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Abstract 
Mainstream research in planning assumes that input 
information is complete and correct. There are branches 
of research into plan generation with incomplete planning 
problems and with incomplete domain models. 
Approaches include gaining knowledge aimed at making 
the input information complete or building robust 
planners that can generate plans despite the 
incompleteness of the input. This paper addresses 
planning with complete and correct input information, but 
where the domain models are distributed over multiple 
agents. The emphasis is on domain model acquisition, i.e. 
the first approach. The research reported here adopts the 
view that the agents must share knowledge if planning is 
to succeed. This implies that a recipient must be able to 
assimilate the shared knowledge with its own. An 
algorithm for inducing domain models from example 
domain states is presented. The paper shows how the 
algorithm can be applied to knowledge assimilation and 
discusses the choice of representation for knowledge 
sharing. The algorithm has been implemented and applied 
successfully to eight domains. For knowledge 
assimilation it has been applied to date just to the blocks 
world. 

Introduction   
The plan generation process takes as its input a planning 
problem consisting of initial and goal states and a 
domain model typically consisting of planning operators. 
Its output is a sequence of actions – a plan - that will, on 
execution, transform the initial state to the goal state. 
To locate the research reported here, we place the 
planning process into its wider context. In Figure 1 the 
Planning process is central. Its output – a plan – is 
ingested by the Controlling process. In executing the 
plan, the Controlling process issues commands to the 
Process Under Control (PUC), and receives sensory 
information back. 
The Planning process itself has inputs: the domain model 
and the initial and goal states. The usual assumption is 
that these inputs come directly from the Controlling 
process. However, we take the view that each input is 
developed by an intervening process: initial states result 
from State Estimation1, goal states from Goal Setting, 
and domain models from Modelling. It is these three 
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1 The term is borrowed from the process control literature. 

processes that receive feedback from the Controlling 
process in the form of the observed sensory information. 
State Estimation uses the feedback to identify the PUC’s 
current state. Goal Setting determines whether the 
current goal state has been achieved, can be maintained, 
or must be replaced by another goal state. Modelling 
assesses whether the domain model remains a complete 
and correct description. If not, it uses the feedback to 
modify or extend the domain model. This paper centres 
on the Modelling process. 
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Figure 1.   Planning in context. 

Mainstream research in planning assumes that the input 
information is complete and correct2. In practical 
applications, however, information about the domain 
model, the planning problem, or both may be incomplete 
and/or incorrect. In the literature there are two 
approaches to planning with incomplete and/or incorrect 
input information (Garland & Lesh, 2002): 
• Gain better information, either during plan generation 

or during plan execution. This may be done by using 
sensors embedded in the PUC to acquire information, 
by consulting an oracle (e.g. an expert), or by trial-
and-error learning from performing experiments in the 
domain. The acquired information may be used in 
state estimation, in goal setting, and/or in modelling. 

• Build robust planners that can generate plans that 
succeed regardless of the incompleteness and/or 
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incorrectness of the input information. Conformant 
planning  (Goldman & Boddy, 1996) is planning with 
incomplete knowledge about the initial state and/or the 
effects of actions. Model-lite planning  (Kambhampati, 
2007) is planning with an incomplete or evolving 
domain model. Erroneous planning (Grant, 2001) has 
the more limited aim of characterizing the types of 
erroneous plans generated if the planner is not robust 
(the error phenotypes), based on concepts drawn from 
the literature on human error, and trying to understand 
the causes for the observed errors (the error 
genotypes). Knowledge of the error phenotypes and 
genotypes could then be used for plan repair (Krogt, 
2005). 

By contrast, this paper is concerned about planning with 
complete and correct input information, but where that 
information is distributed across multiple agents. In 
particular, it is concerned with distributed domain 
models. While the domain model is complete for some 
set of agents, each individual agent’s domain model is 
(initially) incomplete. 
This paper adopts the view that, where knowledge about 
the planning domain is distributed over multiple agents, 
the agents must share that knowledge if planning is to 
succeed. To do so, they must be interoperable. The 
source of the knowledge and its recipient must adopt a 
common knowledge representation, as well as 
coordinating their knowledge-sharing actions. Moreover, 
the recipient must be capable of assimilating the 
knowledge gained (Lefkowitz & Lesser, 1988) into other 
knowledge it may already have. Assimilation of another 
agent’s domain model is an extension of the Modelling 
process. This paper focuses on the knowledge 
assimilation capability and choosing a suitable 
representation for knowledge sharing. 
The subject matter in this paper touches on several 
theoretical areas. Firstly, it is based on the application of 
machine learning to planning, because knowledge 
assimilation is a learning process. More specifically, it is  
concerned with applying machine learning techniques to 
the acquisition of planning operators. Secondly, because 
the recipient’s domain model is evolving, it touches on 
model-lite and erroneous planning. Thirdly, it is based on 
communication theory and, in particular, on information 
or knowledge sharing concepts drawn from management 
and organization theory. 
The paper is divided into seven chapters. Chapter 2 
describes the author’s algorithm for modelling planning 
domains by acquiring planning operators from example 
domain states. Chapter 3 introduces knowledge sharing 
based on the Shannon (1948) model of communication. 
Chapter 4 describes the assimilation of planning domain 
knowledge, and chooses a suitable representation for 
sharing that knowledge between agents. Chapter 5 
describes two simple worked examples. Chapter 6 
surveys related research. Finally, Chapter 7 draws 
conclusions, identifying the key contributions of this 
paper, its limitations, and where further research is 
needed. 

Modelling Planning Domains  
The author’s algorithm for modelling planning domains 
by acquiring planning operators from example domain 
states is known as Planning Operator Induction (POI) 
(Grant, 1996). As the name indicates, POI employs 
inductive learning from examples. More specifically, it 
embeds Mitchell’s (1982) version space and candidate 
elimination algorithm, taking selected domain states as 
input examples and inducing STRIPS-style planning 
operators. 
The POI algorithm has been implemented and applied 
successfully to eight domains (Grant, 1996), including 
the blocks world, the dining philosophers problem, and a 
model of a real-world spacecraft payload based on a 
chemical laboratory instrument. For knowledge 
assimilation it has been applied to date just to the blocks 
world. 
The ontology employed in POI separates the domain 
representation into static and dynamic parts. The static 
part of the POI ontology represents invariant domain 
entities in terms of object-classes and -instances, of inter-
object relationships, and of inter-relationship constraints. 
By convention, relationships and constraints are binary3. 
For example, the blocks world consists of Hand, Block, 
and Table object-classes. The holding relationship 
links an instance of the Hand (object-) class to an 
instance of the Block class, and the onTable 
relationship links a Block instance to a Table instance. 
The holding and onTable relationships are 
constrained in that no Block instance may be both held 
and on the table simultaneously. Such constraints are 
known in the planning literature as domain axioms or 
invariants and in the database literature as cardinality 
and exclusion constraints (Nijssen & Halpin, 1989). The 
static part of the ontology (less the exclusion constraints) 
may be depicted using Chen’s (1976) Entity-
Relationship Diagramming (ERD) notation4. 
The dynamic part of the POI ontology represents domain 
entity behaviour in terms of states, transitions, and 
planning operators. Planning operators are 
reformulations of classes of domain transitions. 
Instantiated relationships synchronise the states of 
objects. For example, the holding hand1 block2 
relationship synchronises the states of the objects hand1 
and block2: hand1 must be holding block2 and 
block2 must be held by hand1 simultaneously. If 
hand1 ceases to be holding block2, then block2 
must simultaneously cease being held by hand1. 
Transitions combine synchronised changes in 
relationships. For example, the cessation of the 
                                                 
3 Higher arity relationships and constraints can be reduced to binary 
relationships and constraints by changing how the object - and 
relationship -classes, respectively, are modelled. Details are given in 
Grant (1996). 
4 The ERD notation is limited to depicting constraints between two 
instances of the same relationship, i.e. cardinality constraints. It cannot 
depict constraints between instances of two different relationships, i.e. 
exclusion constraints. The POI ontology and algorithm is not so 
limited. 



holding hand1 block2 relationship may be 
combined with the advent of the onTable block2 
table1 relationship. In terms of Allen’s (1983) 
temporal logic, we would say that the relationships meet. 
Note that they meet because the domain constraint from 
the previous paragraph forbids them from overlapping. 
Grant (1995) says that the transition pivots around the 
(instantiated) binary domain constraint. 
The POI ontology is similar to McCluskey and Porteus’ 
(1997) object-centred representation for the specification 
of planning domains. The key differences are that, in 
POI, the relationships and constraints are strictly binary. 
Moreover, the constraints hold only between 
relationships. In addition, objects, relationships, 
constraints, states, and transitions all have classes, i.e. 
sorts in McCluskey and Porteus’ terminology. 
The POI algorithm has two parts: 
• Part 1: Acquisition. The purpose of the first part of POI 

is to acquire a static, object-oriented model of the 
domain from example domain states. POI does not 
require that the example domain states form a valid 
sequence, plan-segment, or plan, unlike other 
algorithms for acquiring planning operators. However, 
the examples may have to be carefully chosen. Part 1 
subdivides into three steps: 
• Step 1.1 : Acquire domain state description(s). 
• Step 1.2 : Recognise the objects and relationships in 

the state description(s). 
• Step 1.3 : Compile cardinality and exclusion 

constraints from the objects and relationships. The 
constraints can be generated exhaustively by 
constructing all possible pairs between relationships 
that share an object. For example, pairing the 
relationship holding ?Hand1 ?Block1 with 
holding ?Hand1 ?Block2 expresses the 
domain constraint that a hand cannot hold two (or 
more) blocks simultaneously5. By default, a 
constraint is assumed to hold if no counterexample 
can be found among the acquired domain state 
descriptions. Thus, if an agent observed a domain 
state in which two hands were indeed holding the 
same block then this constraint would no longer 
hold. 

• Part 2: Induction. The purpose of the second part of 
POI is to induce a dynamic model of domain 
behaviour from the static, object-oriented domain 
model. Domain behaviour is modelled using a state-
transition network from which planning operators can 
be extracted. Part 2 sub-divides into six steps: 
• Step 2.1 : Generate the description language for the 

domain. The description language is the set of all 
relationships between object-instances that satisfy 
the cardinality and exclusion constraints. 

• Step 2.2 : Construct the version space for the 
description language using the cardinality and 
exclusion constraints to eliminate invalid candidate 

                                                 
5 By convention, the same instance of the Block object-
class cannot be matched to the two different variables 
?Block1 and ?Block2. 

nodes. The version space is a partial lattice of valid 
nodes, with each node being described in terms of 
relationships between the domain object-instances. 

• Step 2.3 : Extract the domain states from the version 
space. The domain states are the lattice nodes in the 
maximally specific boundary of the version space. 

• Step 2.4 : Using the Single Actor / Single State-
Change (SA/SSC) meta-heuristic, determine the 
domain transitions between the domain states. The 
SA/SSC heuristic is that a single object (the actor) 
initiates the transition, undergoing a change in just 
one of its relationships. The actor is at the root of a 
causal hierarchy of state-changes in the other 
participating objects. For example, in the blocks 
world when a robot hand picks up a block from the 
table, the hand is the actor, making true its 
holding relationship with the block being picked 
up. The hand’s action causes the block both to act 
on itself so that it is no longer clear and to act on 
the table, breaking the onTable relationship. 

• Step 2.5 : Generalise the domain transitions as 
transition-classes. 

• Step 2.6 : Reformat the transition-classes as planning 
operators. 

Depending on how POI is to be used, Part 1 may be 
optional. If an agent observes an existing domain and 
uses POI to gain knowledge about how to plan actions in 
that domain, then Part 1 is essential. By contrast, if an 
ERD or equivalent static model of a domain (which may 
not yet exist) is available, then modelling can proceed 
directly to Part 2. In knowledge assimilation, one agent 
(the source) performs Part 1 and another (the recipient) 
performs Part 2. 

Knowledge Sharing  
Information and knowledge sharing has been extensively 
studied in management and organization theory. For 
simplicity, we will take the terms “information” and 
“knowledge” as being interchangeable, pace Ackoff 
(1989). Information sharing is a dyadic exchange of 
information between a source and a recipient (adapted 
from Szulanski (1996), p.28). Sharing involves the dual 
problem of “searching for (looking for and identifying) 
and transferring (moving and incorporating) knowledge 
across organizational subunits” (Hansen, 1999, p.83). 
For the purposes of this paper, we will take knowledge 
sharing as meaning knowledge transfer. Searching for or 
discovery of other agents that have suitable 
complementary knowledge about a domain is an area for 
future research. 
Shannon’s (1948) model of communication is useful for 
thinking about knowledge sharing. In the Shannon 
model, the source and recipient each operate within their 
own organizational contexts. Information transfer begins 
when the source generates a message. The message is 
encoded into a form (a signal) in which it is transmitted 
by means of a communications medium, such as 
electromagnetic waves, telephone cables, optical fibres, 
or a transportable electronic storage medium. Random 
noise and systematic distortion may be added during 



transmission. The recipient decodes the signal and 
assimilates the decoded message into its own store of 
knowledge. 
 

 
Figure 2.   Linking source and recipient agents using 

Shannon (1948) model. 

For the purposes of this paper, we assume that the source 
and recipient are agents with an internal structure as 
shown in Figure 1. In general the agents should be able 
to exchange the outputs of their respective Planning, 
Controlling, State Estimation, Goal Setting, and 
Modelling processes, given suitable encoders and 
decoders (Figure 2). We concentrate here on the 
Modelling process, how the source’s knowledge should 
be encoded, and what decoder the recipient needs to 
assimilate that knowledge. We neglect the issue of noise 
and distortion in this paper. 

Assimilating Planning Domain Knowledge  
Lefkowitz and Lesser (1988) discuss knowledge 
assimilation in the context of acquiring domain 
knowledge from human experts. Their implemented 
system, Kn

Ac, was developed to assist experts in the 
construction of knowledge bases using a frame-like  
representation. Assimilated knowledge represented 
domain objects, relationships, and events. The main 
contribution of their research was in developing several 
generic techniques for matching sets of entities and 
collections of constraints. Research questions included: 
• How does the expert’s domain description correlate 

with the description contained in the knowledge base? 
• How should the knowledge base be modified based on 

the expert’s new information? 
• What should be done when the expert’s description 

differs from the existing one? 
Despite the contextual differences, there are strong 
parallels between Lefkowitz and Lesser’s (1988) work 
and assimilating planning domain knowledge. 
Assimilation of domain knowledge should be integrated 
with plan generation and execution. It should permit a 
variety of ways of learning, including learning-by-seeing 
(i.e. by observing the domain and inferring what actions 
are possible), learning-by-being-told (e.g. by domain 
experts or other agents), and learning-by-doing (i.e. by 
generating and executing plans). When knowledge is 
distributed over multiple agents, then individual agents 
may need to combine different ways of learning. In 
particular, an agent may well need to combine 
knowledge it gained from its own observations of a 
domain with information it has gained by being told by 
another agent. Like Lefkowitz and Lesser, learning 
concerns domain objects, relationships, constraints, and 

events. Analogues of Lefkowitz and Lesser’s research 
questions apply; here we are concerned with the planning 
analogue of their second question. 
Considering the POI algorithm from the viewpoint of 
encoding and decoding, we see that there are three forms 
in which knowledge relating to the domain model could 
be exchanged: 
• As cases. The source agent could transmit the domain 

states it has observed, i.e. the input information to Part 
1 of the POI algorithm. The source agent would not 
have to process its observations before transferring 
them to the recipient. The recipient agent would then 
have to add the source’s domain states to its own 
database of domain states, and perform Parts 1 and 2 
of the POI algorithm to obtain a set of planning 
operators. Exchanging knowledge in this form is likely 
to be verbose for real-world domains, possibly with 
duplicated observations. More importantly, it would 
limit knowledge assimilation to learning-by-seeing. 
The only thing that knowledge sharing achieves is that 
the recipient can “see” both what it can itself observe 
and what the source has observed. 

• As static domain models. The source agent could 
transmit its static domain model, i.e. the information 
as output by Part 1 and as input to Part 2. The source 
agent would have had to perform Part 1 before 
transmitting its static domain model to the recipient. 
The recipient agent would then have to add the 
source’s objects, relationships, and constraints to its 
own database of objects, relationships, and constraints. 
Where source and recipient agents disagree on 
whether a constraint holds, then the constraint is 
assumed not to hold (because one of the agents will 
have seen a counterexample). The recipient retains its 
own list of object-instances and does not assimilate the 
source’s object-instances list, because the recipient 
may not be able to execute plans on objects  that it 
cannot see. Then the recipient would perform Part 2 of 
the POI algorithm to obtain a set of planning 
operators. Exchanging knowledge in this form is likely 
to be concise. Moreover, it would allow learning-by-
seeing, learning-by-being-told, and their combination. 

• As planning operators. The source agent could transmit 
its dynamic domain model, i.e. the information as 
output by Part 2. The recipient agent would then 
simply have to add the planning operators obtained 
from the source to its own planning operators. 
Exchanging knowledge in this form is still more 
concise, but assumes that (1) the source and the 
recipient agents’ observations are sufficiently rich for 
both of them to be able to induce a set of planning 
operators, and that (2) their sets of planning operators 
are complementary. There is no way for additional 
planning operators to be induced by synergy. 

In this research, the encoding-decoding schema has been 
determined by the researcher. Ideally, the source and 
recipient agents should themselves be able to negotiate a 
suitable encoding-decoding schema, depending on 
considerations such as privacy, security, and 
communications bandwidth. Further research is needed 
to provide agents with such a capability. 



Worked Examples  
Two worked examples should make the key issues clear. 
The first example is the one-block world and the second 
is taken from the three-blocks world. Because the one-
block world is simple, the first example is described in 
more detail. The second example illustrates the need to 
select example states carefully if the agents are to induce 
a full set of planning operators. 
Suppose two agents each observe a different state of a 
one-block world (Slaney & Thiebaux, 2001), as 
represented by Nilsson (1980)6. There are two possible 
states7: [[holding hand1 block1] [onTable 
block1 nil] [onTable nil table1]] and 
[[holding hand1 nil] [holding nil block1] 
[onTable block1 table1]]. Let us suppose that 
Agent1 is given the first state description and Agent2 the 
second. 
The following table depicts the static domain model that 
would result from their performing Part 1 separately, i.e. 
without knowledge sharing and assimilation: 
 
 Agent1’s model Agent2’s model 
Object -
classes 

Hand, Block, Table Hand, Block, Table 

Object -
instances 

hand1, block1, table1 hand1, block1, table1 

Relations holding ?Hand ?Block 
onTable ?Block nil 
onTable nil ?Table 

holding ?Hand nil 
holding nil ?Block 
onTable ?Block ?Table 

Constraints IF holding ?Hand1 
?Block1 
AND holding ?Hand1 
?Block2 
THEN INVALID 
-- hand cannot hold 
multiple blocks 
 
IF holding ?Hand1 
?Block1 
AND holding ?Hand2 
?Block1 
THEN INVALID 
-- block cannot be held 
by multiple hands 
 
IF holding ?Hand1 
?Block1 

IF holding ?Hand1 nil 
AND holding ?Hand2 nil 
THEN INVALID 
-- multiple hands cannot be 
empty at same time 
 
IF holding nil ?Block1 
AND holding nil 
?Block2 
THEN INVALID 
-- multiple blocks cannot be 
not held 
 
IF holding nil ?Block1 
AND onTable ?Block1 
?Table1 
THEN INVALID 
-- block cannot be not held 
and on a table                                                  

6 Distinguishing three object-classes (Hand, Block, Table) and 
yielding four operators (pickup, putdown, stack, unstack). See 
Grant et al, 1994. 
7 A third state would be observed in an orbiting spacecraft: 
[[holding hand1 nil] [holding nil block1] [onTable 
block1 nil] [onTable nil table1]]. During development of 
the POI algorithm the three states were indeed induced, resulting in the 
induction of a set of six operators (pickup, putdown, 
floatoff, floaton, letgo, capture). The author 
observed that he had failed to represent the action of gravity. To do so 
while retaining the Nilsson (1980) domain representation requires a 
triple constraint, stating in effect that a block must be either held by a 
hand or supported by a table or by another block. This can be solved by 
extending the POI ontology, either by allowing constraints of arity 
higher than two or by introducing an inheritance hierarchy of object-
classes. The author adopted the latter solution, because this has the 
synergistic consequence of reducing the complexity of the version 
space, leading to savings in induction time and memory requirements 
(Grant, 1996). 

AND onTable ?Block1 
nil 
THEN INVALID 
-- block cannot be held 
and not on a table 
NOTE: This constraint 
does not hold because 
the observed state is a 
counterexample. 
 
IF onTable ?Block1 
nil 
AND onTable ?Block2 
nil 
THEN INVALID 
-- multiple blocks cannot 
be off the table 
 
IF onTable nil ?Table1 
AND onTable nil 
?Table2 
THEN INVALID 
-- multiple tables cannot 
be clear at same time 

and on a table 
NOTE: This constraint does 
not hold because the 
observed state is a 
counterexample. 
 
IF onTable ?Block1 
?Table1 
AND onTable ?Block1 
?Table2 
THEN INVALID 
-- block cannot be on 
multiple tables 
 
IF onTable ?Block1 
?Table1 
AND onTable ?Block2 
?Table1 
THEN INVALID 
-- table cannot hold 
multiple blocks 

 
Neither of the agents would be able to induce any 
planning operators, because POI Part 2 would simply 
result in the induction of a single state, namely the state 
each agent had observed originally. There needs to be a 
minimum of two states for the SA/SSC heuristic to find 
any transitions. 
Now suppose that the agents share their domain 
knowledge. Since neither of them can induce planning 
operators separately, exchanging data in the form of 
planning operators is not feasible. However, they can 
exchange knowledge in the form either of cases or of 
their static domain models. For the one-block world it is 
simpler for the agents to exchange cases, but this does 
not apply to complex, real-world examples. 
Sharing their domain models enables the agents to create 
synergistic knowledge. Firstly, Agent1 learns from 
Agent2 that blocks can be on tables, and Agent2 learns 
from Agent1 that hands can hold blocks. Secondly, 
additional constraints can be identified, as shown in the 
following table: 
 
 Synergistic knowledge 
Relations holding ?Hand ?Block 

holding ?Hand nil 
holding nil ?Block 
onTable ?Block ?Table 
onTable ?Block nil 
onTable nil ?Table 

Constraints IF holding ?Hand1 nil 
AND holding ?Hand1 ?Block1 
THEN INVALID 
-- hand cannot be both empty and holding a block 
 
IF holding nil ?Block1 
AND holding ?Hand1 ?Block1 
THEN INVALID 
-- hand cannot be both held by a hand and not held 
 
IF holding ?Hand1 ?Block1 
AND onTable ?Block1 ?Table1 
THEN INVALID 
-- block cannot be both held and on a table 
 
IF onTable nil ?Table1 



AND onTable ?Block1 ?Table1 
THEN INVALID 
-- table cannot be supporting both a block and nothing 
 
IF onTable ?Block1 nil 
AND onTable ?Block1 ?Table1 
THEN INVALID 
-- block cannot be both off and supported by a table 

 
The synergistic knowledge, together with the additional 
constraints, enables the agents to induce the pickup 
and putdown planning operators. They do not have 
enough knowledge to induce the stack and unstack 
operators because stacks of blocks and the on 
relationship between blocks does not exist in the one-
block world. 
The three-blocks world has 22 states, falling into five 
state-classes (Grant et al, 1994). Experiments with the 
implemented POI algorithm, adapted for knowledge 
assimilation, showed that it is not necessary for the 
agents to observe all 22 states (Grant, 1996). Just two, 
judiciously-chosen, example states sufficed8. In one state 
the hand must be empty, and in the other it must be 
holding a block. One state must show a stack of at least 
two blocks, and one stack must show two or more blocks 
on the table. Inspection shows that there are four pairings 
of the five state-classes that can meet these requirements. 
Two can be rejected on the grounds that they are 
adjacent, i.e. that they are separated by the application of 
just one operator. Successful knowledge assimilation has 
been demonstrated for the remaining two state-pairs: for 
all three blocks on the table paired with the state in 
which one block is held and the other two are stacked, 
and for a stack of three blocks paired with the state in 
which one block is held and the other two are on the 
table. Moreover, the induced set of planning operators 
can be used to generate and successfully execute a plan 
that passes through at least one novel state, i.e. a state 
that the agents had not previously observed. 
It is not known whether two (judiciously-chosen) 
example states suffice in all domains for the induction of 
a full set of planning operators. Hand simulations and 
experiments have only been done for the (one-hand, one-
table, and) one- and three-blocks worlds. More research 
is needed, e.g. by applying knowledge assimilation using 
POI to the  International Planning Competition 
benchmark domains and to real-world domains where 
planning knowledge is distributed geographically or 
organizationally. 

Related Work  
In 2003, Zimmerman and Kambhampati surveyed the 
research on applying machine learning to planning. They 
identified three opportunities for learning: before 
planning, during planning, and during execution. 
Learning techniques applied fell into two groups: 
inductive versus deductive (or analytical) learning. 
Inductive techniques used included decision tree 
                                                 
8 Introspection suggests that there may be a single state in the two-
hands, four-block world that could provide all the information needed 
to induce all four operators, but then the knowledge could not be 
distributed over multiple agents. 

learning, neural network, inductive logic programming, 
and reinforcement learning. They observed that early 
research emphasised learning search control heuristics to 
speed up planning. This has fallen out of favour as faster 
planners have become available. There is now a trend 
towards learning or refining sets of planning operators to 
enable a planner to become effective with an incomplete 
domain model or in the presence of uncertainty. 
“Programming by demonstration” can be applied so that 
the user of an interactive planner could create plans for 
example problems that the learning system would then 
parse to learn aspects peculiar to the user. 
In terms of Zimmerman and Kambhampati’s (2003) 
survey, this paper applies Mitchell’s (1982) inductive 
version space and candidate elimination algorithm to 
planning. The POI algorithm could be used before 
planning, during planning, or during execution. It centres 
on the learning of domain models in the form of planning 
operators. It exhibits an element of “programming by 
demonstration” in that the user shows POI example 
domain states, rather than example plans or execution 
traces. 
In his 2006 lectures on learning and planning at the 
Machine Learning Summer School, Kambhampati 
distinguished three applications of learning to planning: 
learning search control rules and heuristics, learning 
domain models, and learning strategies. Research in 
learning domain models could be classified along three 
dimensions: the availability of information about 
intermediate states, the availability of partial action 
models, and interactive learning in the presence of 
humans. POI does not need information about 
intermediate states nor partial action models, and it does 
not require the presence of humans. By comparison, 
other operator learning algorithms require as input:. 
• Background domain knowledge: Porter & Kibler 

(1986), Shen (1994), Levine & DeJong (2006). 
• Partial domain model (i.e. operator refinement, rather 

than ab initio operator learning): Gil (1992), 
DesJardins (1994), McCluskey et al (2002). 

• Example plans or traces: Oates and Cohen (1996), 
Wang (1996), Yong et al (2005). 

• Input from human experts: McCluskey et al (2002). 
POI can accept a static domain model from a human 
expert (e.g. for a domain that does not yet exist) 
instead of observing domain states, but this is not 
applicable to assimilating domain knowledge 
distributed over multiple agents. 

POI is closest to Mukherji and Schubert (2005) in that it 
takes state descriptions as input and discovers planning 
invariants. The differences are that POI also discovers 
objects and relationships and uses the information it has 
discovered to induce planning operators. Like 
McCluskey and his collaborators (McCluskey & Porteus, 
1997; McCluskey et al, 2002), POI models domains in 
terms of object-classes (sorts, in McCluskey’s 
terminology), relationships, and constraints. 



Conclusions  
This paper has addressed the topic of planning with a 
domain model that is complete and correct but 
distributed across multiple agents. The paper takes the 
view that the agents must share their knowledge if 
planning is to succeed. The Planning Operator Induction 
(POI) algorithm (Grant, 1996) has been introduced as a 
means of acquiring planning operators from carefully-
chosen examples of domain states. Unlike other 
algorithms for acquiring planning operators (Porter & 
Kibler, 1986) (Gil, 1992) (Shen, 1994) (DesJardins, 
1994) (Wang, 1996) (Oates & Cohen, 1996) (McCluskey 
et al, 2002) (Yang et al, 2005) (Mukherji & Schubert, 
2005) (Levine & DeJong, 2006), the example domain 
states do not need to form a valid sequence, plan-
segment, or plan, nor do preceding or succeeding 
transitions have to be given. When agents share their 
partial knowledge of the domain model, the two parts of 
the POI algorithm can be divided between the source and 
recipient in the knowledge-sharing process. The agents 
exchange the static, object-oriented domain model 
resulting from Part 1 of the POI algorithm. This enables 
the recipient to identify synergies between the shared 
knowledge and knowledge it already has and to perform 
the induction, i.e. Part 2 of the algorithm. 
This paper makes several contributions. Its primary 
contribution is in showing how planning domain 
knowledge that is distributed across multiple agents may 
be assimilated by sharing partial domain models. 
Secondary contributions include: 
• The POI domain-modelling algorithm is presented that 

acquires planning operators from example domain 
states. The example domain states do not need to form 
a valid sequence, plan-segment, or plan, nor do 
preceding or succeeding transit ions have to be given. 

• The ontology used in the POI algorithm extends 
McCluskey and Porteus’ (1997) object-centred 
representation. Relationships and constraints are 
strictly binary. Constraints are between pairs of 
relationships, rather than domain-level axioms. Hence, 
both relationships and constraints are associated with 
(classes of) domain objects. 

A key limitation of the research reported here is that, 
while knowledge assimilation using the POI algorithm 
has been implemented, it has only been tested for the 
(one-hand, one-table, and) one- and three-blocks worlds. 
Future research should include: 
• Applying POI-based knowledge assimilation to a wider 

variety of planning domains, e.g. International 
Planning Competition benchmark domains. One 
research ques tion to be addressed is whether two 
(judiciously-chosen) example states suffice in all 
domains for the induction of a full set of planning 
operators. 

• Elucidating the conceptual links between the POI 
algorithm and plan generation using planning graphs. 

• Applying the POI algorithm to sense-making, i.e. the 
modelling of novel situations (Weick, 1995). An 
approach has been outlined in Grant (2005). 

• Extending the POI ontology to model inheritance and 
aggregation relationships, with the eventual aim of 
using the Unified Modeling Language (UML) as a 
representation for the static, object-oriented and 
dynamic, behavioural domain models in the POI 
algorithm. 

• Developing an integrated planning environment that 
incorporates domain modelling, plan generation, plan 
execution, state estimation, and goal setting to act on 
real and simulated domains. 

• Extending agent capability to (1) negotiating mutually-
acceptable encoding-decoding schemes, and (2) 
discover agents that have complementary knowledge. 

• Investigating the application of knowledge assimilation 
using POI to real-world domains where planning 
knowledge is distributed geographically or 
organizationally. Example domains include air traffic 
control and military Command & Control (Grant, 
2006). 
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