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Abstract
Constraint hierarchies have been proposed to solve over-constrained

systems of constraints by specifying constraints with hierarchical preferences.
They are widely used in HCLP, CIP and graphical user interfaces. A
declarative expression of preferred constraints and the existence of efficient
satisfaction algorithms are the advantages of constraint hierarchies. At present,
there exists a lot of relatively independent constraint hierarchy
solvers/satisfaction algorithms that could be classified into two categories as
refining and local propagation algorithms. While the local propagation
algorithms are fast but limited to equality (functional) constraints the more
general refining algorithms are not incremental.

In this paper we propose a generalized framework for solving constraint
hierarchies, in particular, for constraint planning stage. Our approach is based
on ideas of local propagation, however, it suppresses local propagation limits,
i.e., restriction to LPB comparator and functional constraints. We introduce a
new notion of a constraint cell and we generalize the concept of constraint
network here. We also show that the proposed framework covers the refining
method as well. Finally, we informally present an algorithm for constraint
planning that is an instance of our framework. The proposed algorithm fits in
our other concept of plug-in architecture of constraint hierarchy solvers.

Keywords: constraint hierarchy, constraint solvers, constraint planning,
constraint network.
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1. I NTRODUCTION

Constraint hierarchies were introduced for describing over-constrained systems of
constraints by specifying constraints with hierarchical strengths or preferences2. It
allows one to specify declaratively not only the constraints that are required to hold,
but also weaker, so called soft constraints at an arbitrary number of strengths.
Weakening the strength of constraints helps to find a solution of previously over-
constrained system of constraints. Intuitively, the stronger a constraint is, the more it
influences the solution of the hierarchy. Moreover, constraint hierarchies allow
“relaxing” of constraints with the same strength by applying, e.g., weighted-sum,
least-squares or similar methods.

This constraint hierarchy scheme can be parameterized by a comparator C that
allows one to compare different possible solutions to a single hierarchy and to select
the best ones. Currently, there are two widely used groups of comparators, namely
locally-better and globally-better comparators3. While the locally-better comparators
consider each constraint individually, the globally-better comparators combine errors
of all constraints at a given level using some combining function. Thus, the
globally-better comparators can be used for inter-hierarchy comparison [22], i.e.,
comparison of solutions to two or more constraint hierarchies.

The theory of constraint hierarchies was developed in [6] and it is also described
in [8,22,23].

The existence of efficient satisfaction algorithms is another important aspect of
constraint hierarchies. Most current satisfaction algorithms, in other words constraint
hierarchy solvers, can be classified into two groups: algorithms based on refining
method and local propagation algorithms. However, there are also other algorithms,
e.g., IHCS [16], which don't fit into any of above mentioned groups.

The refining algorithms solve constraint hierarchy in a straightforward manner
by completely satisfying the strongest level first and then weaker levels successively.
Thus, the refining method can be used for solving all constraint hierarchies using
arbitrary comparator. The refining method was first used in a simple interpreter for
HCLP programs [8] and it is also employed in the DeltaStar algorithm [23] and in a
hierarchical constraint logic programming language CHAL. We show later (Section
3.3) that our generalized framework for solving constraint hierarchies covers the
refining method as well.

The local propagation algorithms take an advantage of the potential locality of
typical constraint networks, e.g., in graphical user interfaces. These algorithms
gradually solve constraint hierarchies by selecting uniquely satisfiable constraints
repeatedly. Many local propagation algorithms were developed for special purposes
(DeltaBlue [18], SkyBlue [17], QuickPlan [20], DETAIL [10], Houria [9], Indigo
[5]). Our generalized approach to solving constraint hierarchies is also primary based

2 Another method for describing over-constrained systems is PCSP (Partial Constraint Satisfaction
Problems).

3 In [23] , the authors also introduce regionally-better comparators.
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on ideas of local propagation which are further generalized to suppress limits of local
propagation.

The paper is organized as follows. After brief introduction to constraint
hierarchies and overview of algorithms for solving hierarchies in Section 1, we
identify limits of current approaches to solving constraint hierarchies in Section 2. In
Section 3, we propose a new framework for solving hierarchies, in particular, we
concentrate on the planning stage of this framework. We introduce a new notion of a
constraint cell and we compare it with the traditional approach to local propagation in
Section 3.1. In Section 3.2, we generalize the concept of a constraint network and we
justify the soundness of this generalization in Section 3.2.1. The Section 3.3 is
dedicated to planning algorithms for construction of constraint networks and we
describe there a simple planning algorithm that corresponds to the traditional refining
method. The experimental implementation of planning and executing algorithms is
described in Section 4. The paper is concluded with some final remarks on the
proposed framework and with an Appendix containing formal description of the
simple planning algorithm.

2. L IMITS OF CURRENT A LGORITHMS

As we mentioned in the introduction section, most current algorithms for solving
constraint hierarchies can be classified into two groups: the refining algorithms and
the local propagation algorithms.

The great advantage of the refining method is its generality, so it allows one to
solve all types of constraints using arbitrary comparator. We proved this assumption
in our plug-in architecture for solving constraint hierarchies [1]. However, the
generality of the refining method is paid off by losing effectiveness as each constraint
level has to be solved at a clap. In particular, the refining method does not support
incremental update of the solution after adding or retracting a constraint respectively.

Contrary, the local propagation is a fast incremental method for resatisfying
constraints in hierarchies. Basically, it is efficient because it solves uniquely one
selected constraint in every step (executing phase). In addition, when a variable is
repeatedly updated, e.g., by user operation, it can easily evaluate only the necessary
constraints to get a new solution. This straightforward execution phase is paid off by
a foregoing planning phase that choose the order of constraints to satisfy. When we
studied the current local propagation algorithms we identified the following limits:

• solving conflicts among constraints is sometimes inappropriate
• local propagation cannot handle cycles of constraints
• local propagation works only with equality (functional) constraints
• local propagation supports only locally predicate better comparators
• local propagation cannot find multiple solutions.

As the execution phase of the local propagation requires every variable to be
computed by just one constraint, the foregoing planning phase has to choose among
conflicting constraints which bound the variable. However, solving this conflict is
sometimes impossible, e.g., when constraints have the same strength
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(x=1@strong, x=2@strong ), and sometimes it is too restrictive, i.e., a weaker
constraint (y=1@weak) is disabled (is assumed unsatisfied) to enable satisfying the
stronger constraint (y=1@strong ) even if the weaker constraint is also satisfied.

The executing phase of the local propagation is a linear process. It means that
when a constraint computes the value of one of its variables, the values of all other
variables in the constraint are required to be known, i.e., the values of these variables
have had to be computed by other constraints before. This feature disables solving the
set of constraints containing the same variables, e.g., the system of equations
(x+y=3, x-y=1). Such a system of constraints corresponds to the cycle in the
constraint graph, hence we speak about cycles of constraints. Some local propagation
algorithms solve constraint cycles by evoking an external solver [7].

We mentioned the way a constraint is used to compute the value of one of its
variables in the above paragraphs. The constraint is assumed there to be a total
function that uniquely computes the value of the output variable from the values of
input variables. However, this approach disables other types of constraints like
inequalities.

Every constraint, which is used in the executing phase, is completely satisfied
while other constraints are entirely disabled during the planning phase. It implies the
application of the predicate type of comparator in the classical local propagation. As
every constraint is considered individually in the constraint graph it indicates the
usage of the locally-better comparator.

Local propagation also cannot find multiple solutions due to the uniqueness of
satisfying functional constraints.

3. A  NEW A PPROACH T O CONSTRAINT PLANNING

By addressing limits of current algorithms we made the first step to improve
generality of local propagation as well as to gain efficiency of refining method by
encapsulating both approaches into one unified framework. Our framework for
solving constraint hierarchies is based on dividing the constraint hierarchy into
constraint cells as much as possible. The cells are partially ordered in a constraint
network that reflects the relationships among constraints. Finally, the constraint
network is traversed by an executing algorithm that propagates valuations through the
constraint cells according to the partial order of cells given by the network.

While the propagation of valuations and the partial order of cells defined by the
constraint network correspond to the local propagation concept, solving all
constraints in a cell at a clap matches the refining method. Hence, the proposed
concept of solving constraint hierarchies is enough efficient and satisfactory general at
the same time.

Actually, we concentrate on the construction of constraint networks, that we
call a planning stage, here.
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3.1 CONSTRAINT  CELLS

One of the basic parts of our generalized framework for constraint planning is a
notion of a constraint cell. Briefly speaking, the constraint cell is a set of equally
preferred constraints which are solved in one step during the executing phase.
Additionally, we associate a set of output variables with each constraint cell. Then the
constraints in a constraint cell determine the output variables of the cell in an obvious
manner of local propagation.

DEFINITION 1: (constraint cell)
1) Let C be a finite non-empty set of labeled constraints with the same

preference and V be a set of all variables in constraints from C. Let
In,Out⊆V be arbitrary sets of variables such that In∪Out=V and
In∩ Out=∅ . We define a constraint cell as a triple (C,In,Out).
For arbitrary variable v we define a constraint cell ({},{},{ v}) containing
only the output variable v.

2) We call the sets In and Out from the constraint cell (C,In,Out) input and
output variables respectively.

3) We also say that the constraint cell (C,In,Out) determinates each variable
from the set Out.

In an optimum case, each constraint cell contains just one functional constraint. In
that case, it is possible to exploit the local propagation as much as possible and the
executing phase is as effective as the traditional local propagation (see Section 4).
However, by enabling more constraints in the cell one can also easily handle conflicts
between constraints with the same strength as well as the constraint cell can naturally
manage the constraint cycles. In addition, by encapsulating constraints into a
constraint cell we also enable usage of more types of comparators including globally-
better ones. Finally, while the traditional local propagation requires all constraints to
be functions, i.e., to be able to uniquely compute values of output variable(s) when
the values of input variables are given, the proposed constraint cells can contain other
types of constraints, e.g., inequalities. The Figure 1 demonstrates the above
mentioned advantages of constraint cells over the traditional local propagation.
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Figure 1 (traditional local propagation vs. constraint cells)
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The role of the constraint cell in the constraint network, that we formally introduce in
the following section, depends on constraints which are inside the cell and on the
distribution of variables into input and output sets of variables. To grasp formally the
differences among constraint cells we classify the cells in the following manner.

DEFINITION 2: (classification of constraint cells)
We classify constraint cells into the following groups:

• free variable cell ({},{},{v})
• functional cell ({c@l},In,Out) such that Out≠∅ and for arbitrary

evaluation θ of variables from In there exists a unique
valuation σ of variable(s) from Out such that cθσ holds

• generative cell (C,In,Out) such that C≠∅ and Out≠∅ and (C,In,Out)
is not functional

• test cell (C,In,∅)
• potentially unsatisfied cell is a generative cell or a test cell

The traditional local propagation enables only free variable cells and functional cells.
In fact, instead of the free variable x, the traditional local propagation usually uses a
special type of constraint in the form x=user_input  that uniquely determines the
value of the variable x. Therefore, there are no free variables in traditional constraint
graphs, i.e., each variable is uniquely determined by any constraint/functional cell.
Thus the propagation of valuations is also unique.

The planning phase of the traditional local propagation decides which
constraints are satisfied, and thus they are used for value propagation, and which ones
are disabled. The disabled constraints are assumed unsatisfied there. In our generalized
approach we use a different mechanism for marking disabled, i.e., potentially
unsatisfied, constraints, namely test cells. Thus, the constraints from the functional
cells can always be satisfied by binding output variable(s) (see Definition 2) in our
approach while the constraints from the test cells can still be satisfied (this is the
difference from the traditional local propagation) but the satisfiability is not
guaranteed. Namely, there is no degree of freedom to bind output variables in the test
cell as there are just no output variables. In other words, all variables from constraints
in the test cells are determined by other constraint cells. Note also, that the result of
the satisfiability test can be reflected in the value propagation (see Figure 2).

The contribution of this paper is the introduction of generative and test cells.
The generative cell is a generalization of the functional cell so that it can contain a
non-functional constraint, e.g., inequality, and even a set of constraints. Let us recall
that in general the difference between the functional and generative cells depends not
only on the constraint itself but also on the distribution of constraint variables into
sets of input and output variables respectively. Thus, the cell consisting of the only
constraint x 2=y@strong  is a functional cell if x is an input variable and y is an
output variable while the similar cell with output variable x and input variable y is a
generative cell (see Definition 2).

Note also, that while each single constraint from a functional cell can always
be satisfied, the same does not hold for the generative cell. Assume again the
constraint x2=y@strong . Let x be the input variable, then for arbitrary value of x it
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is possible to find a unique value of y such that the constraint is satisfied (i.e., the
constraint forms a functional cell). However, if y is the input variable (i.e., it is a
generative cell), one cannot guarantee the satisfiability of the given constrain,
namely, for negative values of y, the constraint is not satisfied, while for non-
negative values of y one can find a value of x such that the constraint holds. Note
also, that for positive values of y, it is possible to find two values of x which satisfy
the constraint. Thus, the value propagation is not unique in the generative cell.

The Figure 2 shows differences among above mentioned types of constraint
cells. It also demonstrates the value propagation through the cell.
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Figure 2 (differences among various constraint cells)

Remind again, that the functional cell propagates values uniquely and the constraint
in the functional cell can always be satisfied while the constraints in the potentially
unsatisfied cells, i.e., the generative and test cells, are not guaranteed to be satisfied,
the value propagation is not unique there and the potentially unsatisfied cells can even
influence the values of input variables (see Figure 2). The impact of potentially
unsatisfied cells on input variables develops only when the values of input variables
are not unique.

In the Figure 2 we omit the strengths of constraints for clarity purpose.
Because all constraints in the constraint cell have the same strength (see Definition 1)
we can bind this strength with the constraint cell. This so called internal strength of
the constraint cell together with the cell type will be the key for partial ordering of
cells that is discussed in the following section.

DEFINITION 3: (internal strength)
The internal strength of the constraint cell (C,In,Out) is the strength of any
constraint in C. The internal strength of the constraint cell ({},{},{v}) is free
which is the strength that is weaker than any other strength of constraints.
We denote the internal strength of Cell as i_strength(Cell) and we say that
Cell is stronger than Cell' if and only if i_strength(Cell)<i_strength(Cell').

3.2 CONSTRAINT  NETWORKS

In this section we concentrate on reasonable decompositions of constraint hierarchies
into constraint cells. We also define a partial ordering of cells represented by the
constraint network here. This partial ordering of cells guides the sound propagation of
valuations through the constraint cells (see Section 3.2.1).
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Before formal definition of a hierarchy decomposition we can identify some
decompositions in current approaches for solving hierarchies. While the refining
method decomposes a given hierarchy into levels of equally preferred constraints, the
local propagation atomizes the hierarchy into individual constraints. Both these
decompositions and many others are covered by our approach.

DEFINITION 4: (conflict-free hierarchy decomposition)
Let H be a constraint hierarchy, i.e., a finite set of labeled constraints, and V
be a set of all variables in constraints from H. We call the finite set CC of
constraint cells a conflict-free decomposition of the hierarchy H if and only if
the following conditions hold:

1) the constraint cells from CC consist only of constraints from H, i.e.,
∀Cell∈CC Cell=(C,In,Out) & C⊆H & In⊆V & Out⊆V

2) every constraint from H is located in just one constraint cell, i.e.,
∀c∈H  ∃! Cell∈CC Cell=(C,In,Out) & c∈C

3) every variable from V is determined by just one constraint cell, i.e.,
∀v∈V  ∃! Cell∈CC Cell=(C,In,Out) & v∈Out.

The satisfaction of the conditions 1) and 2) of the Definition 4 guarantees that the set
CC of cells is really a decomposition of the given hierarchy H. In particular, the
satisfaction of the conditions In⊆V and Out⊆V implies that in the decomposition
there do not appear new variables, i.e., variables outside the hierarchy. The
satisfaction of the condition 3) of the Definition 4 ensures that each variable is
determined by any cell and there is no conflict among cells in the decomposition, i.e.,
there is no variable that is determined by more than one cell. The following corollary
describes this feature formally.

COROLLARY: (no conflicts)
Let CC be a conflict-free decomposition of any constraint hierarchy H. Then
the following implication holds:

∀Cell,Cell'∈CC
(Cell=(C,In,Out) & Cell'=(C',In',Out') & Cell≠Cell') ⇒ Out∩Out'=∅

Nevertheless, the conflict-free feature of the decomposition does not imply that the
decomposition gives an effective solution of the hierarchy by propagation of
valuations. Namely, the decomposition, where each variable is determined by a free
variable cell and all constraints are in the test cells, is a conflict-free decomposition
according to the Definition 4 but this decomposition is of little help for effective
constraint hierarchy solving.

In the following paragraphs we concentrate on partial ordering of cells from
conflict-free decompositions such that it enables one to effectively solve the
constraint hierarchy. Note that some conflict-free decompositions, like the one
mentioned in the previous paragraph, cannot be partially ordered according to our
requirements, however for every constraint hierarchy there exists at least one conflict-
free decomposition that can be represented by the constraint network, i.e., it is
possible to partially order the cells in the decomposition.

In what follows, we identify the partial ordering “<” of constraint cells with the
directed acyclic graph that we call a constraint network. Thus, we write Cell<Cell' if
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and only if there exist a directed path in the constraint network from Cell to Cell'.
Also, we use the denotation G/T for potentially unsatisfied cells in the Definition 5.

DEFINITION 5: (constraint network)
Let CC be a conflict-free decomposition of the hierarchy H. We call the
directed acyclic graph (CC,E) with nodes CC and edges E a constraint
network of hierarchy H if and only if the following conditions hold:

1) for every constraint cell Cell there exist edges in E directed from
constraint cells determining the input variables of Cell, i.e.,
∀Cell,Cell’∈CC

Cell=(C,In,Out) & Cell’=(C’,In’,Out’) & In∩Out’≠∅
⇒

(Cell’,Cell)∈E
2) for every potentially unsatisfied cell there does not exist an upstream

constraint cell which has the same or weaker internal strength, i.e.,
∀Cell,Cell'∈CC

(Cell is G/T & Cell'<Cell) ⇒ i_strength(Cell')<i_strength(Cell)
3) there does not exist “downstream forking” in a potentially unsatisfied

cell directed to other potentially unsatisfied cells, i.e.,
∀Cell,Cell’,Cell''∈CC

Cell,Cell',Cell'' are G/T & Cell<Cell' & Cell<Cell''
⇒

(Cell'=Cell'' ∨ Cell'<Cell'' ∨ Cell'>Cell'')

The Definition 5 describes a constraint network that can be used for value propagation
during the executing phase of the constraint hierarchy solving. The meaning of the
condition 1) of the Definition 5 is clear as one requires the input variables of the cell
to be computed before the value propagation can go through the cell and compute
values of output variables. The conditions 2) and 3) of the Definition 5 ensures the
correctness of the propagation as one requires the stronger constraints to be prefered to
the weaker constraints. The meaning of these conditions is discussed in more detail in
the following section. Note, that these two conditions are a new contribution of this
paper.

When the constrain network is defined, one may ask whether it is possible to
represent an arbitrary constraint hierarchy as a corresponding constraint network. The
answer is yes which is not really surprising as we present our approach as a
generalization. We justify this claim in Section 3.3 where we describe a simple
algorithm for constraint planning. This algorithm decomposes each hierarchy into
levels of equally preferred constraints that corresponds to the refining method.

It is also not really surprising that every constraint graph(  used by traditional
local propagation can be represented as a constraint network according to the
Definition 5. The satisfied constraint from the constraint graph forms a functional cell
in the constraint network while the disabled constraint from the constraint graph is
represented as a test cell in the constraint network. Note also, that there exist

)
We use the term “constraint graph” for graphs from the traditional local propagation while the “constraint
network” is a generalized notion according to the Definition 5.
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constraint hierarchies which cannot be represented by a constraint graph but can be
decomposed into a constraint network.

Our approach to constraint networks allows various constraint networks to be
constructed for a given constraint hierarchy, from a basic one, that decomposes the
hierarchy into levels, to a more structured network, that keeps the cells as small as
possible. It depends on the type of used constraints and comparators and on the quality
of the planning and executing algorithm which constraint network is chosen. The
Figure 3 shows two different constraint networks corresponding to one constraint
hierarchy.
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Figure 3 (constraint networks)

3.2.1 A  T HEORETICAL JUSTIFICATION

A theoretical foundation of our approach originates from ideas described in [11]. In [3]
we tuned this theory to the framework proposed in this paper and we proved the
soundness and completeness theorems there. A complete formal justification of the
proposed framework for solving constraint hierarchies will also be a subject of a
separate paper. In the meantime, we satisfy with the following justification.

To keep our framework as general as possible we proceed with the subsequent
rule for solving constraint hierarchy:

the satisfaction of a stronger constraint is strictly preferred to the satisfaction
of an arbitrary number of weaker constraints.

Thus, what we want to show is that the satisfaction of a constraint does not cause the
dissatisfaction of a stronger or equally preferred

�
 constraint later on the value

�
Equally prefered constraints which cannot be satisfied at once should be in one constraint cell so the
propagation algorithm can relax them by applying weighted-sum or similar methods. Thus, the globally-
better comparators are supported.



  

propagation. Remind that unsatisfied constraints can be presented only in test or
generative cells respectively while the constraints in functional cells can always be
satisfied independently of valuation of input variables.

The executing algorithm, that computes the solution to the hierarchy via value
propagation, follows the partial order of cells defined by the corresponding constraint
network, however it totally orders the cells first to preserve the linearity of the
algorithm. The condition 2) of the Definition 5 ensures that there are only stronger
cells on upstream path from the potentially unsatisfied cell. So, the only way, how a
weaker or equally preferred cell can get before the potentially unsatisfied cell in the
total order chosen by the executing algorithm, is that the cell originates from a
parallel leaf of the constraint network (the leaf 2a in the Figure 4). The Figure 4
describes all such situations.
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Figure 4 (arrangement of potentially unsatisfied cells in the constraint network)

First, note that the case D of the Figure 4 is prohibited in the constraint networks by
the condition 3) of the Definition 5. In the remaining cases A, B and C, it is easy to
show that the constraints/cells in the leaf 2a do not influence the satisfaction of the
constraints/cells in the leaf 2b, i.e., the satisfaction of any constraint from the leaf 2a
does not cause the dissatisfaction of the G/T constraint in the leaf 2b. To confirm this
assumption one needs the following features of constraint cells:

1) the functional cells propagate values uniquely
2) the functional cells do not change values of input variables
2) the G/T cells can change the values of input variables only when the values of

input variables are not unique.

Note, that when the leaf 1 is empty, the proposition is trivially satisfied. A more
detail analysis of the soundness of constraint networks can be found in [3].

3.3 CONSTRAINT PLANNERS

In this section we briefly describe a simple planning algorithm for construction of
constraint networks. This algorithm converts arbitrary constraint hierarchy into
corresponding constraint network by decomposing the hierarchy into levels of equally
preferred constraints. Thus, the existence of the simple planning algorithm confirms
our claim that every constraint hierarchy can be represented by a constraint network.

The simple planning algorithm constructs the constraint network by adding
labeled constraints incrementally. If there exists a cell with the internal strength equal
to the strength of the added constraint, then the algorithm adds the constraint into this
cell. Otherwise, it creates a new cell containing this constraint. In the second phase
the algorithm decides which variables of the added constraint are input and output
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respectively. Finally, it adds all necessary edges such that all conditions of the
Definition 5 hold. Note, that this algorithm does not use the free variable cells.

While this planning algorithm is very simple, it requires a subsequent
execution phase to mimic the refining method. However, such an algorithm of the
execution phase is ineffective. A formal description of this simple planning algorithm
is given in the Appendix.

According to our experience, there usually exists more than one sound
constraint network representing the same constraint hierarchy. It implies that it is
possible to develop various planning algorithms which can construct different
constraint networks for the same hierarchy. In [3], we present a sophisticated
algorithm for constraint planning that keeps the constraint cells as small as possible
and thus it enables to more exploit the local propagation.

4. I MPLEMENTATION I SSUES

To test our ideas, we have implemented a prototype system in PROLOG covering the
above mentioned algorithms.

We implemented a simple planning algorithm as a part of our plug-in
architecture for constraint hierarchy solving [1]. The accomplished experiments with
value propagation in arising constraint networks confirmed our belief that using the
refining method, especially in case of applying globally-better comparators, was not
effective. The ineffectiveness is probably hidden in the necessity to solve all equally
preferred constraints at a clap. So, we expect that our approach, that decomposes the
hierarchy into smaller cells, can improve the effectiveness of the traditional refining
method while preserving its generality.

We also implemented a sophisticated planning algorithm as well as an
executing algorithm for value propagation based on Indigo algorithm. Our first results
show that the sophisticated planning algorithm behaves as effective as traditional
local propagation planning algorithms in cases which the traditional local propagation
can handle. Also, our approach enabled a generalization of the Indigo algorithm for
value propagation as the executing algorithm can find alternative solutions which the
Indigo omitted.

The complete PROLOG source code of the algorithms is available on-line at
URL: http://kti.ms.mff.cuni.cz/~bartak/prolog.html .

5. CONCLUSIONS

In this paper we present a generalized framework for hierarchical constraint solving, in
particular for constraint planning. First, we identified limits of current approaches to
solving constraint hierarchies and then we proposed a framework that suppresses these
limits. We concentrate on the planning stage of this framework here. We introduced
new notions of a constraint cell and a constraint network that naturally expressed the
partial ordering of cells. We briefly sketched the soundness of our approach and by
describing a simple algorithm for construction of constraint networks we proved that
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all constraint hierarchies could be represented by a constraint network. We also
showed that our framework covered both the refining method and the local
propagation as well. Our results are justified not only by a theoretical foundation [3]
but also by an implementation work.

The closest work related to our approach is probably [10] that describes the
DETAIL algorithm. However, there are some significant differences between DETAIL
and our framework. While the DETAIL works with equality (functional) constraints
and concentrates especially on removing cycles and conflicts from constraint graphs,
we mainly focus on support of all types of constraints and comparators. Also, the
notion of a constraint cell is a bit different in DETAIL where it serves more as a
meta-notion denoting a closed part of the constraint graph. DETAIL allows
constraints with different strengths to be in one constraint cell, whereas our approach
gathers only equally preferred constraints in the constraint cell.
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APPENDIX- A  SIMPLE PLANNING ALGORITHM

add_constraint(c@l,(CC,E))

%% add a labeled constraint c@l into constraint network (CC,E)
%% return updated constraint network

%% insert constraint to appropriate cell
if ∃Cell ∈CC & i_strength(Cell)=l then

% Cell=(Cs,In,Out)
Cs:=Cs ∪{c@l}         % add c@l to Cell

else
Cell:=({c@l},{},{})  % create new cell
CC:=CC∪{Cell}

end if

%% distribute variables and update edges so that the condition 1) of
the Definition 5 holds

V:=vars(c)
for v ∈V do

if ∃Cell' ∈CC & Cell'=(Cs',In',Out') & v ∈Out' then
% variable v is determined by Cell'

case of
:(i_strength(Cell')<l)
% variable v is determined by stronger cell

% Cell=(Cs,In,Out)
In:=In ∪{v}  % insert v among input variables of Cell
E:=E ∪ {(Cell',Cell)}  % add corresponding edge

:(i_strength(Cell')>l)
% variable v is determined by weaker cell

% Cell'=(Cs',In',Out')
% move v in Cell' from output to input variables
Out':=Out'-{v}
In':=In' ∪{v}
% remove edges invalidated by moving variable v
E:=E-{(Cell',C2) | (Cell',C2) ∈E & C2=(Cs2,In2,Out2) &

Out' ∩In2= ∅}
% Cell=(Cs,In,Out)
Out:=Out ∪{v}  % add v among output variables of Cell
% add corresponding edges
E:=E ∪ {(Cell,C2) | C2 ∈CC & C2=(Cs2,In2,Out2) & v ∈In2}

% if i_strength(Cell’)=l, then no change
end case

else
% variable v is not present in the network

% Cell=(Cs,In,Out)
Out:=Out ∪{v}  % add v among output variables of Cell

end if
V:=V-{v}

end for

%% add edges so that the condition 3) of the Definition 5 holds
E:=E ∪{(Cell,C2) | C2 ∈CC & i_strength(C2)=min{i_strength(C)|C ∈CC &

i_strength(C)>l}}
E:=E ∪{(C2,Cell) | C2 ∈CC & i_strength(C2)=max{i_strength(C)|C ∈CC &

i_strength(C)<l}}

return (CC,E)

end add_constraint


