeed regardless of the incompleteness and/or

2 By convention, the goal state is usually a formula describing a set of
(goal) states.

incorrectness of the input information. Conformant
planning (Goldman & Boddy, 1996) is planning with
incomplete knowledge about the initial state and/or the
effects of actions. Model-lite planning (Kambhampati,
2007) is planning with an incomplete or evolving
domain model. Erroneous planning (Grant, 2001) has
the more limited aim of characterizing the types of
erroneous plans generated if the planner is not robust
(the error phenotypes), based on concepts drawn from
the literature on human error, and trying to understand
the causes for the observed errors (the error
genotypes). Knowledge of the error phenotypes and
genotypes could then be used for plan repair (Krogt,
2005).

By contrast, this paper is concerned about planning with
complete and correct input information, but where that
information is distributed across multiple agents. In
particular, it is concerned with distributed domain
models. While the domain model is complete for some
set of agents, each individual agent’s domain model is
(initially) incomplete.
This paper adopts the view that, where knowledge about
the planning domain is distributed over multiple agents,
the agents must share that knowledge if planning is to
succeed. To do so, they must be interoperable. The
source of the knowledge and its recipient must adopt a
common knowledge representation, as well as
coordinating their knowledge-sharing actions. Moreover,
the recipient must be capable of assimilating the
knowledge gained (Lefkowitz & Lesser, 1988) into other
knowledge it may already have. Assimilation of another
agent’s domain model is an extension of the Modelling
process. This paper focuses on the knowledge
assimilation capability and choosing a suitable
representation for knowledge sharing.
The subject matter in this paper touches on several
theoretical areas. Firstly, it is based on the application of
machine learning to planning, because knowledge
assimilation is a learning process. More specifically, it is
concerned with applying machine learning techniques to
the acquisition of planning operators. Secondly, because
the recipient’s domain model is evolving, it touches on
model-lite and erroneous planning. Thirdly, it is based on
communication theory and, in particular, on information
or knowledge sharing concepts drawn from management
and organization theory.
The paper is divided into seven chapters. Chapter 2
describes the author’s algorithm for modelling planning
domains by acquiring planning operators from example
domain states. Chapter 3 introduces knowledge sharing
based on the Shannon (1948) model of communication.
Chapter 4 describes the assimilation of planning domain
knowledge, and chooses a suitable representation for
sharing that knowledge between agents. Chapter 5
describes two simple worked examples. Chapter 6
surveys related research. Finally, Chapter 7 draws
conclusions, identifying the key contributions of this
paper, its limitations, and where further research is
needed.

Modelling Planning Domains
The author’s algorithm for modelling planning domains
by acquiring planning operators from example domain
states is known as Planning Operator Induction (POI)
(Grant, 1996). As the name indicates, POI employs
inductive learning from examples. More specifically, it
embeds Mitchell’s (1982) version space and candidate
elimination algorithm, taking selected domain states as
input examples and inducing STRIPS-style planning
operators.
The POI algorithm has been implemented and applied
successfully to eight domains (Grant, 1996), including
the blocks world, the dining philosophers problem, and a
model of a real-world spacecraft payload based on a
chemical laboratory instrument. For knowledge
assimilation it has been applied to date just to the blocks
world.
The ontology employed in POI separates the domain
representation into static and dynamic parts. The static
part of the POI ontology represents invariant domain
entities in terms of object-classes and -instances, of inter-
object relationships, and of inter-relationship constraints.
By convention, relationships and constraints are binary3.
For example, the blocks world consists of Hand, Block,
and Table object-classes. The holding relationship
links an instance of the Hand (object-) class to an
instance of the Block class, and the onTable
relationship links a Block instance to a Table instance.
The holding and onTable relationships are
constrained in that no Block instance may be both held
and on the table simultaneously. Such constraints are
known in the planning literature as domain axioms or
invariants and in the database literature as cardinality
and exclusion constraints (Nijssen & Halpin, 1989). The
static part of the ontology (less the exclusion constraints)
may be depicted using Chen’s (1976) Entity-
Relationship Diagramming (ERD) notation4.
The dynamic part of the POI ontology represents domain
entity behaviour in terms of states, transitions, and
planning operators. Planning operators are
reformulations of classes of domain transitions.
Instantiated relationships synchronise the states of
objects. For example, the holding hand1 block2
relationship synchronises the states of the objects hand1
and block2: hand1 must be holding block2 and
block2 must be held by hand1 simultaneously. If
hand1 ceases to be holding block2, then block2
must simultaneously cease being held by hand1.
Transitions combine synchronised changes in
relationships. For example, the cessation of the

3 Higher arity relationships and constraints can be reduced to binary
relationships and constraints by changing how the object - and
relationship -classes, respectively, are modelled. Details are given in
Grant (1996).
4 The ERD notation is limited to depicting constraints between two
instances of the same relationship, i.e. cardinality constraints. It cannot
depict constraints between instances of two different relationships, i.e.
exclusion constraints. The POI ontology and algorithm is not so
limited.

holding hand1 block2 relationship may be
combined with the advent of the onTable block2
table1 relationship. In terms of Allen’s (1983)
temporal logic, we would say that the relationships meet.
Note that they meet because the domain constraint from
the previous paragraph forbids them from overlapping.
Grant (1995) says that the transition pivots around the
(instantiated) binary domain constraint.
The POI ontology is similar to McCluskey and Porteus’
(1997) object-centred representation for the specification
of planning domains. The key differences are that, in
POI, the relationships and constraints are strictly binary.
Moreover, the constraints hold only between
relationships. In addition, objects, relationships,
constraints, states, and transitions all have classes, i.e.
sorts in McCluskey and Porteus’ terminology.
The POI algorithm has two parts:
• Part 1: Acquisition. The purpose of the first part of POI

is to acquire a static, object-oriented model of the
domain from example domain states. POI does not
require that the example domain states form a valid
sequence, plan-segment, or plan, unlike other
algorithms for acquiring planning operators. However,
the examples may have to be carefully chosen. Part 1
subdivides into three steps:
• Step 1.1 : Acquire domain state description(s).
• Step 1.2 : Recognise the objects and relationships in

the state description(s).
• Step 1.3 : Compile cardinality and exclusion

constraints from the objects and relationships. The
constraints can be generated exhaustively by
constructing all possible pairs between relationships
that share an object. For example, pairing the
relationship holding ?Hand1 ?Block1 with
holding ?Hand1 ?Block2 expresses the
domain constraint that a hand cannot hold two (or
more) blocks simultaneously5. By default, a
constraint is assumed to hold if no counterexample
can be found among the acquired domain state
descriptions. Thus, if an agent observed a domain
state in which two hands were indeed holding the
same block then this constraint would no longer
hold.

• Part 2: Induction. The purpose of the second part of
POI is to induce a dynamic model of domain
behaviour from the static, object-oriented domain
model. Domain behaviour is modelled using a state-
transition network from which planning operators can
be extracted. Part 2 sub-divides into six steps:
• Step 2.1 : Generate the description language for the

domain. The description language is the set of all
relationships between object-instances that satisfy
the cardinality and exclusion constraints.

• Step 2.2 : Construct the version space for the
description language using the cardinality and
exclusion constraints to eliminate invalid candidate

5 By convention, the same instance of the Block object-
class cannot be matched to the two different variables
?Block1 and ?Block2.

nodes. The version space is a partial lattice of valid
nodes, with each node being described in terms of
relationships between the domain object-instances.

• Step 2.3 : Extract the domain states from the version
space. The domain states are the lattice nodes in the
maximally specific boundary of the version space.

• Step 2.4 : Using the Single Actor / Single State-
Change (SA/SSC) meta-heuristic, determine the
domain transitions between the domain states. The
SA/SSC heuristic is that a single object (the actor)
initiates the transition, undergoing a change in just
one of its relationships. The actor is at the root of a
causal hierarchy of state-changes in the other
participating objects. For example, in the blocks
world when a robot hand picks up a block from the
table, the hand is the actor, making true its
holding relationship with the block being picked
up. The hand’s action causes the block both to act
on itself so that it is no longer clear and to act on
the table, breaking the onTable relationship.

• Step 2.5 : Generalise the domain transitions as
transition-classes.

• Step 2.6 : Reformat the transition-classes as planning
operators.

Depending on how POI is to be used, Part 1 may be
optional. If an agent observes an existing domain and
uses POI to gain knowledge about how to plan actions in
that domain, then Part 1 is essential. By contrast, if an
ERD or equivalent static model of a domain (which may
not yet exist) is available, then modelling can proceed
directly to Part 2. In knowledge assimilation, one agent
(the source) performs Part 1 and another (the recipient)
performs Part 2.

Knowledge Sharing
Information and knowledge sharing has been extensively
studied in management and organization theory. For
simplicity, we will take the terms “information” and
“knowledge” as being interchangeable, pace Ackoff
(1989). Information sharing is a dyadic exchange of
information between a source and a recipient (adapted
from Szulanski (1996), p.28). Sharing involves the dual
problem of “searching for (looking for and identifying)
and transferring (moving and incorporating) knowledge
across organizational subunits” (Hansen, 1999, p.83).
For the purposes of this paper, we will take knowledge
sharing as meaning knowledge transfer. Searching for or
discovery of other agents that have suitable
complementary knowledge about a domain is an area for
future research.
Shannon’s (1948) model of communication is useful for
thinking about knowledge sharing. In the Shannon
model, the source and recipient each operate within their
own organizational contexts. Information transfer begins
when the source generates a message. The message is
encoded into a form (a signal) in which it is transmitted
by means of a communications medium, such as
electromagnetic waves, telephone cables, optical fibres,
or a transportable electronic storage medium. Random
noise and systematic distortion may be added during

transmission. The recipient decodes the signal and
assimilates the decoded message into its own store of
knowledge.

Figure 2. Linking source and recipient agents using

Shannon (1948) model.

For the purposes of this paper, we assume that the source
and recipient are agents with an internal structure as
shown in Figure 1. In general the agents should be able
to exchange the outputs of their respective Planning,
Controlling, State Estimation, Goal Setting, and
Modelling processes, given suitable encoders and
decoders (Figure 2). We concentrate here on the
Modelling process, how the source’s knowledge should
be encoded, and what decoder the recipient needs to
assimilate that knowledge. We neglect the issue of noise
and distortion in this paper.

Assimilating Planning Domain Knowledge
Lefkowitz and Lesser (1988) discuss knowledge
assimilation in the context of acquiring domain
knowledge from human experts. Their implemented
system, Kn

Ac, was developed to assist experts in the
construction of knowledge bases using a frame-like
representation. Assimilated knowledge represented
domain objects, relationships, and events. The main
contribution of their research was in developing several
generic techniques for matching sets of entities and
collections of constraints. Research questions included:
• How does the expert’s domain description correlate

with the description contained in the knowledge base?
• How should the knowledge base be modified based on

the expert’s new information?
• What should be done when the expert’s description

differs from the existing one?
Despite the contextual differences, there are strong
parallels between Lefkowitz and Lesser’s (1988) work
and assimilating planning domain knowledge.
Assimilation of domain knowledge should be integrated
with plan generation and execution. It should permit a
variety of ways of learning, including learning-by-seeing
(i.e. by observing the domain and inferring what actions
are possible), learning-by-being-told (e.g. by domain
experts or other agents), and learning-by-doing (i.e. by
generating and executing plans). When knowledge is
distributed over multiple agents, then individual agents
may need to combine different ways of learning. In
particular, an agent may well need to combine
knowledge it gained from its own observations of a
domain with information it has gained by being told by
another agent. Like Lefkowitz and Lesser, learning
concerns domain objects, relationships, constraints, and

events. Analogues of Lefkowitz and Lesser’s research
questions apply; here we are concerned with the planning
analogue of their second question.
Considering the POI algorithm from the viewpoint of
encoding and decoding, we see that there are three forms
in which knowledge relating to the domain model could
be exchanged:
• As cases. The source agent could transmit the domain

states it has observed, i.e. the input information to Part
1 of the POI algorithm. The source agent would not
have to process its observations before transferring
them to the recipient. The recipient agent would then
have to add the source’s domain states to its own
database of domain states, and perform Parts 1 and 2
of the POI algorithm to obtain a set of planning
operators. Exchanging knowledge in this form is likely
to be verbose for real-world domains, possibly with
duplicated observations. More importantly, it would
limit knowledge assimilation to learning-by-seeing.
The only thing that knowledge sharing achieves is that
the recipient can “see” both what it can itself observe
and what the source has observed.

• As static domain models. The source agent could
transmit its static domain model, i.e. the information
as output by Part 1 and as input to Part 2. The source
agent would have had to perform Part 1 before
transmitting its static domain model to the recipient.
The recipient agent would then have to add the
source’s objects, relationships, and constraints to its
own database of objects, relationships, and constraints.
Where source and recipient agents disagree on
whether a constraint holds, then the constraint is
assumed not to hold (because one of the agents will
have seen a counterexample). The recipient retains its
own list of object-instances and does not assimilate the
source’s object-instances list, because the recipient
may not be able to execute plans on objects that it
cannot see. Then the recipient would perform Part 2 of
the POI algorithm to obtain a set of planning
operators. Exchanging knowledge in this form is likely
to be concise. Moreover, it would allow learning-by-
seeing, learning-by-being-told, and their combination.

• As planning operators. The source agent could transmit
its dynamic domain model, i.e. the information as
output by Part 2. The recipient agent would then
simply have to add the planning operators obtained
from the source to its own planning operators.
Exchanging knowledge in this form is still more
concise, but assumes that (1) the source and the
recipient agents’ observations are sufficiently rich for
both of them to be able to induce a set of planning
operators, and that (2) their sets of planning operators
are complementary. There is no way for additional
planning operators to be induced by synergy.

In this research, the encoding-decoding schema has been
determined by the researcher. Ideally, the source and
recipient agents should themselves be able to negotiate a
suitable encoding-decoding schema, depending on
considerations such as privacy, security, and
communications bandwidth. Further research is needed
to provide agents with such a capability.

Worked Examples
Two worked examples should make the key issues clear.
The first example is the one-block world and the second
is taken from the three-blocks world. Because the one-
block world is simple, the first example is described in
more detail. The second example illustrates the need to
select example states carefully if the agents are to induce
a full set of planning operators.
Suppose two agents each observe a different state of a
one-block world (Slaney & Thiebaux, 2001), as
represented by Nilsson (1980)6. There are two possible
states7: [[holding hand1 block1] [onTable
block1 nil] [onTable nil table1]] and
[[holding hand1 nil] [holding nil block1]
[onTable block1 table1]]. Let us suppose that
Agent1 is given the first state description and Agent2 the
second.
The following table depicts the static domain model that
would result from their performing Part 1 separately, i.e.
without knowledge sharing and assimilation:

 Agent1’s model Agent2’s model
Object -
classes

Hand, Block, Table Hand, Block, Table

Object -
instances

hand1, block1, table1 hand1, block1, table1

Relations holding ?Hand ?Block
onTable ?Block nil
onTable nil ?Table

holding ?Hand nil
holding nil ?Block
onTable ?Block ?Table

Constraints IF holding ?Hand1
?Block1
AND holding ?Hand1
?Block2
THEN INVALID
-- hand cannot hold
multiple blocks

IF holding ?Hand1
?Block1
AND holding ?Hand2
?Block1
THEN INVALID
-- block cannot be held
by multiple hands

IF holding ?Hand1
?Block1

IF holding ?Hand1 nil
AND holding ?Hand2 nil
THEN INVALID
-- multiple hands cannot be
empty at same time

IF holding nil ?Block1
AND holding nil
?Block2
THEN INVALID
-- multiple blocks cannot be
not held

IF holding nil ?Block1
AND onTable ?Block1
?Table1
THEN INVALID
-- block cannot be not held
and on a table

6 Distinguishing three object-classes (Hand, Block, Table) and
yielding four operators (pickup, putdown, stack, unstack). See
Grant et al, 1994.
7 A third state would be observed in an orbiting spacecraft:
[[holding hand1 nil] [holding nil block1] [onTable
block1 nil] [onTable nil table1]]. During development of
the POI algorithm the three states were indeed induced, resulting in the
induction of a set of six operators (pickup, putdown,
floatoff, floaton, letgo, capture). The author
observed that he had failed to represent the action of gravity. To do so
while retaining the Nilsson (1980) domain representation requires a
triple constraint, stating in effect that a block must be either held by a
hand or supported by a table or by another block. This can be solved by
extending the POI ontology, either by allowing constraints of arity
higher than two or by introducing an inheritance hierarchy of object-
classes. The author adopted the latter solution, because this has the
synergistic consequence of reducing the complexity of the version
space, leading to savings in induction time and memory requirements
(Grant, 1996).

AND onTable ?Block1
nil
THEN INVALID
-- block cannot be held
and not on a table
NOTE: This constraint
does not hold because
the observed state is a
counterexample.

IF onTable ?Block1
nil
AND onTable ?Block2
nil
THEN INVALID
-- multiple blocks cannot
be off the table

IF onTable nil ?Table1
AND onTable nil
?Table2
THEN INVALID
-- multiple tables cannot
be clear at same time

and on a table
NOTE: This constraint does
not hold because the
observed state is a
counterexample.

IF onTable ?Block1
?Table1
AND onTable ?Block1
?Table2
THEN INVALID
-- block cannot be on
multiple tables

IF onTable ?Block1
?Table1
AND onTable ?Block2
?Table1
THEN INVALID
-- table cannot hold
multiple blocks

Neither of the agents would be able to induce any
planning operators, because POI Part 2 would simply
result in the induction of a single state, namely the state
each agent had observed originally. There needs to be a
minimum of two states for the SA/SSC heuristic to find
any transitions.
Now suppose that the agents share their domain
knowledge. Since neither of them can induce planning
operators separately, exchanging data in the form of
planning operators is not feasible. However, they can
exchange knowledge in the form either of cases or of
their static domain models. For the one-block world it is
simpler for the agents to exchange cases, but this does
not apply to complex, real-world examples.
Sharing their domain models enables the agents to create
synergistic knowledge. Firstly, Agent1 learns from
Agent2 that blocks can be on tables, and Agent2 learns
from Agent1 that hands can hold blocks. Secondly,
additional constraints can be identified, as shown in the
following table:

 Synergistic knowledge
Relations holding ?Hand ?Block

holding ?Hand nil
holding nil ?Block
onTable ?Block ?Table
onTable ?Block nil
onTable nil ?Table

Constraints IF holding ?Hand1 nil
AND holding ?Hand1 ?Block1
THEN INVALID
-- hand cannot be both empty and holding a block

IF holding nil ?Block1
AND holding ?Hand1 ?Block1
THEN INVALID
-- hand cannot be both held by a hand and not held

IF holding ?Hand1 ?Block1
AND onTable ?Block1 ?Table1
THEN INVALID
-- block cannot be both held and on a table

IF onTable nil ?Table1

AND onTable ?Block1 ?Table1
THEN INVALID
-- table cannot be supporting both a block and nothing

IF onTable ?Block1 nil
AND onTable ?Block1 ?Table1
THEN INVALID
-- block cannot be both off and supported by a table

The synergistic knowledge, together with the additional
constraints, enables the agents to induce the pickup
and putdown planning operators. They do not have
enough knowledge to induce the stack and unstack
operators because stacks of blocks and the on
relationship between blocks does not exist in the one-
block world.
The three-blocks world has 22 states, falling into five
state-classes (Grant et al, 1994). Experiments with the
implemented POI algorithm, adapted for knowledge
assimilation, showed that it is not necessary for the
agents to observe all 22 states (Grant, 1996). Just two,
judiciously-chosen, example states sufficed8. In one state
the hand must be empty, and in the other it must be
holding a block. One state must show a stack of at least
two blocks, and one stack must show two or more blocks
on the table. Inspection shows that there are four pairings
of the five state-classes that can meet these requirements.
Two can be rejected on the grounds that they are
adjacent, i.e. that they are separated by the application of
just one operator. Successful knowledge assimilation has
been demonstrated for the remaining two state-pairs: for
all three blocks on the table paired with the state in
which one block is held and the other two are stacked,
and for a stack of three blocks paired with the state in
which one block is held and the other two are on the
table. Moreover, the induced set of planning operators
can be used to generate and successfully execute a plan
that passes through at least one novel state, i.e. a state
that the agents had not previously observed.
It is not known whether two (judiciously-chosen)
example states suffice in all domains for the induction of
a full set of planning operators. Hand simulations and
experiments have only been done for the (one-hand, one-
table, and) one- and three-blocks worlds. More research
is needed, e.g. by applying knowledge assimilation using
POI to the International Planning Competition
benchmark domains and to real-world domains where
planning knowledge is distributed geographically or
organizationally.

Related Work
In 2003, Zimmerman and Kambhampati surveyed the
research on applying machine learning to planning. They
identified three opportunities for learning: before
planning, during planning, and during execution.
Learning techniques applied fell into two groups:
inductive versus deductive (or analytical) learning.
Inductive techniques used included decision tree

8 Introspection suggests that there may be a single state in the two-
hands, four-block world that could provide all the information needed
to induce all four operators, but then the knowledge could not be
distributed over multiple agents.

learning, neural network, inductive logic programming,
and reinforcement learning. They observed that early
research emphasised learning search control heuristics to
speed up planning. This has fallen out of favour as faster
planners have become available. There is now a trend
towards learning or refining sets of planning operators to
enable a planner to become effective with an incomplete
domain model or in the presence of uncertainty.
“Programming by demonstration” can be applied so that
the user of an interactive planner could create plans for
example problems that the learning system would then
parse to learn aspects peculiar to the user.
In terms of Zimmerman and Kambhampati’s (2003)
survey, this paper applies Mitchell’s (1982) inductive
version space and candidate elimination algorithm to
planning. The POI algorithm could be used before
planning, during planning, or during execution. It centres
on the learning of domain models in the form of planning
operators. It exhibits an element of “programming by
demonstration” in that the user shows POI example
domain states, rather than example plans or execution
traces.
In his 2006 lectures on learning and planning at the
Machine Learning Summer School, Kambhampati
distinguished three applications of learning to planning:
learning search control rules and heuristics, learning
domain models, and learning strategies. Research in
learning domain models could be classified along three
dimensions: the availability of information about
intermediate states, the availability of partial action
models, and interactive learning in the presence of
humans. POI does not need information about
intermediate states nor partial action models, and it does
not require the presence of humans. By comparison,
other operator learning algorithms require as input:.
• Background domain knowledge: Porter & Kibler

(1986), Shen (1994), Levine & DeJong (2006).
• Partial domain model (i.e. operator refinement, rather

than ab initio operator learning): Gil (1992),
DesJardins (1994), McCluskey et al (2002).

• Example plans or traces: Oates and Cohen (1996),
Wang (1996), Yong et al (2005).

• Input from human experts: McCluskey et al (2002).
POI can accept a static domain model from a human
expert (e.g. for a domain that does not yet exist)
instead of observing domain states, but this is not
applicable to assimilating domain knowledge
distributed over multiple agents.

POI is closest to Mukherji and Schubert (2005) in that it
takes state descriptions as input and discovers planning
invariants. The differences are that POI also discovers
objects and relationships and uses the information it has
discovered to induce planning operators. Like
McCluskey and his collaborators (McCluskey & Porteus,
1997; McCluskey et al, 2002), POI models domains in
terms of object-classes (sorts, in McCluskey’s
terminology), relationships, and constraints.

Conclusions
This paper has addressed the topic of planning with a
domain model that is complete and correct but
distributed across multiple agents. The paper takes the
view that the agents must share their knowledge if
planning is to succeed. The Planning Operator Induction
(POI) algorithm (Grant, 1996) has been introduced as a
means of acquiring planning operators from carefully-
chosen examples of domain states. Unlike other
algorithms for acquiring planning operators (Porter &
Kibler, 1986) (Gil, 1992) (Shen, 1994) (DesJardins,
1994) (Wang, 1996) (Oates & Cohen, 1996) (McCluskey
et al, 2002) (Yang et al, 2005) (Mukherji & Schubert,
2005) (Levine & DeJong, 2006), the example domain
states do not need to form a valid sequence, plan-
segment, or plan, nor do preceding or succeeding
transitions have to be given. When agents share their
partial knowledge of the domain model, the two parts of
the POI algorithm can be divided between the source and
recipient in the knowledge-sharing process. The agents
exchange the static, object-oriented domain model
resulting from Part 1 of the POI algorithm. This enables
the recipient to identify synergies between the shared
knowledge and knowledge it already has and to perform
the induction, i.e. Part 2 of the algorithm.
This paper makes several contributions. Its primary
contribution is in showing how planning domain
knowledge that is distributed across multiple agents may
be assimilated by sharing partial domain models.
Secondary contributions include:
• The POI domain-modelling algorithm is presented that

acquires planning operators from example domain
states. The example domain states do not need to form
a valid sequence, plan-segment, or plan, nor do
preceding or succeeding transit ions have to be given.

• The ontology used in the POI algorithm extends
McCluskey and Porteus’ (1997) object-centred
representation. Relationships and constraints are
strictly binary. Constraints are between pairs of
relationships, rather than domain-level axioms. Hence,
both relationships and constraints are associated with
(classes of) domain objects.

A key limitation of the research reported here is that,
while knowledge assimilation using the POI algorithm
has been implemented, it has only been tested for the
(one-hand, one-table, and) one- and three-blocks worlds.
Future research should include:
• Applying POI-based knowledge assimilation to a wider

variety of planning domains, e.g. International
Planning Competition benchmark domains. One
research ques tion to be addressed is whether two
(judiciously-chosen) example states suffice in all
domains for the induction of a full set of planning
operators.

• Elucidating the conceptual links between the POI
algorithm and plan generation using planning graphs.

• Applying the POI algorithm to sense-making, i.e. the
modelling of novel situations (Weick, 1995). An
approach has been outlined in Grant (2005).

• Extending the POI ontology to model inheritance and
aggregation relationships, with the eventual aim of
using the Unified Modeling Language (UML) as a
representation for the static, object-oriented and
dynamic, behavioural domain models in the POI
algorithm.

• Developing an integrated planning environment that
incorporates domain modelling, plan generation, plan
execution, state estimation, and goal setting to act on
real and simulated domains.

• Extending agent capability to (1) negotiating mutually-
acceptable encoding-decoding schemes, and (2)
discover agents that have complementary knowledge.

• Investigating the application of knowledge assimilation
using POI to real-world domains where planning
knowledge is distributed geographically or
organizationally. Example domains include air traffic
control and military Command & Control (Grant,
2006).

References
Ackoff, R. 1989. From Data to Wisdom. Journal of
Applied Systems Analysis, 16, 3-9.
Allen, J.F. 1983. Maintaining Knowledge about
Temporal Intervals. Communications of the ACM, 26,
11, 832-843.
Chen, P.P-S. 1976. The Entity-Relationship Model:
Towards a unified view of data. ACM Transactions on
Database Systems, 1, 9-36.
DesJardins, M. 1994. Knowledge Development Methods
for Planning Systems. Proceedings, AAAI-94 Fall
Symposium series, Planning and Learning: On to real
applications. New Orleans, LA, USA.
Fikes, R., & Nilsson, N.J. 1971. STRIPS: A new
approach to the application of theorem proving to
problem solving . Artificial Intelligence Journal, 2, 189-
208.
Garland, A., & Lesh, N. 2002. Plan Evaluation with
Incomplete Action Descriptions. TR2002-05, Mitsubishi
Electric Research Laboratories, Cambridge,
Massachusetts, USA.
Gil, Y. 1992. Acquiring Domain Knowledge for
Planning by Experimentation . PhD thesis, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA.
Goldman, R., & Boddy, M. 1996. Expressive Planning
and Explicit Knowledge. Proceedings, AIPS-96, 110-
117, AAAI Press.
Grant, T.J. 1995. Generating Plans from a Domain
Model. Proceedings, 14th workshop of the UK Planning
and Scheduling Special Interest Group, 22-23 November
1995, University of Essex, Colchester, UK.
Grant, T.J. 1996. Inductive Learning of Knowledge-
Based Planning Operators. PhD thesis, University of
Maastricht, The Netherlands.
Grant, T.J. 2001. Towards a Taxonomy of Erroneous
Planning. Proceedings, 20th workshop of the UK
Planning and Scheduling Special Interest Group, 13-14
December 2001, University of Edinburgh, Scotland.
Grant, T.J. 2005. Integrating Sensemaking and Response
using Planning Operator Induction. In Van de Walle, B.

& Carlé, B. (eds.), Proceedings, 2nd International
Conference on Information Systems for Crisis Response
and Management (ISCRAM), Royal Flemish Academy
of Science and the Arts, Brussels, Belgium, 18-20 April
2005. SCK.CEN and University of Tilburg, 89-96.
Grant, T.J. 2006. Measuring the Potential Benefits of
NCW: 9/11 as case study. In Proceedings, 11th
International Command & Control Research &
Technology Symposium (ICCRTS06), Cambridge, UK,
paper I-103.
Grant, T.J., Herik, H.J. van den, & Hudson, P.T.W.
1994. Which Blocks World is the Blocks World?
Proceedings, 13th workshop of the UK Planning and
Scheduling Special Interest Group, University of
Strathclyde, Glasgow, Scotland.
Hansen, M. T. 1999. The Search-Transfer Problem: The
role of weak ties in sharing knowledge across
organization subunits. Administrative Science Quarterly,
44 (1), 82-111.
Kambhampati, S. 2006. Lectures on Learning and
Planning. 2006 Machine Learning Summer School
(MLSS’06), Canberra, Australia.
Kambhampati, S. 2007. Model-lite Planning for the Web
Age Masses: The challenges of planning with incomplete
and evolving domain models. Proceedings, American
Association for Artificial Intelligence.
Krogt, R. van der. 2005. Plan Repair in Single-Agent
and Multi-Agent Systems. PhD thesis, TRAIL Thesis -
series T2005/18, TRAIL Research School, Netherlands.
Lefkowitz, L. S., and Lesser, V. R. 1988. Knowledge
Acquisition as Knowledge Assimilation . International
Journal of Man-Machine Studies, 29, 215-226.
Levine, G., & DeJong, G. 2006. Explanation-Based
Acquisition of Planning Operators. Proceedings, ICAPS
2006.
McCluskey, T.L., & Porteus, J.M. 1997. Engineering
and Compiling Planning Domain Models to Promote
Validity and Efficiency. Artificial Intelligence Journal,
95, 1-65.
McCluskey, T.L., Richardson, N.E., & Simpson, R.M.
2002. An Interactive Method for Inducing Operator
Descriptions. Proceedings, ICAPS 2002.
Mitchell, T.M. 1982. Generalization as Search . Artificial
Intelligence Journal, 18, 203-226.
Mukherji, P., & Schubert, L.K. 2005. Discovering
Planning Invariants as Anomalies in State Descriptions.
Proceedings, ICAPS 2005.
Nijssen, G.M., & Halpin, T.A. 1989. Conceptual Schema
and Relational Database Design: A fact-oriented
approach. Prentice-Hall Pty Ltd, Sydney, Australia.
Nilsson, N.J. 1980. Principles of Artificial Intelligence.
Tioga Publishing Company, Palo Alto, California, USA.
Oates, T., & Cohen, P.R. 1996. Searching for Planning
Operators with Context-Dependent and Probabilistic
Effects. Proceedings, AAAI, 865-868.
Porter, B., & Kibler, D. 1986. Experimental Goal
Regression: A method for learning problem-solving
heuristics. Machine Learning, 1, 249-284.
Shannon, C.E. 1948. A Mathematical Theory of
Communication . Bell System Technical Journal, 27, 379-
423 (July) & 623-646 (October).
Shen, W.-M. 1994. Discovery as Autonomous Learning
from the Environment. Machine Learning, 12, 143-156.

Slaney, J., & Thiébaux, S. 2001. Blocks World Revisited.
Artificial Intelligence Journal, 125, 119-153.
Szulanski, G. 1996. Exploring Internal Stickiness:
Impediments to the transfer of best practice within the
firm. Strategic Management Journal, 17, 27-43.
Wang, X. 1994. Learning Planning Operators by
Observation and Practice. PhD thesis, Computer Science
Department, Carnegie Mellon University, Pittsburgh,
PA, USA.
Weick, K. 1995. Sensemaking in Organizations. Sage,
Thousand Oaks, CA, USA. ISBN 0-8039-7178-1.
Yang, Q., Wu, K., & Jiang, Y. 2005. Learning Action
Models from Plan Examples with Incomplete
Knowledge. Proceedings, ICAPS 2005, 241-250.
Zimmerman, T., & Kambhampati, S. 2003. Learning-
Assisted Automated Planning: Looking back, taking
stock, going forward . AI magazine, 73-96 (Summer
2003).

