
Constructive Negation in CLP(H)

Roman Barták*

Department of Theoretical Computer Science
Charles University

Malostranské nám. 2/25
Praha 1, Czech Republic

e-mail: bartak@kti.mff.cuni.cz
URL: http://kti.ms.mff.cuni.cz/~bartak/

phone: +420-2 2191 4242
fax: +420-2 2191 4323

Abstract: Inclusion of negation into logic programs is considered traditionally to be
painful as the incorporation of full logic negation tends to super-exponential time
complexity of the prover. Therefore the alternative approaches to negation in logic
programs are studied and among them, the procedural negation as failure sounds to be the
most successful and the most widely used. However, with the spread of Constraint Logic
Programming (CLP), a different approach called constructive negation becomes more
popular. The reasons for acceptance of constructive negation are the preservation of the
advantages of the negation as failure, i.e., efficiency and handling special features of the
language, and, at the same time, while removing the main drawbacks, i.e., handling ground
negative subgoals and usage as a test only.

In this paper we present a constructive approach to negation in logic programs. We
concentrate on implementation aspects of constructive negation here, i.e., on the design of
CLP(H) system, where H is the Herbrand Universe. According to the CLP approach, we
use equalities and disequalities to process unification and negation. We describe a constraint
solver for solving equality and disequality constraints over the Herbrand Universe and we
propose a unique filtering system to obtain relevant solutions. Finally, we combine the
constraint solver with the filtering system to implement the constructive negation
efficiently. The presented approach to constructive negation is justified by an
implementation work.

Keywords: constructive negation, logic programming, Prolog, constraints, CLP

1 Introduction
Logic programming, i.e., programming using definite clauses, does not allow negated
goals in the bodies of clauses. Also, it is known that incorporation of full logic negation
tends to super-exponential complexity of the prover. However, the inclusion of some
form of negation is required from the programming point of view and, thus, the
alternative approaches, mostly based on Reiter's Closed World Assumption originated in
databases, have been proposed.

Currently the most successful approach to negation in logic programming is
procedural negation as failure which is also a part of ISO standard of Prolog. The
operational behaviour of this form of negation can be easily described by the following
Prolog program:

not P:-P,!,fail.
not P.

The advantages of the negation as failure, or more precisely, the negation as finite failure,
make it attractive especially from a programming point of view. It uses sub-derivations to
determine negative goals, thus exploiting the efficiency of the underlying logic
programming system, and handling “special” features of the language, e.g., cut.
However, the procedural negation as failure is known to have two important drawbacks:

* Partially supported by the Grant Agency of Czech Republic under the contract No 201/96/0197.

�

it can be used safely on ground subgoals, and on some particular types of non-ground
goals, and it cannot generate any new bindings for query variables.

To overcome the above mentioned drawbacks of negation as failure Chan [7]
introduced a new concept of constructive negation. Constructive negation extends the
negation as failure to handle non-ground negative subgoals in a constructive manner. Its
name stresses the fact that this form of negation is capable of constructing new bindings
for query variables. It is based on the following procedure:

1. take a negative subgoal,
2. run the positive version of this subgoal,
3. collect solutions of this possibly non-ground subgoal as a disjunction,
4. negate the disjunction to get a formula equivalent to the negative subgoal.

This constructive negation scheme inherits many of the advantages of negation as failure.
In fact, the steps 1 and 2 from the above scheme are common both to negation as failure
and to constructive negation. Thus, the constructive negation exploits the efficiency of the
underlying logic programming system, and it handles special features of the language as
well. At the same time, it removes the main drawbacks of negation as failure because
constructive negation can handle non-ground negative subgoals and generates new
bindings for query variables. The steps 3 and 4 of the above procedure represent this
constructive approach.

In [26] Stuckey proposed Constraint Logic Programming (CLP) as a much more
natural framework for describing constructive negation. The CLP framework was
developed in [12,14] and it is counted to be the lifesaver of logic programming for real-
life applications. In CLP(A) scheme, the Herbrand Universe is displaced by a particular
structure A which determines the meaning of the functions and (constraint) relation
symbols of the language. The constraint viewpoint of constraint logic programming is
well matched with constructive negation. Not only is constructive negation easier to
understand from this point view, but it gives the clean approach to negation in constraint
logic programming as well. More information on CLP can be found in [6,11,13,14,27].

In this paper we concentrate on implementation aspects of constructive negation. In
fact, we are interested in efficient implementation of the CLP(H) scheme where H is the
Herbrand Universe with equality and disequality constraints. We design the constraint
solver for solving equalities and disequalities over the Herbrand Universe and we
propose a unique filtering system to obtain relevant solutions. The combination of the
constraint solver with the filtering system enables us to implement efficiently the
constructive negation. The resulting system handles negation in a more natural way which
was the primary goal of this work. To justify our approach, we have implemented the
ideas from this paper in two software prototypes. First implementation is based on the
idea of extendible meta-interpreters which we proposed in our previous papers [2,3,4,5].
Second implementation utilizes the concept of meta-variables [20] which extends Prolog’s
built-in unification by user definitions. In the present paper, we will use notions like
substitution and unification in an obvious meaning [15].

The paper is organized as follows. In Section 2 we give motivation of this work.
Section 3 is dedicated to the construction of the constraint solver for solving equalities
and disequalities over the Herbrand Universe. In Section 3.1 we define basic notions
regarding efficient solving of equalities and disequalities and in Section 3.2 we present
algorithms included in the constraint solver. In Section 4 we describe filtering system that
selects solutions relevant to the original goal. We devote Section 5 to the practical aspects
of implementation of the constructive negation. In Section 6 we give some examples to
compare the negation as failure with the concept of constructive negation. We argue for
constructive negation here as it returns more natural solutions and preserves the
declarative character of logic programs. In Section 8 we briefly describe two software
prototypes implementing constructive negation. We conclude with some final remarks
and description of future research.

�

2 Motivation
The procedural negation as finite failure serves very well if applied to ground goals but as
soon as non-ground goals appear the results are disappointing. A rather extensive
literature related to this topic documents that the drawbacks of the negation as failure tend
to behaviour that corrupts the declarative character of logic programs as the following
example shows.

Example:
Let P be the following program:

u(a).
v(a).
v(c).

Now, if we solve the goal not u(X),v(X) using the program P and the
ordinary negation as failure, we get the answer no . However, if the goal
v(X),not u(X) is solved, the solution is X=c. Note, that the only difference
between above two goals is the order of atomic goals so the declarative character,
and thus the solution, of the goals should be the same.

The above example shows that if the negation as failure is used with non-ground goals, it
could return non-intuitive solutions (for other examples see Section 6). To avoid such
non-intuitive behaviour and to keep the declarative character of logic programs we shift
our attention to the constructive negation which promises to handle even the non-ground
negative goals correctly. However, neither the pioneering works on constructive negation
[21,26] nor the recent works on CLP [6,11,13] provide enough details to a successful
implementation of the concept of constructive negation.

3 Equality and disequality solver
We choose the CLP(H), where H is the Herbrand Universe with equality and disequality
constraints, as a natural framework for understanding and implementing constructive
negation. Solving equalities displaces naturally unification there, while disequalities can
appear as a result of negating the solution of the goal. Of course, there are no difficulties
to allow presence of equalities and disequalities in goals and in bodies of clauses as well.

The CLP(A) system embraces primarily the constraint solver over the domain A.
Thus, the first step in the design of the CLP(H) system with constructive negation is to
implement equality and disequality solver over the Herbrand Universe.

3.1 Theoretical background

The nature of equalities and disequalities in the Herbrand Universe enables us to
implement two relatively independent components of the constraint solver, the component
processing equalities and the other component processing disequalities. The cooperation
between these two components is following: if the component responsible for equality
solving resolves successfully the set of equalities then the result, i.e., the valuation of
variables, is applied to the set of disequalities and the resulting disequalities are solved in
the other component of the solver. It can be shown that if any of the components fails
then the system of equalities and disequalities is inconsistent. Just note, that there is no
need to iterate this process as the solution of disequalities does not further influence the
solution of equalities.

The easier part of the constraint solver is processing equalities as it corresponds
directly to the unification which is well understood [15]. To grasp formally the process of
equality solving we introduce three categories of equalities, i.e., valid, invalid and
satisfiable equalities, and we define a normal form for system of equalities. Consequently
we describe the process of solving systems of equalities as a transformation to the normal
form (the solved system of equalities) which will be the result of equality solving.

�

Definition 1: (classification of equalities)
We classify equalities into following three categories (types):

a) t=u is valid iff ∀σ tσ≡uσ (i.e., t≡u)

b) t=u is invalid iff ∀σ ¬(tσ≡uσ)

c) t=u is satisfiable iff ∃σ tσ≡uσ (i.e., ¬∀σ ¬(tσ≡uσ))

where t, u are terms, σ is a substitution and ≡ is a syntactic equality.

Example:
f(a,Y)=f(a,Y) is valid and satisfiable
f(X,g(a))=f(X,b) is invalid
f(X,Z)=f(Y,V) is satisfiable but not valid

According to Definition 1, each equality is either satisfiable or invalid, and some
satisfiable equalities, but not all of them, are valid. Moreover, satisfiable equalities may
become valid or invalid by substituting some variables while the category of both valid
and invalid equalities respectively does not change by applying substitution (see above
example).

The goal of equality solving is to find a (most general) substitution which, when
applied to the system (conjunction) of equalities, makes the system of valid equalities. It
is clear that if there is any invalid equality in the system then it is not possible to find such
substitution and, thus, the system is inconsistent. Also, the inconsistency can arise from
the conflict among satisfiable but not valid equalities, e.g., the system X=a & X=b is
inconsistent.

The process of finding above described substitution is well known under the name
unification and the substitution found is called (most general) unifier [15]. In the
following paragraphs we remind/redefine some notions to be consistent with constraint
approach where solving equalities corresponds to finding the most general unifier.

Definition 2: (unifier, inconsistency, equivalence, normal form)
1) We call the substitution σ a unifier for the system (conjunction) E of equalities if

Eσ is a system of valid equalities.
2) We call the system E of equalities inconsistent if there does not exist unifier for E.
3) Two systems of equalities are equivalent if they have the same unifiers.
4) The system (conjunction) of equalities is in normal form if it consists of
equalities xi=ti, where xi is a variable, ti is a term and

∀i,j xi∉vars(tj) & (i≠j ⇒ xi≠xj).

The notion of unifier is well known, we only customize it to fit in the concept of solving
equalities. Similarly, the notions of inconsistent and equivalent systems of equalities are
obvious. Note also, that the normal form for system of equalities corresponds to the
notion of substitution.

The process of solving system of equalities consists of transformation of the given
system of equalities into equivalent system of equalities in normal form. We use the
normal form to represent the solution of the system of equalities. The following theorem
justifies the process of solving system of equalities.

Theorem 1: (handling equalities)
1) The type of equality, i.e., valid, invalid or satisfiable equality respectively, is
decidable algorithmically.
2) Every satisfiable equality is transformable algorithmically to the equivalent
normal form.
3) Every system E of equalities is either transformable algorithmically to the
equivalent normal form or it is decidable that E is inconsistent.

Due to the space restrictions, we do not prove Theorem 1 formally here, however, we
describe the algorithms mentioned in the theorem in the next section which can be seen as
the proof of Theorem 1. Note also, that Theorem 1 is a consequence of the well known
Unification Theorem [15].

�

While processing equalities is well known in logic programming, handling disequalities
in a constructive manner is relatively new to this area. The disequalities which appear in
various Prolog systems are processed in a similar way as the negation as failure, i.e., it
can only handle ground terms and it can only be used as a test (it cannot generate any new
bindings for query variables). Thus, it is possible to collect disequalities only and use
them as a test as soon as the disequality becomes ground. However, in the constructive
negation we prefer the disequalities to behave constructively, i.e., they reduce domains of
variables. So, we propose a solver that simplifies disequalities and detects the validity of
the disequality as soon as possible.

Similarly to equalities, we classify the disequalities into three categories.

Definition 3: (classification of disequalities)
We classify disequalities into following three categories (types):

a) t≠u is valid iff ∀σ ¬(tσ≡uσ)

b) t≠u is invalid iff ∀σ (tσ≡uσ) (i.e., t≡u)

c) t≠u is satisfiable iff ∃σ ¬(tσ≡uσ) (i.e., ¬∀σ tσ≡uσ)

where t, u are terms, σ is a substitution and ≡ is a syntactic equality.

Example:
f(X,g(a)) ≠f(X,b) is valid
f(a,Y) ≠f(a,Y) is invalid
f(X,Z) ≠f(Y,V) is satisfiable but not valid

Again, according to Definition 3, each disequality is either satisfiable or invalid, and some
satisfiable disequalities, but not all of them, are valid. Moreover, satisfiable disequalities
may become valid or invalid by substituting some variables while the category of both
valid and invalid disequalities respectively does not change by applying substitution (see
above example).

Similarly to the case of equalities, the process of solving system of disequalities
consists of transformation of the given system of disequalities into equivalent system of
disequalities in normal form. The definition of the normal form is a bit complicated for
disequalities. Nevertheless, the notions of unifier, inconsistency and equivalence can be
naturally extended to disequalities. We can also define the relation of subsumption that
helps one to simplify the system of disequalities.

Definition 4: (unifier, inconsistency, equivalence, subsumption of
disequalities)

1) We call the substitution σ a unifier for the system (conjunction) DE of

disequalities if DEσ is a system of valid disequalities.
2) We call the system DE of disequalities inconsistent if there does not exist unifier
for DE.
3) Two systems of disequalities are equivalent if they have the same unifiers.
4) We say that the system of disequalities DE1 subsumes the system of
disequalities DE2 iff every unifier of DE1 is also a unifier of DE2.

Example:
1){X/a,Y/b} is one of unifiers for disequality f(X,Z) ≠f(Y,V)
2) the system f(a,Y) ≠f(a,Y) & Y ≠b is inconsistent
3) f(X) ≠f(a) is equivalent to X≠a
4a) X≠f(Y) subsumes both g(X,b) ≠g(f(Y),Z) and f(Y) ≠X
4b) be careful, X≠f(Y) does not subsume X≠f(a) (unifier {X/f(a),Y/b})
and X≠f(a) does not subsume X≠f(Y) (unifier {X/f(b),Y/b})

Note, that even the definitions of unifier and inconsistency respectively looks similar for
equalities and disequalities, there are some differences between them. While the unifier
for equalities can be constructed using the structures from the original equalities, the

�

unifier for disequalities requires some additional term structures/constants (see above
example). Nevertheless, this is not a problem as we really do not need to construct the
unifier for disequalities (opposite to equalities, where the most general unifier is
constructed). We use the notion of unifier to define the equivalence among disequalities
and the subsumption relation only.

Also, the notion of inconsistent system (conjunction) of disequalities is a bit simpler
as there are no cross-links among disequalities in the system of disequalities. Clearly, the
system (conjunction) of disequalities is inconsistent if and only if this system contains at
least one invalid disequality. This is a consequence of the above observation on
construction of a unifier for disequalities.

The notions of equivalence and subsumption are important for solving the system of
disequalities. Especially the subsumption can simplify markedly the system of
disequalities as the following theorem shows.

Theorem 2: (subsumption and equivalence)
1) Two systems of disequalities DE1 and DE2 are equivalent if and only if DE1
subsumes DE2 and DE2 subsumes DE1.
2) Let the system of disequalities DE1 subsume the other system of disequalities
DE2 and DE be the system of disequalities consisting of disequalities from DE1
and DE2 only, then DE is equivalent to DE1.

The proof of Theorem 2 is a direct consequence of Definition 4 and the observation that
the set of unifiers for system (conjunction) of disequalities is equal to the intersection of
sets of unifiers for individual disequalities from the system.

Example:
X≠a & f(X,g(Y)) ≠f(a,V)) is equivalent to X≠a

According to Theorem 2, the subsumption relation enables simplification of the system of
disequalities. However, we also require further simplification of individual disequalities,
e.g., h(X) ≠h(g(Y)) can be simplified into equivalent form X≠g(Y) in the Herbrand
Universe. Therefore, we introduce a normal form of disequality.

Definition 5: (normal form of disequality)
1) We say that the disequality A≠B is in normal form if A is a list [xi] of n variables
(n≥1), B is a list [ti] of n terms, ∀i xi∉vars(ti) and xi≠ti does not subsume xj≠tj
(i≠j). If n=1, then we speak about simple normal form and we simply write x1≠t1
instead of [x1]≠[t1]
2) Similarly, we say that the system of disequalities is in normal form if each
disequality in the system is in normal form and none disequality from the system
subsumes other disequality from the system.

Example:
1) h(Y,k(g(X),Y,X)) ≠h(X,k(g(f(a)),g(Z),Y)) has normal form

[Y,X,Y] ≠[X,f(a),g(Z)]
2) X≠a & f(a) ≠f(X) & f(Z) ≠f(g(X)) has normal form X≠a & Z ≠g(X)

Similarly to equalities, we can transform algorithmically the system of disequalities into
equivalent normal formal. This transformation makes the kernel of the disequality solver
and, again, we use the normal form to represent the solution of the system of
disequalities. The following theorem justifies the process of solving the system of
disequalities.

Theorem 3: (handling disequalities)
1) The type of disequality, i.e., valid, invalid or satisfiable disequality respectively,
is decidable algorithmically.
2) Every satisfiable disequality is transformable algorithmically to the equivalent
normal form.
3) Every system DE of disequalities is either transformable algorithmically to the
equivalent normal form or it is decidable that DE is inconsistent.

�

Due to the space restrictions, we do not prove Theorem 3 formally here, however, we
present the algorithms mentioned in the theorem in the next section which can be seen as
the proof of Theorem 3.

3.2 The algorithms

In this section we present skeletons of algorithms for solving equalities and disequalities
over the Herbrand Universe. We use a pseudo-language which inherits features of
procedural languages, e.g., case and while constructs, as well as unification and the
fail construct inherited from Prolog. The occurrence of fail during the computation
means that the computation of the solver fails, i.e., the system of equalities and
disequalities is not consistent. However, there is no backtracking when failure occurs.

First, we present the equality solver which consist of procedures solve_eq and
solve_eq_list . These procedures closely cooperate to solve given system of
equalities. As the code is self-explanatory, we do not attach further comments. Also, we
do not include code of all sub-routines like append or apply_substitutions . The
procedure make_eqs used within the procedure solve_eq transfers two list of terms
into a list of equalities, i.e., [a1,…,an] and [b1,…,bn] are transferred to
[a1=b1,…,an=bn].

solve_eq(A=B,Solution)
case of

:var(A) & var(B)
if A=B then

Solution:=[]
else

Solution:=[A=B]
end if

:var(A) & nonvar(B)
if not member(A,vars(B)) then

Solution:=[A=B]
else

fail
end if

:nonvar(A) & var(B)
if not member(B,vars(A)) then

Solution:=[B=A]
else

fail
end if

:nonvar(A) & nonvar(B)
if functor(A)=functor(B) then

make_eqs(args(A),args(B),EqsOfArgs)
solve_eq_list(EqsOfArgs,Solution)

else
fail

end if
end case

end solve_eq

solve_eq_list(EqList,Solution)
Solution:=[]
while not empty EqList

Eq:=delete_first(EqList)
solve_eq(Eq,Sol1)
EqList:=apply_substitution(Sol1,EqList)
Solution:=apply_substitution(Sol1,Solution)
Solution:=append(Solution,Sol1)

end while
end solve_eq_list

�

The equality solver returns three types of solutions:
- if the system of equalities is inconsistent, then the solver fails, i.e., stops by
executing the fail command,
- if all equalities are valid, then the empty list is returned,
- otherwise, the normal form of the system of equalities, which represents the most
general unifier, is returned.

The following three procedures so l ve_deq , so l ve_d i s j _deq and
solve_deq_list make the disequality solver. The structure of disequality solver is
similar to the structure of equality solver, however, there are some differences reflecting
the nature of disequalities, e.g., the special procedure solve_disj_deq is required.
Instead of explaining these differences here, we enclose the trace of the example
computation below the description of the algorithms.

Because of lack of space, we do not include code of functions
join_with_subsumption and add_with_subsumption . Nevertheless, the
definition of these functions can be found in the implementation. The function
join_with_subsumption joins two disequalities in the normal form into one
disequality in the normal form, e.g., X≠a, Y≠b -> [X,Y]≠[a,b]. The function
add_with_subsumption appends the disequality in the normal form to the list
(conjunction) of disequalities in the normal form, e.g., X≠a, {[X,Y] ≠[a,b],Y≠c} ->
{X ≠a, Y≠c}. Both functions include the subsumption test that removes the subsumed
(i.e., unneeded) disequalities.

solve_deq(A≠B,Solution)
case of

:var(A) & var(B)
if A=B then

fail
else

Solution:=(A ≠B)
end if

:var(A) & nonvar(B)
if member(A,vars(B)) then

Solution:=true
else

Solution:=(A ≠B)
end if

:nonvar(A) & var(B)
if member(B,vars(A)) then

Solution:=true
else

Solution:=(B ≠A)
end if

:nonvar(A) & nonvar(B)
if functor(A)=functor(B) then

solve_disj_deq(args(A),args(B),Solution)
else

Solution=true
end if

end case
end solve_deq

�

solve_disj_deq(A,B,Solution)
case of

:empty(A) & empty(B)
fail

:length(A) ≠length(B) then
Solution:=true

:otherwise
Solution:=nothing
while not empty(A) and Solution ≠true do

AH:=delete_first(A)
BH:=delete_first(B)
solve_deq(AH ≠BH,SolH)
Solution:=join_with_subsumption(Solution,SolH)

end while
end case

end solve_disj_deq

solve_deq_list(DeqList,Solution)
Solution:=[]
while not empty DeqList

Deq:=delete_first(DeqList)
solve_deq(Deq,Sol1)
Solution:=add_with_subsumption(Sol1,Solution)

end while
end solve_deq_list

Here is a sample trace of the disequality solver applied to the system of disequalities:

X≠a, f(X,Y,a) ≠f(a,b,X), h(Y,k(X)) ≠h(b,g(X)) .
We include the names of the main procedures, their input arguments and also the output.
To simplify the notation, we collapse the calls to join_with_subsumption and
add_with_subsumption procedures into one call at the end of each respective
procedure.

solve_deq_list([X ≠a,f(X,Y,a) ≠f(a,b,X),h(Y,k(X)) ≠h(b,g(X))])
solve_deq(X ≠a) -> X≠a
solve_deq(f(X,Y,a) ≠f(a,b,X))

solve_disj_deq([X,Y,a],[a,b,X])
solve_deq(X ≠a) -> X ≠a
solve_deq(Y ≠b) -> Y ≠b
solve_deq(a ≠X) -> X ≠a
join_with_subsumption -> [X,Y]≠[a,b]

solve_deq(h(Y,k(X)) ≠h(b,g(X)))
solve_disj_deq([Y,k(X)],[b,g(X)])

solve_deq(Y ≠b) -> Y ≠b
solve_deq(k(X) ≠g(X)) -> true
join_with_subsumption -> true

add_with_subsumption -> [X≠a]

Finally, we present the algorithm of constraint solver which solves system of equalities
and disequalities. The algorithm follows the idea, that the equalities are solved first, then
the solution, i.e., the valuation of variables, is applied to disequalities and the resulting
system of disequalities is solved. Clearly the solution of disequalities does not further
influence the solution of equalities.

solver(System,Solution)
distribute(System,Equalities,Disequalities)
solve_eq_list(Equalities,EqSolution)
DE:=apply_substitution(EqSolution,Disequalities)
solve_deq_list(DE,DeqSolution)
Solution:=combine(EqSolution,DeqSolution)

end solver

� 	

4 Filtering solutions
In the previous sections we present a constraint solver that processes equalities and
disequalities over the Herbrand Universe. To complete the construction of the CLP(H)
system, there remains to answer the following question:

What should be presented to the user of the system as the result of computation?
There are two obvious extreme answers to the above question:

1) nothing, which corresponds to the yes/no answer, or
2) everything, i.e., the solution of all equalities and disequalities which appear
during the computation.

Neither the first nor the second approach is suitable from the point of view of
constructive negation. If yes/no answers are presented then we get the old fashioned
negation as failure. If everything is dumped to the user then he or she becomes
overwhelmed by information even if a trivial goal is solved. Moreover, if such solution is
further negated, some artifacts may appear as the following example shows.

Example:
Let p(X):-Y ≠2,X=3 be the only clause for p. Now, if one solves the goal not
p(X) , the complete solution X=3 & Y ≠2 of the positive goal p(X) is negated
and the disjunction X≠3 ∨ Y=2 is acquired that corresponds to two answers: X≠3
and Y=2 . Clearly, the answer Y=2 has nothing in common with the original goal
not p(X) because the variable Y is neither present in the goal nor is bound with
the variable X.

The above discussion shows that only some relevant information should be presented to
the user. However, the approach of most Prolog systems, which return relevant equalities
only, i.e., the valuation of variables from the original goal, is not appropriate for
constructive negation because the negative information is lost. It could result in missing
some solutions for negated goals as the following example shows.

Example:
Let q(X):-X=f(Y),Y ≠a be the only clause for q. If a negative goal not q(X)
is solved and only the equality X=f(Y) is returned as the solution of the positive
version q(X) , then the negation of this solution is X≠f(Y) . Clearly, the equality
X=f(a) is also a solution of the goal not q(X) and thus the solution X≠f(Y) is
not complete.

The result of above discussion is that relevant equalities and disequalities should be
returned as the solution of the goal. We call the process of selecting the relevant equalities
and disequalities filtering solution.

Now, we define the notion of relevance to the set of variables for normal form of
equalities and disequalities which constitute the solution. Then we show, how this
definition is applied in practice.

Definition 6: (relevant equality and disequality)
1) We say that the equality x=t in normal form is relevant to the set of variables V if
(x∈V ∨ t∈V).
2) We say that the disequality [xi]≠[t i] in normal form is relevant to the set of
variables V if (∀i (xi∈V ∨ ti∈V)).

Because of different nature of equalities and disequalities, we have to define solution
relevant to the goal more carefully.

Definition 7: (relevant solution)
Let V be the set of variables from the goal G, E be the set of equalities and DE be
the set of disequalities from the solution of the goal G. Let ES be the set of
equalities from E relevant to V, V1 be a union V∪vars(ES) and DES be the set of

� �

disequalities from DE relevant to V1. Then ES∪DES is the solution relevant to the
goal G.

The following example shows how Definition 7 of relevant solution is applied to filter
solutions in practice.

Example:
Let P be the following CLP(H) program:

p(a).
p(f(Y,Z)):-q(Y),Z ≠c,U ≠d.
q(b).

The following schema captures the course of computation of the goal X≠a,p(X)
using the program P. During the computation, the satisfiable but not valid
disequalities are collected to prune the further computation as you can see at the left
part of the schema which shows the course of computation. We also label this part
by equalities solved and by clauses used to reduce the goal. To simplify the figure,
we encapsulate the standardization apart. The right part of the scheme represents
the subsequent filtering of the computed solution which is displayed bellow the
schema.

X=f(b,Z),Z ≠c

Z≠c,U ≠d

U≠d

yes

X=f(Y,Z) p(f(Y,Z)):-q(Y),Z≠c,U≠d.

[Z ≠c]-U ≠d

[Z ≠c,U ≠d]-true

Y=b q(b).

Y=b,Z ≠c,U ≠d

[]-X ≠a,p(X)

[X ≠a]-p(X)

[]-g(Y),Z ≠c,U ≠d

[]-Z ≠c,U ≠d

X=f(b,Z),Z ≠c

X=f(b,Z),Y=b,Z≠c,U≠d

5 How to negate the solution?
By implementing CLP(H), where H is the Herbrand Universe with equality and
disequality constraints, we get the ideal framework for constructive negation. What
remains is to implement the concept of constructive negation itself.
The constructive negation is based on the following procedure:

1. take a negative subgoal,
2. run the positive version of this subgoal,
3. collect solutions of this possibly non-ground subgoal as a disjunction,
4. negate the disjunction giving a formula equivalent to the negative subgoal.

Steps 1, 2 and 3 are handled naturally by the underlying inference machine, so we have to
describe only how the collected solution of the positive version of the goal is negated.
Remind that the solution of the goal is a conjunction of equalities and disequalities
relevant to the goal. We call such solution a single solution. For the constructive negation
one needs to collect all single solutions of the positive version of the goal (step 3 above),
so the disjunction of single solutions is constructed. We call such solution a complete

� �

solution. This is different from the negation as finite failure, where the existence of a
single solution for the positive version of the goal implies the failure of negative goal. We
will discuss the efficiency of finding the complete solution later in this section.

Now, the question is how to negate the complete solution? We rely on the following
formula [26] which is a property of the Herbrand Universe:

(¬∃Y,Z (x=t & Q)) ⇔ (∀Y (x≠t) ∨ ∃Y (x=t & ¬∃Z Q)) (1)
where x is a variable that does not appear neither in t nor in Q, Y is the set of variables in t
(i.e., Y=vars(t)) and Z is the set of variables which appear in Q but not in t (i.e.,
Z=vars(Q)—Y).

The semantic meaning of the formula (1) is the following: if one uses some clause
H:-B to solve the positive goal ?-G and then negates the obtained solution to get a
solution of the goal ?-not G then there are two alternatives:

(i) the clause H:-B is prevented to be used for reduction of G by disabling unification
of G and H (i.e., G≠H), or

(ii) the clause H:-B is used for reduction of the goal G, i.e., G=H, but the solution of
B is negated.

These two cases correspond roughly to two elements of the disjunction in formula (1).
The above formula is used to negate a single solution. Then, the negation of the

complete solution corresponds to the conjunction of negated single solutions.
Subsequently, this conjunction is converted to disjunctive normal form (DNF) in order to
get the complete solution of the negative goal in appropriate form (remind, the complete
solution is a disjunction of single solutions). Finally, the single solutions from this
complete solution can be returned via backtracking. The following example explains the
above process of finding the solution of negative goal (for simplification we omit the
quantifiers).

Example:
Let P be the program:

p(a).
p(f(Y)):-Y ≠b.

and the goal to solve be: ?-not p(X).

1) Run positive version of the goal:?-p(X).

2) Collect complete solution: X=a ∨ (X=f(Y) & Y ≠b)

3) Negate the complete solution: X≠a & (X≠f(Y) ∨ (X=f(Y) & Y=b))

4) Convert to DNF and simplify: (X≠a & X≠f(Y)) ∨ X=f(b)

i.e. ∀Y (X≠a & X≠f(Y)) ∨ ∃Y (X=f(b) & Y=b)

Note, that if we negate the acquired complete solution “mechanically”, i.e., without
application of the above formula (1), we get the wrong solution
(X≠a & X≠f(Y)) ∨ (X≠a & Y=b).

At the beginning of this section, we mentioned that finding a complete solution of the
positive version of the goal can be the source of some inefficiency in comparison with the
negation as failure. In general, this is true but the additional information in disequalities
can be exploited to prune the computational tree which subsequently speeds up the
interpreter.

When a negated goal is solved, all equalities and disequalities currently collected are
“frozen” and passed to the interpreter which is finding the complete solution of the
positive version of the goal. This “frozen information” is used to prune the computational
tree but, as the equalities and disequalities are frozen, they are not returned in the solution
(and thus negated) as the following example shows.

� �

Example:
Let procedure p be defined by the following two clauses:

p(a):-… % arbitrary body here
p(b).

If one solves the goal X≠a,not p(X) , the frozen disequality X≠a is passed to
the solver when the complete solution of the goal p(X) is being computed. This
prunes the computational tree, i.e., the clause p(a):-… is not used for reduction
of p(X), and the complete solution X=b is returned. After negation and joining
with the frozen disequality X≠a the solution X≠a,X ≠b of the original goal is
found.

6 Examples
The original goal of this work was to implement a negation in logic programs in such a
way that more intuitive solutions are produced and the declarative character of the
program is preserved. The following table shows a bundle of examples and a comparison
of solutions produced by the standard negation as finite failure and by our implementation
of constructive negation respectively. In the “constructive negation column”, the
alternative solutions of the goal are depicted as individual rows.

SOLUTION

PROGRAM GOAL NEGATION
AS FAILURE

CONSTRUCTIVE
NEGATION

?-p(X). no X=f(Y) & Y ≠a

p(f(Y)):-not q(Y). ?-not p(X). yes X≠f(Y)

q(a). X=f(a)

?-not not p(X). no X=f(Y) & Y ≠a

s(f(Y)):-not r(Y). ?-s(X). no no

r(Z). ?-not s(X). yes yes

p(a,f(Z)):-t(Z). ?-not p(X,Y). no X≠a & X ≠f(c)

p(f(Z),b):-t(Z). X≠f(c) & Y ≠f(c)

t(c). X≠a & Y ≠b

Y≠f(c) & Y ≠b

u(a). ?-not(u(X),v(X)). no X≠a

u(b). ?-not u(X), not v(X). no X≠a & X ≠b & X ≠c

v(a). ?-not u(X), v(X). no X=c

v(c). ?-v(X), not u(X). X=c X=c

Comparison - Negation as Failure vs. Constructive Negation

7 Implementation
To test ideas described in this paper we have implemented two software prototypes in
Prolog based on concepts of meta-interpretation and meta-variables respectively.

Because the implementation of CLP(H) requires changes of the inference machine of
Prolog, we use a standard technique called meta-interpretation [1,22,23,24] first. We
utilize the concept of extendible meta-interpreter which we proposed in our previous
papers [2,3,4,5]. Extendible meta-interpreter is a meta-interpreter whose functionality can
be extended via plug-in modules. The skeleton of such extendible meta-interpreter, we
call it kernel, is as follows:

� �

solve(Task,Result):-
empty_goal(Task,Result).

solve(Task,Result):-
select_subgoal(Task,Goal,Frontier),
expand_goal(Goal,ExpandedGoal,Rule),
make_task(Frontier,ExpandedGoal,NewTask),
solve(NewTask,SubResult),
customize_solution(Frontier,Rule,SubResult,Result).

solve(Task,Result):-
rest_solution(Task,Result).

The constraint solving, i.e., the equality and disequality solver is hidden in the procedure
expand_goal , while the solution filter is naturally represented by the procedure
customize_solution . The implementation of these procedures is called a plug-in
module or extension of the meta-interpreter. The advantage of using meta-intepreters to
change the standard behaviour of Prolog is that the original program and goal need not be
changed. The main disadvantage of meta-intepreters is the slow down of the computation.

The second implementation utilizes the concept of meta-variables [20] and open
architecture of Prolog [17,18,19]. Meta-variables are a way to extend Prolog’s built-in
unification by user definitions. First, we implemented a library that can be attached to
arbitrary Prolog program to add functionality of meta-variables. Then, we redefined
standard unification using the meta-variable concept, we implemented a disequality solver
and we added a constructive negation construct cnot . The advantage of this approach is
that the underlying Prolog interpreter is exploited as much as possible. However, the
drawback is that the original program and goal have to be rewritten to use the “changed”
unification and cnot construct.

The Prolog source code of both implementations is available on-line at URL:
http://kti.ms.mff.cuni.cz/~bartak/html/negation.html .

8 Conclusions
In this paper we present a complete implementation of the constructive negation within the
CLP(H) framework, where H is the Herbrand Universe with equality and disequality
constraints. We design the constraint solver for solving equalities and disequalities over
the Herbrand Universe by transforming into normal form which we define here. We also
propose a filtering system to obtain relevant solutions. Finally, we exploit the foundation
of CLP(H) to implement naturally the constructive negation. We also highlight some
problems which appear during the implementation and we propose the solution of these
problems.

We strongly argue for using constructive negation here as it provides more natural
results than the widely used negation as failure. Also, we show that the constructive
negation preserves better the declarative character of logic programs. By implementing the
proposed CLP(H) system we prove that it is possible to incorporate constructive negation
efficiently.

There is still a lot of opportunities for further research. Very interesting area is
incorporation of constructive negation into CLP(A) over arbitrary domain A or into
Hierarchical CLP (HCLP). Both CLP and HCLP are important from the point of view of
real-life applications.

The main contribution of this work is that it shows a real implementation of
constructive negation supported by the underlying theory which is also presented here.

Acknowledgments
I would like to thank professor Petr
 � � � � � � for his continuous support, useful
discussions and comments on prerelease version of the paper.

� �

References
[1] Abramson, H. and Rogers, M.H. (eds.), Meta-Programming in Logic Programming, The MIT

Press, Cambridge, Massachusetts, 1989
[2] Barták, R., Meta-interpretation of logic programs (in Czech), Diploma Thesis, Department of

Theoretical Computer Science, Charles University, Prague, 1993
[3] Barták, R., A Plug-In Architecture of Constraint Hierarchy Solvers, in: Proceedings of PACT'97,

pp. 359-371, London, 1997

[4] Barták, R. and � � � pánek, P., Meta-Interpreters and Expert Systems, Tech. Report No 115,
Department of Theoretical Computer Science, Charles University, October 1995

[5] Barták, R. and � � � � � � � � , P., Extendible Meta-Interpreters, KYBERNETIKA, Volume 33(1997),
Number 3, pp. 291-310

[6] Benhamou, F. and Colmerauer, A. (eds.), Constraint Logic Programming-Selected Research, The
MIT Press, Cambridge, Massachusetts, 1993

[7] Chan, D., Constructive Negation Based on Completed Database, in: Proceedings of 5th
International Conference on Logic Programming, Seattle, 1988, pp. 111-125

[8] Clocksin, W.F. and Mellish, C.S., Programming in Prolog, Springer-Verlag, Berlin, 1981
[9] Covington, M.A., Efficient Prolog: A Practical Guide, Tech. Report AI-1989-08, The University

of Georgia, August 1989
[10] Dix, J., Pereira, L.M., Przymusinsky, T.C. (eds.), Non-Monotonic Extensions of Logic

Programming, Lecture Notes in Artificial Intelligence 927, Springer Verlag, Berlin, 1995
[11] Frühwirth, T., Herold, A., Küchenhoff, V., Le Provost, T., Lim, P., Monfroy, E., Wallace, M.,

Constraint Logic Programming - An Informal Introduction, Tech. Report ECRC-93-5, ECRC,
February 1993

[12] Gallaire, H., Logic programming: Further developments, in: IEEE Symposium on Logic
Programming, pp. 88-99, IEEE, Boston, July 1985

[13] Jaffar, J., Maher, M.J., Constraint Logic Programming: A Survey, in: Journal of Logic
Programming 19, pp. 503-581, 1994

[14] Jaffar, J., Lassez, J.-L., Constraint Logic Programming, in: Proceedings of the 14th ACM
Symposium on Principles of Programming Languages, pp. 111-119, Munich, Germany, January
1987

[15] Lloyd, J.W., Foundations of Logic Programming, Springer-Verlag, Berlin, 1984
[16] Maher, M.J., Stuckey, P.J., Expanding Query Power in Constraint Logic Programming, in:

Proceedings of the North Americal Conference on Logic Programming, Cleveland, October 1989
[17] Meier, M., Event Handling in Prolog, Tech. Report ECRC-95-09, ECRC, 1995
[18] Meier, M., Brisset, P., Open Architecture for CLP, TR ECRC-95-10, ECRC, 1995
[19] Meier, M., Schimpf, J., An Architecture for Prolog Extensions, TR ECRC-95-6, ECRC, 1995
[20] Neumerkel, U., Extensible Unification by Metastructures, in: Proceedings of META`90, 1990
[21] Przymusinsky, T. C., On Constructive Negation in Logic Programming, Extended Abstract, 1991
[22] Sterling, L., Meta-Interpreters: The Flavors of Logic Programming?, in: Proceedings of Workshop

on foundation of Logic Programming and Deductive Databases, Washington, 1986
[23] Sterling, L., Constructing Meta-Interpreters for Logic Programs, in: Advanced School on

Foundations of Logic Programming, Alghero, Sardinia, Italy, September 1988
[24] Sterling, L. and Lakhotia, A., Composing Prolog Meta-Interpreters, in: Proceedings of 5th

International Logic Programming Conference, Seattle, 1988
[25] Sterling, L. and Shapiro, E., The Art of Prolog, The MIT Press, Cambridge, Massachusetts, 1986
[26] Stuckey, P. J., Constructive Negation for Constraint Logic Programming, in: Proceedings of

Logic in Computer Science Conference, 1991, pp. 328-339
[27] Van Hentenryck, P., Constraint Satisfaction in Logic Programming, Logic Programming Series,

The MIT Press, 1989

