
Filtering Algorithms for Tabular Constraints

Roman Barták*

Charles University, Faculty of Mathematics and Physics
Malostranské námìstí 2/25, 118 00 Praha 1, Czech Republic

bartak@kti.mff.cuni.cz

Abstract. Constraint satisfaction technology supports all constraint types, i.e.
arbitrary relations can be expressed, theoretically. However, in practice
constraint packages support only some constraints, namely arithmetical, logical,
and special purpose global constraints. If a general relation constraint needs to
be expressed, the user is forced to represent it as a system of supported
constraints or to design a special filtering algorithm for it. In this paper we
describe filtering algorithms for general binary constraint whose domain can be
expressed as a table of compatible pairs of values. Such constraints may appear
in practical applications where the final user (rather than the developer)
specifies the constraint domain using a simple user interface, e.g., using a table.

1 Introduction

Constraint programming (CP) deals with the problems stated as a set of variables with
domains attached to them and as a set of constraints restricting the combinations of
values that can be assigned to the variables [8]. The task is to find a consistent
valuation of the variables, i.e., a valuation satisfying all the constraints. In theory, the
constraint is an arbitrary relation among the variables. However, in practice,
constraints are usually arithmetic (e.g. comparison) or logical relations (e.g.
implication) with well defined semantic. Such restriction has a practical motivation -
it is possible to exploit semantic of the constraint to design more efficient filtering
algorithms that remove inconsistent values from the variables' domains. For example,
if the constraint is a linear relation then it is possible to propagate bounds of the
domain rather than to check all the values in the domain. This significantly speeds up
filtering and therefore such methods are used for other constraints as well even if they
do not (sometimes) remove all incompatibilities from the domains. Because such
filtering algorithms are fine-tuned in the constraint satisfaction packages it is highly
recommended simplifying the constraints expressed as general relations into a more
mathematical way. This is usually possible, if the developer knows the constraints in
advance, but it could be very hard, if the end-user states the constraint in the form of a
table directly in the system. Then, having some form of a general relation constraint is
highly desirable to simplify development of the system.

* Supported by the Grant Agency of the Czech Republic under the contracts 201/99/D057 and

201/01/0942.

Our work on filtering algorithms for tabular constraints is motivated by practical
problems where important real-life constraints are expressed in the form of tables. In
particular, this work is motivated by complex planning and scheduling problems
where the user states relations over objects like activities or resources. In complex
environments, there could appear pretty complicated relations among the activities
expressing, for example, transitions between the activities allocated to the same
resource (like changing a colour of the produced item). Typically, the activities are
grouped in such a way that transitions between arbitrary two activities within the
group are allowed but a special set-up/transition activity is required for the transition
between the activities of different groups. The most natural way to express such
relation is using a table describing the allowed transitions (see Figure 1).

Fig. 1. A transition constraint expressed as a table of compatible transitions (shadow regions).

This table could be automatically converted into a mathematical formulation but such
automatic conversion is usually very complicated or even impossible. Designing a
special filtering algorithm is another possibility to tackle the problem of general
relation constraints. We chose the second option because it seems to be more
applicable in real-life problems thanks to its generality. Moreover, we can design the
filtering algorithm in such a way that it exploits a typical structure of the constraint
domain and thus filtering is more efficient when such a structured constraint appears.
In particular, we observed that the transition constraints, that we model using the
tabular constraint, have a rectangular structure, i.e., the constraint domain consists of
several (possible overlapping) rectangles of compatible pairs. This information can be
used to design a special filtering algorithm that is more efficient if the constraint
domain is rectangular and that is still capable to do filtering on arbitrary other
constraint domain.

In this paper, we describe the filtering algorithms for binary tabular constraints. We
restrict to binary constraints because this type of a general constraint can be easily
described using a table1. First, we introduce some geometric notions describing the
structure of the constraint domain and we sketch the environment to which our

1 General constraints of arity greater than three cannot be easily inputted as a table.

B→→C

A→→A

A
→→

B

C→→C

D→→A D→→C

C→→D

A

B

C

D

A B C D

F
R

O
M

TO

filtering algorithm fits. Then we describe one of the straightforward filtering
algorithms and we propose its extension to work more efficiently with rectangular
structured constraints. The main part of the paper is dedicated to the description of a
sweep technique for filtering of tabular constraints. We conclude with practical
examples of tabular constraints and with comparison to existing techniques.

2 Preliminaries

Constraint programming is a framework for declarative problem solving by stating
constraints over the problem variables and then finding a value for each variable from
the domain attached to the variable in such a way that all the constraints are satisfied.
In general, the constraint is an arbitrary relation restricting the possible combinations
of values for constrained variables. The constraint domain is a set of tuples satisfying
the constraint, e.g., {(0,2), (1,1), (2,0)} for the constraint X+Y=2 and variable
domains containing non-negative integers. We say that the constraint has a simple
rectangular structure, if C(Xs) = ×X∈Xs C(Xs)↓X, where Xs is a set of constrained
variables, C(Xs) is a constraint domain, and C(Xs)↓X is a projection of the constraint
domain to the variable X (see Figure 2). For example, the above constraint X+Y=2
does not have a simple rectangular structure because the projection to both variables
is {0,1,2} so the Cartesian product is larger than the constraint domain. The notion of
a rectangular structure is derived from the structure of the constraint domain for
binary variables (as explained above we restrict ourselves to binary tabular constraints
because they seem enough for practical applications).

Fig. 2. Binary constraints with simple rectangular structure (shadow rectangles represent a
constraint domain).

If the constraint has a simple rectangular structure then it is easy to satisfy this
constraint: domains of the involved variables are restricted to respective projections
and then, arbitrary combination of values from the reduced domains satisfies the
constraint. Unfortunately, the structure of the constraint domain is usually more
complicated, still we observed that the tabular constraints inputted by the users have a
structure that can be decomposed into rectangles (see Figure 1). The rectangle R is a
subset of the constraint domain such that R = X'×Y' where X' and Y' are intervals of
values in projections of the constraint domain to respective variables. Arbitrary
constraint domain can be represented as a union of rectangles, then we are speaking

X X

YY

about the rectilinear rectangular covering. Note that in general we do not require
these rectangles to be disjoint. The rectilinear rectangular covering is not unique for a
given constraint domain (see Figure 3), however we prefer a smaller covering (a
smaller number of rectangles) because complexity of our filtering algorithm depends
on the size of the covering. The algorithms for finding a (minimal) rectilinear
rectangular covering are out of scope of this paper; their description can be find in
[5,7].

Fig. 3. Different rectilinear rectangular coverings for a single tabular constraint.

Constraint propagation (domain filtering, consistency technique) is one of the most
important techniques used in constraint programming [8]. The goal of constraint
propagation is to remove values from variables' domains that cannot be part of any
solution satisfying all the constraints. There exist several notions of consistency
typically differentiating in the number of removed inconsistent values. Among the
consistency techniques arc-consistency plays the most important role thanks to its
good ratio between the number of removed inconsistencies and complexity. We say
that the constraint is (hyper) arc-consistent2 if every value of every variable in the
constraint is part of some solution of the constraint. For example, the constraint
X+Y=2, where both the variables X and Y have domain {0,1,2}, is arc-consistent.
Removing the values from domains to achieve some consistency is called domain
filtering. The notion of consistency can be naturally extended to a problem consisting
of several constraints. We say that a constraint satisfaction problem is arc-consistent if
all the constraints are arc-consistent.

To make the problem arc-consistent, it is not enough to make every constraint
consistent just once because deletion of the value by one constraint may evoke
deletion of another value in another constraint that was consistent before the deletion.
For example, if the value 0 is removed from the domain of the variable X by the
constraint X>0 then we need to remove the value 2 from the variable Y to make the
constraint X+Y=2 consistent again. Thus, we need to repeat revisions of the
constraints until any domain is pruned. Perhaps the most widely used arc-consistency
algorithm is AC-3 that re-revises only the constraints affected by the deletion. The

2 Usually, the notion of arc-consistency is used for binary constraints only. For constraints of

higher arity, the notions of hyper arc-consistency or generalised arc-consistency are used. For
simplicity reasons we will use the term arc-consistency or simply consistency only.

X

Y

X

Y

advantage of this algorithm is that it can be used for arbitrary constraints, in particular
no prerequisite for data structures is required. To integrate a new constraint into the
AC-3 framework, the constraint must provide a REVISE procedure that does domain
filtering (makes the constraint consistent) and it must define the trigger when the
filtering should be evoked (e.g. when a domain of any involved variable is changed).

procedure AC-3(Constraints)
Q ← Constraints
while Q nonempty do

C ← select_and _delete(Q)
Change ← REVISE(C)
Q ← Q ∪ affected_constraints(Constraints,Change)

end do
end AC-3

Fig. 4. AC-3 algorithm for enforcing arc consistency.

3 GR Filtering Algorithms

In [1] a straightforward filtering algorithm GR (general relation) for tabular
constraints was proposed. This algorithm enforces arc-consistency of the tabular
constraint and it can be easily integrated to the standard AC-3 algorithm via the
REVISE procedure. The filtering is evoked every time a domain of any involved
variable is changed. We present here a simple extension of this algorithm that stops
filtering when the constraint restricted to the actual domains of involved variables has
a simple rectangular structure. Then further filtering is not necessary because all the
combinations of the values are allowed by the constraint.

The GR algorithm uses a thread representation of the constraint domain. One of the
variables is chosen as the leading variable and the second variable is called
dependent. The constraint is represented as an (ordered) set of values of the leading
variable and to each value a set of compatible values from the dependent variable is
attached. Naturally, this extensional representation can be used only when it is finite.
In particular, we need the domain of the leading variable to be finite and the set of
compatible values of the dependent variable to be finitely representable (for details
see [1]). Nevertheless, in practice this is not a strong restriction, because we are
modelling tabular constraints and such restrictions are naturally included in the
tabular input. In particular, the number of rows in the table is finite so each row can
represent a value of the leading variable. Moreover, we input the set of compatible
values to every row so we already have a finite representation, e.g. using a list of
intervals. Note that it does not necessarily imply that the domain of the dependent
variable must be finite as well - we can use intervals with minus/plus infinity (inf/sup)
to describe the domain with infinite number of values, e.g. 8..sup represents all the
values greater or equal to 8. Figure 5 shows how a tabular form is converted to the
thread representation with the leading variable X and the dependent variable Y.

Notice that if there is no compatible value for the value of the leading variable then
this value is simply omitted from the representation.

Tabular constraint:
X Y
1 2..20, 30..50
2 - No compatible value
3 inf..sup No restriction on Y
4 10..50

is represented as the list [1-[2..20,30..50], 3-[inf..sup], 4-[10..50]].

Fig. 5. Conversion of the tabular form of the constraint to the thread representation.

Each time a domain of the leading or dependent variable is pruned, the GR algorithm
is evoked. This algorithm goes through the constraint domain representation and
checks the compatible values with respect to the current domain of the variables. Note
that the algorithm exploits the non-symmetrical representation of the constraint. In
particular, it tests membership of the value x of the leading variable in the domain
first (row 9) before testing non-emptiness of the intersection of the domain of the
dependent variable Y with the values compatible with x (rows 10-11). This is faster
than doing it in the reverse order (in case x∉domain(X)). The algorithm builds also a
new domain for both the leading and dependent variable. We add a simple extension
to the original algorithm that tests whether the constraint domain after reduction to the
current domains of the variables has a simple rectangular structure (rows 14-20). If it
has a simple rectangular structure then the constraint is entailed and the filtering
algorithm is not called after future deletions of values from the domains.

In [1], several versions of the GR algorithm are studied with respect to time and
space complexity. These algorithms change the domain of the constraint to respect the
current domains of the constrained variables. Our extension for testing simple
rectangular structure of the constraint domain can be used in these algorithms as well.

Proposition 1: The GR algorithm is sound and complete, i.e., it makes the constraint
arc-consistent (only consistent values are kept in the domains and no consistent value
is removed).

Proof: The value x is included in the new domain for the leading
variable (row 12) if and only if it is part of the original domain (row 9),
it is part of the projection of the constraint to the leading variable (row
8) and there is a compatible value for x in the domain of the dependent
variable (rows 10-11). Visibly, new domain of the dependent variable
contains only values from the original domain (row 10), that are
compatible with any value of the leading variable (rows 8-9). The
constraint is entailed if for every value of the leading variable the sets
of compatible values of the dependent variable are unique. o

1 procedure GR(Constraint,X,Y)
2 NewDomainOfX ← empty
3 NewDomainOfY ← empty
4 ConstraintDomain ← domain(Constraint)
5 Entailed ← true
6 LastProjectionOfY ← empty
7 while non_empty(ConstraintDomain) do
8 (x-DY) ← select_and_delete(ConstraintDomain)
9 if x∈domain(X) then
10 CompatibleY ← intersection(domain(Y),DY)
11 if non_empty(CompatibleY) then
12 NewDomainOfX ← union(NewDomainOfX, {x})
13 NewDomainOfY ← union(NewDomainOfY, CompatibleY)
14 if Entailed then
15 if empty(LastProjectionOfY) then
16 LastProjectionOfY ← CompatibleY
17 else
18 Entailed ← (LastProjectionOfY == CompatibleY)
19 end if
20 end if
21 end if
22 end if
23 end while
24 X in NewDomainOfX
25 Y in NewDomainOfY
26 end GR

Fig. 6. The GR filtering algorithm.

Proposition 2: Time complexity of the GR algorithm is O(dx*dy), where dx and dy
are sizes of domains of the leading variable and the dependent variable respectively.

Proof: The while cycle in the algorithm is repeated O(dx) times and the
most complex step in this cycle is computing intersection and union of
the domains (rows 10,13) which has complexity O(dy). So together the
complexity is O(dx*dy). o

4 Sweep Filtering Algorithm

The GR algorithm uses a straightforward representation of the constraint domain but
this thread representation does not allow exploiting the structure of the domain to full
extent. In fact, we can only use a simple rectangular structure of the domain there. If
the structure is more complex, like Figure 1 shows, then the GR algorithm is less
efficient because it must check all pairs of values. Therefore, we propose to represent
the constraint domain as a set of rectangles that forms the rectilinear rectangular
covering of the constraint domain. Then, the filtering algorithm can explore only the
rectangles instead of working with threads (pairs (value, compatible values) used by
the GR algorithm).

The proposed filtering algorithm is based on a technique called sweep that is
widely used in computational geometry and that was first applied to domain filtering
in [3]. The sweep algorithm moves a vertical line (called a sweep line) along the
horizontal axis from left to right and each time it encounters or leaves an object (this
is called an event), it triggers some event handler according to the event type. Thus
the algorithms sweeps the plane, hence its name. In case of domain filtering, there are
four types of events used by the sweep algorithm:

rect_start(PosX,NumR,IntY) - indicates the left border (PosX) of the rectangle
identified by NumR with the vertical projection IntY,

rect_end(PosX,NumR) - indicates the right border (PosX) of the rectangle
identified by NumR,

x_start(PosX) - indicates the start of some coherent interval within the current
domain of the leading variable,

x_end(PosX) - indicates the end of some coherent interval within the current
domain of the leading variable.

The list of events can be generated in advance from the constraint domain and the
current domain of the leading variable. We call such a list an event point series. The
events in the event point series are ordered increasingly according to the x-axis
position of the event (PosX). Moreover, we require the start events to precede the end
events with the same x-axis position. This is necessary for the algorithm to capture
"one-point" overlaps between the objects. Figure 7 shows an example of the event
point series for the constraint domain consisting of three overlapping rectangles and
the domain of the leading variable consisting of two intervals (2..5 and 8..10).

Fig. 7. Construction of the event point series for the constraint domain.

 1 2 3 4 5 6 7 8 9 10 11

1

2

3

 1

2
 3

4

 5

6
 7

Event point series:
rect_start(1,1,4..6),
rect_start(2,2,2..4)
x_start(2),
rect_end(2,1),
rect_start(4,3,3..5),
x_end(5),
rect_end(5,2),
x_start(8),
rect_end(8,3),
x_end(10)

During the computation, the SP (sweep pruning) algorithm keeps some global data
structures that describe the status of computation:

InDomain - indicates whether the sweep line is within the domain of the
leading variable, i.e., in between x_start and x_end events
corresponding to a single coherent interval,

ActiveRects - describes the set of rectangles that are crossed by the sweep line,
i.e., the rectangles where the rect_start event has been
processed and the corresponding rect_end has not been
reached yet.

Also, the SP algorithm incrementally builds new domains for the leading variable
(ListOfX) and the dependent variable (NewDomainOfY). While NewDomainOfX is
constructed using a set operations, ListOfX keeps a list of "border" points of intervals
in the new domain of the leading variable (in the reverse order) that is then converted
to the domain (rows 36-41).

27 procedure SP(Constraint,X,Y)
28 EventPointSeries ← make_event_point_series(Constraint,X)
29 NewDomainOfY, ActiveRects, ListOfX ← empty
30 DY ← domain(Y)
31 InDomain ← false
32 while non_empty(EventPointSeries) do
33 Event ← select_and_delete_first(EventPointSeries)
34 process_event(Event,DY,ActiveRects,InDomain,

ListOfX,NewDomainOfY)
35 end while
36 NewDomainOfX ← empty
37 while non_empty(ListOfX) do
38 Max ← select_and_delete_last(ListOfX)
39 Min ← select_and_delete_last(ListOfX)
40 NewDomainOfX ← union(Min..Max,NewDomainOfX)
41 end while
42 X in NewDomainOfX
43 Y in intersection(NewDomainOfY,DY)
44 end SP

Fig. 8. The SP filtering algorithm.

EVENT - ACTION
rect_start(PosX,NumR,IntY)
45 if non_empty(intersection(IntY,DY)) then
46 if InDomain then
47 NewDomainOfY ← union(IntY,NewDomainOfY)
48 if empty(ActiveRects) then
49 ListOfX ← PosX : ListOfX
50 end if
51 end if
52 ActiveRects ← r(NumR,IntY) : ActiveRects
53 end if

rect_end(PosXx,NumR)
54 if find_and_delete(r(NumR,_),ActiveRects) then
55 if InDomain && empty(ActiveRects) then
56 ListOfX ← PosX : ListOfX
57 end if
58 end if

x_start(PosX)
59 InDomain ← true
60 if non_empty(ActiveRects) then
61 ListOfX ← PosX : ListOfX
62 foreach r(NumR,IntY) in ActiveRects do
63 NewDomainOfY ← union(NewDomainOfY,IntY)
64 end foreach
65 end if

x_end(PosX)
66 InDomain ← false
67 if non_empty(ActiveRects) then
68 ListOfX ← PosX : ListOfX
69 end if

Fig. 9. Event processing for the SP filtering algorithm.

The SP algorithm is more or less self-explanatory. Notice that only the rectangles
having a non-empty projection to the domain of the dependent variable are processed
(rows 45, 54), let us call these rectangles relevant. If the sweep line enters the relevant
rectangle (rec_start event) and it is within the domain of the leading variable X (row
46), then the projection of the rectangle to Y-axis is added to the new domain of Y
(row 47). If it is the first rectangle that has non-empty intersection with the current
interval of X (row 48) then the start of the new interval is added to the new domain of
X (row 49). When entering the relevant rectangle we make this rectangle active by
memorising it in the ActiveRects structure (row 52). If we leave the last rectangle
(rect_end event) that is active (row 55) then the end of the new interval is added to the
new domain of X (row 56). If we enter a new interval within the domain of X (x_start
event) and there is any active rectangle (row 60) then the new start of the new domain
of X is created (row 61). Also, the new domain of Y is extended by projections of
active rectangles to Y-axis (row 63). If we leave some interval within the domain of X

(x_end event) and there is still some active rectangle then a new end of the interval is
added to the new domain of X (row 68).

Figure 10 shows a run of the SP algorithm when exploring the constraint domain
from Figure 7. Contents of basic data structures after processing an event is displayed
there.

EVENT ListOfX InDomain ActiveRects NewDomainOfY
rect_start(1,1,4..6) empty false r(1,4..6) empty
rect_start(2,2,2..4) empty false r(1,4..6) empty
x_start(2) 2 true r(1,4..6) 4..6
rect_end(2,1) 2,2 true empty 4..6
rect_start(4,3,3..5) 4,2,2 true r(3,3..5) 3..6
x_end(5) 5,4,2,2 false r(3,3..5) 3..6
rect_end(5,2) 5,4,2,2 false r(3,3..5) 3..6
x_start(8) 8,5,4,2,2 true r(3,3..5) 3..6
rect_end(8,3) 8,8,5,4,2,2 true empty 3..6
x_end(10) 8,8,5,4,2,2 false empty 3..6

Fig. 10. Run of the SP filtering algorithm for DY=5..10 and the constraint domain from Fig. 7.

Proposition 1: The SP algorithm is sound and complete, i.e., it makes the constraint
arc-consistent (only consistent values are kept in the domains and no consistent value
is removed).

Proof: The new domain of the leading variable X is constructed from
the intervals provided by the SP algorithm. Each such interval is a sub-
interval of the original domain of X and it is also a subset of the
projection of the relevant rectangles to X-axis. Thus every value in this
interval has a support in Y. Moreover, if there is a value x from the
domain of X that has support y in the domain of Y then there must be a
rectangle containing the pair (x,y) and this rectangle becomes active
sometime during the computation.

The new domain of the dependent variable Y is a union of
projections of the active rectangles whose projection to X-axis has a
non-empty intersection with any interval of the domain of X. In
particular, all the values in the new domain of Y have a support in the
domain of X. Among them, only the values belonging to the original
domain of Y are selected (row 43). o

Proposition 2: Time complexity of the SP algorithm is O(dx + r(log r + dy)), where
dx and dy are sizes of domains of the leading and dependent variable respectively
(number of disjoint intervals) and r is a number of rectangles.

Proof: To achieve a good time complexity of the SP algorithm it is
necessary to use a clever implementation of data structures. For
example, instead of using the list of active rectangles (ActiveRects), it
is better to use an array with the size r that indicates whether the
rectangle is active or not. Then complexity of adding, finding and

deleting an active rectangle (row 54) is O(1). Moreover, we can use a
counter of active rectangles to find if there is any active rectangle, the
time complexity of using this counter is O(1). Also to prevent repeated
union of the same intervals IntY (row 63) when the rectangle expands
through several intervals of the domain of X, it is possible to indicate in
the above-mentioned array whether the rectangle has already been
included. Moreover, instead of computing the union of the intervals
IntY incrementally (row 63) with complexity r*r (insert sort technique),
it is better to keep these intervals in a list and to produce the union at
the end. Then the aggregated complexity of computing the new domain
of Y is r*log r (we sort at most r intervals).

Time complexity of processing the rect_start event is O(dy) that is
the complexity of computing the intersection at row 45 (all other
commands have complexity O(1)). Time complexity of processing the
rect_end event is O(1) as discussed above. Both rect_start and rect_end
events are evoked r times so the aggregated complexity is O(r*dy).
Time complexity of processing the x_start event is O(1) provided that
the construction of the domain of Y is computed separately. Time
complexity of processing the x_end event is O(1). Both x_start and
x_end events are evoked dx times so the aggregated complexity is
O(dx). Construction of new domain of X (rows 37-41) has complexity
O(dx). Together the time complexity of single propagation step is O(dx
+ r(log r + dy)). o

5 Related Works

The idea of using semantic of the constraint to get more efficient filtering algorithms
is not new and it is widely used especially in so called global constraints like all-
different [6]. However, all these algorithms are designed for a particular constraint,
i.e. for given semantic, while our filtering algorithm works with arbitrary binary
constraint and exploits its rectangular structure. Thus, semantic of the constraint is not
fixed and the algorithm works with arbitrary binary constraint.

Another example of using semantic information to do better filtering may be found
in generic AC-5 algorithm by Van Hentenryck, Deville, and Teng [9] where using
functional, anti-functional, and monotonic constraints improves efficiency of the arc-
consistency algorithm. Our algorithm is less general and it is not motivated by
arithmetic constraints. We rather took the real-life constraints from the area of
planning and scheduling, analysed their typical structure (semantic) and then we
proposed an algorithm to handle these constraints more efficiently.

Sweep technique to do domain filtering was proposed by Beldiceanu in [3]. His
method aggregates several constraints sharing some variables so it removes more
inconsistencies than using the constraints separately. Thus, the set of constraints
behaves more like a special global constraint. We adapted the sweep technique to
improve efficiency of the arc-consistency algorithm rather than to remove more
values beyond arc-consistency.

Constraint engines embedded in programming languages often include tools for
definition of general constraints, like element and relation predicates in SICStus
Prolog [4]. The relation predicate in SICStus Prolog has behaviour necessary to
model the tabular constraints. It uses the thread representation to describe the
constraint domain, however unlike our GR algorithm the relation predicate is not able
to handle infinite domains so the tabular constraint from Figure 5 cannot be modelled
using the relation predicate. Moreover the relation predicate does not exploit the
special structure of the constraint domain to improve efficiency. Using the GR
algorithm, we improve the efficiency as far as ten times in comparison with the
relation predicate simply because many user-defined tabular constraints have a simple
rectangular structure or they soon converge to such a structure as the domains of
constraints variables are pruned. The element constraint can be used to model tabular
constraints as well, but we need two element constraints to model a general binary
constraint. Nevertheless, there are two main drawbacks when the element predicate is
used. First, it requires an extensional representation of the constraint domain, i.e.,
every pair of compatible values must be included. This becomes intractable soon
when the number of compatible values is large. Of course, infinite domains cannot be
represented this way. Our representation of the constraint domain is more compact
and we can even work with infinite domains. The second disadvantage of the element
predicate is that it performs only linear consistency when applied to tabular
constraints. It means that some inconsistent pairs of values are not detected that could
be a problem in some applications. Our algorithms perform full arc-consistency so
they remove all incompatible pairs.

6 Discussion on Usage and Experiments

In Introduction we give a short motivation for tabular constraints and we provide
more examples here. The basic motivation of our research is from integrated planning
and scheduling problems. In these problems we need to introduce activities to do
some task during the course of problem solving. To represent a space for the activity
we use a slot model [2]. The basic attribute of the slot is Activity variable describing
which activity can be filled in the slot. There are other attributes of the slot that are
dependent on the value of the Activity variable, e.g., Start_time and Duration.
Different activities may have different duration so we need to express the relation
between Activity and Duration variables using a constraint. Unfortunately, the
domain of this constraint is usually inputted as a table so it is hard to express such
constraint in a mathematical way. Thus general binary constraint must be used. Note
also, that duration is not necessary a single number but it could be an interval that
expresses variability of duration per activity (e.g. we can choose different production
rate of the machine when scheduling the activity). Thus, using the element constraint
is not natural there and the relation constraint should be used instead. Similar analysis
can be done for the relation between Activity and Start_time attributes that describes
the time windows for the activity. However, now the situation is slightly different
because there could be time windows with infinite intervals (see Figure 5).
Unfortunately, the SICStus build-in predicate relation cannot be used there because it

does not support infinite domains. This is the main reason why we started to design
filtering algorithms for such tabular constraints. Moreover, we found that domains of
tabular constraints had often a structure of rectangle(s) so we extended our first GR
filtering algorithm to work more efficiently with rectangular constraint domains. The
results were amazing: when compared to build-in relation predicate we get as ten
times better performance even if our implementation seems pretty naive. The more
sophisticated SP algorithm works even more efficiently when there are more
rectangles in the constraint domain (see complexity analyses in Section 4) but we did
not integrate this algorithm to our scheduling engine yet (so no experimental results
are available). The problem is that this algorithm is very dependent on decomposition
of the constraint domain to rectangles. Because there are several tabular constraints in
the model, each constraint may require a different ordering of values in variable's
domains to achieve a "nice" rectangular structure. So, one way of future research
could be to investigate interference between several tabular constraints. We
concentrate more on "globalisation" of the set of tabular constraints, i.e., instead of
using a set of tabular constraints, we propose to use a global constraint that achieves
better pruning. In our problem area, there are several binary constraints between the
Activity variable and other variables so it seems more promising to integrate them
into a single constraint rather than to improving efficiency of the filtering algorithm
for binary constraints only. Note that contrary to the GR algorithm, the SP algorithm
can be extended more naturally to n-ary constraints [5] so this could be the way to
improve pruning.

7 Conclusions

In this paper we propose two algorithms for domain filtering of binary tabular
constraints. Such constraints appear in real-life applications especially, when the user
is allowed to enter the domain of the constraint. We concentrate on tabular constraints
with rectangular structure of the constraint domain so our algorithms can exploit such
a structure to improve efficiency. The GR algorithm may seem naive but its extension
discovering the simple rectangular structure proved itself to be very powerful. We use
this algorithm in a generic scheduling engine and it improves efficiency as far as ten
times in comparison with the existing relation predicate. Moreover, we can handle
infinite domains that are often used to describe less tight relations. The SP algorithm
uses different technique to do pruning than GR algorithm and it has potential to grow
to n-ary constraints so we are exploring this possibility now.

8 References

[1] Barták R.: A General Relation Constraint: An Implementation, in Proceedings
of CP2000 Post-Workshop on Techniques for Implementing Constraint
Programming Systems, Singapore (2000)

[2] Barták, R.: A Slot Representation of the Resource-Centric Models for
Scheduling Problems, in Proceedings of ERCIM Working Group on
Constraints/CompulogNet Area on "Constraint Programming" Workshop,
Padova (2000)

[3] Beldiceanu N.: Sweep as a generic pruning technique, in Proceedings of
CP2000 Post-Workshop on Techniques for Implementing Constraint
Programming Systems, Singapore (2000)

[4] Carlsson M., Ottosson G., Carlsson B.: An Open-Ended Finite Domain
Constraint Solver, in Proceedings Programming Languages: Implementations,
Logics, and Programs (1997)

[5] Michalský, R.: Algorithms for Constraint Satisfaction, Master Thesis, Charles
University, Prague (2001)

[6] Régin J.-Ch.: A filtering algorithm for constraints of difference in CSPs.
Research Report LIRMM 93-068, LIRM, Université Montpellier, France
(1993)

[7] Shearer J.B, Wu, S.Y., and Sahni S.: Covering Rectilinear Polygons by
Rectangles, in IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 9 (1990)

[8] Tsang E.: Foundations of Constraint Satisfaction, Academic Press, London
(1993)

[9] Van Hentenryck P., Deville Z, and Teng. C.-M.: A generic arc-consistency
algorithm and its specializations, in Artificial Intelligence 57, pp. 291-321
(1992)

