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 There will be a short question period after each part of the tutorial. 



INTRODUCTION 
 
 

• “Tough” combinatorial problems have been around for a 
long   time and some have attracted a lot of interest 
(e.g.: Traveling Salesman Problem) 

 
•  Early 70's: complexity theory 
 
       NP-hard problems →

                ↓ 

Little hope of solving efficiently many important problems 

                ↓ 
What can be done in practical contexts when  

solutions are needed? 

                ↓ 

    USE HEURISTIC TECHNIQUES 
 
 

•   constructive heuristics (e.g. “greedy”) 
 

•    iterative improvement methods 
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CLASSICAL LOCAL IMPROVEMENT 
HEURISTICS 

Key idea:    
 
• In most combinatorial problems, one would expect good 

solutions to share similar structures. 
 
• Indeed, the best solutions should be obtainable by 

slightly modifying good ones, and so on… 
 

 

THUS:    

• Start with a (feasible) initial solution. 

• Apply a sequence of local modifications to the current 
solution as long as these produce                       
improvements in the value of the objective function 
(monotone evolution of the objective). 

 
These methods are the basic (and earlier) trajectory 
based search methods. 
 
They are usually called “local search” or “neighbourhood 
search” methods. 
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PROBLEMS AND LIMITATIONS 

• These methods stop when they encounter a local 
optimum (w.r.t. to the allowed modifications). 

• Solution quality (and CPU times) depends on the 
“richness” of the set of transformations considered at 
each iteration of the heuristic. 

• Another key factor is the definition of the set of solutions 
explored by the algorithm. 
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SEARCH SPACES 

 
• Simply the space of all possible solutions that can be 

considered (visited) during the search. 

• Could be the set of all feasible solutions to the problem 
at hand, with each point in the search space 
corresponding to a solution satisfying all the specified 
constraints. 

• While this definition of the search space might seem 
quite natural and straightforward, it is not so in many 
settings, as we shall see later in a few illustrative 
examples. 
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NEIGHBOURHOODS 

 
• At each iteration of LS, the local transformations that can 

be applied to the current solution, denoted S, define a 
set of neighbouring solutions in the search space, 
denoted N(S) (the neighbourhood of S). 

• N(S) = {solutions obtained by applying a single local 
modification to S}. 

• In general, for any specific problem at hand, there are 
many more possible (and even, attractive) 
neighbourhood structures than search space definitions. 
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EXAMPLES OF SEARCH SPACES AND 
NEIGHBOURHOODS 

Two illustrative problems: 

• Vehicle routing problem 

• Capacitated plant location problem (CPLP) 
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CLASSICAL VEHICLE ROUTING PROBLEM 

• G = (V, A), a graph.   

• One of the vertices represents the depot.  

• The other vertices customers that need to be serviced. 

• With each customer vertex vi are associated a demand qi 
and a service time ti. 

• With each arc (vi, vj) of A are associated a cost cij and a 
travel time tij. 

• m identical vehicles of capacity Q are based at the depot.       

The CVRP consists in finding a set of routes such that: 
 
• Each route begins and ends at the depot; 

• Each customer is visited exactly once by exactly one 
route; 

• The total demand of the customers assigned to each 
route does not exceed Q; 

• The total duration of each route (including travel and 
service times) does not exceed a specified value L; 

• The total cost of the routes is minimized. 
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SEARCH SPACES AND NEIGHBOURHOODS 
FOR THE CVRP 

Search space: 

• Set of feasible routes.   

• Allow routes with capacity violations.  

• Allow routes with duration violations. 

 
Neighbourhoods: 
 
• Moving a single customer from its route. 

• Insertion can be performed simply or in a complex 
fashion (e.g., GENI insertions). 

• Swap customers. 

• Simultaneous movement of customers to different routes 
and swapping of customers between routes 
(λ-interchange of Osman 1993). 

• Coordinated movements of customers from one route to 
another (ejection chains). 

• Swapping of sequences of several customers between 
routes (Cross-exchange of Taillard et al.  1997). 
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CAPACITATED PLANT LOCATION 
PROBLEM (CPLP) 
• Set of customers I with demands di, i ε I. 

• Set J of “potential sites” for plants. 

• For each site j ε J, the fixed cost of “opening” the plant at 
j is fj and its capacity is Kj. 

• cij: cost of transporting one unit of the product from site j 
to customer i. 

The objective is to minimize the total cost, i.e., the sum of 
the fixed costs for open plants and the transportation costs.     

 
 
 

 



CPLP: MATHEMATICAL FORMULATION 

(CPLP)    Minimize  z = ijij
JjIiJj

jj xcyf ∑∑∑
∈∈∈

+  

 

 subject to  Iidx iij
Jj

∈=∑
∈

,

 

 JjyKx jj
Ji

ij ∈≤∑
∈

,  

 
 JjIixij ∈∈≥ ,,0  
 
 { } Jjyj ∈∈ ,1,0  
 
 
 
Formulation variables: 
 
• xij (i ε I, j ε J): quantity shipped from site j to customer i  

• yj (j ε J): 0-1 variable indicating whether or not the plant 
at site j is open or closed. 
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Remark 1.  For any vector ỹ of location variables, optimal 
(w.r.t. to this plant configuration) values for the flow 
variables x(ỹ) can be retrieved by solving the associated 
transportation problem: 
 

(TP)   Minimize  z(ỹ) = ijij
JjIi

xc∑∑
∈∈

 

 

 subject to  Iidx iij
Jj

∈=∑
∈

,

 

  JjyKx jj
Ji

ij ∈≤∑
∈

,~
 

 
 JjIixij ∈∈≥ ,,0  
 
If  ỹ = y*, the optimal location vector, the optimal solution to 
the original CPLP problem is simply given by (y*, x(y*)). 
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Remark 2.  An optimal solution of the original CPLP 
problem can always be found at an extreme point of the 
polyhedron of feasible flow vectors defined by the 
constraints: 
  

    Iidx iij
Jj

∈=∑
∈

,

 

   JjKx j
Ji

ij ∈≤∑
∈

,

 
        JjIixij ∈∈≥ ,,0  

    

 

This property follows from the fact that the CPLP can be 
interpreted as a fixed-charge problem defined in the space 
of the flow variables.  This fixed-charge problem has a 
concave objective function that always admits an extreme 
point minimum.  The optimal values for the location 
variables can easily be obtained from the optimal flow 
vector by setting yj equal to 1 if ,0>∑

∈
ij

Ii
x  and to 0 

otherwise. 
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SEARCH SPACES AND NEIGHBOURHOODS 
FOR THE CPLP 

Search space: 

1) Full feasible space defined by all variables. 

2) Space defined by location variables. 

3) Set of extreme points of the set of feasible flow vectors. 

 
 
Neighbourhoods: 
 
• Depend upon the search space chosen. 

• For 2), one can use “Add/Drop” and/or “Swap” 
neighbourhoods. 

• For 3), moves defined by the application of pivots to the 
linear programming formulation of the transportation 
problem, since each pivot operation moves the current 
solution to an adjacent extreme point. 



A TEMPLATE FOR LOCAL SEARCH 

To maximize )(Sf  over some domain 

Define:  S,  current solution,  

         f *,  value of the best-known solution,  

         S*,  this solution,  

               )(SN , the "neigbourhood" of S (solutions obtained from S 
by a single transformation).  

 
 
Initialization 
Choose (construct) an initial solution  0S
 

Set S:= 0S  , f * := f ( 0S )  , S* := 0S . 
 

 
Search 
While local optimum not reached do 
 

●   

)(
maxarg:

SNS
S

∈′
∈  [f(S’)]; 

●   if *)( fSf 〉 , then SSSff == :*,)(:* . 
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MAIN CLASSES OF LOCAL SEARCH 
METHODS 
 
Simple Local Search 
• The simplest of all LS approaches  
• Consists in constructing a single initial solution and 

improving it using a single neighbourhood structure until 
a local optimum is encountered.   

• Two variants of simple LS: 
− “Best improvement”  
− “First improvement” 

Multi-start Local Search 
• A simple extension to the simple LS scheme  
• Several (usually randomly generated) initial solutions  
• Apply to each of them this simple scheme, thus 

obtaining several local optima from which the best is 
selected and returned as the heuristic solution. 
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SIMULATED ANNEALING 

• Kirkpatrick, Gelatt and Vecchi (1983) 
• Based on an analogy with the cooling of material in a 

heat bath. 
• Metropolis’ algorithm (1953) 
• Solutions <—> Configurations of particles 
• Objective function <—> Energy of system 
• Can be interpreted as a controlled random walk in the 

space of solutions: 
– Improving moves are always accepted; 
– Deteriorating moves are accepted with a 

probability that depends on the amount of the 
deterioration and on the temperature (a parameter 
that decreases with time). 

• Extensions/generalizations: deterministic annealing, 
threshold acceptance methods. 

• Local search methods in which deterioration of the 
objective up to a threshold is accepted. 

• As in SA, the threshold decreases as the algorithm 
progresses. 
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VARIABLE NEIGHBOURHOOD SEARCH 

• Introduced, by Hansen and Mladenović in 1997.  

• Use, instead of a single neighbourhood, several of these 
in pre-defined sequences.  

• Over time VNS has yielded several variants of different 
complexity.  

• The simplest one, called Variable Neighbourhood (VND), 
is clearly the multi-neighbourhood extension of LS.   

• In VND, one first performs LS using the first 
neighbourhood structure until a local optimum is 
encountered; the search is then continued using the 
second neighbourhood structure until a local optimum 
(w.r.t. to that structure) is encountered, at which point, it 
switches to the third neighbourhood structure, and so on 
in a circular fashion.   

• VND will eventually stop, but only in a point which is a 
local optimum for each of the considered neighbourhood 
structures. 
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THE TABU SEARCH APPROACH 

 
• Glover (1977, 1986) 

• Hansen (1986: steepest ascent/mildest descent) 

• A metaheuristic that controls an inner heuristic designed 
for the specific problem that is to be solved. 

• Artificial intelligence concepts: maintain a history of the 
search in a number of memories. 

• Basic principle: allow non-improving moves to 
overcome local optimal (i.e. keep on transforming the 
current solution...). 

• PROBLEM: How can CYCLING be avoided??? 

� SOLUTION: Keep a HISTORY of the searching process 
and prohibit «comebacks» to previous 
solutions (tabu  moves). 
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TABUS 

● A short-term memory of the search (in general, only a fixed 
amount of information is recorded).  

● Several possibilities:  
 

- a list of the last solutions encountered (expensive, and not 
frequently used); 

 
- a list of the last modifications performed on current solutions; 

reverse modifications are then prohibited 
      (the most common type of tabus); 
 

- a list of key characteristics of the solutions or of the 
transformations 

       (sometimes more efficient) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



EXAMPLES OF TABUS 
 

Consider the situation where one is solving the TSP with 2-
opt as inner heuristic. 

 
The basic set of transformations at each step consists of 
moves obtained by removing two edges [ ]),(),,( lkji ; and 
replacing them with edges [ ]),(),,¨( ljki . 

 
Possible tabus 
 
 
●   Forbid tours themselves. 
 
●   Forbid reverse transformations [ ]),(),,¨( ljki   → [ ]),(),,( lkji  

for a few iterations. 
 
●   Forbid any transformation involving either ),( ki  or ),( lj  
for some time. 
 
●    ... 
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MORE ON TABUS 

 

●   Multiple tabu lists can be used and have proved quite 
useful in many contexts. 

 
●   “Straightforward” tabus can be implemented as circular 

lists of fixed length.  

 
●   Fixed-length tabus cannot always prevent cycling: many 

authors have proposed schemes to vary tabu list length 
during execution (Skorin-Kapov, Taillard).  

 
●   Another solution: random tabu tags, the duration of a 

tabu status is a random variable generated when the 
tabu is created.  

 
●  Yet another solution: randomly activated tabus, at 

each iteration, a random number is generated 
indicating how far to look back in the tabu list (which is 
otherwise managed like a fixed-length list).  
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ASPIRATION CRITERIA 

 

●   Tabus are sometimes too “powerful”: 

 

     - attractive moves are prohibited, even when there is no 
danger of cycling; 

 

     - they can lead to overall stagnation of the searching process. 

 
 

●   Aspiration criteria are algorithmic devices that cancel tabus in 
some circumstances.  

 
 

●   The simplest aspiration criterion consists in allowing a move if it 
results in a solution with objective value better than that of the 
best-known solution.  

 

●   Much more complicated criteria have been proposed and 
implemented in some applications.  

 

KEY RULE : If cycling cannot occur, you may disregard tabus



SIMPLE TABU SEARCH 
To maximize )(Sf  over some domain 

Define:  S,  current solution,  

         f *,  value of the best-known solution,  

         S*,  this solution,  

         T,  the tabu list,  
 
               )(SN , the "neigbourhood" of S (solutions obtained from S 

by a single transformation), 
 
               )(SN ,  "admissible" subset of )(SN  (non-tabu or allowed 

by aspiration).  
 
Initialization 
Choose (construct) an initial solution  0S
 

Set S:= 0S  , f * := f ( 0S )  , S* := 0S , T :=∅ 
 

Search 
While termination criterion not satisfied do 
 

●   

)(
maxarg:

SNS
S

∈′
∈  [f(S’)]; 

●   if *)( fSf 〉 , then ;:*,)(:* SSSff ==  

●   record tabu for the current move in T (delete oldest tabu if 
necessary). 
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TERMINATION CRITERIA 
 

• In theory, the search could go on for ever (unless the optimal 
value of the problem is known beforehand).  

• In practice, the search has to be stopped at some point: 

     -   after a fixed number of iterations (or a fixed amount of CPU 
time), 

 

     -  after some number of iterations without an improvement in 
the best objective value (probably the most commonly used 
criterion), 

 
     -  when the objective reaches a pre-specified threshold value. 

 

• In complex tabu search schemes, the search will usually be 
stopped after completing a sequence of phases, the duration of 
each phase being determined by one of the above criteria.  



PROBABILISTIC TABU SEARCH 

In “regular” simple tabu search, one must evaluate the objective 
for every element in the neighbourhood )(SN of the current 
solution. 

 
Instead of considering the whole set )(SN , one may restrict its 
attention to a random sample )()( SNSN ⊂′ . 

 

Advantages : 
 
 

• In most applications, a smaller computational effort, since one 
only evaluates the objective for );(SNS ′∈′  

• The random choice of )(SN ′  acts as an anti-cycling choice 
       shorter tabu lists can be used. →

 
Disadvantage : the best solution may be missed. 
 

 28



SEARCH INTENSIFICATION 

Idea : To explore more thoroughly portions of the search space 
that seem “promising” 

 
 

●   From times to times, the normal searching process is stopped 
and an intensification phase is executed. 

 

●   Often based on some kind of intermediate-term memory 
→  recency memory records the number of iterations that   

“elements” have been present in the current solution. 

 

●   Often restarted from the best-known solution. 

 
●   Possible techniques: 

 

    -  “freezing” (fixing) “good” elements in the current solution; 
 

    -  changing (increasing) sample size in probabilistic TS; 
 
      -  switching to a different inner heuristic or modifying the 

parameters driving it. 
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SEARCH DIVERSIFICATION 
 
●   In many cases, the normal searching process tends to spend 

most of its time in a restricted portion of the search space. 
Good solutions may be obtained, but one may still be far from 
the optimum. 

      Diversification : a mechanism to “force” the search into 
previously unexplored areas. 

 
 

●   Usually based on some form of long-term memory . 

     frequency memory records the number of times each 
“element” has appeared in the solution. 

→

 

●   Most common techniques: 

     -  restart diversification : force a few “unfrequent” elements 
in the solution and restart the search from the new current 
solution thus obtained; 

 
       -  continuous diversification : in the evaluation of moves, 

bias the objective by adding a small term related to 
element frequencies; 

 

        -  strategic oscillation : (see next transparency). 
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HANDLING CONSTRAINTS 

 

●   In many instances, accounting for all problem constraints in the 
definition of the search space severely restricts the search 
process and leads to mediocre solutions. 

     →  constraint relaxation is often effective! 
 
 

●   “Wider” search space which is often easier to handle 
       simpler neighbourhoods can be used. →
 
●   Constraint violations are added to the objective as a weighted 

penalty term. 
 

●   But, how can one find “good” weights? 
 
     →  self-adjusting penalties can be used 
 
 

      -   weights are adjusted dynamically based on the recent 
history of the search 

 

 +  increase weights when only infeasible solutions are  
encountered, 

 
      + decrease weights if the opposite occurs. 
 
 
 

Strategic oscillation : changing weights to induce diversification. 
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SURROGATE AND AUXILIARY OBJECTIVES 

 

• In some problems, the true objective function is 
extremely costly to evaluate (e.g., MIP, with the search 
space restricted to integer variables; stochastic 
programming;...). 

    The evaluation of moves becomes prohibitive (even if 
sampling is used). 

→

 
 
• Solution: evaluate neighbours using a surrogate   

objective function 
 
        -  correlated to the true objective, 
 
        -  less demanding computationally, 
 
        -  the value of the true objective is computed only for 

the chosen move or for a subset of promising 
candidates. 

 
• In some problems, most neighbours have the same 

objective value. How can one choose the next move 
among them? 

By using an auxiliary objective function measuring a 
desirable   attribute of solutions.  
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RECENT TRENDS IN TABU SEARCH 
(AND OTHER LOCAL SEARCH 

APPROACHES) 
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PARALLEL VARIANTS 

Parallel processing opens up great opportunities for 
new developments in tabu search. 

 
 
• Low-level parallelization 

Using parallel processing to speed up computationally 
demanding steps of “standard” tabu search. 

 
• High-level parallelization 

Run several search threads in parallel to obtain more 
information and come up with better solutions 

       (parallel search threads can also be used on sequential  
architectures). 

These techniques have already been used with very good 
results. 
 
 
Taxonomy paper by Crainic, Toulouse and Gendreau 
(1997). 
 
Book edited by E. Alba (2005). 
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HYBRIDS  

Using local or tabu search in combination with other 
optimization techniques. 
 
 
• In branch-and-bound, to compute bounds. 
 
• In conjunction with genetic algorithms or ant colony 

optimization. 
 
• Alternately with other LS or TS methods. 
 
• In conjunction with Constraint Logic Programming 

techniques. 

 

Currently, the most successful methods. 

Two general schemes: 

• “unified” architectures (a single algorithm combining 
components of several methods), 

• “parallel hybrids” (running concurrently “pure” 
implementations of two or more algorithms).  
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USING INFORMATION IN A DIFFERENT WAY 

●   Reactive Tabu Search 
      -   Battiti and Tecchiolli (1992, 1994) 
 
●   Path relinking, Scatter search 
     -   Glover (1994, 1995) 

     -   Glover and Laguna (1997) 
 
●   Candidate list and elite solutions 
      -   see Glover and Laguna (1997) 
 
●   Hashing and Chunking 
      -   Woodruff and Zemel (1993) 

      -   Carlton and Barnes (1995) 

      -   Woodruff (1996) 
 
●   Vocabulary building 
      -   Glover (1992) 

      -   Glover and Laguna (1993) 

      -   Rochat and Taillard (1995) 

      -   Kelly and Xu (1995) 

      -   Lopez, Carter and Gendreau (1998) 
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NEW APPLICATION AREAS 

• Integer and mixed-integer programming 

• Continuous optimization problems 
 
     - with extreme point solutions 
          +   concave programming 
          +   fixed-charge problems 
         
          -   with “general” solution structure 

• Continuous, multi-criteria optimization 

• Stochastic programming problems 
especially those with a large number of possible 
realizations (intractable using standard approaches) 

• Real-time decision problems 
 

-  LS methods almost possess the “Anytime” property; 

    -  Solutions can often be adjusted in real time to new 
information.      
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TRICKS OF THE TRADE 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 GETTING STARTED 
 
• Read one or two good introductory papers (to gain some 

knowledge of the concepts, of the vocabulary,...). 
 
• Read several papers describing in detail applications in 

various areas (to see how concepts are implemented).  
 
• Think a lot about your problem 

       on search space →
           and neighbourhood structure . 
 
 
• Implement a simple version of LS or TS based on that 

search space and this neighbourhood. 

 
• Collect statistics on the performance of your simple 

heuristic. 

         memories (recency, frequency,...) →
 
 
• Analyze results and adjust the algorithm 

      add diversification, intensification, ...  →
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I have implemented a tabu search heuristic, but I keep 
on getting mediocre results. What should I do now? 
(HELP!) 
 
 
• If there are constraints, consider penalization to «open 

up» the search. 

 
• Change the neighbourhood structure to allow for a 

more purposeful evaluation of moves. 

 
• Collect statistics 

 
• Follow the algorithm step by step 

 
• Consider diversification 

 
• Change parameter values 
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How do I calibrate all those parameters? 
How do I go about computational testing? 
 
 
• Get a good set of test problems preferably with some 

measures of problem difficulty (estimated beforehand). 

 
• Split your problem set into two subsets: 
 
      -   one for algorithmic design and parameter calibration, 
 
      -   the other to perform your final computational testing 

(to be published). 
 
 
• Perform exploratory testing to find good ranges of 

parameters. 
 
• Fix the values of «robust» parameters. 
 
• Perform systematic testing for other parameters. 
 
• You may read the Crainic, Gendreau, Soriano and 

Toulouse paper in Annals of O.R. 41. 



 42

I use probabilistic tabu search. My results are fairly 
good, but when I look at my solutions, they look 
somewhat strange!?! 
 

Are you sure that your solutions are local optima w.r.t your 
inner heuristic? 

 
They may very well not be, unless you do something about 
it! 
 
 
• Perform a “straight” local improvement phase, starting 

from the best found solution, at the end of the TS. 

 
• Switch to TS without sampling (again from the best 

found solution) for a short duration before completing the 
algorithm. 
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