
Comprehensive approach to University Timetabling Problem

Wojciech Legierski, Łukasz Domagała

Silesian University of Technology, Institute of Automatic Control, 16 Akademicka str., 44-100 Gliwice, Poland
Wojciech.Legierski@polsl.pl, Lukasz.Domagala@student.polsl.pl

Abstract
The paper proposes a comprehensive approach to University
Timetabling Problem, presents a constraint-based approach to
automating solving and describes a system that allows
concurrent access by multiple users. The timetabling needs to
take into account a variety of complex constraints and uses
special-purpose search strategies. Local search incorporated into
the constraint programming is used to further optimize the
timetable after the satisfactory solution has been found. Paper
based on experience gained during implementation of the system
at the Silesian University of Technology, assuming coordinating
the work of above 100 people constructing the timetable and
above 1000 teachers who can have influence on timetabling
process. One of the original issues used in real system, presented
in the paper, is multi-user access to the timetabling database
giving possibility of offline work, solver extended by week
definitions and dynamic resource assignment.

Introduction
Timetabling is regarded as a hard scheduling problem,
where the most complicated issue is the changing of
requirements along with the institution for which the
timetable is produced. Automated timetabling can be
traced back to the 1960s [Wer86]. Some trials of
comprehensively approaching the timetabling problem are
presented in the timetabling research center lead by prof.
Burke [PB04] and in several PhD thesis
[M05],[Rud01],[Mar02]. There are works connected with
general data formulation , metaheuristic approaches, and
user interfaces for timetabling. The paper presents a
proposition of a comprehensive approach to the real-
world problem at Silesian University of Technology. This
paper presents the methods used for automated
timetabling, data description and user interaction
underlining connection of different idea to built whole
timetabling system.

Problems description
A number of timetabling problems have been discussed in
the literature [Sch95]. Based on the detailed classification
proposed by Reise and Oliver [RL01], the presented
problem consists of a mixture of following categories:

Class-Teacher Timetabling (CTT) – the problem
amounts to allocating a timeslot to each course provided
for a class of students that has a common programme,
Room Assignment (RA) - each course has to be placed in
a suitable room (or rooms), with a sufficient number of
seats and equipment needed by this course.
Course Timetabling (CT) - the problem assumes that
students can choose courses and need not belong to some
classes.
Staff Allocation (SA) - the problem consists of assigning
teachers to different courses, taking into account their
preferences. The problem assumes that one course can be
conducted by several teachers.

Till now Examination Timetabling (ET) was not required,
but is planned to be added in future.

Comprehensive approach to University Timetabling
Problem (UTP), besides taking into account different
timetabling problems, also assumes following tasks:

- formulating timetable data requires a lot of
flexibility,

- automated methods should be available for sub-
problems and should be able to take into account
many soft and hard constraints,

- timetabling can be conducted by many users,
simultaneously, which requires assistance in
manual timetabling and quick availability to
different resources’ plans.

Constraints
Timetable of UTP has to fulfill the following constraints,
which can be expressed as hard or soft:

- resources assigned to a course (classes, teachers,
rooms, students) have time of unavailability and
undesirability,

- courses with the same resource cannot overlap,
- some courses must be run simultaneously or in

defined order,
- some resources can be constrained not to have

courses in all days and more than some number
during a day,

- no gaps constraint between courses for the same
resource or gaps between some specific courses
can be strictly defined,

- the number of courses per day should be roughly
equal for defined resource - p,

- courses should start from early morning hours.

Data representation
Although UTP data is gathered in relational database for
multi user access, data for the solver is saved as a XML
file, which also expresses sub-problems for the solver.
The main advantage of using XML file is the ability of
defining relations between courses, resources and
constraints in a very flexible way. The flexibility of UTP
features:

- defining arbitrarily resources (classes, teachers,
rooms, students)

- allowing assignment of some different resources
to one course,

- assigning resources can be treated as disjunction
of some resources, where also a number of
chosen resources can be defined,

- constraints can be imposed on every resource
and every course,

Additionally in UTP we are supposed to produce a plan
which is coherent during a certain time-span (it would be
for example one semester), with courses taking place
cyclically with some period (most often one-week
period). But frequently we face a situation where some
courses do not fit into the period mentioned above, for
example some of them should appear only in odd weeks
or only in even weeks and thus have a two week period.
Seeking solution to this problem we introduced the idea of
“week definition”. Different week definitions can be
defined in the timetable, together with the information,
which of them have common weeks and the courses
assigned to them.

Multi user access

The UTP requires taking into account that there are many
timetable designers, who are engaged in timetabling
process. The teachers and students are asked to submit
information about their choices as well as time
preferences. The appropriate management of the user
interaction is solved by introducing 3 levels of the rights
assigned to each user and connected with set of resources
like groups, teachers, students and rooms:

- user can be administrator of the resource,
- user can be planner of the resource,
- user can only use resource for courses.

Additionally each resource and courses have user which is
call “owner”. Owners and administrators can block
resources to restrict changing them.

Manual timetabling assistance

Timetable designers often do not want to introduce all the
constraints and trust the computer in putting courses in
the best places. Manual timetabling assistance with
constraint explanation seems to be a very important step
in making timetable system useful. The assistance
requires very quick access to a lot of data and relations
between them to provide a satisfactory interface.
Therefore after dragging the course, colors of unavailable
timeslots change to color defining what sort of constraints
will be violated. For example overlapping of rooms
courses has gray color and undesirable hours of a teacher
leaded the course has yellow color.

Structure of the system
The proposed solution for comprehensive approach to
UTP requires a usage of different languages and
technologies for different features. Therefore the proposed
system consists of 4 parts as presented in Figure.1. The
system was firstly presented by the author in [LW03].
Presented system was extended mainly by multi-user
access.

Web application
(PHP and JavaScript)

Dynamic web pages

Solver
(ECLiPSe)

Timetable Manager
(VC++)

Dedicated file format, STTL
XML file with problem description

XMLfile with solution

Database

SQL statements

Figure 1, Diagram of four parts of the system, their
dependencies and their output data format.

Web application
HTML seems to be an obvious solution for presenting
results of the timetabling process in the Internet, but it
provides only static pages which are not sufficient for

SAT. JavaScript improves the user interface and provides
the capability to create dynamic pages.
As client-side extensions it allows an application to place
elements on a HTML form and respond to user events
such as mouse clicks, form input, and page navigation.
Server-side web-scripting languages provide developers
with the capability to quickly and efficiently build Web
applications with database communication. They became
in the last decade a standard for dynamic pages. PHP
being one of the most popular scripting languages was
chosen for developing the system. Its main advantages are
facilities for database communication. People are used to
Web services which provide structured information,
search engines, email application etc. The proposed
system had to be similar to those services in its
functionality and generality. Most timetable applications
give a possibility to save schedules for particular classes,
teachers and rooms as HTML code, but they do not allow
interaction with its users. Creating a timetable is a process
which involves often a lot of people working on it. There
are not only timetable designers, but also teachers, who
should be able to send their requirements and preferences
to the database. This is to a high extent facilitated by a
web application, which allows interaction between
teachers, students and timetable designers. An example
screen of the web timetabling application is presented in
Figure 2.

Figure 2. The example screen of the Web application

Timetable Manager
It is hard to develop a fully functional user interface using
only Internet technologies. Therefore VC++ was used to
build the Timetable Manager, a program for timetable
designers. The idea of the program was to simplify
manual timetabling and to provide as much information as
possible during this process. Operating on the data locally
significantly increases performance during data
manipulation, data manipulation is based on SQL queries
on database. Well-known features – drag and drop can be
implemented, layout is based on tree navigation. One of
the most important feature of the timetamble manager is
assistance during manual timetabling. Small timetables,

which automatically show schedules for resources of a
selected course can be freely placed by the user. During
manual scheduling available timeslots are shown and
constraint violations are explained by proper colors. Data
can be saved in two ways:

- data is saved locally in dedicated file format,
- data is synchronized with remote database.

The system takes into account privileges of users and does
not allow unauthorized change of data. An example
screen of the Timetable Manager is presented in Figure 3.

Figure 3. The example screen of manual assistance in
Timetable Manager

Multi user support
Allowing user to work locally forces to develop of a data
synchronization mechanism between locally changed data
and remote database. The proposed mechanism is based
on idea of versioning systems like CVS or SVN. But
taking into account timetable data is much harder than
text files, because of complicated relations between data.
The main advantages of this mechanism are following:

- simultaneously changes are allowed and in case
of conflict possibilities discard changes or
introduce them are given to the user,

- user have very quick access to all timetable
without blocking them for other users,

- changes can be applied for a lot of data (e.g.
through locally solver) ,

- if data are not changed by one user or user has no
rights to change data, there updated without
inform the user,

- default values for changes are chosen in such a
way, that newest changes are taken or changes
with higher level of rights.

Two actions are proposed to take care of integrity of the
data:

Import/update (it is required if data are changed
remotely and user want make export)
1. Assume unique index for each course and resource

and date of the last change. Indexes of deleted
resources are remembered in separate table.
maxIndex – the greater value of all indexes.

2. Remember locally current state (local_UT) and a
whole state of the last imported timetable (last_
remote_UT).

3. Select changes from database, which are newer than
last_ remote _UT.

4. Introduce changes to the last_remote_UT and build
remote_UT.

5. Indexes of local resource, which are greater than
last_remote_UT.maxIndex are increased by
remote _UT.maxIndex - last_ remote _UT.maxIndex.

6. Compare all data of the 2 timetables (remote_UT and
local_UT), and check what kid of data was changed
locally or remotely. Give user possibilities to accept
or reject changes for data which change both locally
and remote.

7. By default assume acceptance of the changes.
8. Replaced last_remote_UT with remote_UT.

Export/commit
1. Make Import to check changes and build remote_UT.

Export is available if the last_remote_UT does not
differ from remote_UT. Otherwise import is forced.

2. Compare local_UT with remote_UT based on the
last change date to show user what changes will be
exported

3. Assume default introduced changes to send them to
database.

4. If some resources or courses are removed, store
indexes with data in a special table.

Multi user support was the most desire feature of the
whole timetable system. It can be solved by online
working on database with multi-user access, transactions
and locking tables. But this solution was rejected, because
of low performance in case of simultaneous work of many
users.

Automated timetabling based on Constraint
Programming paradigm

The presented solver is written in ECLiPSe [ECL] using
the Constraint Programming paradigm and replaced
solver written in Mozart/Oz language. Main idea of the
methodologies are similar to those widely presented in
author’s PhD thesis [Leg06], [Leg03]. The main idea of
the solver were:

- effective search methods are customized for taking
soft constraints into account during the search, based
on the idea of value assessment [AM00]

- custom-tailored distribution strategies are developed,
idea of constraining while distributing, which
allowed to effectively handle constraints and search
for ’good’ timetables straight away,

- custom-tailored search methods were developed to
enhance search effectiveness of timetabling
solutions,

- integration of Local Search techniques into the
Constraint Programming paradigm search enhanced
optimization of timetabling solutions .

Additionally flexibility of the timetable definition was
widened by the week definitions and dynamic resource
assignment.

Week definitions
The idea of incorporating week definitions into the
problem definition comes from the fact that scheduling an
“odd” course will cause unused time in the “even” weeks
and vice versa. This might cause long gaps between
courses and could also render the problem unsolvable. To
deal with this disadvantage we could prolong the
scheduling period from one to two weeks to take account
of courses with a longer cycle. This unfortunately has a
drawback of doubling the domains of the courses' start
variables and a necessity to add special constraints (to
enforce the weekly scheduled courses happening in the
same time during both weeks). The aforementioned
solution would however not apply in some situations, for
example in the case when some courses are required to
happen only a few times in the semester or only in the
second half of the semester. It would also increase the size
of variable domains causing a great computational
overhead. We can eliminate these drawbacks thanks to the
introduction of week definitions. Week definitions are
logical structures that group a certain number of time
periods from the whole time-span. Referring to the
previous examples a week definition of odd weeks would
consist of weeks numbered <1 , 3 , 5 …15>, week
definition of all weeks<1,2,3,…16> and so on , more
examples below:

week_def{id:”A”,
 weeks:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
} (all weeks)
week_def{id:”O”, weeks:[1,3,5,7,9,11,13,15]}
 (odd weeks)
week_def{id:”E”, weeks:[2,4,6,8,10,12,14,16]} (
even weeks)
week_def{id:”SHO”, weeks:[9 ,11,13,15]} (second
half of the semester odd weeks)
week_def{id:”F4W”, weeks:[1,2,3,4]} (first four
weeks)

For certain pairs of week definitions we state whether
they are in conflict, which corresponds to the fact that
their sets of weeks have common elements. Basing on the
example above we would say that conflicts are:

week_def_conflict{id1:”A”, id2:”O”}
week_def_conflict{id1:”A”, id2:”E”}
week_def_conflict{id1:”A”, id2:”SHO”}
week_def_conflict{id1:”A”, id2:”F4W”}
week_def_conflict{id1:”O”, id2:”SHO”}
week_def_conflict{id1:”O”, id2:”F4W”}
week_def_conflict{id1:”E”, id2:”F4W”}

Having defined week definitions we take from the input
data assignment at least one of them to each course:

course {id:”act1”,start_time:SA1 duration:5, … ,
week_defs:[“O”] , … }
(“act1” taking place in odd weeks)
course {id:”act2”,start_time:SA2 duration:7
week_defs:[“F4W”, “SHO”] , … },
(“act2” taking place in first four weeks of the
semester and in odd weeks of the second half of
the semester)

These information is used at the constraint setup phase.
Pairs of courses which do not contain any conflicting
definitions are excluded from the constraint setup,
because they occur in different weeks and therefore there
is no risk that they would require the same resources
during the same time.
Pairs of courses that contain at least one pair of
conflicting week definitions, are potentially competitors
for the same resources during the same time and need to
be taken under consideration during constraint setup.
The idea of week definitions is a universalized and
convenient approach of handling courses which are
exceptional and do not occur regularly within each time
period.

Dynamic resource assignment
We have taken the approach that resources do not have to
be instantiated at the phase of problem definition, which
on one hand enforces a more complex programmatic
approach but on the other better reflects the nature of real
timetabling problems and also allows greater flexibility at
search phase (possibility of balancing resource usage,
moving courses between resources might lead to further
optimization of the cost function).
Normally we would assume that a course requires a fixed
set of resources to take place. That would be for example,
a group of teachers, a group of classrooms and a group of
students, all known and stated at the time of problem
definition. We extend this model by enabling the user to
state how many elements from a group of resources are
required , without an explicit specification which ones
should be used. This flexibility is achieved thanks to the

definition and management of resource groups
implemented in our XML interface and processed by the
solver. The data structure is such that for every course we
define resources. Resources are defined by a (theoretically
unlimited) number of resource groups. Each group
contains indexes, that correspond to certain resources and,
as a property, a number of required resources.
The number of required resources can range from one to
the cardinality of the group. When the number of required
resources is maximal, all the resources within the group
need to be used, but for any number below the maximum
we are left with a choice of resources.

<Course>
…
<Resources>
 <Group required=2 >
 <Resource>teacher_32</Resource>
 <Resource>teacher_78</Resource>
 <Resource>teacher_93</Resource>
 </Group>
 <Group required=1 >
 <Resource>classroom_122</Resource>
 <Resource>classroom_123</Resource>
 <Resource>classroom_144</Resource>
 <Resource>classroom_215</Resource>
 </Group>
 <Group required=1 >
 <Resource>students_group_23</Resource>
 </Group>
 <… optionally more groups>
</Resources>
</ Course >

This structure is translated into resource variables list in
each course.

Course … , resource_variables_list:[Teacher1,
Teacher2, Classroom1, StudentGroup1] , …}

And domains of those variables present in the list

domain(Teacher1)=domain(Teacher2) = [teacher_32,
teacher_78, teacher_93]
domain(Classroom1)=[classroom_122 ,
classroom_123 , classroom_144 , classroom_215]

For every group of resources we create as many resource
variables as number of required resources, and give each
of them a domain of all resources in a group , then
constrain them to be all-different (since we cannot use any
resource twice in one course). For those groups where all
resources are required, variables should get instantiated
right away which corresponds to the model with fixed
resources:

StudentGroup1 = students_group_23

What we need to ensure now is that any two courses do
not use the same resource at the same time. This is
achieved for instantiated resources by imposing a
constraint that prevents courses from overlapping in time,
for every pair of courses that use the same instantiated
resource and are in conflict according to week definitions.
It is sometimes possible to set up global constraints
involving more than two courses that require the same
resource but only if each pair in the group is in conflict
according to their week definitions, which is not always
the case.

What still needs to be handled are the uninstantiated
resource variables with domains. To do this we impose a
suspended test on every pair of courses that have at least
one common resource in their resource variables domains
and are in conflict according to their week definitions.
The tests wait for instantiation of both resources that
could potentially be the same, and checks if they are. If
the test succeeds, the constraint that prevents the pair of
courses from overlapping is imposed on the courses. The
invocation of tests and consequently imposing of
constraints happens at the search phase when resources
get instantiated by the search algorithm.

To enhance the constraint propagation it is useful to
impose a second set of tests on the courses to ensure that
the same resources are not chosen for courses that overlap
in time. To achieve this , for each pair of courses that are
in conflict according to their week definitions we impose
a test checking whether the courses overlap (different
conditions guarding for domain updates are acceptable
here, domain bound changes as well as variable
instantiation). If the test succeeds the all-different
constraint is imposed on resource lists of the two courses
stating that none of the variables in one list takes the same
value as any variable in the other (since they can not use
the same resources whilst overlapping in time and
belonging to conflicting week definitions).

This second set of tests (considering courses’ start times)
is redundant. We notice that its declarative meaning is the
same as for the first set of tests (considering resource
variables) , but in the case when we proceed through the
search tree both by instantiating start times for courses
and resource variable, we get a better constraint
propagation and avoid exploring some parts of search tree
which do not contain a solution.

There is a need to use these suspended tests that set up
constraints during search phase, because at the constraint
setup phase we do not have the knowledge which
activities will overlap in time or which will use the same
resources therefore we need to wait for further

instantiation of variables. This slight complication is the
consequence of using dynamic resource assignment.

Results
The final results cannot be presented, because of the
implementation stage of the whole system. Some results
are taken from previous solver written in Mozart/Oz
language for two small real problem – one from high-
school and departure at the Silesian University of
Technology. Results presented in Figure 4 shows that
using a too complicated propagator can twice increase
time and memory consumption.

Figure 4. Comparison of two types of no overlap
constraints.

Schedule.serialize is a strong propagator to implement
capacity constraints. It employs edge-finding, an
algorithm which takes into consideration all tasks using
any resource. This propagator is very effective for job-
shop problems. However, for the analyzed cases this
propagator is not suitable, because most tasks have
frequently small durations and the computational effort is
too heavy as compared with the rather disappointing
results. FD.disjoint which although may cut holes into
domains, must be applied for each two courses that cannot
overlap. Those constraints enable also the handling of
some special situations connecting with week definitions
described in previous section.

Popular first-fail (FF) strategy was compared with
custom-tailored distributed strategy (CTDS) based on
constraining while distributing and choosing those values
for variables, which have smallest assessment (assessment
for value was increased when soft constraints were
violated). Optimization was checked for popular branch-
and-bound and idea of incorporation local search into
constraint programming. This idea based on following
steps after finding feasible solution:
1. Finds a course which introduced highest cost (e.g.

makes gaps between courses)
2. Finds a second course to swap with the first one.
3. Creates a new search for the original problem from

memorized initial space.
4. Instantiates all courses (besides these two previously

chosen) to the values from solution. It can be made in
one step because they surely do not violate constraints.

5. Schedules first course in the place of the second one.
6. Finds the best start time for the second course.

7. Computes the cost function. If it has improved, the
solution is memorized, else another swap is
performed.

Results of comparisons are presented in Figure 5.

Figure 5. Comparison of two types of distribution strategy
and optimisation methods.

Conclusion and future work
Presented system describing comprehensive approach to
real-world University Timetabling problem is still during
implementation at the Silesian University of Technology.
Most of the parts system has been already implemented,
but it is still not used in full range. Multi-user paradigm
has been already implemented and tested. It is one of the
most important feature appreciated by the user, which use
nowadays only manual assistance of the presented system.
Authors plan test different methodologies based on
Constraint Programming and Local Search after gathering
data from whole university. The different search methods
will be tested similar to Iterative Forward Search
presented in [M05].

References
[AM00] S. Abdennadher and M. Marte. University course

timetablingusing constraint handling rules. Journal of
Applied Artificial Intelligence, 14(4):311–326, 2000.

 [ECL] The ECLiPSe Constraint Programming System,
http://eclipse.crosscoreop.com/

[Leg03] W. Legierski. Search strategy for constraint-
based class-teacher timetabling. In Practice and
Theory of Automated Timetabling IV, volume 2740 of
Lecture Notes in Computer Science, pages 247–261.
Springer-Verlag, 2003.

[LW03] W. Legierski and R. Widawski. System of
automated timetabling. In Proceedings of the 25th
International Conference Information Technology
Interfaces ITI 2003, Lecture Notes in Computer
Science, pages 495–500, 2003.

[Leg06] W. Legierski. Automated timetabling via
Constraint Programming, PhD Thesis, Silesian
University of Technology, Gliwice, 2006.

[Mar02] M. Marte. Models and Algorithms for School
Timetabling A Constraint-Programming Approach.
PhD thesis, Ludwig-Maximilians-Universitat
Munchen, 2002.

[M05] T. Muller. Constraint-based Timetabling. PhD
thesis, Charles University in Prague, Faculty of
Mathematics and Physics, 2005.

[PB04] S. Petrovic and E.K. Burke, Edmund K,
Handbook of Scheduling: Algorithms, Models, and
Performance Analysis, Chapter 45: University
Timetabling,CRC Press,Edt: J. Leung, 2004

[RL01] Oliveira E. Reise L.P. A language for specifying
complete timetabling problem. In Practice and Theory
of Automated Timetabling III, volume 2079 of
Lecture Notes in Computer Science, pages 322–341.
Springer-Verlag, 2001.

[Rud01] H. Rudova. Constraint Satisfaction with
Preferences. PhD thesis, Masaryk University Brno,
2001.

[Sch95] A. Schaerf. A survey of automated timetabling.
In Wiskunde en Informatica, TR CS-R9567. CWICent,
1995.

 [Wer86] J. Werner. Timetabling in Germany: A survey.
Interfaces, 16(4):66 74, 1986.

