
 
 

 

  

Abstract—Temporal Networks play an important role in 
solving planning problems and they are also used, though not as 
frequently, when solving scheduling problems. In this paper we 
propose an extension of temporal networks by parallel and 
alternative branching. This extension supports modelling of 
alternative paths in the network; in particular, it is motivated 
by modelling alternative process routes in manufacturing 
scheduling. We show that deciding which nodes can be 
consistently included in this extended temporal network is an 
NP-complete problem. To simplify solving this problem, we 
propose a pre-processing step whose goal is to identify classes of 
equivalent nodes. The ideas are presented using precedence 
networks, but we also show how they can be extended to simple 
temporal networks. 

I. INTRODUCTION 

CHEDULING problems typically deal with allocating 
known activities to available resources and time. Real-

life problems are usually more complex than existing 
theoretical models and, for example, they also require 
selection among alternative process routes or alternative 
resources in complex manufacturing enterprises. Due to 
efficiency issues, selection of alternative processes and 
resource allocation are frequently done separately from 
scheduling. However, this approach has several drawbacks. 
First, if the selected route or resource allocation cannot be 
scheduled, it is necessary to backtrack from the scheduling 
module to resource allocation and process selection modules. 
Second, even if the resource allocation and selected routes 
are feasible, separating the allocation and process selection 
algorithms from the scheduling algorithm may ruin the 
quality of the solution. Hence, a better result will be obtained 
when process selection and resource allocation is done 
within scheduling. While resource allocation is now an 
accepted part of scheduling problems and there exist 
approaches for doing resource allocation within scheduling, 
for example [5], process selection is still treated separately. 

In this paper we propose an extension of temporal 
networks that can model alternative process routes. We 
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describe the main ideas using networks with only precedence 
relations, but at the end of the paper we also show how these 
ideas can be extended to simple temporal networks. To 
model selection of alternatives, we assign a validity variable 
to each node in the network. This validity variable indicates 
whether the node is selected or not to be in the final solution 
plan. Decision about validity/invalidity of the node is done 
by the solver. We also augment the precedence network by a 
description of splitting and joining operations that implicitly 
define logical dependencies between nodes in the network. 
The dependency relations specify which nodes must/cannot 
be valid in relation to the validity status of other nodes. The 
main motivation for these operations goes from modelling 
manufacturing processes. The nodes correspond to activities 
(or more precisely start times of activities) and the arcs 
describe flow of products between the activities (precedence 
constraints). In some nodes the manufacturing process can 
split into two or more parallel sub-processes that can join 
back to a single process. For example, a piece of wood is cut 
in parts that are processed in parallel and then assembled 
together to a final product. This is called parallel branching 
(Figure 1 top with semicircle). Another form of branching is 
alternative branching when the process also splits in sub-
processes, but these sub-processes are treated as alternatives 
so exactly one of them is used. The alternative sub-processes 
can also join back to a single process (Figure 1 bottom). 

 
In the paper we formally define the above-described 

precedence graph with parallel and alternative branching that 
we call a P/A graph. We also show that the problem whether 
there exists an assignment of validity variables consistent 
with the specified branching is NP-complete. To support 
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Fig. 1.  Example of parallel (top) and alternative (bottom) sub-
processes with one selected process. 

 



 
 

 

problem solving, we propose a pre-processing step where 
sets of equivalent nodes are identified in the P/A graph. We 
call the nodes equivalent, if their validity status is identical in 
all solutions, that is, such nodes are either all valid or all 
invalid in any consistent assignment of validity variables. 
This will help us to bridge alternative routes. We conclude 
the paper by showing that the presented ideas can be 
extended to simple temporal networks. We compare our 
proposal with existing works on temporal networks. Namely, 
we demonstrate that P/A simple temporal networks can 
model temporal constraint satisfaction problems. 

II. P/A GRAPHS 

Let G be a directed acyclic graph. A subgraph of G is 
called a fan-out subgraph if it consists of nodes x, y1,…, yk 
(for some k) such that each (x, yi), 1 ≤ i ≤ k, is an arc in G. 
Similarly, a subgraph of G is called a fan-in subgraph if it 
consists of nodes x, y1,…, yk (for some k) such that each 
(yi, x), 1 ≤ i ≤ k, is an arc in G. In both cases x is called a 
principal node and all y1,…, yk are called branching nodes. 

Definition 1: A directed acyclic graph together with a set of 
its pairwise edge-disjoint fan-out and fan-in subgraphs, 
where each subgraph in the set is marked either as a parallel 
subgraph or an alternative subgraph, is called a P/A graph. 

An assignment of 0/1 (true/false) values to nodes of a 
given P/A graph is called feasible if 

• in every parallel subgraph all nodes are assigned the 
same value (both the principal node and all branching 
nodes are either all 0 or all 1), 

• in every alternative subgraph either all nodes (both the 
principal node and all branching nodes) are 0 or the 
principal node and exactly one branching node are 1 
while all other branching nodes are 0. 

It can be easily noticed that given an arbitrary P/A graph 
the assignment of value 0 to all nodes is always feasible. On 
the other hand, if some of the nodes are required to take 
value 1 (as we shall see later, this requirement is a very 
natural one if the P/A graph is used to model a real-life 
problem), then the existence of a feasible assignment is by 
no means obvious. Let us now formulate this decision 
problem formally. 

Definition 2: P/A graph assignment problem is given by a 
P/A graph G and a list of nodes of G which are assigned 
value 1. The question is whether there exist a feasible 
assignment of 0/1 values to all nodes of G which extends the 
prescribed partial assignment. 

Remark: The P/A graph assignment problem remains the 
same if we allow forcing value 1 for just a single vertex. To 
see this, observe that the general case can be reduced to this 
special one by adding an extra vertex, forcing it to 1 and 
connecting it by a fan-in (or fan-out) parallel subgraph to all 
nodes that were forced to 1 originally. Moreover, if the 
original graph was acyclic, then so is the new one. 

Proposition 1: The P/A graph assignment problem is NP-
complete. 
Proof: The problem is obviously in NP, because it suffices 
to guess the assignment and test its feasibility, which can be 
done in linear time in the number of parallel and alternative 
subgraphs (and hence in the number of edges). For the NP-
hardness, we shall show that the 3SAT problem, which is 
known to be NP-complete [6], can be reduced (in a 
polynomial time) to the P/A graph assignment problem. 
Recall that the 3SAT problem is a problem of deciding 
whether there exists a model (a satisfying assignment of truth 
values to propositional variables) for a given formula in a 
conjunctive normal form, where each clause in the formula 
consists of exactly three literals. Moreover we may assume 
that no variable appears twice in a single clause, that is, each 
clause consists of literals of three distinct variables. 

Now we shall describe how to construct, for a given CNF 
(an instance of 3SAT), an instance of the P/A graph 
assignment problem. Consider e.g. a clause (a ∨ b ∨ ¬c). 
There exist seven mutually exclusive assignments of truth 
values to variables a, b, and c satisfying this clause (each 
assignment except of a = false, b = false, c = true is a 
satisfying one). We can model this clause using a “clause 
subgraph” which consists of a node for the clause, seven 
nodes for the mutually exclusive satisfying assignments, and 
six nodes for the values of propositional variables (three for 
positive values and three for negative values, that is, one for 
each literal). The clause node is connected to all assignment 
nodes by a fan-out alternative subgraph and each value node 
is connected to appropriate assignment nodes (those 
assignment nodes containing the literal which corresponds to 
the given value node) by a fan-in alternative subgraph. The 
following figure shows the clause subgraph for the clause 
(a ∨ b ∨ ¬c), where capital letters in the assignment nodes 
represent value false (so for example aBc corresponds to 
a = true, b = false, c = true). 

 
Each clause from the input CNF will be modelled using a 

clause graph with the above-described structure. To connect 
the clause graphs, we introduce a formula node and connect 
it with all clause nodes by a fan-out parallel subgraph. The 
formula node is forced to take value 1 (because we need the 
formula to be satisfied). A variable which is used in more 
than one clause will have value nodes in all clause graphs 

a ∨ b ∨ ¬c 

aBc abc abC aBC Abc AbC ABC 

a ¬a b ¬b c ¬c 

ALT 

ALT 



 
 

 

where it appears. To interconnect these value nodes we 
introduce for each variable in the formula a variable node, 
which is forced to take value 1, and two literal nodes 
connected to the variable node by a fan-in alternative 
subgraph. Finally, each literal node is connected by a fan-in 
parallel subgraph to all value nodes in clause graphs which 
correspond to the given literal. The following figure shows 
these additional nodes and connections (the shaded nodes are 
the nodes that are forced to take value 1). 

 
First let us observe that the number of nodes in the 

constructed P/A graph is linear in the size of the input CNF 
formula. Namely, if there are M clauses and N variables (and 
hence L = 3M literals) in the input CNF, then we get a graph 
with (14M + 3N + 1) nodes. Because 14M + 1 ≤ 5L and 
N ≤ L (assuming each variable appears at least once in the 
formula) we get that there are at most 8L nodes in the 
constructed P/A graph. 

Now let us assume that the input CNF has a satisfying 
assignment. We shall construct a feasible assignment of the 
constructed P/A graph as follows. All clause nodes will get 
value 1 to satisfy the parallel fan-out from the formula node. 
The literal nodes of each variable will get the 0 and 1 values 
as defined by the satisfying assignment of the input CNF (for 
example if variable b is false in the satisfying assignment, 
then the node b gets the value 0 and the node ¬b gets the 
value 1). This satisfies the alternative fan-in into the variable 
nodes, and moreover it defines the 0 and 1 values for all 
value nodes via the parallel fan-ins that replicate the literal 
values into all clause subgraphs. Finally, for each clause 
exactly one assignment node is made valid, namely the one 
in which all three literals are valid, which satisfies the 
alternative fan-out from the clause nodes. It remains to show 
that also all alternative fan-ins into value nodes are satisfied. 
So let us consider an arbitrary value node. If it corresponds 
to a valid literal then it is connected to exactly one valid 

assignment node (the one where also the other two literals 
are valid), and if it corresponds to an invalid literal than it is 
connected only to invalid assignment nodes (see figure 
below). In both cases this is exactly what we need and hence 
the constructed assignment of 0/1 values to all nodes is 
feasible. 

 
To complete the proof let us assume that there exists a 

feasible assignment of 0/1 values to all nodes of the 
constructed P/A graph. In this assignment: 
• All clause nodes have value 1 to satisfy the parallel fan-

out from the formula node. 
• For each clause exactly one assignment node has value 1 

to satisfy the alternative fan-out from the clause nodes. 
• For each variable one literal node has value 1 and the 

other has value 0 to satisfy the alternative fan-ins into 
the variable nodes. The literal values are replicated into 
the value nodes by the parallel fan-ins into the literal 
nodes. 

Now let us check that the truth assignment defined by the 
values assigned to the literal nodes satisfies the input CNF. 
To this end let us pick an arbitrary clause and assume by 
contradiction that it is falsified. That means that the three 
valid value nodes correspond to the only missing 
combination among the assignment nodes, or in other words 
that the only valid assignment node must be connected to an 
invalid value node. However, this is a contradiction, because 
the corresponding fan-in subgraph into this value node spoils 
the feasibility of the assignment (the principal node is 0 
while one of its branching nodes is 1). Hence, the input CNF 
has a satisfying assignment if and only if the corresponding 
P/A graph has a feasible assignment.  

III. P/A GRAPH PRE-PROCESSING 

Because solving the P/A graph assignment problem is 
hard, we focus now on inferring some information from the 
graph that can be used later to improve solver efficiency. In 
particular, we describe a heuristic algorithm for finding 
equivalent nodes in the P/A graph. We call a set of nodes of 
the P/A graph equivalent if and only if the nodes are 
assigned the same value in all feasible assignments of 0/1 
values to nodes. Unfortunately, the problem of finding the 
largest possible sets of equivalent nodes is also hard. Let us 
now formalize the problem and prove its hardness. 

Definition 3: Let G be a P/A graph, S1 be a set of nodes of G 
which are fixed to value 1, and S0 be a set of nodes of G 
which are fixed to value 0. Let u and v be arbitrary two 
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nodes of G. Then u and v are called equivalent with respect 
to the partial assignment given by S1 and S0 if and only if 
there is no feasible assignment of G extending the partial 
assignment in which u and v are assigned different values. 

Definition 4: The P/A graph equivalence class problem can 
be stated as follows: given a P/A graph G, a set S1 of nodes 
of G which are assigned value 1, and a set S0 of nodes of G 
which are assigned value 0, output the partition of all nodes 
of G into equivalence classes, that is, into such sets that 
every two nodes from the same set are equivalent and no two 
nodes from distinct sets are equivalent.  

Proposition 2: The P/A graph equivalence class problem is 
NP-hard.  

Proof:  It is enough to prove the following: if there exists an 
algorithm A which solves the P/A graph equivalence class 
problem in polynomial time, then such an algorithm can be 
used to solve the P/A graph assignment problem (which is, 
as we have proved, NP-complete) in polynomial time. So let 
us assume that G is a P/A graph, S1 is a nonempty set of 
nodes of G which are fixed to value 1, and the question is 
whether there exists a feasible assignment of values to the 
remaining vertices.  

Before proceeding further let us first decide, what output 
do we expect from algorithm A in the case when no feasible 
assignment exists. Strictly speaking, in that case the 
algorithm should output a single equivalence class, as every 
two vertices are equivalent according to the definition (there 
exists no feasible assignment in which they are assigned 
different values). If we adhere to this strict interpretation, a 
single run of A solves the assignment problem. Indeed, if all 
vertices end up in a single class then it suffices to test 
whether the all-one assignment is feasible (feasible 
assignment exists) or not (feasible assignment does not 
exist). If algorithm A returns at least two equivalence classes 
then a feasible assignment exists. However, it may be 
reasonable to look at the requirements on A in the following 
weaker way: if no feasible assignment exists then there is an 
empty set of restrictions on equivalence classes and A may 
output arbitrary sets. So let us now consider this less strict 
version of A. After running A, three situations may happen: 
• The set S1 is split among several (at least two) 

equivalence classes. Recall, that vertices in S1 are pre-
assigned to 1 so they are equivalent. If algorithm A puts 
them in different equivalence classes then it corresponds 
to non-existence of feasible assignment as described 
above (algorithm A outputs arbitrary sets). 

• All vertices end up in a single class. As above, in this 
case it suffices to test whether the all-one assignment is 
feasible (feasible assignment exists) or not (feasible 
assignment does not exist). 

• The set S1 is contained in a single equivalence class (let 
us denote it by C) but there exist at least one additional 
nonempty equivalence class.  

In the last case we shall proceed as follows. Let u be an 

arbitrary node not in C, that is, u is not equivalent with nodes 
in S1. If there exists a feasible assignment, then there exists at 
least one in which u gets value 0 (otherwise u is equivalent 
with nodes in S1). So we may proceed by setting S1 ← C and 
S0 ← S0 ∪ {u}, and running A on the new data. Again, the 
above three cases may happen, and we iterate the process, 
until either it terminates by arriving to the first or second 
case, or it subsequently inserts all nodes in S0 ∪ S1 (in which 
case there is a single assignment to test for feasibility). Since 
every run of A adds at least one node to the set S0 ∪ S1, the 
maximum number of runs of A is bounded by the number of 
nodes in G. Therefore, if A runs in polynomial time, then so 
does the above described algorithm for testing the existence 
of a feasible assignment. Notice that the algorithm not only 
decides about the existence of feasible assignment, but in 
fact it constructs a feasible assignment if one exists.   

Since the problem of P/A graph equivalence class is hard, 
we focus only on discovering certain typical situations at this 
stage. The most important situation we want to recognize 
consists of a process which splits in several sub-processes in 
alternative branching and all these sub-processes join 
afterwards. Principal nodes where the production process 
splits and sub-processes join back again are equivalent. We 
are looking for the algorithm that can discover at least such 
equivalence classes. 

The proposed algorithm has two phases. In the initial 
phase an undirected hyper-graph is constructed from the 
input P/A graph. The constructed hyper-graph has almost the 
same structure and represents almost the same information 
about the production processes as the original P/A graph. 
Only the directions of arcs and hence precedence relations 
are omitted, which is not a problem because the input P/A 
graph is acyclic so the precedence relations trivially hold 
(actually, the precedence relations are used only to define 
fan-in and fan-out subgraphs in acyclic P/A graphs). 

 The second and major phase of the algorithm repeatedly 
transforms the given hyper-graph using certain 
transformation rules into a simpler and more explicit hyper-
graph. Sets of equivalent nodes of the input P/A graph are 
built along these transformation steps. This phase terminates 
when no transformation rule can be applied or when a 
conflict in the hyper-graph is detected. 

A. Initial Phase of the Algorithm 

Let G = (V, E) together with a set of marked fan-in and 
fan-out sub-graphs be a P/A graph (Figure 2). Some nodes of 
G may be forced to take value 1 (filled by gray in Figure 2) 
and some nodes may be fixed to value 0. We construct a 
hyper-graph H = (U, F) over a set of nodes U obtained by 
adding two extra nodes 0 and 1 to the original set V. The 
extra nodes 0 and 1 represent equivalence classes of nodes 
which are always 0 and 1 respectively in all feasible 
assignments. The construction of the set of hyper-edges F is 
done according to the input graph G in the following way. 



 
 

 

Let set F be an empty set at the beginning. 

• For each fan-in parallel sub-graph of G over nodes x, y1, 
y2,…, yk, where x is the principal node, insert edges 
{{x}, {yi}} for 1 ≤ i ≤ k into F. 

• Fan-out sub-graphs of G marked as parallel are treated 
in the same way as fan-in parallel sub-graphs. 

• For each fan-in alternative sub-graph of G over nodes x, 
y1, y2,…, yk, where x is the principal node, insert non-
trivial hyper-edge {{x}, {y1, y2,…, yk}} into F. 

• As in the case of parallel branching, fan-out sub-graphs 
of G marked as alternative are treated in the same way 
as fan-in alternative sub-graphs. 

• For each node x of G which is forced to take value 1 we 
insert edge {{x}, {1}} into F. An analogical edge 
addition is done for nodes which are fixed to value 0. 
Edge {{y}, {0}} is inserted into F for each node y of G 
which is forced to take value 0. 

 
Informally speaking, we use the same nodes in the hyper-

graph as in the P/A graph. For each arc that is a part of 
parallel branching in the P/A graph we add an edge between 
the same nodes in the hyper-graph. For a set of arcs that form 

alternative branching in the P/A graph, we add a non-trivial 
hyper-edge connecting the same nodes in the hyper-graph (a 
small black dot in Figure 3). We use the convention that an 
edge with the same structure is added only once (we do not 
allow multi-edges). Figure 3 shows a hyper-graph 
constructed for the P/A graph from Figure 2. 

The last step of the initial phase is constructing the initial 
equivalence classes. Let us denote Qu the equivalence class 
for u ∈ U. Initially we set Qu = {u} for every u ∈ U. The 
constructed hyper-graph H = (U, F) with associated 
equivalence classes is used as the input for the 
transformation phase of the algorithm. 

B. Transformation Phase of the Algorithm 

The goal of the transformation phase is to modify the 
hyper-graph while preserving the equivalence classes. This is 
realized by several transformation rules that update the 
hyper-graph by adding derived hyper-arcs. During these 
updates, the initial equivalence classes are being merged. 

Edge contraction rule. The first transformation rule 
contracts an edge. An edge {{u}, {v}} ∈ F can be contracted 
if for any non-trivial hyper-edge {{x},Y} ∈ F 
| {u,v} ∩ ({x} ∪ Y) | ≤ 1 and | {0,1} ∩ (Qu ∪ Qv) | ≤ 1. The 
case when an edge cannot be contracted is treated separately 
(see the rules below). The edge contraction rule represents a 
standard operation from the graph theory. 

Let {{u}, {v}} ∈ F be the edge that can be contracted. 
Then the following steps are carried out. Erase vertex v by 
assigning: U ← U – {v} and Qu ← Qu ∪ Qv. Edges and 
hyper-edges that contain v need to be modified to form a 
correct hyper-graph without v. If there is an edge 
{{x},{v}} ∈ F, where x ≠ u, replace it by edge {{x},{u}}. If 
there is a non-trivial hyper-edge {{v},Y} ∈ F then replace it 
by {{u},Y}. If there is a non-trivial hyper-edge {{x},Y} ∈ F, 
where v ∈ Y, u ∉ Y, and x ≠ u then replace it by hyper-edge 
{{x}, (Y – {v}) ∪ {u}}. 

 
Figure 4 shows a hyper-graph after applying the edge 

contraction rule to the hyper-graph in Figure 3. Namely, we 
contracted all edges between nodes a and g (and 1) to obtain 
a single node for equivalence class {1,a,b,c,d,e,f,g}. We also 
contracted edges {{j}, {q}} and {{q}, {v}} and got a node 
with equivalence class {j,q,v}. Finally, we contracted edge 
{{A}, {B}} to obtain a node for equivalence class {A,B}. 
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Fig. 4.  Hyper-graph after edge contractions. 
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Fig. 2.  Example of P/A graph with PAR/ALT annotation. 
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Fig. 3.  Hyper-graph corresponding to the P/A graph. 
 



 
 

 

Hyper-edge extension rule. If there are non-trivial hyper-
edges {{x}, Y} ∈ F and {{y}, Z} ∈ F, where y ∈ Y and 
({x}∪Y) ∩ ({y}∪Z) = {y} then add a new hyper-edge 
{{x}, Y ∪ Z – {y}} into F. 

Hyper-edge meet rule. If there are non-trivial hyper-edges 
{{x},Y} ∈ F and {Z, {w}} ∈ F, where x ≠ w and Z ⊆ Y then 
add a new hyper-edge {{x}, (Y–Z) ∪ {w}} into F. Again the 
rule has no effect if the edge generated by this rule is already 
present in the hyper-graph. A special case of this rule when 
Y = Z results in addition of a new edge {{x}, {w}} that can 
be contracted subsequently. This transformation rule in 
cooperation with the previous rule can discover the situation 
when a production chain splits into several alternatives and 
all these alternatives join again. 

 
The hyper-graph in Figure 5 was obtained by applying the 

hyper-edge meet rule to hyper edges {{k}, {r,t}} and 
{{w}, {r,t}} that lead to adding a new edge {{k}, {w}}. This 
edge was then contracted to find a new equivalence class 
{k,w}. The new bottom hyper-edge {{A}, {u,j,k}} was then 
obtained by applying the hyper-edge meet rule using hyper-
edge {{u}, {x,y,z}}. The new top hyper-edge was obtained 
by applying hyper-edge extension rule. 

Never-valid activity detection rule (case A). If there is a 
non-trivial hyper-edge {{x},Y} ∈ F and an edge 
{{y1}, {y2}} ∈ F, where {y1, y2} ⊆ Y (notice that the edge 
{{y1}, {y2}} cannot be contracted in this situation since 
contraction precondition is not satisfied), then replace the 
hyper-edge {{x},Y} by a new hyper-edge {{x}, Y–{y1,y2}} 
and add new edges {{0}, {y1}} and {{0}, {y2}}. 

Never-valid activity detection rule (case B). If there is a 
non-trivial hyper-edge {{x},Y} ∈ F and an edge 
{{x}, {y}} ∈ F, where y ∈ Y (again notice that the edge 
{{x}, {y}} cannot be contracted in this situation), then erase 
the hyper-edge {{x},Y} from F and add new edges 
{{0}, {z}} ∈ F for all z ∈ Y – {y}. 

Conflict detection rule. The case when an edge {{u}, {v}} 
cannot be contracted due to violated inequality 
| {0,1} ∩ (Qu ∪ Qv) | ≤ 1 (i.e. | {0,1} ∩ (Qu ∪ Qv) | = 2 holds) 
indicates a conflict. This conflict arises because two 
equivalent nodes u and v are enforced to different values and 
hence no feasible assignment for the given input exists. 

If any of the above-defined transformation rules cannot be 
applied, the algorithm terminates with success. After 
successful termination the node equivalence classes 
associated with nodes remaining in the final hyper-graph 
represent sets of equivalent nodes. 

C. Correctness of the algorithm 

We shall show now that the algorithm is correct, that is, it 
returns groups of equivalent nodes. We can easily define 
feasible assignment of 0/1 values to nodes of the hyper-
graph. This definition should ensure that an assignment of 
0/1 values to nodes of the original P/A graph is feasible if 
and only if it is feasible for the corresponding hyper-graph 
(the correspondence between the P/A graph and the hyper-
graph is given by the initial phase of the algorithm). 

Let us denote Q = ∪v∈V Qv. An assignment val: Q → {0,1} 
in hyper-graph H = (U, F) is feasible if and only if 
val(0) = 0, val(1) = 1, for every edge {{u}, {v}} ∈ F  
val(u) = val(v), and for every non-trivial hyper-edge 
{{x},Y} ∈ F Σy∈Y val(y) = val(x). Finally, the nodes in the 
same equivalence class associated with a given node have 
assigned the same value. 

To prove the correctness of the algorithm it is sufficient to 
show that hyper-graph transformation rules preserve feasible 
assignments. The proofs are based on equivalence of 
arithmetic expressions describing the branching before and 
after applying the particular transformation rule. 

Proposition 3 (correctness of edge contraction). An 
assignment val: Q → {0,1} in the hyper-graph H = (U,F) is 
feasible if and only if it is feasible for the hyper-graph after 
application of the edge contraction rule. 

Proof. Let {{u}, {v}} ∈ F be the contracted edge and 
{{x}, {v}} ∈ F, where x ≠ u, be another edge (if any). Then 
feasibility for hyper-graph H enforces val(x) = val(v) and 
val(u) = val(v). Feasibility for hyper-graph after edge 
contraction enforces val(x) = val(u) since {{x}, {v}} is 
replaced by {{x}, {u}} and val(u) = val(v) since v ∈ Qu. 
These two sets of formulas are clearly equivalent. 
 For hyper-edge {{v},Y}∈F feasibility for H enforces 
Σy∈Y val(y) = val(v) and val(u) = val(v). Feasibility for hyper-
graph after edge contraction enforces Σy∈Y val(y) = val(u) 
since {{v},Y} is replaced by {{u},Y} and val(u) = val(v) 
since v ∈ Qu. These two sets of formulas are equivalent. 

Finally, for hyper-edge {{x},Y} ∈ F, where u ∉ Y, v ∈ Y 
and x ≠ u, feasibility for H enforces Σy∈Y val(y) = val(x) and 
val(u) = val(v). Feasibility for hyper-graph after edge 
contraction enforces Σy∈Y val(y) – val(v) + val(u) = val(x) 
and val(u) = val(v) since v ∈ Qu. These two sets of formulas 
are again equivalent.  

Proposition 4 (correctness of hyper-edge extension). An 
assignment val: Q → {0,1} in the hyper-graph H = (U, F) is 
feasible if and only if it is feasible for the hyper-graph after 
application of the hyper-edge extension rule. 
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Fig. 5.  Hyper-graph after extension and meet rule application. 



 
 

 

Proof. Let {{x},Y} ∈ F and {{y},Z} ∈ F, where y ∈ Y and 
({x}∪Y) ∩ ({y}∪Z) = {y}, be non-trivial hyper-edges that 
are selected to form a new hyper-edge. Feasibility for hyper-
graph H enforces Σz∈Y val(z) = val(x), Σz∈Z val(z) = val(y), 
which implies Σz∈Y val(z) + Σz∈Z val(z) – val(y) = val(x). This 
is exactly the constraint enforced by the new hyper-edge.  

Proposition 5 (correctness of hyper-edge meet). An 
assignment val: Q → {0,1} in the hyper-graph H = (U,F) is 
feasible if and only if it is feasible for the hyper-graph after 
application of the hyper-edge meet rule. 

Proof. Let {{x},Y} ∈ F and {Z, {w}} ∈ F, where x ≠ w and 
Z ⊆ Y, be non-trivial hyper-edges on which the rule is 
applied. Feasibility for hyper-graph H enforces 
Σy∈Y val(y) = val(x) and Σz∈Z val(z) = val(w), which implies 
Σy∈Y val(y) – Σz∈Z val(z) + val(w) = val(x). This is exactly the 
constraint enforced by the added hyper-edge.  

Proposition 6 (correctness of never-valid activity 
detection). An assignment val: Q → {0,1} in the hyper-
graph H = (U, F) is feasible if and only if it is feasible for the 
hyper-graph after application of the never-valid activity 
detection rule. 

Proof. Let us prove the case A of the rule first. Let 
{{x},Y} ∈ F and {{y1},{y2}}∈F, where {y1,y2} ⊆ Y be 
(hyper-)edges in H. The feasible assignment val in H must 
satisfy val(y1) = val(y2) = 0, since the remaining 
combinations of assignments of 0/1 values to y1 and y2 would 
violate the constraint Σy∈Y val(y) = val(x). Hence, for any 
feasible assignment the constraint Σy∈Y val(y) = val(x) holds 
if and only if Σy∈Y-{y1,y2} val(y) = val(x) holds. Thus we did 
not change the set of feasible assignments for the hyper-
graph by replacing the hyper-edge {{x},Y} by 
{{x},Y-{y1,y2}} and by adding new edges {{0},{y1}} and 
{{0},{y2}} that imply val(y1) = 0 and val(y2) = 0.  

The proof of case B of the rule is similar. Let {{x},Y} ∈ F 
and {{x},{y}} ∈ F, where y ∈ Y, be (hyper-)edges in H. 
Clearly, every feasible assignment val must satisfy 
val(x) = val(y) and for all z ∈ Y-{y} val(z) = 0. Any other 
assignment would violate the constraint Σy∈X val(y) = val(x). 
Hence, addition of edges {{0},{z}} for all z ∈ Y-{y} to F 
does not change the set of feasible assignments and the 
constraint on feasible assignments induced by the removed 
hyper-edge {{x},Y} is subsumed by constraints induced by 
newly added edges and by the edge {{x},{y}}.  

IV. TEMPORAL NETWORKS WITH ALTERNATIVES 

So far we assumed acyclic graphs describing precedence 
relations between nodes and we focused on the logical 
aspects of the network, namely selecting the nodes to satisfy 
parallel and alternative branching. Nevertheless, in real-life 
problems we usually need a finer time resolution so we can 
extend precedence relations to simple temporal relations. In 
particular, each arc (X,Y) in the P/A graph is annotated by a 
pair of numbers [a,b] where a describes the minimal distance 

between nodes X and Y and b describes the maximal 
distance, formally, a ≤ Y – X ≤ b. We call the resulting 
graph a P/A simple temporal network. Now the problem is to 
decide validity of nodes satisfying parallel and alternative 
branching and to assign time (number) to each valid node in 
such a way that all simple temporal relations between the 
valid nodes are satisfied. We call the problem of deciding 
whether a feasible assignment of validity and time variables 
exists a P/A simple temporal network assignment problem. 
Again, we assume that validity of some nodes is set to 1 
(otherwise, there is a trivial solution where all nodes are 
invalid). This is a typical situation when the proposed 
temporal network is used to model real-life problems. The 
last nodes in the structure of alternative process routes 
typically describe deliveries to customers. Because the 
deliveries must be fulfilled and we can just select alternative 
ways how to do it, these nodes must be valid. 

Recall, that there exist polynomial algorithms for checking 
consistency of simple temporal networks [4] so solving 
simple temporal problems is “easy”. However, as we showed 
above adding parallel and alternative branching makes the 
problem hard.  

Proposition 7: The P/A simple temporal network 
assignment problem is NP-complete. 

Proof: The proof is straightforward if we realise that P/A 
graphs are just special cases of P/A simple temporal 
networks. In particular, for any P/A graph we can construct a 
P/A simple temporal network where all temporal constraints 
are in the form [0,∞). Now, there exists a feasible assignment 
to the P/A graph if and only if there exists a feasible 
assignment to the corresponding P/A simple temporal 
network (all time variables can be set to 0, which trivially 
satisfies all temporal constraints).   

It may seem that we can further generalise the framework 
by using a disjunction of simple temporal relations that are 
used in Temporal Constraint Satisfaction Problems [4]. 
However, this generalisation does not increase the expressive 
power of the framework because temporal disjunctions in the 
form ∨i=1,..,n ai ≤ Y – X ≤ bi can be substituted by a sub-
network with simple temporal constraints as Figure 6 shows. 
Note that auxiliary nodes x’ and y’ are necessary to keep fan-
out subgraph with principal node X or fan-in subgraph with 
principal node Y. Nodes x’ and y’ are equivalent in the sense 
described in the previous section and the algorithm presented 
there can detect this equivalence. 
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Fig. 6.  Modelling simple disjunctions of temporal constraints. 
 



 
 

 

V. RELATED WORKS 

The intended application area for the proposed framework 
is manufacturing scheduling. There exists a benchmark set 
MaScLib by ILOG [9] which contains a formal description 
of real-life manufacturing scheduling problems. This 
description includes the concept of validity variables and 
logical dependencies between them. Temporal and logical 
relations are modelled separately there and various binary 
logical relations can be defined between the validity 
variables. Our framework defines the logical dependencies 
via branching in the temporal graph. According to our 
experience this is satisfactory for modelling manufacturing 
(and other) processes. Moreover, we believe that the coupled 
definition will lead to more efficient filtering algorithms that 
use together temporal and logical information. In [2] we 
already showed that integrated filtering of precedence and 
dependency constraints significantly reduces solving time. 

We are not aware about another approach that can handle 
alternative process routes in the same generality as the 
proposed P/A simple temporal networks. The paper [5] 
describes a graph concept for modelling alternative 
processes, but it cannot be used for alternative routes 
because all activities must be present. Probably the closest 
approach to our proposal is the work by Beck and Fox [3] on 
modelling alternative processes using PEX (probability of 
existence) variables. In our framework we focus on logical 
validity variables (PEX uses an interval of real numbers 
〈0,1〉) but the main ideas of propagation are very similar. 
Using validity variables instead of PEX values simplifies 
integration to existing constraint solvers and we believe that 
using logical deduction during pre-processing can generate 
additional input to the filtering algorithm. 

Our work is naturally related to temporal networks as we 
proposed an extension of simple temporal networks. We 
already showed that the proposed framework covers 
Temporal Constraint Satisfaction Problems [4]. Disjunctive 
Temporal Network [10] is another approach to handling 
temporal alternatives. We have no formal comparison to our 
P/A simple temporal network yet, but our ambition is slightly 
different from DTN – we model alternative routes rather than 
any temporal disjunction. 

Several other extensions of temporal networks appeared 
such as resource temporal networks [7] or disjunctive 
temporal networks with finite domain constraints [8]. These 
extensions integrate temporal reasoning with reasoning on 
non-temporal information, such as fluent resources. Our 
ambition is to extend existing constraint-based scheduling by 
some planning decisions, namely selection of alternative 
processes. So we extended temporal reasoning by logical 
reasoning on existence of nodes in the network. Actually, the 
possibility to decide about validity/invalidity of the node is 
the main difference of our approach from the above 
mentioned works on temporal networks where all nodes must 
always be present. Moreover, we also plan to include 
resource reasoning in our framework, namely including 

disjunctive resource constraints. The paper [1] presents such 
a constraint that can handle activities with the validity status. 

There exists Conditional Temporal Planning [11] where 
existence of node in the network depends on a certain 
condition. Though there is some similarity in modelling 
alternative processes/plans, satisfaction of condition in CTP 
depends on external forces – Nature – rather than being an 
internal relation between the nodes. In our approach, 
decision of validity of the node is done internally based on 
logical relations between the nodes. 

VI. CONCLUSIONS 

The paper reports a work in progress on extension of 
simple temporal networks towards handling alternative 
process routes. We focused on formalizing this new 
modelling framework, showing its complexity, and 
proposing a pre-processing step for extracting information 
about logically equivalent nodes in the network. 

The proposed framework combined with existing resource 
constraints is aimed at solving complex manufacturing 
scheduling problems where resource and time allocation 
interleaves with selection of best processes to satisfy 
customer demands. Hence, we contribute to the area of 
integrated planning and scheduling techniques by extending 
traditional scheduling technology by formal reasoning on 
alternative plans/processes. 
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