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Abstract. Many real-life constraints describing relations between the problem 
variables have complex semantics and the constraint domain is defined using a 
table of compatible tuples rather than using a formula. In the paper we study the 
implementation of filtering algorithms (propagators) for such tabular 
constraints. We concentrate on implementation aspects of these algorithms so 
the proposed propagators can be naturally integrated into existing constraint 
satisfaction packages like SICStus Prolog. 

Introduction 

Many real-life problems can be naturally modeled as a constraint satisfaction problem 
(CSP), i.e. using variables with a set of possible values (domain) and constraints 
restricting the allowed combinations of values. Quite often, the semantics of the 
constraint is well defined via mathematical or logical formulas, e.g. comparison, 
implication etc. However, the intentional description of some constraints is rather 
complicated and it is much easier to describe them extensionally as a set of 
compatible tuples. The relation between the type of activity and its duration or the 
description of next activity in the transition scheme in scheduling applications [1,2] 
are typical examples of such constraints. The constraint domain is specified there as a 
table (Figure 1) rather than as a formula, thus we are speaking about tabular 
constraints. 
 

X Y  
1 2..20, 30..50  
2 - No compatible value 
3 inf..sup No restriction on Y 
4 2..20, 30..50  

Fig. 1. Example of a tabular constraint: a range of compatible values of Y is specified for each 
value of X. 

In this paper we study the filtering algorithms (propagators) for binary constraints 
where the constraint domain is described as a table. We compare two filtering 
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algorithms that use a compact representation of the constraint domain. Such compact 
representation turned out to be crucial for efficiency of the algorithms applied to real-
problems with non-trivial domains (i.e., the size of the domain is in the range of 
thousands or millions of elements). Rather than providing a theoretical study of the 
algorithms we concentrate on the practical aspects of the implementation, which are 
usually omitted in research papers. Thus the algorithms are proposed in such a way 
that they can be easily integrated into mainstream constraint solvers.  

The paper is organized as follows. First, we give a motivation for using tabular 
constraints and we survey existing approaches to model such constraints. Then we 
describe two filtering algorithms for tabular constraints. These algorithms extends our 
previous works on tabular constraints [3,4] by using a more compact representation of 
the constraint domain and better entailment detection. In some sense, both algorithms 
converge by sharing a sweep technique. We conclude the paper by empirical 
comparison of the algorithms using large-scale real-life scheduling problems. 

Motivation 

Our work on filtering algorithms for tabular constraints is motivated by practical 
problems where important real-life constraints are expressed in the form of tables. In 
particular, this work is motivated by complex planning and scheduling problems 
where the user states constraints over the objects like activities and resources. In 
complex environments, there could appear pretty complicated relations between the 
activities expressing, for example, transitions between the activities allocated to the 
same resource like changing a color of the produced item [1]. Typically, the activities 
are grouped in such a way that the transitions between arbitrary two activities within 
the group are allowed but a special set-up/transition activity is required for the 
transition between the activities of different groups. The most natural way to express 
such relation is using a table describing the allowed transitions (see Figure 2). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. A transition constraint expressed as a table of compatible transitions (shadow regions). 
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As we showed in [2] there are many other constraints of the above type in real-life 
planning and scheduling problems, e.g. description of time windows, duration, and 
cost of activity. These constraints can hardly be described using a mathematical 
formula because the user specifies the constraint domain (the set of compatible pairs) 
using a table. Therefore special filtering algorithms for such constraints are highly 
desirable. Efficiency of such filtering algorithms can be improved by exploiting 
information about the structure of the constraint domain. For example, we have 
noticed that the structure of many tabular constraints is rectangular, i.e., the constraint 
domain consists of several (possible overlapping) rectangles of compatible pairs (see 
Figure 2). This information can be used to design a special filtering algorithm that is 
more efficient if the constraint domain is rectangular and that is still capable to do 
filtering on arbitrary other constraint domain. 

Related Works 

The existing constraint solvers already provide a mechanism to model tabular 
constraints without necessity to program a new filtering algorithm. For example, in 
SICStus Prolog [10], there is a relation constraint where the user can specify a 
binary constraint as a list of compatible pairs. In particular, for each value of the first 
(leading) variable, the user describes a range of compatible values of the second 
(dependent) variable. Thus the domain for the leading variable must be finite (till the 
version 3.8.7 the domain of the dependent variable must be finite as well). 

The tabular constraint can also be modeled using a pair of element constraints. 
The input of the constraint domain is even less compact there. When the element 
constraints are used to model a tabular constraint then every pair of compatible values 
must be specified (the constraint domain is completely extensional). Thus, it is 
impossible again to represent infinite domains. 

In [3] a straightforward filtering algorithm called general relation was proposed. 
This algorithm supports infinite domains for the dependent variable and it provides a 
mechanism to detect constraint entailment when the reduced constraint domain has a 
rectangular structure [2]. However, the general relation technique still uses a less 
compact representation identical to the relation constraint. Later in the paper we 
describe an extension of this algorithm that allows infinite domains for both leading 
and dependent variables and that is more time and memory efficient. 

In [5], a new technique called sweep was proposed to explore constraint domains. 
This technique was applied to tabular constraints in [3]. The sweep filtering algorithm 
represents the constraint domain using a rectilinear rectangular covering (a set of 
possibly overlapping rectangles) so the representation is more compact. The 
complexity of the filtering algorithm depends on the number of rectangles rather than 
on the size of the constraint domain. However, this algorithm has no mechanism to 
detect constraint entailment. Later in the paper, we present an extension to this 
algorithm that includes a detector of constraint entailment and that uses a more 
compact representation of the constraint domain. 
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Preliminaries 

Constraint programming is a framework for declarative problem solving by stating 
constraints over the problem variables and then finding a value for each variable in 
such a way that all the constraints are satisfied. The value for a particular variable can 
be chosen only from the variable domain, i.e., from a set of possible values for the 
variable. Constraint is an arbitrary relation restricting the possible combinations of 
values for constrained variables. The constraint domain is a set of tuples satisfying 
the constraint i.e. it is a subset of the Cartesian product of the variables’ domains. For 
example, {(0,2), (1,1), (2,0)} is a domain of the constraint X+Y=2 where variables’ 
domains consist of non-negative integers. If C is a constraint over the set of variables 
Xs then we denote a constraint domain C(Xs). We say that the constraint domain has 
a rectangular structure, if C(Xs) = ×X∈Xs C(Xs)↓X, where C(Xs)↓X is a projection of 
the constraint domain to the variable X (see Figure 3). For example, the above 
constraint X+Y=2 does not have a rectangular structure because the projection to both 
variables is {0,1,2} and the Cartesian product {0,1,2}×{0,1,2} is larger than the 
constraint domain. The notion of a rectangular structure is derived from the structure 
of the constraint domain for binary variables. 

Assume that C(Xs) is a domain of the constraint C and D(X) is a domain of the 
variable X (a set of values). We call the intersection C(Xs) ∩ (×X∈Xs D(X)) a reduced 
domain of the constraint. Note, that the reduced domain consists only of the tuples 
(v1,…,vn) such that ∀i vi∈D(Xi). 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Projection of the constraint domain (shadow rectangles) to variable Y and reducing the 
constraint domain. 

Many constraint solvers are based on maintaining consistency of constraints during 
enumeration of variables. We say that the constraint is consistent (arc-consistent, 
hyper arc-consistent)1 if every value of every variable participating in the constraint is 
part of some valuation satisfying the constraint. More precisely, every value of every 
variable participating in the constraint must be part of some tuple from the reduced 
constraint domain. For example, the constraint X+Y=2, where both the variables X 
and Y have domain {0,1,2}, is consistent while the constraint from Figure 3 is not 

                                                           
1 The notion of arc-consistency is used for binary constraints only. For constraints of higher arity, the 

notions of hyper arc-consistency or generalised arc-consistency are used. For simplicity reasons we will 
use the term consistency there. 
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consistent. To make the constraint consistent we can reduce the domains of involved 
variables by projecting the reduced constraint domain to the variables: 

∀Y∈Xs: D(Y) ← (C(Xs) ∩ (×X∈Xs D(X)))↓Y. 

The algorithm (procedure) that makes the constraint consistent is called a propagator 
[8]. More precisely, the propagator is a function that takes variables’ domains as the 
input and that proposes a narrowing of these domains as the output. The propagator is 
complete, if it makes the constraint consistent, i.e., all locally incompatible values are 
removed. The propagator is sound if it does not remove any value that can be part of 
the solution. The propagator is idempotent if it reaches a fix point, i.e., the next 
application of the propagator to the narrowed domains does not narrow them more. 

We say that the constraint satisfaction problem is (hyper) arc-consistent, if every 
constraint is consistent. It is not enough to make every constraint consistent by a 
single call to its (complete) propagator because the domain change might influence 
consistency of already consistent constraints. Thus the propagators are called 
repeatedly in a propagation loop until there is no domain change. In fact, the 
particular propagator is called only when domain of any variable involved in the 
constraint is changed (AC-8 algorithm). Many constraint systems allow a finer 
definition when the propagator is evoked via so called suspensions, for details see 
[7,8]. Nevertheless, the existing constraint solvers rarely go beyond the arc-
consistency schema in the propagation loop. 

When the domains of involved variables become singletons then it is not necessary 
to call the propagator again because it cannot narrow the domains anymore. 
Moreover, the propagator may be stopped sooner. Assume that the domain of X is 
{1,2,3} and the domain of Y is {5,6,7}. Then the propagator for the constraint X<Y 
deduces no domain narrowing. This is because every combination of values from the 
variables' domains satisfies the constraints - the constraint is entailed. We say that the 
constraint is entailed if the constraint is satisfied for any combination of the values 
from variables’ domains. Visibly, the constraint is entailed if and only if the reduced 
constraint domain has a rectangular structure and the constraint is consistent. 

The rest of the paper deals with propagators for general binary (tabular) constraints 
only. We expect the propagator to be evoked when the domain of any involved 
variable changes. Our goal is to design efficient, complete, and sound propagators. 

Compact General Relation 

The general relation (GR) constraint or more precisely the GR propagator was first 
described in [4]. This propagator uses a thread representation of the constraint domain 
where one variable is selected as the leading variable and the other variable is 
dependent. The constraint domain is represented as a list of pairs (x,dy), where x is a 
value of the leading variable and dy is a range of compatible values of the dependent 
variables (Figure 4). This is a natural representation of the constraints that are 
described using a table like in Figure 1. This representation requires a finite projection 
of the constraint domain to the leading variable and a finitely representable projection 
to the dependent variable (e.g. a finite number of intervals). 
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Fig. 4. Representation of the constraint domain by the GR propagator. 

The filtering algorithm [4] simply explores the list and it tests whether xi is part of the 
current domain of X and whether the intersection of dyi with the current domain of Y 
is non-empty. In such a case xi remains in the domain of X and dyi ∩ D(Y) will be 
part of the narrowed domain of Y. 

When using this algorithm with real-life constraints in a scheduling application [2], 
we have noticed that many dyi are identical. Thus we can compact the domain 
representation which reduces memory consumption and it also speeds ups the filtering 
algorithm. 

Domain Generator 

Decomposition of the constraint domain to rectangles is used by sweep pruning 
algorithm proposed in [5] and it was applied to tabular constraint in [3]. We decided 
to go one step further and we decompose the domain into subsets with a rectangular 
structure rather than to individual rectangles. Note that such decomposition is more 
compact than a rectilinear rectangular covering because several rectangles can be 
represented in a single structure (see Figure 5). Moreover the decomposition 
algorithm is rather simply and efficient. We take the original description of the table 
using the list of pairs (xi,dyi)  like in Figure 4 and we “compact” all the pairs with 
identical dy component. Formally, let T = {(xi,dyi) | i=1..n} be the original table then 
we get a new table: 

CT = {(dxi,dyi)  | dxi = {x | (x,dyi)∈T} &  j≠k ⇒ dyj≠dyk} 

We use a straightforward conversion algorithm with the time complexity O(n.log n) 
where n is a number of the elements in the original table. This algorithm decomposes 
the constraint domain into a set of non-overlapping sub-domains with rectangular 
structure (like in Figure 5). Note that it is possible to design other conversion 
algorithms that produce different decompositions. 
 
 
 
 
 
 
 
 
 
 

Fig. 5. A decomposition of the binary constraint domain into a set of non-overlapping sub-
domains with a rectangular structure. 
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Filtering Algorithm 

The filtering algorithm for the compacted GR relation mimics the behavior of the 
original filtering algorithm from [4]. There are just few changes to respect the new 
compact representation of the constraint domain. Figure 6 describes the final compact 
GR propagator. This algorithm incrementally constructs the projection of the reduced 
constraint domain to both variables. For each area DX-DY of the constraint domain, 
the algorithm checks whether it has a non-empty intersection with the reduced 
constraint domain (10-13); projections of this intersection become a part of the 
narrowed domains of the variables (17-18).  
 
1 procedure GR(Constraint,X,Y) 
2   NewDomainOfX ← empty 
3   NewDomainOfY ← empty 
4   ConstraintDomain ← domain(Constraint) 
5   Entailed ← true 
6   LastProjectionOfY ← empty 
7   NewDomain ← empty 
8   while non_empty(ConstraintDomain) do 
9   (DX-DY) ← head(ConstraintDomain) 
10 CompatibleX ← intersection(domain(X),DX) 
11  if non_empty(CompatibleX) then 
12     CompatibleY ← intersection(domain(Y),DY) 
13     if non_empty(CompatibleY) then 
14      if empty(NewDomain) then 
15       NewDomain ← ConstraintDomain 
16     end if 
17     NewDomainOfX ← union(NewDomainOfX,CompatibleX) 
18      NewDomainOfY ← union(NewDomainOfY, CompatibleY) 
19      if Entailed then 
20       if empty(LastProjectionOfY) then 
21        LastProjectionOfY ← CompatibleY 
22       else 
23        Entailed ← LastProjectionOfY == CompatibleY) 
24       end if 
25      end if 
26     end if 
27    end if 
28   ConstraintDomain ← tail(ConstraintDomain) 
29   end while 
30   X in NewDomainOfX 
31   Y in NewDomainOfY 
32   domain(Constraint) ← NewDomain 
33 end GR 

Fig. 6. The filtering algorithm of the compact GR propagator. 

Time complexity of the compact GR propagator depends on the number of areas in 
the representation of a constraint domain. Each time the propagator is evoked, every 
such area is explored (8-29) and thus having a smaller number of areas in the domain 
representation is advantage. That is the reason why the compact GR propagator is 
more time and space efficient then the original GR propagator. 
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The proposed algorithm can keep only the areas that have a non-empty intersection 
with the reduced constraint domain. As we showed in [4] this significantly increases 
memory consumption so we decided just to shift the pointer to the start of the domain 
representation (14-16). This technique has minimal memory demands and it slightly 
decreases the number of areas to be explored when the propagator is evoked next 
time. 

Usually, the research papers on filtering algorithms omit the implementation 
details like the detection of constraint entailment. We have found early detection of 
constraint entailment very important for the actual efficiency of the algorithm (see 
Experimental Results) and therefore we include the entailment detector in the code of 
the propagator (19-24). 

Sweep Filtering Algorithm 

The GR propagator uses a straightforward decomposition of the constraint domain to 
non-overlapping areas with a rectangular structure. Moreover, the projections of these 
areas to the leading variable are disjunctive (see Figure 5) which has no effect on the 
filtering algorithm but it simplifies detection of constraint entailment. In [9,11] a 
different decomposition of the constraint is proposed, in particular a decomposition 
into a set of rectangles covering the constraint domain (so called rectilinear 
rectangular covering). The filtering algorithm for such decomposition is based on a 
technique called sweep that is widely used in computational geometry and that was 
first applied to domain filtering in [5]. The sweep algorithm moves a vertical line 
(called a sweep line) along the horizontal axis (the leading variable) from left to right. 
Each time it encounters or leaves a rectangle (this is called an event) it triggers some 
event handler according to the event type. Thus the algorithms sweeps the plane, 
hence its name. 

In this paper, we propose a generalization of the filtering algorithm from [3]. It is 
based on observation that the sweep filtering algorithm can use more general objects 
than simple rectangles. The algorithm requires the object to have a rectangular 
structure and its projection to the leading variable to be an interval. We call such 
object a generalized rectangle (Figure 7). 

 
 
 
 
 
 
 
 

 

Fig. 7. Example of a generalized rectangle; it can be described using the term rect(3,6,[2,5..6] ). 
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Domain Generator 

Each constraint domain must be first decomposed into a set of generalized rectangles 
before it can be used by the sweep pruning algorithm. It is easy to get a sequence of 
non-overlapping generalized rectangles from the original table T = {(xi,dyi) | i=1..n} 
describing the constraint domain. Simply, the neighboring pairs with the identical dy 
component are joined so we get a table: 

CTsweep = {(min_xi,- max_xi, dyi)  | ∀x min_xi ≤ x ≤ min_xi: (x,dyi)∈T}. 

Notice the difference from the compact GR model: now the projection of objects in 
CTsweep to the leading variable must be an interval and thus |CT|≤|CTsweep|. Because 
the efficiency of the filtering algorithm depends on the number of generalized 
rectangles, we decided to generate a more compact decomposition from CTsweep. The 
decomposition algorithm simply joins the neighboring parts of the rectangles. The 
idea is as follows: the algorithm takes the generalized rectangle and it tries to extend it 
to the largest possible x. Then this generalized rectangle is removed from the 
constraint domain and the process is repeated until the domain is empty (Figure 8). 

 
 
 
 
 
 
 
 
 
 

Fig. 8. Number of generalized rectangles can be decreased by using a different decomposition. 

We present here a decomposition algorithm based on the sweep technique (Figure 9). 
This algorithm explores the (generalized) rectangles from CTsweep from left to right 
and it tries to extend each rectangle to the right. To do this job, the algorithm keeps a 
set of active rectangles (ActiveRects), i.e., the rectangles that can still be extended, as 
well as an “active” projection of these rectangles to the dependent variable 
(ActiveDy). Note that there is an empty intersection of the projections of the active 
rectangles to the dependent variable. Thus if the active rectangle is closed then we can 
simply remove its projection from the “active” projection (line 12). Each time the 
algorithm takes a new rectangle, it tests whether the active rectangles can still be 
extended to this new rectangle (line 9). If the rectangle cannot be extended then it is 
removed from the set of active rectangles and it is put to the final decomposition - we 
call it closing the rectangle (12-13). After extending the active rectangles, the 
remaining part of the new rectangle (if any) will be included among the active 
rectangles (17-20). When all the rectangles are explored then the remaining active 
rectangles are closed (23-25). 

In the worst case, the number of rectangles generated by this algorithm will be 
|CTsweep| but in many cases, the algorithm decreases the number of rectangles (see 
Figure 8). Note also that our decomposition generates non-overlapping rectangles. 
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1 procedure GenerateRectangles(D) 
2  Rects ← empty 
3  ActiveRects ← empty 
4  ActiveDy ← empty 
5  LastX ← inf 
6  for each (Xmin..Xmax)-Dy in D (in increasing order of Xmin) do 
7    TmpRects ← empty 
8    for each r(RXmin,RDy) in ActiveRects do 
9      if RDy ⊆ Dy && LastX+1=Xmin then 
10           TmpRects ← r(RXmin,RDy) : TmpRects 
11      else 
12           ActiveDy ← ActiveDy - RDy 
13           Rects ← rect(RXmin,LastX,RDy) : Rects 
14      end if 
15    end for 
16    ActiveRects ← TmpRects 
17    if not empty_domain(Dy – ActiveDy) then 
18      ActiveRects ← r(Xmin, Dy – ActiveDy) : ActiveRects 
19      ActiveDy ← Dy 
20    end if 
21    LastX ← Xmax 
22  end for 
23  for each r(Xmin,Dy) in ActiveRects do 
24    Rects ← rect(Xmin,LastX,Dy) : Rects 
25  end for 
26 end GenerateRectangles 

Fig. 9. The algorithm for domain decomposition 

 
Rectangles LastX ActiveDy ActiveRects Rects 
 inf empty empty empty 
(2..2)-[2,5..6] 2 [2,5..6] r(2,[2,5..6]) empty 
(3..4)-[2..6] 4 [2..6] r(3,[3..4]), 

r(2,[2,5..6]) 
empty 

(5..6)-[3..4] 6 [3..4] r(3,[3..4]) rect(2,4,[2,5..6]) 
(7..7)-[2..6] 7 [2..6] r(7,[2,5..6]), 

r(3,[3..4]) 
rect(2,4,[2,5..6]) 

(8..9)-[2,5..6] 9 [2,5..6] r(7,[2,5..6]) rect(3,7,[3..4]), 
rect(2,4,[2,5..6]) 

    rect(7,9,[2,5..6]), 
rect(3,7,[3..4]), 
rect(2,4,[2,5..6]) 

Fig. 10. Run of GenerateRectangles with the constraint domain from Figure 8. 

Filtering Algorithm 

The filtering algorithm based on the sweep technique was proposed in [3,9] - using 
the generalized rectangles does not require any change of this algorithm. The sweep 
algorithm moves a vertical line (called a sweep line) along the horizontal axis from 
left to right and each time it encounters or leaves an object (this is called an event), it 
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triggers some event handler according to the event type. Thus the algorithms sweeps 
the plane, hence its name. In case of domain filtering, there are four types of events 
used by the sweep algorithm: 

rect_start(PosX,NumR,IntY) - indicates the left border (PosX) of the rectangle 
identified by NumR with the vertical projection IntY, 

rect_end(PosX,NumR) - indicates the right border (PosX) of the rectangle 
identified by NumR, 

x_start(PosX) - indicates the start of some coherent interval within the current 
domain of the leading variable, 

x_end(PosX) - indicates the end of some coherent interval within the current 
domain of the leading variable. 

The list of events can be generated in advance from the constraint domain and the 
current domain of the leading variable. We call such a list an event point series. The 
events in the event point series are ordered increasingly according to the x-axis 
position of the event (PosX). Moreover, we require the start events to precede the end 
events with the same x-axis position. This is necessary for the algorithm to capture 
"one-point" overlaps between the objects. Figure 11 shows an example of the event 
point series for the constraint domain consisting of three generalized rectangles and 
the domain of the leading variable consisting of two intervals (3..5 and 8..10). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Construction of the event point series for the constraint domain. 

During the computation, the SP (sweep pruning) algorithm keeps some global data 
structures that describe the status of computation: 

InDomain - indicates whether the sweep line is within the domain of the 
leading variable, i.e., in between x_start and x_end events 
corresponding to a single coherent interval, 

ActiveRects - describes the set of rectangles that are crossed by the sweep line, 
i.e., the rectangles where the rect_start event has been 
processed and the corresponding rect_end has not been 
reached yet. 

Event point series: 
rect_start(2,1,[2,5..6]), 
rect_start(3,2,[3..4]), 
x_start(3), 
rect_end(4,1), 
x_end(5), 
rect_start(7,3,[2,5..6), 
rect_end(7,2), 
x_start(8), 
rect_end(9,3), 
x_end(10) 
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1 procedure SP(Constraint,X,Y) 
2   EventPointSeries ← make_event_point_series(Constraint,X) 
3   ListOfDomY, ActiveRects, ListOfX ← empty 
4   DY ← domain(Y) 
5   InDomain ← false 
6  while non_empty(EventPointSeries) do 
7     Event ← select_and_delete_first(EventPointSeries) 
8     process_event(Event,DY,ActiveRects,InDomain,ListOfX,ListOfDomY) 
9   end while 
10   NewDomainOfX ← empty 
11   while non_empty(ListOfX) do 
12     Max ← select_and_delete_last(ListOfX) 
13     Min ← select_and_delete_last(ListOfX) 
14     NewDomainOfX ← union(Min..Max,NewDomainOfX) 
15   end while 
16   X in NewDomainOfX 
17   Y in intersection(union(ListOfDomY),DY) 
18   Entailed ← all elements in ListOfDomY are identical 
19 end SP 

Fig. 12. The SP filtering algorithm. 

 
EVENT - ACTION 
rect_start(PosX,NumR,IntY) 

20 if non_empty(intersection(IntY,DY)) then 
21   if InDomain then 
22    ListOfDomY ← IntY : ListOfDomY 
23     if empty(ActiveRects) then 
24        ListOfX ← PosX : ListOfX 
25     end if 
26    end if 
27    ActiveRects ← r(NumR,IntY) : ActiveRects 
28 end if 

rect_end(PosXx,NumR) 
29 if find_and_delete(r(NumR,_),ActiveRects) then 
30   if InDomain && empty(ActiveRects) then 
31    ListOfX ← PosX : ListOfX 
32   end if 
33 end if 

x_start(PosX) 
34 InDomain ← true 
35 if non_empty(ActiveRects) then 
36   ListOfX ← PosX : ListOfX 
37   for each r(NumR,IntY) in ActiveRects do 
38     ListOfDomY ← IntY : ListOfDomY 
39   end for 
40 end if 

x_end(PosX) 
41 InDomain ← false 
42 if non_empty(ActiveRects) then 
43   ListOfX ← PosX : ListOfX 
44 end if 

Fig. 13. Event processing for the SP filtering algorithm. 
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The SP algorithm is more or less self-explanatory (Figures 12, 13). Notice that only 
the rectangles having a non-empty projection to the domain of the dependent variable 
are processed (lines 20, 29); let us call these rectangles relevant. If the sweep line 
enters the relevant rectangle (rec_start event) and it is within the domain of the 
leading variable X (line 21), then the projection of the rectangle to y-axis is added to 
the new domain of Y (line 22). If it is the first rectangle that has non-empty 
intersection with the current interval of X (line 23) then the start of the new interval is 
added to the new domain of X (line 24). When entering the relevant rectangle we 
make this rectangle active by memorizing it in the ActiveRects structure (line 27). If 
we leave the last rectangle (rect_end event) that is active (line 30) then the end of the 
new interval is added to the new domain of X (line 31). If we enter a new interval 
within the domain of X (x_start event) and there is any active rectangle (line 35) then 
the new start of the new domain of X is created (line 36). Also, the new domain of Y 
is extended by projections of active rectangles to y-axis (37-39). If we leave some 
interval within the domain of X (x_end event) and there is still some active rectangle 
then a new end of the interval is added to the new domain of X (line 43). 

The algorithm incrementally builds new domains for the leading variable (ListOfX) 
and the dependent variable (ListOfDomY). ListOfX keeps a list of "border" points of 
intervals in the new domain of the leading variable (in the reverse order) that is then 
converted to the domain (10-15). ListOfDomY is a list of projections of the rectangles 
to the dependent variable. If all elements in this list are identical then the constraint is 
entailed (line 18). This detector is a simple improvement of the algorithm from [3] but 
it has a significant impact on the real-time efficiency of the propagator. Nevertheless, 
the detector is still not complete, i.e., it does not detect all constraint entailments. 

 
EVENT ListOfX InDom. ActiveRects NewDY 
rect_start(2,1,[2,5..6]) empty false r(1,[2.5..6]) empty 
rect_start(3,2,[3..4]) empty false r(2,[3..4]) 

r(1,[2,5..6]) 
empty 

x_start(3) 3 true r(2,[3..4]) 
r(1,[2,5..6]) 

[2,5..6] 
[3..4] 

rect_end(4,1) 3 true r(2,[3..4]) [2,5..6] 
[3..4] 

x_end(5) 5,3 false r(2,[3..4]) [2,5..6] 
[3..4] 

rect_start(7,3,[2,5..6]) 5,3 false r(3,[2,5..6]) 
r(2,[3..4] 

[2,5..6] 
[3..4] 

rect_end(7,2) 5,3 false r(3,[2,5..6]) [2,5..6] 
[3..4] 

x_start(8) 8,5,3 true r(3,[2,5..6]) [2,5..6] 
[3..4] 

rect_end(9,3) 9,8,5,3 true empty [2,5..6] 
[3..4] 

x_end(10) 9,8,5,3 false empty [2,5..6] 
[3..4] 

  

Fig. 14. Run of the SP filtering algorithm for the constraint domain from Fig 11. The constraint 
is not entailed and the domains are narrowed to DX=[3..5,8..9], DY=[2..6]. 
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Experimental Results 

Time complexity of both filtering algorithms depends on the number of “rectangles” 
in the constraint domain; the complexity study can be found in [3,4]. We concentrate 
here on the real-life efficiency of the algorithms studied using several large-scale 
scheduling problems containing many tabular constraints. The algorithms are 
implemented in SICStus Prolog 3.8.7 [7,10] and the tests are run under Windows XP 
Professional on 1.7 GHz Mobile Pentium-M 4 with 768 MB RAM. 

Table 1 summarizes the results on six tests problems. For each problem, we 
describe the number of tables inputted by the user and the total number of tabular 
constraints generated when solving the problem (some constraints share the same 
table).  For each propagator we describe the total size of the tables, i.e., the total 
number of “rectangles” in all tables. This parameter indicates how good domain 
compaction the algorithm uses (the theoretical efficiency depends on this parameter). 
We also specify how many times the propagator is called. Naturally, this parameter 
cannot be included in the theoretical study of the individual propagators because it 
depends on the constraint “neighborhood”. However, as the tests show early detection 
of constraint entailment influences the total running time. We compare both GR and 
SP propagators with and without detection of the constraint entailment. 

Table 1. Comparison of GR and SP propagators using real-life scheduling problems (times are 
measured in seconds). 

constraints GR SP 

detect on detect off detect on detect off 
tables # rect. 

calls time calls time 
rect. 

calls time calls time 

112 7568 117 7958 15 31051 15 356 7958 15 31051 16 

135 12095 205 18253 95 242660 98 2112 30436 95 242660 107 

244 15172 293 15198 27 51070 28 878 15983 27 51070 27.5 

158 5742 367 16394 35 53405 36 6404 18782 42 53405 45 

49 1993 151 3517 3 9263 3 1546 3553 4 9263 4,5 

401 16985 455 18500 66 221586 72 3532 18500 67 221586 80 

 
Before we start to analyze the results, it is necessary to highlight that the running 
times include complete solving of the problem so the actual running time of the 
propagator is just a fraction of this time. Therefore even a small improvement of the 
total running time actually means a significant improvement of the comparator. 

The empirical study shows that even if the GR propagator is based on a rather 
straightforward idea it still outperforms the more advanced SP propagator. Time 
complexity of both comparators depends on the number of “rectangles” in the domain 
representation. As we can see, the decomposition for SP is never smaller then the 
decomposition for GR. That is because GR uses more general rectangles than SP so 
the results are not really surprising. Note also that both filtering algorithms are 
designed more or less independently on the actual decomposition so it is possible to 
improve the real-time efficiency by using more advanced decompositions leading to a 
smaller number of rectangles in the constraint domain. 
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The empirical study also confirms our claim that early detection of constraint 
entailment influences (in the positive way) actual running time. We can see that the 
number of calls to the propagator is significantly smaller when the entailment detector 
is on; also the running time is smaller. We can also see that the entailment detector for 
SP propagator is not complete so the propagator is called more times than for GR 
(where the entailment detector is complete). 

Conclusions 

The paper proposes and compares two approaches to domain filtering for binary 
tabular constraints. It also shows that some “implementation” details like detection of 
constraint entailment influences significantly real performance. We concentrate on 
real-life constraints rather than on artificial constraints over small domains. 

The future research can go in the direction of designing better decompositions of 
the constraint domain and reducing the number of compatibility checks during 
filtering, e.g. using information about the cause of calling the propagator like in [6]. 
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