

Abstract—Temporal Networks play an important role in
solving planning problems and they are also used, though not as
frequently, when solving scheduling problems. In this paper we
propose an extension of temporal networks by parallel and
alternative branching. This extension supports modelling of
alternative paths in the network; in particular, it is motivated
by modelling alternative process routes in manufacturing
scheduling. We show that deciding which nodes can be
consistently included in this extended temporal network is an
NP-complete problem. To simplify solving this problem, we
propose a pre-processing step whose goal is to identify classes of
equivalent nodes. The ideas are presented using precedence
networks, but we also show how they can be extended to simple
temporal networks.

I. INTRODUCTION

CHEDULING problems typically deal with allocating
known activities to available resources and time. Real-

life problems are usually more complex than existing
theoretical models and, for example, they also require
selection among alternative process routes or alternative
resources in complex manufacturing enterprises. Due to
efficiency issues, selection of alternative processes and
resource allocation are frequently done separately from
scheduling. However, this approach has several drawbacks.
First, if the selected route or resource allocation cannot be
scheduled, it is necessary to backtrack from the scheduling
module to resource allocation and process selection modules.
Second, even if the resource allocation and selected routes
are feasible, separating the allocation and process selection
algorithms from the scheduling algorithm may ruin the
quality of the solution. Hence, a better result will be obtained
when process selection and resource allocation is done
within scheduling. While resource allocation is now an
accepted part of scheduling problems and there exist
approaches for doing resource allocation within scheduling,
for example [5], process selection is still treated separately.

In this paper we propose an extension of temporal
networks that can model alternative process routes. We

Manuscript received October 31, 2006. This work is supported by the

Czech Science Foundation under the contract no. 201/04/1102 and by the
EMPOSME project under EU FP6 scheme.

R. Barták is with Charles University, Faculty of Mathematics and
Physics, Department of Theoretical Computer Science and Mathematical
Logic, Malostranské náměstí 2/25, 118 00 Praha 1, Czech Republic (phone:
+420221914242 fax: +420221914323 e-mail: roman.bartak@mff.cuni.cz).

O. Čepek is with Charles University, Faculty of Mathematics and
Physics and with Institute of Finance and Administration, Estonská 500,
101 00 Praha 10, Czech Republic (ondrej.cepek@mff.cuni.cz).

P. Surynek is with Charles University, Faculty of Mathematics and
Physics (pavel.surynek@mff.cuni.cz).

describe the main ideas using networks with only precedence
relations, but at the end of the paper we also show how these
ideas can be extended to simple temporal networks. To
model selection of alternatives, we assign a validity variable
to each node in the network. This validity variable indicates
whether the node is selected or not to be in the final solution
plan. Decision about validity/invalidity of the node is done
by the solver. We also augment the precedence network by a
description of splitting and joining operations that implicitly
define logical dependencies between nodes in the network.
The dependency relations specify which nodes must/cannot
be valid in relation to the validity status of other nodes. The
main motivation for these operations goes from modelling
manufacturing processes. The nodes correspond to activities
(or more precisely start times of activities) and the arcs
describe flow of products between the activities (precedence
constraints). In some nodes the manufacturing process can
split into two or more parallel sub-processes that can join
back to a single process. For example, a piece of wood is cut
in parts that are processed in parallel and then assembled
together to a final product. This is called parallel branching
(Figure 1 top with semicircle). Another form of branching is
alternative branching when the process also splits in sub-
processes, but these sub-processes are treated as alternatives
so exactly one of them is used. The alternative sub-processes
can also join back to a single process (Figure 1 bottom).

In the paper we formally define the above-described

precedence graph with parallel and alternative branching that
we call a P/A graph. We also show that the problem whether
there exists an assignment of validity variables consistent
with the specified branching is NP-complete. To support

Modelling Alternatives in Temporal Networks

Roman Barták, Ondřej Čepek, and Pavel Surynek

S

Fig. 1. Example of parallel (top) and alternative (bottom) sub-
processes with one selected process.

problem solving, we propose a pre-processing step where
sets of equivalent nodes are identified in the P/A graph. We
call the nodes equivalent, if their validity status is identical in
all solutions, that is, such nodes are either all valid or all
invalid in any consistent assignment of validity variables.
This will help us to bridge alternative routes. We conclude
the paper by showing that the presented ideas can be
extended to simple temporal networks. We compare our
proposal with existing works on temporal networks. Namely,
we demonstrate that P/A simple temporal networks can
model temporal constraint satisfaction problems.

II. P/A GRAPHS

Let G be a directed acyclic graph. A subgraph of G is
called a fan-out subgraph if it consists of nodes x, y1,…, yk
(for some k) such that each (x, yi), 1 ≤ i ≤ k, is an arc in G.
Similarly, a subgraph of G is called a fan-in subgraph if it
consists of nodes x, y1,…, yk (for some k) such that each
(yi, x), 1 ≤ i ≤ k, is an arc in G. In both cases x is called a
principal node and all y1,…, yk are called branching nodes.

Definition 1: A directed acyclic graph together with a set of
its pairwise edge-disjoint fan-out and fan-in subgraphs,
where each subgraph in the set is marked either as a parallel
subgraph or an alternative subgraph, is called a P/A graph.

An assignment of 0/1 (true/false) values to nodes of a
given P/A graph is called feasible if

• in every parallel subgraph all nodes are assigned the
same value (both the principal node and all branching
nodes are either all 0 or all 1),

• in every alternative subgraph either all nodes (both the
principal node and all branching nodes) are 0 or the
principal node and exactly one branching node are 1
while all other branching nodes are 0.

It can be easily noticed that given an arbitrary P/A graph
the assignment of value 0 to all nodes is always feasible. On
the other hand, if some of the nodes are required to take
value 1 (as we shall see later, this requirement is a very
natural one if the P/A graph is used to model a real-life
problem), then the existence of a feasible assignment is by
no means obvious. Let us now formulate this decision
problem formally.

Definition 2: P/A graph assignment problem is given by a
P/A graph G and a list of nodes of G which are assigned
value 1. The question is whether there exist a feasible
assignment of 0/1 values to all nodes of G which extends the
prescribed partial assignment.

Remark: The P/A graph assignment problem remains the
same if we allow forcing value 1 for just a single vertex. To
see this, observe that the general case can be reduced to this
special one by adding an extra vertex, forcing it to 1 and
connecting it by a fan-in (or fan-out) parallel subgraph to all
nodes that were forced to 1 originally. Moreover, if the
original graph was acyclic, then so is the new one.

Proposition 1: The P/A graph assignment problem is NP-
complete.
Proof: The problem is obviously in NP, because it suffices
to guess the assignment and test its feasibility, which can be
done in linear time in the number of parallel and alternative
subgraphs (and hence in the number of edges). For the NP-
hardness, we shall show that the 3SAT problem, which is
known to be NP-complete [6], can be reduced (in a
polynomial time) to the P/A graph assignment problem.
Recall that the 3SAT problem is a problem of deciding
whether there exists a model (a satisfying assignment of truth
values to propositional variables) for a given formula in a
conjunctive normal form, where each clause in the formula
consists of exactly three literals. Moreover we may assume
that no variable appears twice in a single clause, that is, each
clause consists of literals of three distinct variables.

Now we shall describe how to construct, for a given CNF
(an instance of 3SAT), an instance of the P/A graph
assignment problem. Consider e.g. a clause (a ∨ b ∨ ¬c).
There exist seven mutually exclusive assignments of truth
values to variables a, b, and c satisfying this clause (each
assignment except of a = false, b = false, c = true is a
satisfying one). We can model this clause using a “clause
subgraph” which consists of a node for the clause, seven
nodes for the mutually exclusive satisfying assignments, and
six nodes for the values of propositional variables (three for
positive values and three for negative values, that is, one for
each literal). The clause node is connected to all assignment
nodes by a fan-out alternative subgraph and each value node
is connected to appropriate assignment nodes (those
assignment nodes containing the literal which corresponds to
the given value node) by a fan-in alternative subgraph. The
following figure shows the clause subgraph for the clause
(a ∨ b ∨ ¬c), where capital letters in the assignment nodes
represent value false (so for example aBc corresponds to
a = true, b = false, c = true).

Each clause from the input CNF will be modelled using a

clause graph with the above-described structure. To connect
the clause graphs, we introduce a formula node and connect
it with all clause nodes by a fan-out parallel subgraph. The
formula node is forced to take value 1 (because we need the
formula to be satisfied). A variable which is used in more
than one clause will have value nodes in all clause graphs

a ∨ b ∨ ¬c

aBc abc abC aBC Abc AbC ABC

a ¬a b ¬b c ¬c

ALT

ALT

where it appears. To interconnect these value nodes we
introduce for each variable in the formula a variable node,
which is forced to take value 1, and two literal nodes
connected to the variable node by a fan-in alternative
subgraph. Finally, each literal node is connected by a fan-in
parallel subgraph to all value nodes in clause graphs which
correspond to the given literal. The following figure shows
these additional nodes and connections (the shaded nodes are
the nodes that are forced to take value 1).

First let us observe that the number of nodes in the

constructed P/A graph is linear in the size of the input CNF
formula. Namely, if there are M clauses and N variables (and
hence L = 3M literals) in the input CNF, then we get a graph
with (14M + 3N + 1) nodes. Because 14M + 1 ≤ 5L and
N ≤ L (assuming each variable appears at least once in the
formula) we get that there are at most 8L nodes in the
constructed P/A graph.

Now let us assume that the input CNF has a satisfying
assignment. We shall construct a feasible assignment of the
constructed P/A graph as follows. All clause nodes will get
value 1 to satisfy the parallel fan-out from the formula node.
The literal nodes of each variable will get the 0 and 1 values
as defined by the satisfying assignment of the input CNF (for
example if variable b is false in the satisfying assignment,
then the node b gets the value 0 and the node ¬b gets the
value 1). This satisfies the alternative fan-in into the variable
nodes, and moreover it defines the 0 and 1 values for all
value nodes via the parallel fan-ins that replicate the literal
values into all clause subgraphs. Finally, for each clause
exactly one assignment node is made valid, namely the one
in which all three literals are valid, which satisfies the
alternative fan-out from the clause nodes. It remains to show
that also all alternative fan-ins into value nodes are satisfied.
So let us consider an arbitrary value node. If it corresponds
to a valid literal then it is connected to exactly one valid

assignment node (the one where also the other two literals
are valid), and if it corresponds to an invalid literal than it is
connected only to invalid assignment nodes (see figure
below). In both cases this is exactly what we need and hence
the constructed assignment of 0/1 values to all nodes is
feasible.

To complete the proof let us assume that there exists a

feasible assignment of 0/1 values to all nodes of the
constructed P/A graph. In this assignment:
• All clause nodes have value 1 to satisfy the parallel fan-

out from the formula node.
• For each clause exactly one assignment node has value 1

to satisfy the alternative fan-out from the clause nodes.
• For each variable one literal node has value 1 and the

other has value 0 to satisfy the alternative fan-ins into
the variable nodes. The literal values are replicated into
the value nodes by the parallel fan-ins into the literal
nodes.

Now let us check that the truth assignment defined by the
values assigned to the literal nodes satisfies the input CNF.
To this end let us pick an arbitrary clause and assume by
contradiction that it is falsified. That means that the three
valid value nodes correspond to the only missing
combination among the assignment nodes, or in other words
that the only valid assignment node must be connected to an
invalid value node. However, this is a contradiction, because
the corresponding fan-in subgraph into this value node spoils
the feasibility of the assignment (the principal node is 0
while one of its branching nodes is 1). Hence, the input CNF
has a satisfying assignment if and only if the corresponding
P/A graph has a feasible assignment.

III. P/A GRAPH PRE-PROCESSING

Because solving the P/A graph assignment problem is
hard, we focus now on inferring some information from the
graph that can be used later to improve solver efficiency. In
particular, we describe a heuristic algorithm for finding
equivalent nodes in the P/A graph. We call a set of nodes of
the P/A graph equivalent if and only if the nodes are
assigned the same value in all feasible assignments of 0/1
values to nodes. Unfortunately, the problem of finding the
largest possible sets of equivalent nodes is also hard. Let us
now formalize the problem and prove its hardness.

Definition 3: Let G be a P/A graph, S1 be a set of nodes of G
which are fixed to value 1, and S0 be a set of nodes of G
which are fixed to value 0. Let u and v be arbitrary two

aBc abc abC aBC Abc AbC ABC

a ¬a b ¬b c ¬c

ALT

a ∨ b ∨ ¬c

aBc abc abC aBC Abc AbC ABC

a ¬a b ¬b c ¬c a ¬a

¬a ∨ b ∨ d

a ¬a b ¬b c ¬c

A B C

formula

PAR

ALT

ALT

ALT

PAR

…

nodes of G. Then u and v are called equivalent with respect
to the partial assignment given by S1 and S0 if and only if
there is no feasible assignment of G extending the partial
assignment in which u and v are assigned different values.

Definition 4: The P/A graph equivalence class problem can
be stated as follows: given a P/A graph G, a set S1 of nodes
of G which are assigned value 1, and a set S0 of nodes of G
which are assigned value 0, output the partition of all nodes
of G into equivalence classes, that is, into such sets that
every two nodes from the same set are equivalent and no two
nodes from distinct sets are equivalent.

Proposition 2: The P/A graph equivalence class problem is
NP-hard.

Proof: It is enough to prove the following: if there exists an
algorithm A which solves the P/A graph equivalence class
problem in polynomial time, then such an algorithm can be
used to solve the P/A graph assignment problem (which is,
as we have proved, NP-complete) in polynomial time. So let
us assume that G is a P/A graph, S1 is a nonempty set of
nodes of G which are fixed to value 1, and the question is
whether there exists a feasible assignment of values to the
remaining vertices.

Before proceeding further let us first decide, what output
do we expect from algorithm A in the case when no feasible
assignment exists. Strictly speaking, in that case the
algorithm should output a single equivalence class, as every
two vertices are equivalent according to the definition (there
exists no feasible assignment in which they are assigned
different values). If we adhere to this strict interpretation, a
single run of A solves the assignment problem. Indeed, if all
vertices end up in a single class then it suffices to test
whether the all-one assignment is feasible (feasible
assignment exists) or not (feasible assignment does not
exist). If algorithm A returns at least two equivalence classes
then a feasible assignment exists. However, it may be
reasonable to look at the requirements on A in the following
weaker way: if no feasible assignment exists then there is an
empty set of restrictions on equivalence classes and A may
output arbitrary sets. So let us now consider this less strict
version of A. After running A, three situations may happen:
• The set S1 is split among several (at least two)

equivalence classes. Recall, that vertices in S1 are pre-
assigned to 1 so they are equivalent. If algorithm A puts
them in different equivalence classes then it corresponds
to non-existence of feasible assignment as described
above (algorithm A outputs arbitrary sets).

• All vertices end up in a single class. As above, in this
case it suffices to test whether the all-one assignment is
feasible (feasible assignment exists) or not (feasible
assignment does not exist).

• The set S1 is contained in a single equivalence class (let
us denote it by C) but there exist at least one additional
nonempty equivalence class.

In the last case we shall proceed as follows. Let u be an

arbitrary node not in C, that is, u is not equivalent with nodes
in S1. If there exists a feasible assignment, then there exists at
least one in which u gets value 0 (otherwise u is equivalent
with nodes in S1). So we may proceed by setting S1 ← C and
S0 ← S0 ∪ {u}, and running A on the new data. Again, the
above three cases may happen, and we iterate the process,
until either it terminates by arriving to the first or second
case, or it subsequently inserts all nodes in S0 ∪ S1 (in which
case there is a single assignment to test for feasibility). Since
every run of A adds at least one node to the set S0 ∪ S1, the
maximum number of runs of A is bounded by the number of
nodes in G. Therefore, if A runs in polynomial time, then so
does the above described algorithm for testing the existence
of a feasible assignment. Notice that the algorithm not only
decides about the existence of feasible assignment, but in
fact it constructs a feasible assignment if one exists.

Since the problem of P/A graph equivalence class is hard,
we focus only on discovering certain typical situations at this
stage. The most important situation we want to recognize
consists of a process which splits in several sub-processes in
alternative branching and all these sub-processes join
afterwards. Principal nodes where the production process
splits and sub-processes join back again are equivalent. We
are looking for the algorithm that can discover at least such
equivalence classes.

The proposed algorithm has two phases. In the initial
phase an undirected hyper-graph is constructed from the
input P/A graph. The constructed hyper-graph has almost the
same structure and represents almost the same information
about the production processes as the original P/A graph.
Only the directions of arcs and hence precedence relations
are omitted, which is not a problem because the input P/A
graph is acyclic so the precedence relations trivially hold
(actually, the precedence relations are used only to define
fan-in and fan-out subgraphs in acyclic P/A graphs).

 The second and major phase of the algorithm repeatedly
transforms the given hyper-graph using certain
transformation rules into a simpler and more explicit hyper-
graph. Sets of equivalent nodes of the input P/A graph are
built along these transformation steps. This phase terminates
when no transformation rule can be applied or when a
conflict in the hyper-graph is detected.

A. Initial Phase of the Algorithm

Let G = (V, E) together with a set of marked fan-in and
fan-out sub-graphs be a P/A graph (Figure 2). Some nodes of
G may be forced to take value 1 (filled by gray in Figure 2)
and some nodes may be fixed to value 0. We construct a
hyper-graph H = (U, F) over a set of nodes U obtained by
adding two extra nodes 0 and 1 to the original set V. The
extra nodes 0 and 1 represent equivalence classes of nodes
which are always 0 and 1 respectively in all feasible
assignments. The construction of the set of hyper-edges F is
done according to the input graph G in the following way.

Let set F be an empty set at the beginning.

• For each fan-in parallel sub-graph of G over nodes x, y1,
y2,…, yk, where x is the principal node, insert edges
{{x}, {yi}} for 1 ≤ i ≤ k into F.

• Fan-out sub-graphs of G marked as parallel are treated
in the same way as fan-in parallel sub-graphs.

• For each fan-in alternative sub-graph of G over nodes x,
y1, y2,…, yk, where x is the principal node, insert non-
trivial hyper-edge {{x}, {y1, y2,…, yk}} into F.

• As in the case of parallel branching, fan-out sub-graphs
of G marked as alternative are treated in the same way
as fan-in alternative sub-graphs.

• For each node x of G which is forced to take value 1 we
insert edge {{x}, {1}} into F. An analogical edge
addition is done for nodes which are fixed to value 0.
Edge {{y}, {0}} is inserted into F for each node y of G
which is forced to take value 0.

Informally speaking, we use the same nodes in the hyper-

graph as in the P/A graph. For each arc that is a part of
parallel branching in the P/A graph we add an edge between
the same nodes in the hyper-graph. For a set of arcs that form

alternative branching in the P/A graph, we add a non-trivial
hyper-edge connecting the same nodes in the hyper-graph (a
small black dot in Figure 3). We use the convention that an
edge with the same structure is added only once (we do not
allow multi-edges). Figure 3 shows a hyper-graph
constructed for the P/A graph from Figure 2.

The last step of the initial phase is constructing the initial
equivalence classes. Let us denote Qu the equivalence class
for u ∈ U. Initially we set Qu = {u} for every u ∈ U. The
constructed hyper-graph H = (U, F) with associated
equivalence classes is used as the input for the
transformation phase of the algorithm.

B. Transformation Phase of the Algorithm

The goal of the transformation phase is to modify the
hyper-graph while preserving the equivalence classes. This is
realized by several transformation rules that update the
hyper-graph by adding derived hyper-arcs. During these
updates, the initial equivalence classes are being merged.

Edge contraction rule. The first transformation rule
contracts an edge. An edge {{u}, {v}} ∈ F can be contracted
if for any non-trivial hyper-edge {{x},Y} ∈ F
| {u,v} ∩ ({x} ∪ Y) | ≤ 1 and | {0,1} ∩ (Qu ∪ Qv) | ≤ 1. The
case when an edge cannot be contracted is treated separately
(see the rules below). The edge contraction rule represents a
standard operation from the graph theory.

Let {{u}, {v}} ∈ F be the edge that can be contracted.
Then the following steps are carried out. Erase vertex v by
assigning: U ← U – {v} and Qu ← Qu ∪ Qv. Edges and
hyper-edges that contain v need to be modified to form a
correct hyper-graph without v. If there is an edge
{{x},{v}} ∈ F, where x ≠ u, replace it by edge {{x},{u}}. If
there is a non-trivial hyper-edge {{v},Y} ∈ F then replace it
by {{u},Y}. If there is a non-trivial hyper-edge {{x},Y} ∈ F,
where v ∈ Y, u ∉ Y, and x ≠ u then replace it by hyper-edge
{{x}, (Y – {v}) ∪ {u}}.

Figure 4 shows a hyper-graph after applying the edge

contraction rule to the hyper-graph in Figure 3. Namely, we
contracted all edges between nodes a and g (and 1) to obtain
a single node for equivalence class {1,a,b,c,d,e,f,g}. We also
contracted edges {{j}, {q}} and {{q}, {v}} and got a node
with equivalence class {j,q,v}. Finally, we contracted edge
{{A}, {B}} to obtain a node for equivalence class {A,B}.

 1 [abcdefg]

h

i

k

l

m

n

o

p

j [qv] r

t

u

w

x

y

z

A [B]

0

Fig. 4. Hyper-graph after edge contractions.

 PAR

PAR
PAR

ALT

ALT

ALT

ALT

PAR

ALT

ALT

PAR

ALT

ALT

PAR

fixed to value 1

Fig. 2. Example of P/A graph with PAR/ALT annotation.

non-trivial
hyper-edge

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

t

u

v

w

x

y

z

A

B

1

0

extra nodes

Fig. 3. Hyper-graph corresponding to the P/A graph.

Hyper-edge extension rule. If there are non-trivial hyper-
edges {{x}, Y} ∈ F and {{y}, Z} ∈ F, where y ∈ Y and
({x}∪Y) ∩ ({y}∪Z) = {y} then add a new hyper-edge
{{x}, Y ∪ Z – {y}} into F.

Hyper-edge meet rule. If there are non-trivial hyper-edges
{{x},Y} ∈ F and {Z, {w}} ∈ F, where x ≠ w and Z ⊆ Y then
add a new hyper-edge {{x}, (Y–Z) ∪ {w}} into F. Again the
rule has no effect if the edge generated by this rule is already
present in the hyper-graph. A special case of this rule when
Y = Z results in addition of a new edge {{x}, {w}} that can
be contracted subsequently. This transformation rule in
cooperation with the previous rule can discover the situation
when a production chain splits into several alternatives and
all these alternatives join again.

The hyper-graph in Figure 5 was obtained by applying the

hyper-edge meet rule to hyper edges {{k}, {r,t}} and
{{w}, {r,t}} that lead to adding a new edge {{k}, {w}}. This
edge was then contracted to find a new equivalence class
{k,w}. The new bottom hyper-edge {{A}, {u,j,k}} was then
obtained by applying the hyper-edge meet rule using hyper-
edge {{u}, {x,y,z}}. The new top hyper-edge was obtained
by applying hyper-edge extension rule.

Never-valid activity detection rule (case A). If there is a
non-trivial hyper-edge {{x},Y} ∈ F and an edge
{{y1}, {y2}} ∈ F, where {y1, y2} ⊆ Y (notice that the edge
{{y1}, {y2}} cannot be contracted in this situation since
contraction precondition is not satisfied), then replace the
hyper-edge {{x},Y} by a new hyper-edge {{x}, Y–{y1,y2}}
and add new edges {{0}, {y1}} and {{0}, {y2}}.

Never-valid activity detection rule (case B). If there is a
non-trivial hyper-edge {{x},Y} ∈ F and an edge
{{x}, {y}} ∈ F, where y ∈ Y (again notice that the edge
{{x}, {y}} cannot be contracted in this situation), then erase
the hyper-edge {{x},Y} from F and add new edges
{{0}, {z}} ∈ F for all z ∈ Y – {y}.

Conflict detection rule. The case when an edge {{u}, {v}}
cannot be contracted due to violated inequality
| {0,1} ∩ (Qu ∪ Qv) | ≤ 1 (i.e. | {0,1} ∩ (Qu ∪ Qv) | = 2 holds)
indicates a conflict. This conflict arises because two
equivalent nodes u and v are enforced to different values and
hence no feasible assignment for the given input exists.

If any of the above-defined transformation rules cannot be
applied, the algorithm terminates with success. After
successful termination the node equivalence classes
associated with nodes remaining in the final hyper-graph
represent sets of equivalent nodes.

C. Correctness of the algorithm

We shall show now that the algorithm is correct, that is, it
returns groups of equivalent nodes. We can easily define
feasible assignment of 0/1 values to nodes of the hyper-
graph. This definition should ensure that an assignment of
0/1 values to nodes of the original P/A graph is feasible if
and only if it is feasible for the corresponding hyper-graph
(the correspondence between the P/A graph and the hyper-
graph is given by the initial phase of the algorithm).

Let us denote Q = ∪v∈V Qv. An assignment val: Q → {0,1}
in hyper-graph H = (U, F) is feasible if and only if
val(0) = 0, val(1) = 1, for every edge {{u}, {v}} ∈ F
val(u) = val(v), and for every non-trivial hyper-edge
{{x},Y} ∈ F Σy∈Y val(y) = val(x). Finally, the nodes in the
same equivalence class associated with a given node have
assigned the same value.

To prove the correctness of the algorithm it is sufficient to
show that hyper-graph transformation rules preserve feasible
assignments. The proofs are based on equivalence of
arithmetic expressions describing the branching before and
after applying the particular transformation rule.

Proposition 3 (correctness of edge contraction). An
assignment val: Q → {0,1} in the hyper-graph H = (U,F) is
feasible if and only if it is feasible for the hyper-graph after
application of the edge contraction rule.

Proof. Let {{u}, {v}} ∈ F be the contracted edge and
{{x}, {v}} ∈ F, where x ≠ u, be another edge (if any). Then
feasibility for hyper-graph H enforces val(x) = val(v) and
val(u) = val(v). Feasibility for hyper-graph after edge
contraction enforces val(x) = val(u) since {{x}, {v}} is
replaced by {{x}, {u}} and val(u) = val(v) since v ∈ Qu.
These two sets of formulas are clearly equivalent.
 For hyper-edge {{v},Y}∈F feasibility for H enforces
Σy∈Y val(y) = val(v) and val(u) = val(v). Feasibility for hyper-
graph after edge contraction enforces Σy∈Y val(y) = val(u)
since {{v},Y} is replaced by {{u},Y} and val(u) = val(v)
since v ∈ Qu. These two sets of formulas are equivalent.

Finally, for hyper-edge {{x},Y} ∈ F, where u ∉ Y, v ∈ Y
and x ≠ u, feasibility for H enforces Σy∈Y val(y) = val(x) and
val(u) = val(v). Feasibility for hyper-graph after edge
contraction enforces Σy∈Y val(y) – val(v) + val(u) = val(x)
and val(u) = val(v) since v ∈ Qu. These two sets of formulas
are again equivalent.

Proposition 4 (correctness of hyper-edge extension). An
assignment val: Q → {0,1} in the hyper-graph H = (U, F) is
feasible if and only if it is feasible for the hyper-graph after
application of the hyper-edge extension rule.

l

m

1 [abcdefg]

h

i

k [w]

n

o

p

j [qv]

r

t

u

x

y

z

A [B]

0

Fig. 5. Hyper-graph after extension and meet rule application.

Proof. Let {{x},Y} ∈ F and {{y},Z} ∈ F, where y ∈ Y and
({x}∪Y) ∩ ({y}∪Z) = {y}, be non-trivial hyper-edges that
are selected to form a new hyper-edge. Feasibility for hyper-
graph H enforces Σz∈Y val(z) = val(x), Σz∈Z val(z) = val(y),
which implies Σz∈Y val(z) + Σz∈Z val(z) – val(y) = val(x). This
is exactly the constraint enforced by the new hyper-edge.

Proposition 5 (correctness of hyper-edge meet). An
assignment val: Q → {0,1} in the hyper-graph H = (U,F) is
feasible if and only if it is feasible for the hyper-graph after
application of the hyper-edge meet rule.

Proof. Let {{x},Y} ∈ F and {Z, {w}} ∈ F, where x ≠ w and
Z ⊆ Y, be non-trivial hyper-edges on which the rule is
applied. Feasibility for hyper-graph H enforces
Σy∈Y val(y) = val(x) and Σz∈Z val(z) = val(w), which implies
Σy∈Y val(y) – Σz∈Z val(z) + val(w) = val(x). This is exactly the
constraint enforced by the added hyper-edge.

Proposition 6 (correctness of never-valid activity
detection). An assignment val: Q → {0,1} in the hyper-
graph H = (U, F) is feasible if and only if it is feasible for the
hyper-graph after application of the never-valid activity
detection rule.

Proof. Let us prove the case A of the rule first. Let
{{x},Y} ∈ F and {{y1},{y2}}∈F, where {y1,y2} ⊆ Y be
(hyper-)edges in H. The feasible assignment val in H must
satisfy val(y1) = val(y2) = 0, since the remaining
combinations of assignments of 0/1 values to y1 and y2 would
violate the constraint Σy∈Y val(y) = val(x). Hence, for any
feasible assignment the constraint Σy∈Y val(y) = val(x) holds
if and only if Σy∈Y-{y1,y2} val(y) = val(x) holds. Thus we did
not change the set of feasible assignments for the hyper-
graph by replacing the hyper-edge {{x},Y} by
{{x},Y-{y1,y2}} and by adding new edges {{0},{y1}} and
{{0},{y2}} that imply val(y1) = 0 and val(y2) = 0.

The proof of case B of the rule is similar. Let {{x},Y} ∈ F
and {{x},{y}} ∈ F, where y ∈ Y, be (hyper-)edges in H.
Clearly, every feasible assignment val must satisfy
val(x) = val(y) and for all z ∈ Y-{y} val(z) = 0. Any other
assignment would violate the constraint Σy∈X val(y) = val(x).
Hence, addition of edges {{0},{z}} for all z ∈ Y-{y} to F
does not change the set of feasible assignments and the
constraint on feasible assignments induced by the removed
hyper-edge {{x},Y} is subsumed by constraints induced by
newly added edges and by the edge {{x},{y}}.

IV. TEMPORAL NETWORKS WITH ALTERNATIVES

So far we assumed acyclic graphs describing precedence
relations between nodes and we focused on the logical
aspects of the network, namely selecting the nodes to satisfy
parallel and alternative branching. Nevertheless, in real-life
problems we usually need a finer time resolution so we can
extend precedence relations to simple temporal relations. In
particular, each arc (X,Y) in the P/A graph is annotated by a
pair of numbers [a,b] where a describes the minimal distance

between nodes X and Y and b describes the maximal
distance, formally, a ≤ Y – X ≤ b. We call the resulting
graph a P/A simple temporal network. Now the problem is to
decide validity of nodes satisfying parallel and alternative
branching and to assign time (number) to each valid node in
such a way that all simple temporal relations between the
valid nodes are satisfied. We call the problem of deciding
whether a feasible assignment of validity and time variables
exists a P/A simple temporal network assignment problem.
Again, we assume that validity of some nodes is set to 1
(otherwise, there is a trivial solution where all nodes are
invalid). This is a typical situation when the proposed
temporal network is used to model real-life problems. The
last nodes in the structure of alternative process routes
typically describe deliveries to customers. Because the
deliveries must be fulfilled and we can just select alternative
ways how to do it, these nodes must be valid.

Recall, that there exist polynomial algorithms for checking
consistency of simple temporal networks [4] so solving
simple temporal problems is “easy”. However, as we showed
above adding parallel and alternative branching makes the
problem hard.

Proposition 7: The P/A simple temporal network
assignment problem is NP-complete.

Proof: The proof is straightforward if we realise that P/A
graphs are just special cases of P/A simple temporal
networks. In particular, for any P/A graph we can construct a
P/A simple temporal network where all temporal constraints
are in the form [0,∞). Now, there exists a feasible assignment
to the P/A graph if and only if there exists a feasible
assignment to the corresponding P/A simple temporal
network (all time variables can be set to 0, which trivially
satisfies all temporal constraints).

It may seem that we can further generalise the framework
by using a disjunction of simple temporal relations that are
used in Temporal Constraint Satisfaction Problems [4].
However, this generalisation does not increase the expressive
power of the framework because temporal disjunctions in the
form ∨i=1,..,n ai ≤ Y – X ≤ bi can be substituted by a sub-
network with simple temporal constraints as Figure 6 shows.
Note that auxiliary nodes x’ and y’ are necessary to keep fan-
out subgraph with principal node X or fan-in subgraph with
principal node Y. Nodes x’ and y’ are equivalent in the sense
described in the previous section and the algorithm presented
there can detect this equivalence.

X Y
[0,0] [0,0]

[0,0]

[0,0]

[a1,b1]

[an,bn]

… ALT ALT x‘ y‘

Fig. 6. Modelling simple disjunctions of temporal constraints.

V. RELATED WORKS

The intended application area for the proposed framework
is manufacturing scheduling. There exists a benchmark set
MaScLib by ILOG [9] which contains a formal description
of real-life manufacturing scheduling problems. This
description includes the concept of validity variables and
logical dependencies between them. Temporal and logical
relations are modelled separately there and various binary
logical relations can be defined between the validity
variables. Our framework defines the logical dependencies
via branching in the temporal graph. According to our
experience this is satisfactory for modelling manufacturing
(and other) processes. Moreover, we believe that the coupled
definition will lead to more efficient filtering algorithms that
use together temporal and logical information. In [2] we
already showed that integrated filtering of precedence and
dependency constraints significantly reduces solving time.

We are not aware about another approach that can handle
alternative process routes in the same generality as the
proposed P/A simple temporal networks. The paper [5]
describes a graph concept for modelling alternative
processes, but it cannot be used for alternative routes
because all activities must be present. Probably the closest
approach to our proposal is the work by Beck and Fox [3] on
modelling alternative processes using PEX (probability of
existence) variables. In our framework we focus on logical
validity variables (PEX uses an interval of real numbers
〈0,1〉) but the main ideas of propagation are very similar.
Using validity variables instead of PEX values simplifies
integration to existing constraint solvers and we believe that
using logical deduction during pre-processing can generate
additional input to the filtering algorithm.

Our work is naturally related to temporal networks as we
proposed an extension of simple temporal networks. We
already showed that the proposed framework covers
Temporal Constraint Satisfaction Problems [4]. Disjunctive
Temporal Network [10] is another approach to handling
temporal alternatives. We have no formal comparison to our
P/A simple temporal network yet, but our ambition is slightly
different from DTN – we model alternative routes rather than
any temporal disjunction.

Several other extensions of temporal networks appeared
such as resource temporal networks [7] or disjunctive
temporal networks with finite domain constraints [8]. These
extensions integrate temporal reasoning with reasoning on
non-temporal information, such as fluent resources. Our
ambition is to extend existing constraint-based scheduling by
some planning decisions, namely selection of alternative
processes. So we extended temporal reasoning by logical
reasoning on existence of nodes in the network. Actually, the
possibility to decide about validity/invalidity of the node is
the main difference of our approach from the above
mentioned works on temporal networks where all nodes must
always be present. Moreover, we also plan to include
resource reasoning in our framework, namely including

disjunctive resource constraints. The paper [1] presents such
a constraint that can handle activities with the validity status.

There exists Conditional Temporal Planning [11] where
existence of node in the network depends on a certain
condition. Though there is some similarity in modelling
alternative processes/plans, satisfaction of condition in CTP
depends on external forces – Nature – rather than being an
internal relation between the nodes. In our approach,
decision of validity of the node is done internally based on
logical relations between the nodes.

VI. CONCLUSIONS

The paper reports a work in progress on extension of
simple temporal networks towards handling alternative
process routes. We focused on formalizing this new
modelling framework, showing its complexity, and
proposing a pre-processing step for extracting information
about logically equivalent nodes in the network.

The proposed framework combined with existing resource
constraints is aimed at solving complex manufacturing
scheduling problems where resource and time allocation
interleaves with selection of best processes to satisfy
customer demands. Hence, we contribute to the area of
integrated planning and scheduling techniques by extending
traditional scheduling technology by formal reasoning on
alternative plans/processes.

REFERENCES

[1] Barták, R., “Incremental Propagation of Time Windows on
Disjunctive Resources,” Proceedings of the Nineteenth International
Florida Artificial Intelligence Research Society Conference, AAAI
Press, pp. 25-30, 2006.

[2] Barták, R.; Čepek, O., “Incremental Filtering Algorithms for
Precedence and Dependency Constraints,” Proceedings of the 18th
IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2006). IEEE Press, pp. 416-423, 2006.

[3] Beck, J.Ch. and Fox, M.S., “Scheduling Alternative Activities,”
Proceedings of AAAI-99, USA, pp. 680-687, 1999.

[4] Dechter, R.; Meiri, I. and Pearl, J., “Temporal Constraint Networks,”
Artificial Intelligence, 49:61.95, 1991.

[5] Focacci, F.; Laborie, P.; and Nuijten, W., “Solving Scheduling
Problems with Setup Times and Alternative Resources,” Proceedings
of AIPS 2000.

[6] Garey, M. R. and Johnson, D. S., Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman and
Company, San Francisco, 1979.

[7] Laborie, P., “Resource temporal networks: Definition and
complexity,” Proceedings of the 18th International Joint Conference
on Artificial Intelligence, pp. 948-953, 2003.

[8] Moffitt, M. D.; Peintner, B.; and Pollack, M. E., “Augmenting
Disjunctive Temporal Problems with Finite-Domain Constraints,”
Proceedings of the 20th National Conference on Artificial
Intelligence (AAAI-2005), pp. 1187-1192. AAAI Press, 2005.

[9] Nuijten, W.; Bousonville, T.; Focacci, F.; Godard, D.; Le Pape, C.,
“MaScLib: Problem description and test bed design,”
http://www2.ilog.com/masclib, 2003.

[10] Stergiou, K., and Koubarakis, M., “Backtracking algorithms for
disjunctions of temporal constraints,” Proceedings of the 15th
National Conference on Artificial Intelligence (AAAI-98), pp. 248-
253. AAAI Press, 1998.

[11] Tsamardinos, I.; Vidal, T. and Pollack, M.E., “CTP: A New
Constraint-Based Formalism for Conditional Temporal Planning,”
Constraints, 8(4):365.388, 2003.

